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Abstract
Purpose—To evaluate the impact of insufficient longitudinal data on the accuracy of a high-
throughput clinical phenotyping (HTCP) algorithm for identifying 1) patients with type 2 diabetes
mellitus (T2DM) and 2) patients with no diabetes.

Methods—Retrospective study conducted at Mayo Clinic in Rochester, Minnesota. Eligible
subjects were Olmsted County residents with ≥1 Mayo Clinic encounter in each of three time
periods : 1) 2007, 2) from 1997 through 2006, and 3) before 1997 (N= 54,283). Diabetes relevant
electronic medical record (EMR) data about diagnoses, laboratories, and medications were used.
We employed the HTCP algorithm to categorize individuals as T2DM cases and non-diabetes
controls. Considering the full 11 years (1997–2007) as the gold standard, we compared gold-
standard categorizations with those using data for 10 subsequent intervals, ranging from 1998–
2007 (10-year data) to 2007 (1-year data). Positive predictive values (PPVs) and false-negative
rates (FNRs) were calculated. McNemar tests were used to determine whether categorizations
using shorter time periods differed from the gold standard. Statistical significance was defined as
P<.05.

Results—We identified 2,770 T2DM cases and 21,005 controls when the algorithm was applied
using 11-year data. Using 2007 data alone, PPVs and FNRs respectively were 70% and 25% for
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case identification and 59% and 67% for control identification. All time frames differed
significantly from the gold standard, except for the 10-year period.

Conclusions—The accuracy of the algorithm reduced remarkably as data were limited to
shorter observation periods. This impact should be considered carefully when designing/executing
HTCP algorithms.

Keywords
diabetes mellitus; electronic medical record; phenotype; data aggregation; medical informatics;
research subject selection

Introduction
Clinically relevant genomic studies offer the hope of improving routing care by discovering
knowledge associated between genetic variants and disease. In order to derive statistically
powerful conclusions, a considerable number of subjects are often required on the basis of
disease, symptoms, or related findings. This subject selection process usually consumes
substantial time and human efforts to gather, abstract, and review patients’ medical records.
Cost-effective ways are demanded to perform clinical phenotyping within large populations
[1].

Recently, the increased adoption of electronic medical record (EMR) systems has provided a
potential tool to reduce the inefficiencies of manual medical record review [2, 3]. By
leveraging machine-processable content through an EMR system, clinical researchers can
develop a high-throughput clinical phenotyping (HTCP) algorithm (a set of EMR-based
inclusion and exclusion subject selection criteria), execute the algorithm against an existing
EMR system, and rapidly obtain a large pool of potentially eligible study subjects [4–6].

The Electronic Medical Records and Genomics (eMERGE) Network, a national consortium
funded by the National Human Genome Research Institute, has devoted substantial efforts to
exploring the possibility of leveraging EMRs for HTCP [7]. The eMERGE I Network
consisted of 5 leading medical centers in the United States: Mayo Clinic, Rochester,
Minnesota; Northwestern University Medical Center, Chicago, Illinois; Vanderbilt
University Medical Center, Nashville, Tennessee; Marshfield Clinic, Marshfield, Wisconsin;
and Group Health Cooperative in collaboration with University of Washington, Seattle,
Washington. Thirteen robust HTCP algorithms had been created by the end of May 2011.
All HTCP algorithms were validated across the 5 participating centers to ensure that each of
them was transportable and that various institutions can execute it to efficiently and thereby
accurately identify subjects eligible for clinical research.

However, the role of longitudinal data on the accuracy of HTCP algorithms continues to be
a concern. Insufficient longitudinal data occurs when a patient’s EMR data is limited to a
short time frame, e.g., the patient’s data were collected before the EMR system was
implemented at a center or the patient was seen at that center only for a short period. In
either instance, only a certain number of years of EMR data, instead of a patient’s complete
longitudinal data, would be available when executing the algorithm. The unavailable
longitudinal data may be crucial to qualify or disqualify study subjects. For example,
distinguishing persons with diabetes from persons with no diabetes, glucose values are
frequently a key factor used in this distinction. But if the patient is well controlled off
medication, he/she may not have abnormal glucose values available in the EMR data. The
lack of these data may bring about subject selection errors, lead to sampling bias, and, more
importantly, risk misleading results of following studies[8]. The disadvantages of short
periods of observation for describing patient characteristics have been reported in several
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epidemiological studies by our group and others, e.g., distinguishing incident from prevalent
cases and identifying risk factors [9–14].

However, the impact of insufficient longitudinal data on an HTCP algorithm has not been
explicitly investigated. This present study aimed to provide a novel demonstration of this
impact of insufficient longitudinal data on an HTCP algorithm developed within the
eMERGE Network for specifying subjects with T2DM. We limited the data from one single
medical center (Mayo Clinic) alone because 1) the majority of medical care received by
Olmsted County residents is provided by Mayo Clinic and the EMR system at Mayo Clinic
has been implemented over a decade [8], therefore, the EMR system at Mayo Clinic has rich
longitudinal EMR data available for answering the proposed question; and 2) using the EMR
data at one single medical center isolates the temporal issue from other variables, e.g. spatial
data fragmentation, which has been addressed by other studies [14].

The eMERGE T2DM algorithm
T2DM accounts for substantial morbidity and mortality from adverse effects on
cardiovascular risk and disease-specific complications such as blindness and renal failure
[9]. The increasing global prevalence of T2DM has imposed an enormous public health
burden [10]. However, the disease is a poorly understood [11]. The exploring knowledge of
associated knowledge between genetic variants and T2DM will deliver clues to the
processes involved in disease pathogenesis, offer potential targets for new drugs, and,
hopefully, lead to a cure [11, 12]. The eMERGE T2DM algorithm is such an EMR based
effort aiming to quickly and precisely identifying subjects with T2DM for genotype and
phenotype associated analyses [13].

As described in detail elsewhere [13, 14], the eMERGE T2DM algorithm was developed by
researchers from Northwestern University and enhanced by other participating institutes in
the eMERGE Network. The primary goal of developing this algorithm was to precisely
identify subjects who truly have T2DM rather than to identify all subjects with T2DM
within the population. In other words, the algorithm was not designed to perform a
dichotomous classification, i.e. subjects with T2DM or subjects without T2DM, but to
achieve a high positive predictive value (PPV), i.e. precision, of identifying patients with
T2DM, or T2DM cases, and to avoid confounding by including individuals without any type
of diabetes mellitus (DM) or those individuals with T1DM. Similarly, with respect to
unaffected controls or non-DM controls, the goal of the algorithm was to maximize the PPV
of identifying individuals without DM of any type, excluding even those individuals at risk
for DM that had not yet manifest (i.e., pre-DM).

Previous evidence suggests that using ICD-9-CM (International Classification of Diseases,
Ninth Revision, Clinical Modification) codes alone is problematic for identifying diabetes
subjects generally [15, 16]. More importantly, T2DM cases identified by using ICD-9-CM
codes alone could be contaminated with T1DM cases because many patients are assigned
the code for “diabetes mellitus, unspecified type” and some patients with T2DM diagnosis
codes are actually T1DM individuals who have been wrongly assigned a code for T2DM. To
avoid the limitations of relying on ICD diagnosis codes alone, the algorithm developers
supplemented the use of diagnosis codes with relevant medication prescriptions and
associated laboratory results (Figure 1 and Figure 2). For high precision purpose, the
algorithm used different diagnostic lab cutoffs from clinically recommended. Namely, the
algorithm used a combination of multiple EMR data sources and adopted a different set of
criteria than normally used to diagnose T2DM.

A previous validation of the algorithm on a few randomly chosen cases demonstrated its
precision is comparable with clinicians’ medical record review [13]. Importantly, however,
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the time frame available for review was the same as the EMR data available for use. The
role of insufficient longitudinal data and its impact on the accuracy of the algorithm was not
addressed. This present study aimed to evaluate the impact of insufficient longitudinal data
on the eMERGE T2DM algorithm, to determinate the absence of which data (diagnostic
codes, laboratory tests, or medications) contributes to subject misclassification, and to
suggest how best to leverage EMR to optimize subject selection. We chose to evaluate the
impact on the basis of the eMERGE T2DM algorithm because it involves virtually all
structured EMR data (i.e. diagnosis, laboratory values, and medication) and its accuracy
within a single medical center has been evaluated.

Methods
Study Setting

This retrospective cohort study was conducted in Olmsted County, Minnesota (2010 census
= 144,248). Rochester, the county seat is geographically isolated (80 miles from any other
urban center), and home to Mayo Clinic, one of the world’s largest medical centers. Each
year, more than half of the County population is examined at Mayo Clinic, and the vast
majority of residents have at least one Mayo Clinic encounter during any 3-year period [8].
Since 1907, every patient seen at Mayo Clinic has been assigned a unique identifier, and
data from every encounter are contained in a patient-based medical record [17], thus
individuals can be followed across settings and over time. Mayo Clinic’s EMR system
began in 1993. Today, Mayo Clinic has one of the most advanced EMR systems in the
United States [18], providing a unique opportunity to investigate the value of longitudinal
EMR data for subject selection in HTCP.

Eligible Subjects
The present study was approved by the Mayo Clinic Institutional Review Board. Patients
were excluded who refused authorization for use of their medical records at Mayo Clinic in
research, typically less than 5% [19]. To ensure that subjects had more than 11 years of
EMR data at Mayo, all eligible subjects had to have been Olmsted County residents with 1
Mayo Clinic encounter in each of three time periods: 1) 2007, 2) from 1997 through 2006,
and 3) before 1997 (earliest date for which Mayo’s data were fully implemented).

EMR Data
We used data available through the EMR system at Mayo Clinic. Administrative claims data
were searched to determine the presence or absence of diabetes-related ICD-9-CM codes.
Outpatient laboratory data were used to determine whether or not a patient had abnormal
laboratory glucose or HbA1c values. For diabetes medication details, we used data from
Mayo Clinic’s outpatient prescription database. We manually checked the medication data
and produced a list of generic drug names, brand names, synonyms, and abbreviations for
diabetes-relevant medications (see appendix). To determine whether or not a patient had
been prescribed any such medications, we searched the outpatient prescription database for
the terms on the list.

Gold Standard
We hypothesized that the more complete data over extensive periods of observation, the
more accurate the result of the algorithm. We applied the eMERGE T2DM algorithm to
each eligible patient’s 11 years (1997–2007) of EMR data. The categorization of individuals
as T2DM cases and non-DM controls when using these data was considered the gold
standard in this study.
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Study Design
Results obtained using the gold standard were compared with results from executing the
eMERGE T2DM algorithm under 10 time separate frames: 1 year (2007), 2 years (2006–
2007), 3 years (2005–2007), 4 years (2004–2007), 5 years (2003–2007), 6 years (2002–
2007), 7 years (2001–2007), 8 years (2000–2007), 9 years (1999–2007), and 10 years
(1998–2007).

Statistical Analysis
We calculated PPVs and false-negative rates (FNRs) to evaluate the misclassification errors
that resulted from shorter time periods of data. The PPV is the true-positive rate (determined
by the gold standard, i.e., using 11 years of EMR data) of subjects positively identified when
less longitudinal data were used, defined as the following:

The FNR is the false-negative rate of subjects positively identified with the gold standard,
calculated with the following:

McNemar test[20] has been widely used for testing whether the row and column marginal
frequencies of a 2×2 table are homogeneous. We used this method to determine whether the
categorization using less longitudinal data differed from the gold standard. All tests were
followed by the Bonferroni procedure to correct for multiple comparisons. Statistical
significance was accepted when adjusted P was < .05. All P values reported were original P
values. All data are presented as mean and standard deviation (SD). Statistical analysis was
performed with R for Windows (version 2.11.1) [21].

Results
Among the 139,654 Olmsted County residents in 2007, a total number of 86,294 had at least
1 Mayo Clinic visit in 2007, of whom 54,283 had both >= 1 Mayo Clinic visit from
01/01/1997 through 12/31/2006, and >=1 Mayo Clinic visit before 1997. These 54,283
patients were eligible for the study (mean [SD] age, 46.6 [21.3] years; 56% female).

Case Identification
From the 54,283 eligible patients, 2,770 T2DM cases (mean [SD] age, 64.6 [14.1] years;
47% female) were identified when 11 years of EMR data were used. These 2,770 T2DM
cases were considered true, i.e., gold standard, T2DM.

T2DM case identification errors increased as the time frame of available EMR data
decreased (Table 1). Errors included patients with T1DM or patients with no DM who were
misclassified as T2DM (false-positive) or true T2DM cases who were misclassified as
T1DM or no DM (false-negative).

When 10 years of EMR data were used—only 1 year less than the gold standard—13 of
2,768 identified T2DM cases were false-positive (PPV, 99.5% [2,755/2,768]), and 15 of
2,770 true T2DM cases were incorrectly excluded (FNR, 0.5%). When 5 years of EMR data
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were used (2003–2007), 435 of 3,051 identified T2DM cases were false-positive (PPV, 86%
[2,616/3,051]), and 154 of 2,770 true T2DM cases were incorrectly excluded (FNR, 6%).
When only 1 year of EMR data (2007) was used, 881 of 2,970 identified T2DM cases were
false-positive and 681 of 2,770 true T2DM cases were incorrectly excluded. The PPV of the
algorithm for T2DM case identification decreased to 70% (2,089/2,970) and the FNR
increased to 25% (681/2,770). McNemar tests indicated that a significant difference existed
between the gold standard and the categorizations when 9 years or less of EMR data were
used (Table 1).

With respect to which eMERGE inclusion/exclusion criteria accounted for the
misclassification using shorter time frames (see Figure 1), all false-positive T2DM cases
resulted from missing T1DM diagnosis (Table 2). The majority of true T2DM cases
incorrectly excluded using shorter time frames resulted from diagnosis codes for T2DM or
prior abnormal laboratory reports (Table 3) that were exclude due to shorter time frames.

Control Identification
From the 54,283 eligible patients, 21,005 non-DM controls (mean [SD] age, 40.7 [17.8]
years; 62% female) were identified when 11 years of EMR data were used. These subjects
were considered true non-DM controls of the gold standard.

As with T2DM case identification, non-DM control identification errors increased as the
time frame of available EMR data decreased (Table 1). When 10 years of EMR data were
used, 283 of 20,807 identified non-DM controls were false-positive (PPV, 99%
[20,524/20,807]) and 481 of 21,005 true-positive non-DM controls were incorrectly
excluded; FNR, 2%). When 5 years of EMR data were used, the PPV was 84%
(16,584/19,759), and the FNR was 21% (4,421/21,005). When only 1 year of EMR data was
used, 4,690 of 11,576 identified non-DM controls were false-positive and 14,119 of 21,005
true non-DM controls were incorrectly excluded. The PPV of the algorithm for non-DM
control identification decreased to 59% (6,886/11,576), and the FNR increased to 67%.
McNemar tests indicated that a significant difference existed between the gold standard and
the categorizations when 10 years of EMR data or less were used (Table 1).

With respect to which eMERGE inclusion/exclusion criteria accounted for the
misclassification of non-DM controls using shorter time frames (see Figure 2),
approximately 99% of false-positive non-DM controls resulted from missing diabetes
diagnosis codes or missing prior abnormal laboratory reports (Table 2). The majority of
false-negative non-DM controls resulted from missing laboratory reports (Table 3). The
remaining false-negative non-DM controls were missed because they did not have the
required number of face-to-face encounters required by the algorithm within the time frame
under consideration.

Discussion
Subject selection has become a tedious obstacle to conducting more clinical phenotype
related research in detail. As the influence of medical informatics grows and EMR systems
—the core application of medical informatics—expand, HTCP, through leveraging the
machine-processable clinical data, will have a pivotal role in optimizing this inefficient
process [6, 7].

However, few medical centers today have a patient’s complete longitudinal data in their
EMR systems. Therefore, although a patient’s medical record is a long-term individual
history, it can be available for clinical research cross-sectionally within only varying time
frames. A demonstration of the impact of the insufficient longitudinal data on the accuracy

Wei et al. Page 6

Int J Med Inform. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of an HTCP algorithm is critical for understanding how best to use EMR to improve subject
selection. However, this demonstration had not yet been done, possibly because of the
difficulty in obtaining an EMR resource that maintains relatively complete longitudinal data.
By taking advantage of the richness of data in the EMR system at Mayo Clinic, we
accomplished such a novel investigation.

Our results, combined with findings from other studies[22–27], show the advantage of
access to more data over longer time periods. The T2DM HTCP algorithm has been well
designed and carefully validated within the eMERGE Network. Its precision has been
demonstrated comparable with clinician review [13]. Nevertheless, our findings suggest that
the absent longitudinal data significantly change the subject categorization of the algorithm.
For both T2DM case and non-DM control identifications, statistical analyses indicated that a
significant difference between the categorization of individuals when 11 years of EMR data
were used compared to when less longitudinal data are available. The differences between
categorizations results from not only a large proportion of false-negatives, but also a
considerable number of false-positives. The absence of historical diagnosis data, prior DM-
related laboratory results, or medication use history contributes to the misclassifications.
Specifically, the absent historical diagnosis data contributes to the majority of false-positive
T2DM cases. The absent prior laboratory results lead to the most false-negative non-DM
controls.

Both PPV and FNR notably changed when the time frame of EMR data was reduced. Even
though the algorithm was designed primarily to achieve a robust and high PPV, the PPV
dramatically decreased to below 80% when less than 4 years of EMR data were available.
When only a couple of year of EMR data were available, the PPV of the case identification
decreased to 70%, which is not sufficient for most genotype-and-phenotype-associated
analyses. The FNRs rose as well when longitudinal data were insufficient, especially for the
control identification. As hypothesized, PPV and FNR are improved when data can be
obtained over extensive periods of observation compared with data limited to a short period.

Even though a 100% PPV or 0% FNR may be an unachievable goal for an EMR-based
algorithm, a poor PPV or FNR could result in sampling bias and risk serious distortions in
the results of following studies [28]. Our results suggested that ≥7 years of EMR data should
be used in order to achieve a >90% PPV. Unstructured EMR data, e.g. clinical notes, may
have some relevant description of phenotypes that are unavailable in structured EMR data.
Incorporating unstructured EMR data into subject selection criteria may relieve the problem
caused by the unavailability of longitudinal data, e.g. problem lists can be used with ICD
codes to determinate whether or not a patient has a disease. Our previous work, along with
other studies, has shown the potential of unstructured EMR data to be used for subject
selection tasks [4, 29–32].

Researchers who execute an HTCP algorithm on their EMR systems should be aware that it
is error prone when EMR data are available from only a limited time. However, obtaining
EMR data over longer periods helps only when the additional longitudinal data are relevant
for the condition under study. Chronic conditions, such as T2DM in this study, are more
appropriate than emergence conditions, such as fractures or acute infectious diseases. In
addition, if a patient is seen by multiple providers, a single medical center may not have a
patient’s complete medical history. In that situation, the accuracy of an algorithm will not
improve even when long-term clinical data are available.

The present study has several limitations. One is the gold standard. Because of unavoidable
random or systematic errors, such as physician experience, communication quality between
a patient and a clinician, and coding quality, it is extremely difficult to obtain a patient’s
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actual condition [33, 34]. We hypothesize that the more longitudinal data obtained over
extensive periods of observation, the closer the categorization of a patient to the actual
condition. Mayo Clinic maintains a century of diagnostic coded data. However, reliable
EMR medication data are only available since 1997. We used all 11 years of reliable EMR
data to create the gold standard in our study. Our present data does not identify a point of
diminishing returns.

Our investigation was limited to a single geographical region, which is predominantly white.
Compared to US whites, the age- and sex -distribution is similar; however median income
and education levels are higher [8]. No single geographic area is representative of all others;
however, the under-representation of minorities and the limitation to a single medical center
compromises the generalizability of findings to other racial/ethnic groups and different
health care environments. Because the number of providers from which Olmsted County
residents received care is limited, subject selection errors due to insufficient longitudinal
data that we demonstrated in this study are, most likely, an underestimate of that occurring
in other centers.

HTCP is an important secondary and meaningful use of EMR application. We demonstrated
the impact of the insufficient longitudinal data on the basis of one algorithm. For a more
complete evaluation of the impact, this study should be repeated with a broader spectrum of
HTCP algorithms.

Conclusion and Suggestion
The present study provided a previously unavailable demonstration of the impact of
insufficient longitudinal data on the accuracy of HTCP. Our results showed marked changes
in the PPVs and the FNRs of the algorithm for identifying both cases and controls,
depending on the completeness of longitudinal data available for each patient. The impact
due to absent longitudinal data should be carefully considered when designing an HTCP
algorithm or executing one.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

DM diabetes mellitus

eMERGE Electronic Medical Records and Genomics

EMR electronic medical record

FNR false-negative rate

HTCP high-throughput clinical phenotyping

ICD-9-CM International Classification of Diseases-9-Clinical Modification

PPV positive predictive value
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SD Standard Deviation

T1DM type 1 diabetes mellitus

T2DM type 2 diabetes mellitus
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Summary Table

What Was Already Known on the Topic?

• Clinical research requires identifying cohorts of potentially eligible subjects on
the basis of disease, symptoms, or related findings. This process usually
consumes substantial time and human efforts to gather, abstract, and review
patients’ charts.

• HTCP leverages machine-processable EMR data, improving the inefficiency of
this subject selection process.

• Many disadvantages of the inability to access clinical data over longer periods
have been demonstrated previously. But little is known of the impact of
insufficient longitudinal data on the accuracy of HTCP.

What This Study Added to Our Knowledge?

• Our study demonstrated that insufficient longitudinal data reduced the accuracy
of HTCP for identifying both cases and controls, depending on the completeness
of longitudinal data available for each patient.

• The impact due to insufficient longitudinal data should be carefully considered
when designing an HTCP algorithm or executing one.
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Highlights

• electronic medical record

• phenotype; data aggregation

• medical informatics

• research subject selection

• diabetes mellitus
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Figure 1.
The eMERGE Algorithm for Identifying T2DM Cases
*Random glucose > 200 mg/dl, Fasting glucose > 125 mg/dl, hemoglobin A1c ≥ 6.5%
Abbreviations: DM, diabetes mellitus; Dx, diagnosis; eMERGE, Electronic Medical
Records and Genomics; HbA1c, hemoglobin A1c; ICD-9-CM, International Classification of
Diseases, 9th Revision, Clinical Modification; Rx, prescription; T2DM, type 2 diabetes
mellitus; T1DM, type 1 diabetes mellitus.
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Figure 2.
The eMERGE Algorithm for Identifying non-DM Controls
Abbreviations: DM, diabetes mellitus; Dx, diagnosis; eMERGE, Electronic Medical
Records and Genomics; HbA1c, hemoglobin A1c; ICD-9-CM, International Classification of
Diseases, 9th Revision, Clinical Modification; Rx, prescription; T1DM, type 1 diabetes
mellitus; T2DM, type 2 diabetes mellitus.
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