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Abstract

Objectives—To reduce unnecessary lab testing by predicting when a proposed future lab test is 

likely to contribute information gain and thereby influence clinical management in patients with 

gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does 

not necessarily relate to better outcomes.

Design—Data preprocessing, feature selection, and classification were performed and an 

artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an 

information gain. There were 11 input variables in total. Ten of these were derived from bedside 

monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and 

urine collections, as well as infusion products and transfusions. The final input variable was a 

previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, 

fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary 

framework defining whether a test result contributed information gain or not.

Patients—Predictive modeling was applied to recognize unnecessary lab tests in a real world 

ICU database extract comprising 746 patients with gastrointestinal bleeding.
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Main results—Classification accuracy of necessary and unnecessary lab tests of greater than 

80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the 

outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement 

from previously reported similar studies with average performance 37% by [1–3].

Conclusions—Reducing frequent lab testing and the potential clinical and financial implications 

are an important issue in intensive care. In this work we present an artificial intelligence method to 

predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with 

gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting 

the likely information to be gained from proposed future lab testing for eight common GI related 

lab tests. Future work will explore applications of this approach to a range of underlying medical 

conditions and laboratory tests.
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1. State of the art

Laboratory testing occurs frequently in hospitalized patients [4]. This is especially so for 

patients in intensive care, where frequent blood draws are associated with general 

phlebotomy complications [1,5]. While part of this testing reflects changes in the intrinsic 

critical status of ICU patients, other tests are run by default, following general guidelines 

and not driven by patient-specific clinical questions [6,7]. Excessive use of laboratory blood 

tests increases resource utilization, contributes to blood loss, and may lead to incorrect 

diagnosis and treatment. In addition, laboratory tests in the ICU are sometimes obtained 

without a physician order, which hinders proper documentation [1]. However, modifying 

test-ordering practices in the ICU is challenging, mainly because of the pre-assumption that 

critical patients take a benefit from frequent testing, the ease of blood drawing from 

indwelling arterial and central venous catheters, and the difficulty of implementing durable 

changes of practice in a multidisciplinary environment such as the ICU.

Studies [8] and [9] have shown that general ward admissions average 1.1 draws per day per 

patient, extracting 12.4 ml of blood per day, resulting in 175 ml of blood drawn per 

hospitalization. These numbers are increased for an average ICU admission where there are 

3.4 draws per day per patient, and 762.2 ml for the entire admission, and even more for ICU 

patients with an arterial line inserted, where there are 4.0 draws per day per patient, and 944 

ml during the whole admission. Depending on the patient’s condition and the underlying 

reasons for admission, the cumulative amount of blood drawn for laboratory testing purposes 

might warrant transfusion replacement, an expensive and risky practice in itself.

Among the reasons for over-testing, one may find that many tests are ordered as part of a 

panel. Many factors contribute to this practice, including lack of awareness of the 

consequences of over-testing, arising from the medical culture promoting “more visible” 

care, the medico-legal environment and financial incentives arising from a fee-for-service 
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reimbursement scheme [10]. Previous studies have shown that a significant percentage of the 

tests requested are medically unnecessary [11].

New guidelines for laboratory testing in surgical ICU patients have been defined to enhance 

the decision-making process for a test requirement, limit unnecessary testing and provide 

appropriate documentation of physician orders. In [1] it was concluded that decreasing the 

number of tests is not associated with additional morbidity, and decreasing the number of 

tests may decrease blood transfusions. Overall, in [1] it was found that the number of 

laboratory tests performed decreased by 37%. The reduction in the number of specific 

laboratory tests targeted by the guidelines paralleled the overall results. Blood glucose, 

arterial blood gas, chemistry, coagulation tests, and cardiac enzymes decreased by 51.4, 

43.9, 37.6, 30.5, and 23.2%, respectively. The most important finding of [1] is that the 

introduction of new laboratory testing guidelines in a surgical ICU resulted in a significant 

decrease of the number of tests performed, and a significant increase in the number of tests 

obtained with a proper physician order. These results, sustained over time, were associated 

with no detectable morbidity, and may have resulted in a decrease of red blood cell 

transfusions. Other research works about unnecessary lab tests reduction have obtained 

similar results [2,3].

In related research [12], hematological monitoring data were interpolated by cubic spline 

and the interpolated data were estimated from their correlation with actual data by way of a 

leave-one-out cross validation (LOOCV). Furthermore, an attractor plot was applied as time 

series analysis in order to clarify the tendency of the interpolated hematological monitoring 

data. The hematological data of three patients who had received S-1 (a drug that is being 

studied for its ability to enhance the effectiveness of fluorouracil and prevent gastrointestinal 

side effects caused by fluorouracil when treating cancer) administration over 2 years period 

were investigated. White blood cell (WBC) count, red blood cell (RBC) count, hemoglobin 

(Hgb), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular 

hemoglobin concentration (MCHC), platelets, coefficient of variation of the red blood cell 

distribution width (RDW-CV), platelet distribution width (PDW) and mean platelet volume 

(MPV) were interpolated by cubic spline. Those lab tests with small variances, such as RBC, 

were well predicted by this method. However, tests with higher variances, such as WBC, 

MCHC, PLT, and PDW were poorly predicted. Cubic spline was the best approach of 

various interpolation methods in this study. The importance of [12] relies in the fact that it is 

possible to predict future values of lab tests even using very rudimentary models.

A further laboratory risk is false positives associated with over-testing [13,14]. The 

probability of false positives (lab results out of the normal range, when in fact the real values 

are normal) is dependent on many things including laboratory equipment, employee training 

and correct phlebotomy technique. However, the incidence of false positives increases with 

the number of tests run [13]. For example, if a given lab test randomly misclassifies people 

as diseased at a 1% rate (i.e. the test is 99% accurate), then the probability of having a false 

positive in the healthy population after an arbitrary 50 lab tests is

(1)

Cismondi et al. Page 3

Int J Med Inform. Author manuscript; available in PMC 2017 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where n is the number of lab tests, Pw(n) is the probability of obtaining one wrong result (in 

this case, a false positive) in n lab tests and Pr(n) is the probability of obtaining inaccurate 

result in a given lab test. One strategy to reduce this increasing probability of obtaining false 

positives is to avoid testing when no additional information is expected or, in other words, to 

reduce n.

2. Objectives

The objective of this paper is to propose a strategy to reduce unnecessary lab testing in the 

ICU. This is a retrospective study using data acquired from intensive care unit (ICU) 

patients. In this paper, we consider a specific group of patients at the ICU, gastrointestinal 

bleeding patients (GI bleeds). Although there might be different criteria for testing that 

evaluates the evolution of patients with GI hemorrhage, domain experts defined eight 

specific lab tests that are important to assess the response to delivered care: hematocrit (Hct), 

hemoglobin (Hgb), platelets, calcium, lactate, partial prothrombin time (PTT), international 

normalized ratio (INR) for blood clotting, and fibrinogen.

For those 8 lab tests, we analyze which of them provide a gain of information. A series of 

thresholds for normal ranges are defined for each lab (see Section 3.5), and a given test is 

considered to provide an information gain if its value goes beyond the defined thresholds, 

and considered not a gain of information otherwise. We hypothesize that by using artificial 

intelligence we would be able to find information in other variables that could tell us if a test 

would provide a gain of information or not. In this paper, the method proposed for the eight 

lab tests is explained in Section 3.5.

In this paper, we use the fuzzy modeling approach proposed by Takagi and Sugeno (TS), 

with rules If–Then rules that represents local input-output relations of a nonlinear system 

[15,16]. In application domains that involve a large amount of data with uncertainty, such as 

medicine or business, TS fuzzy models can serve as a useful tool for generating fuzzy rules 

or discovery knowledge in database, since almost all nonlinear dynamical systems can be 

represented by TS fuzzy models to a high degree of precision [17,18]. We choose TS models 

because of their ability to express the local dynamics of each fuzzy implication (rule) by a 

linear system model. The overall fuzzy model of the system is achieved by fuzzy “blending” 

of the linear system models. This means that a nonlinear problem can be solved by 

individual linear rules that are then combined in a nonlinear fashion. Since TS models 

perform well both with linear and nonlinear classifications/predictions resulting in 

transparent rules (see Section 3.8), we preferred them over decision trees, bayesian and 

neural networks [19–21].
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3. Methods

3.1. Dataset

In this study, an ICU database named MIMIC II was used. MIMIC II is a publicly available 

database. However, the authors further received IRB exemption from Beth Israel Deaconess 

Medical Center (BIDMC) IRB board in June 2010, in Boston, MA, USA. MIMIC II was 

created as part of a Bioengineering Research Partnership (BRP) grant from the National 

Institute of Biomedical Imaging and Bioengineering entitled Integrating Data, Models and 

Reasoning in Intensive Care (RO1-EB001659). MIMIC II has been collected since 2001 at 

BIDMC including high frequency sampled data of bedside monitors, clinical data 

(laboratory tests, physicians’ and nurses’ notes, imaging reports, medications and billing 

codes like ICD9, DRG and CPT) and demographic data [22]. All data were appropriately 

de-identified [23]. As this is being written, MIMIC II continues to evolve with new versions 

being posted on the PhysioNet web site (http://www.physionet.org/). The version 2.6, used 

in this work, contains a total of 40,426 patients.

3.2. Modeling inputs

Table 1 shows the characteristics of the subset of variables used as information sources for 

modeling in this work. Five bedside monitor trends (heart rate, respiratory rate, O2 

saturation, temperature and arterial blood pressure) as well as urine output collections, 

intravenous infusions volumes and packed red blood cells, fresh frozen plasma and platelets 

transfusions were used as inputs for the predictive models. Transfusions of packed red blood 

cells, packed platelets and fresh frozen plasma, were added as inputs as their effect on lab 

results is clinically important.

3.3. Modeling outputs

Hematocrit, hemoglobin, partial prothrombin time (PTT), fibrinogen, lactate, platelets, INR 

and calcium are the variables routinely tested among GI bleeds, and were considered as the 

outcomes to predict in this work. We note that these eight lab tests are components to three 

panels of laboratory tests, and that the three panels sum up to more than 30 individual tests, 

only a few of which are therefore relevant to this subset of patients [24]. Characteristics of 

the eight lab tests are shown in Table 2.

3.4. Subset for modeling

After defining the inputs and outputs required for modeling, the target subset of patients was 

selected using the following inclusion criteria:

• patients 18 years or older;

• patients with ICD9 codes related to gastrointestinal bleeding (15);

• patients with at least one measurement for each of the 5 bedside monitor trends;

• patients with more than one measurement of at least one of the lab tests proposed 

as outcomes.
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The flow chart of patients’ inclusion criteria used to define the subset of patients considered 

is depicted in Fig. 1.

3.5. Modeling strategy

We utilized expert intensivists’ opinion to define the outcome framework. This framework is 

binary and dichotomizes lab results into information gain or no information gain categories. 

This is not the same as routine reference ranges reported on lab reports as normal or 

abnormal, as a falling hematocrit still bounded within normal range is an important 

information gain for GI bleeding patients. The outcome framework is as follows:

• Gain of information (positive cases) when there is a drop d in the value of the lab 

test, or when those values are under or over certain critical lower or upper 

thresholds, TL and TU (this last when applicable), respectively (Table 3).

• No gain of information (negative cases) viz: as per the above, if the variations 

were below the previously defined thresholds and drops.

The values of d, TL and TU (Table 3) used in this work correspond to conventional limits 

defined for normality in clinical practice [25].

Gain of information was defined as a subset of lab results that require clinical action. This 

means that, according to general guidelines [25], specific actions have to be taken, or the 

values are relevant enough to keep a close eye on the patient’s evolution. The series of 

thresholds for normal ranges defined for each lab (see Section 3) are used in this work in 

such a way that a given test is considered to provide an information gain if its value goes 

beyond the defined thresholds, and considered not a gain of information otherwise.

3.6. Workflow for lab test ordering decision-making

We simulated two different approaches for ordering lab tests. In the first process, clinicians 

collate the immediate previous lab value with other data, to decide if new lab tests are 

needed. Fig. 2a shows this approach, which we term online.

In the second, clinicians collate the first lab value of the morning with other clinical data to 

decide if new lab tests are needed. Fig. 2b shows this approach which we term morning.

Finally, we predicted the 8 outcomes through the last two approaches only using data during 

periods in which the patient was receiving transfusions. This was done mainly under the 

suspicion that actively bleeding patients would not present drops in their lab values when 

transfused (their values would probably remain constant), but they should be considered 

relevant because of the patient’s condition.

3.7. Knowledge discovery process

Knowledge Discovery in Databases (KDD) is an interactive and iterative process [26–28], 

involving numerous steps, which aims to discover hidden patterns and/or useful information 

in large datasets that do not express those patterns easily. The main role of the KDD process 

in this work is to predict the relevancy of a set of lab tests for gastrointestinal bleeding ICU 
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patients, based on existing data specific to the patient. The relevancy of a given test is 

assessed in terms of the information it would add, that could change management.

The preprocessing applied to the raw dataset consisted of correcting misalignments and 

missing data, and selecting the most predictive variables.

According to [29], misalignments can be corrected using one variable in the dataset as a 

template, and shifting the data points of other variables to align sampling times. In this work, 

each lab test was used as the template to unshift the values of all the other variables, as it 

defines the points for which predictions are required. Although [29] proposes to use the 

variable with the highest sampling rate (in this dataset it corresponds to heart rate, with a 

mean sampling time of 0.76 h), in this work it would create an excessive amount of points 

for which the lab tests are not expected to be measured (lab tests have an average sampling 

time of 10.34 h). As proposed in [14], all the existing entries are shifted to the closest 

template alignment location, and values are then obtained through an interpolation strategy 

using the template variable as a time reference. The values for the new sampling times were 

obtained through cubic interpolation, as suggested by [29]. Missing data were classified and 

imputed according to the strategy suggested in [29].

In data modeling, a usual practice is to use independent randomly selected subsets of data to 

train, test and validate the models [30]. In this way, the results obtained through validation 

can be considered as the performance of the obtained models in real new data. In this work, 

the dataset was first randomly divided into two equal parts, one for the feature selection 

process (FS dataset) and the other for the model selection (MS dataset). This was done to 

select the relevant features and to assess the model’s performances over independent 

datasets.

The subsets of features were defined over the FS dataset by randomly selecting the train 

(60%), test (30%) and validation (10%) sets from the FS dataset; the subset of features 

resulting in the highest accuracy for the validation set was selected.

Data reduction involves finding those variables with useful information to model and predict 

the pursued outcome. A forward selection process was use in this work to reduce data 

dimensionality and to find the predictive variables [31].

A leave-one-out cross-validation (LOOCV) process was used to select the best model, by 

using a subset 10% of the MS dataset, defined as the validation set, and the remaining 90% 

as the training set [30]. The performance criterion used in this work to select the best model 

was the area under the ROC curve (AUC), as used by [31].

3.8. Fuzzy modeling

The prediction task proposed in this paper was performed using fuzzy modeling, due to the 

nonlinear nature of much medical physiology, and many studies demonstrating good 

suitability and performance with databases [32–36]. An additional motivation for using 

fuzzy modeling is the easily understandable rules that are generated after classifying data, 

which is useful for medical interpretation and guidelines creation.
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Fuzzy modeling is a tool that allows an approximation of non-linear systems when there is 

little or no previous knowledge of the system to be modeled. A detailed description of fuzzy 

logic and modeling can be found in [36]. Briefly, fuzzy models use rules and logical 

connectives to establish relations between the features defined to derive the model. A fuzzy 

classifier contains a rule base consisting of a set of fuzzy if-then rules together with a fuzzy 

inference mechanism.

Since the relations between the input variables can have a non linear nature, fuzzy systems 

were used in this work to binary classify gain/no-gain of information for each lab test as 

follows: by using variable Y as the lab test for which the information gain is to be assessed, 

and variables X as inputs in a fuzzy model, X go through a forward selection of features 

[37,31] to obtain the subset of X that better classifies Y. To avoid magnitude effects in the 

classification process [38], variable(s) X were normalized as follows:

(2)

where Xnorm is the normalized version of X, while Xmin and Xmax represent the minimum 

and maximum values of X, respectively. The minimum–maximum normalization method is 

commonly used in engineering applications to normalize the data due to its linear 

transforming form [38]. Additionally, Y was normalized by setting the lab tests with 

information gain to 1, and those with no gain to 0.

In this work, Takagi–Sugeno (TS) fuzzy models were used [15], which consist of fuzzy rules 

where each rule describes a local input–output relation. We used TS fuzzy models due to 

their general acceptance, simplicity and availability of software tools to perform it. When TS 

fuzzy systems are used, each discriminant function consists of rules of the type

(3)

where x1, …, xM are the values of each feature of the vector Xnorm, and  is the consequent 

function for rule . In these rules, the index c indicates that the rule is associated with the 

output class c. Therefore, the output of each discriminant function dc(Xnorm) can be 

interpreted as a score (or evidence) for the associated class c given the input feature vector. 

The degree of activation of the ith rule for class c is given by:

(4)

where . The discriminant output for each class c, with c = 1, …, C, is 

computed by aggregating the individual rules contribution:
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(5)

The classifier assigns the class label corresponding to the maximum value of the 

discriminant functions, i.e.

(6)

When the fuzzy model classifies Y as 1, the corresponding lab test is considered to provide 

an information gain. On the other hand, if Y is classified as 0, that lab test is considered to 

not provide an information gain and thus, it should not be done in real practice.

A multi-criteria optimization process was used in this paper in order to simultaneously 

maximize the sensitivity, specificity and accuracy of the models [39–41]. Through this 

approach, individual weights can be assigned to each criterion during the creation of the 

models. In this work, more weight was assigned to the sensitivity of the models, since the 

medical and economical impact of misclassifying a test that should be done is higher than 

just doing a test that can be avoided. This multi-criteria approach allows the maximization of 

sensitivity, without neglecting the specificity and accuracy of the models.

Summarizing, a fuzzy system is the modeling algorithm we used to determine if a lab test 

would provide an information gain or not. In the positive case, the test should be carried out 

in clinical practice; in the negative case it should not be done.

In this paper, the fuzzy models were created using the Fuzzy Toolbox®, a component of the 

MATLAB® suite, using Genfis3. The code with the specific details can be requested to the 

author by email.

4. Results

4.1. Resulting subset

In this work, we selected a specific subset of patients presenting hemorrhage in any part of 

their gastrointestinal tract (GI bleeds). This selection was done because of the impact of lab 

results in the therapeutic decision-making process among these patients, the frequency of 

testing that is higher than for other common underlying medical conditions, and because 

these patients show significant variations in the lab results during their ICU stay. Although 

these variations can be challenging from the predictive modeling point of view, they become 

a good test bench under the assumption that if models do well in predicting highly variable 

tests, they would do even better with tests that remain pretty much constant during the whole 

admission. The resulting subset consisted of 746 GI bleeds.
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4.2. Prediction results

Prediction results classifying information gain or no information gain for the online 
configuration can be seen in Table 4. The accuracy of classifications is greater than 80% for 

all lab tests. The values of sensitivity and specificity also have high accuracy.

Results for the morning configuration are detailed in Table 5. Accuracy is greater than 80% 

for all labs. Sensitivity and specificity also have high accuracy.

In Tables 4 and 5 it can be seen that the morning configuration results in a generally higher 

performance range of classification metrics.

Results for patients actively bleeding, using only data during transfusion periods, were 

comparable to those shown in Tables 4 and 5, and thus not shown in detail in this work.

4.3. Reduction of unnecessary lab testing

The models proposed in this paper predicted which lab tests provide a gain of information 

based on the definition of meaningful thresholds for each lab. Those tests predicted as not 

providing an information gain are the ones that in clinical practice could be reduced, i.e. 

there would no need to draw blood and run those test. In Table 6 the details of the reduction 

results are presented for the morning approach. In the last row of Table 6 it is possible to see 

that the average reduction obtained using this approach reaches a 50% of the total amount of 

lab tests.

The last column in the same table shows the percentage of the tests incorrectly recognized 

by the model as not providing an information gain (false negatives). These results mean that, 

in average, 11.5% of the tests that would not be done following this approach, are in fact 

important and should be done, i.e. the costly error of the model in terms of health care 

delivery and decision-making.

Results for the online approach, not shown in this paper, demonstrated a similar reduction 

performance.

4.4. Specific results of fuzzy modeling

Fuzzy models were chosen as the modeling tool for this work. Fuzzy models have the ability 

to tackle non-linear relations between variables, and to provide linguistic interpretation of 

inputs and outputs. Non-linear data relationships and linguistic interpretation is well suited 

to clinical scenarios [36] (see Section 3). The linguistic interpretation especially comes from 

the rules that fuzzy models generate in the form of “if-then” statements, obtained from the 

combination of membership functions created for each input and output [16]. The if part is 

known as the antecedent, while the then part is known as the consequent.

Clinical experts reviewed all the rules generated by the model and considered the rules valid.

Low, normal and high ranges for each input variable, depicted as blue, green and red 

backgrounds in Figs. 3 and 4 and in the electronic appendix, where defined according to 

generally accepted clinical limits [25].
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Variables selected for each predicted lab test and the rules generated to identify tests with 

gain of information are detailed in Table 7.

Several pairs of lab tests have similar antecedents, namely hematocrit and hemoglobin, and 

PTT and INR. These pairings have close physiological relationships and the similarities add 

first principle clinical validity. This is graphically demonstrated in Figs. 3 and 4 and Figs. 5 

and 6, respectively.

For all lab tests, and for both online and morning approaches, the greatest contributor to the 

predictive model was the previous value of the lab test in question.

5. Discussion

The classification results obtained were good in terms of the accuracy, and in recognizing 

relevant and not relevant tests. The online and morning modeling was undertaken to simulate 

ICU clinicians’ approaches. Both configurations resulted in high accuracy, sensitivity and 

specificity. Sensitivity was higher than specificity in all cases, suggesting that fuzzy models 

found a better set of rules to correctly predict lab tests that represent a gain of information 

than those which not. One reason for this could be that a significant amount of non relevant 

lab tests have values that are very close to the proposed outcome thresholds (upper and lower 

laboratory test ranges), or the drop in laboratory values (outcome variable d in the model 

formula) is slightly smaller than the cutoff we determined.

The morning configuration gave better results in terms of general accuracy, specificity and 

sensitivity, suggesting that lab values during a given day have a stronger relationship than 

values from a previous day (online configuration). This may simply reflect a temporality 

relationship whereby the closest lab test in time is the best predictor of the next lab test, and 

the morning configuration best suits lab test closeness. It is also possible that other morning-

related activities could make this the better predictor. For example, many clinical 

interventions and activities not captured by this dataset are deliberately scheduled for 

business hours when more resources in staff and materials are present. Trial of extubation is 

one example and this may have some influence on morning blood tests. Furthermore, it is 

well recognized that humans have cyclical physiological patterns across a range of 

measurable parameters, e.g. early morning cortisol, and it is possible that these also could 

influence a morning blood draw as compared to a night blood draw from the previous day.

Table 6 shows the results in terms of the test reduction that can be obtained applying the 

proposed models in GI bleeds at the ICU. We are able to demonstrate a 50% reduction in 

testing, which improves the 37% previously published by [1–3]. However, we note a specific 

risk related to false negatives, shown in the last column of Table 6. In this table we see 

11.5% of the tests predicted as not providing an information gain should actually be ordered 

and would assist decision-making. However, even given this, these results are still better than 

those obtained by a human with average training in the subject. As a rule of thumb, it is 

generally accepted that clinicians can correctly classify medical situations with 0.8–0.85 

sensitivity, and the models proposed in this paper have an 0.89 average sensitivity for the 
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tests used as outcomes. Although these results are promising, more testing and comparison 

to human decision-making is required before applying this models in clinical practice.

In Table 7, Figs. 3–6 and in the electronic appendix we can see that all of the hematological 

blood tests (hemoglobin, hematocrit, PTT, INR and platelets) have transfusions as 

significant predictors, and indeed in our modeling, the major predictor. This is not 

unexpected when one considers the direct relationship between transfusion and subsequent 

hematological assessment. This does however raise interesting prospects around the 

application of these findings in resource-constrained environments. More specifically, the 

assessment of transfusion volume replacement can be assessed with “lo-tech” methods as 

simple as before and after observation and recording, whereas oxygen saturation involves 

slightly more “hi-tech” resources from bedside monitors. Further work could explore the 

predictive value of transfusions alone as a simply acquired input variable.

The authors of this paper have previously published a method for test reduction, using neural 

networks and fuzzy models to determine which hematocrit tests should be done [42]. 

However, that piece of work did not consider the online and morning approaches proposed 

here. Moreover, in this work all the labs relevant for GI bleeds were considered, using a 

misclassification balance method (see Section 3.8). Finally, neural networks were not used 

in this work because of their black-box nature, and because of showing statistically 

significant lower performance than fuzzy models.

6. Limitations

We focused solely on data from GI bleeds and so the generalizability of these models cannot 

be extended to other clinical conditions.

We used a time series format to feed the models and to obtain the predictions, in which each 

test is not considered individually, but related to previous values. Analysis of individual 

and/or first tests cannot be carried out with the method proposed in this paper.

We did not undertake comorbidity analysis. Modeling of smaller subsets of patients sharing 

comorbidities concomitant to GI bleeding, indicating higher similarity, could improve the 

classification accuracy.

The use of medications that potentially influence coagulation properties of blood were not 

considered. One limitation of seeking to address this principle would be the desire to then 

consider all medicines that might potentially influence all of the input variables, individually 

and collectively, and this list could be large and somewhat unmanageable.

Finally, as is consistent with standard modeling practice, the variables selected as inputs 

were limited by patients with enough measurements. Other variables may be used, 

contributing to improve accuracy.
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7. Conclusion

Reducing frequent lab testing and the potential clinical and financial implications are an 

important issue in intensive care. In this work we present an artificial intelligence method to 

predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients 

with gastrointestinal bleeding, and 11 easily acquired physiological measurements, we 

demonstrate high accuracy in predicting the likely information to be gained from proposed 

future lab testing for 8 common GI related lab tests.

The approaches proposed in this work reached a reduction of unnecessary lab tests of 50%, 

which considerably improves the previously published 37% obtained with other methods.

Future work will explore applications of this approach to a range of underlying medical 

conditions and laboratory tests.
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Appendix A

Membership functions for the reduction of lab tests

See Figs. A.1–A.4.

Cismondi et al. Page 13

Int J Med Inform. Author manuscript; available in PMC 2017 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. A.1. 
Membership functions of the most predictive variables for fibrinogen.
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Fig. A.2. 
Membership functions of the most predictive variables for platelets.
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Fig. A.3. 
Membership functions of the most predictive variables for lactate.
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Fig. A.4. 
Membership functions of the most predictive variables for calcium.
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Summary points

• Frequent laboratory testing does not necessarily relate to better outcomes.

• Reducing frequent lab testing has important clinical and financial 

implications.

• Artificial intelligence has proven successful in modeling medical outcomes 

with non-linear relations between inputs and outputs.

• Predictive modeling through fuzzy systems was applied to a real world ICU 

database extract comprising 746 patients with gastrointestinal bleeding.

• Eight different lab components were predicted using eleven minimally 

invasive measurements.

• Classification accuracy of greater than 80%.

• Approximately half of the total amount of tests in those 746 patients could be 

reduced according to the criteria used in this work.
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Fig. 1. 
Flow chart of patients’ inclusion criteria used to define the subset of patients considered in 

this work, using MIMIC II database.
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Fig. 2. 
Schematic representation of the input/output configurations used for the modeling of each 

lab test: (a) online and (b) morning configurations.
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Fig. 3. 
Membership functions of the most predictive variables for hematocrit.
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Fig. 4. 
Membership functions of the most predictive variables for hemoglobin.
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Fig. 5. 
Membership functions of the most predictive variables for PTT.
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Fig. 6. 
Membership functions of the most predictive variables for INR.
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Table 1

Characteristics of the variables used as inputs for the models.

Input variables Mean ± S.D. Units

Heart rate 86.58± 17.83 [beats/min]

Oxygen saturation (SpO2) 97.33 ± 4.40 [%]

Respiratory rate 19.85 ± 6.14 [breaths/min]

Temperature 97.97 ± 4.05 [F]

Arterial blood pressure 113.08 ± 28.70 [mm Hg]

Intravenous infusions 944.87 ± 1165 [ml]

Packed red blood cell transfusions 61.14 ± 174.80 [ml]

Packed fresh frozen plasma transfusions 23.91 ± 96.86 [ml]

Platelets transfusions 11.24 ± 60.17 [ml]

Urine output 0.02± 0.06 [cm3/min]
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Table 2

Characteristics of lab tests considered as outcomes for modeling purposes.

Outcomes Mean ± S.D. Units Mean tests per patient per
admission (max–min)

Calcium 8.30± 0.89 [mg/dl] in serum or plasma 9.42 (1–134)

PTT 45.69 ± 25.07 Partial thromboplastin time [s] 9.55 (1–131)

INR 1.70 ± 0.93 ratio of sample’s PTT to normal PT 13.22 (1–130)

Hematocrit 29.55 ± 4.09 [% volume fraction] of blood (%) 14.75 (1–186)

Hemoglobin 10.07 ± 1.46 [mg/dl] in blood 9.53 (1–124)

Fibrinogen 272.20 ± 149.43 [mg/dl] in platelet poor plasma 2.47 (1–64)

Lactate 3.29 ± 3.33 [mol/ml] in blood 4.81 (1–126)

Platelets 178.33 ± 143.52 [#/ml] in blood 10.37 (1–141)
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Table 3

Thresholds used for the definition of gain/no gain of information for each lab test and resulting number of tests 

considered relevant.

Outcome variable TL TU d Number of relevant tests
(% of total tests)

Calcium 8.4 10.2 0.5 5724 (58.74)

PTT 18 35 2 5425 (57.16)

INR – 1.5 0.2 3830 (43.27)

Hematocrit 35 50 3 8745 (55.97)

Hemoglobin 12 18 1 4809 (47.87)

Fibrinogen 150 – 10 245 (16.17)

Lactate 0 2 0.2 2550 (51.24)

Platelets 150 – 10 5872 (53.58)
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Table 4

Prediction results for the online configuration. AUC: area under the receiving-operator curve – sensitivity: rate 

of correctly classified tests with gain of information – specificity: rate of correctly classified tests with no gain 

of information.

Lab test Accuracy (%) ± S.D. AUC ± S.D. Sensitivity ± S.D. Specificity ± S.D.

Calcium 85.4± 2.3 0.85± 0.01 0.88± 0.03 0.81 ± 0.1

PTT 86.1 ± 1.2 0.86 ± 0.03 0.89 ± 0.01 0.82 ± 0.2

INR 90.7 ± 2.1 0.90 ± 0.01 0.91 ± 0.01 0.89 ± 0.01

Hematocrit 81.7 ± 1.6 0.81 ± 0.05 0.84 ± 0.02 0.78 ± 0.1

Hemoglobin 83.6 ± 3.1 0.82 ± 0.02 0.85 ± 0.03 0.81 ± 0.2

Fibrinogen 84.3 ± 2.8 0.84 ± 0.01 0.87 ± 0.03 0.80 ± 0.4

Lactate 80.3 ± 2.2 0.82 ± 0.01 0.82 ± 0.02 0.77 ± 0.4

Platelets 88.1 ± 1.3 0.87 ± 0.01 0.90 ± 0.01 0.85 ± 0.2
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Table 5

Prediction results for the morning configuration.

Lab test Accuracy (%) ± S.D. AUC ± S.D. Sensitivity ± S.D. Specificity ± S.D.

Calcium 87.4 ± 1.1 0.86 ± 0.02 0.90 ± 0.01 0.81 ± 0.03

PTT 87.1 ± 1.5 0.88 ± 0.01 0.90 ± 0.02 0.85 ± 0.01

INR 92.1 ± 1.8 0.92 ± 0.02 0.93 ± 0.02 0.91 ± 0.01

Hematocrit 83.7± 2.7 0.82 ± 0.00 0.84 ± 0.04 0.79 ± 0.03

Hemoglobin 86.6 ± 2.8 0.86 ± 0.01 0.87 ± 0.02 0.84 ± 0.00

Fibrinogen 86.3 ± 3.3 0.84 ± 0.03 0.89 ± 0.01 0.80 ± 0.01

Lactate 82.3 ± 1.1 0.81 ± 0.01 0.83 ± 0.02 0.79 ± 0.03

Platelets 90.1 ± 1.9 0.90 ± 0.00 0.92 ± 0.01 0.88 ± 0.01
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Table 6

Lab test reduction results for the morning configuration.

Lab test Original number of tests Tests providing
information gain

Percentual reduction Percentual false
negatives

Calcium 9745 5724 58.74% 10%

PTT 9491 5425 57.16% 10%

INR 8851 4981 56.28% 7%

Hematocrit 15,625 8745 55.97% 16%

Hemoglobin 10,047 4809 47.87% 13%

Fibrinogen 1515 245 16.17% 11%

Lactate 4977 2550 51.24% 17%

Platelets 10,960 5872 53.58% 8%

Average 8901.37 4793.875 49.62% 11.5%
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Table 7

Predictive variables (morning configuration) for each lab test and associated fuzzy rules.

Lab test Predictive variables Rules created (Simplified interpretation)

Calcium • Previous Calcium

• Heart Rate

If Previous Calcium is low and Heart Rate is low then Next Calcium test is relevant

Lactate • Previous Lactate

• Temperature

• Arterial blood pressure

• Heart Rate

If Previous Lactate is low and Temperature is high and Arterial blood pressure is high 
and Heart Rate is normal/high then Next Lactate test is relevant

Fibrinogen • Previous Fibrinogen

• Fresh frozen plasma

• Urine Output

If Previous Fibrinogen is low and amount of Fresh frozen plasma transfusion is high 
and Urine Output is low then Next Fibrinogen test is relevant

Platelets • Previous Platelets

• Platelets transfusion

• Temperature

If Previous Platelets is low and amount of Platelets transfusion is high and Temperature 
is high then Next Platelets test is relevant

PTT • Previous PTT

• Fresh frozen plasma

• Platelets transfusion

If Previous PTT is low and amount of Fresh frozen plasma transfusion is high and 
amount of Platelets transfusions is high then Next PTT test is relevant

INR • Previous PTT

• Fresh frozen plasma

• Platelets transfusion

• Urine Output

If Previous INR is high and amount of Fresh frozen plasma transfusion is high and 
amount of Platelets transfusions is high and Urine Output is low then Next INR test is 
relevant

Hematocrit • Previous Hematocrit

• PRBC

• SpO2

• Fresh frozen plasma

• Arterial blood pressure

If Previous Hematocrit is low and amount of PRBC is high and SpO2 is normal and 
amount of Fresh frozen plasma transfusions is high and Arterial blood pressure is 
normal and IV Infusion is high then Next Hematocrit test is relevant

Hemoglobin • Previous Hemoglobin

• PRBC

• Fresh frozen plasma

• Arterial blood pressure

If Previous Hemoglobin is low and amount of PRBC is high and Fresh frozen plasma 
transfusions is high and Arterial blood pressure is normal and IV Infusion is high then 
Next Hematocrit test is relevant

Int J Med Inform. Author manuscript; available in PMC 2017 November 19.


	Abstract
	1. State of the art
	2. Objectives
	3. Methods
	3.1. Dataset
	3.2. Modeling inputs
	3.3. Modeling outputs
	3.4. Subset for modeling
	3.5. Modeling strategy
	3.6. Workflow for lab test ordering decision-making
	3.7. Knowledge discovery process
	3.8. Fuzzy modeling

	4. Results
	4.1. Resulting subset
	4.2. Prediction results
	4.3. Reduction of unnecessary lab testing
	4.4. Specific results of fuzzy modeling

	5. Discussion
	6. Limitations
	7. Conclusion
	Appendix A
	Fig. A.1
	Fig. A.2
	Fig. A.3
	Fig. A.4
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

