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ABSTRACT 

Objective: To investigate whether context-specific alerts for potassium-increasing drug-drug interactions 

(DDIs) in a clinical decision support system reduced the alert burden, increased alert acceptance, and had 

an effect on the occurrence of hyperkalemia.  

Materials and Methods: In the pre-intervention period all alerts for potassium-increasing DDIs were level 

1 alerts advising absolute contraindication, while in the post-intervention period the same drug 

combinations could trigger a level 1 (absolute contraindication), a level 2 (monitor potassium values), or a 

level 3 alert (informative, not shown to physicians) based on the patient’s recent laboratory value of 

potassium. Alert acceptance was defined as non-prescription or non-administration of the interacting drug 

combination for level 1 alerts and as monitoring of the potassium levels for level 2 alerts.  

Results: The alert burden decreased by 92.8%. The relative risk (RR) for alert acceptance based on 

prescription rates for level 1 alerts and monitoring rates for level 2 alerts was 15.048 (86.5% vs 5.7%; 95% 

CI 12.037 – 18.811; P < 0.001). With alert acceptance for level 1 alerts based on actual administration and 

for level 2 alerts on monitoring rates, the RR was 3.597 (87.6% vs 24.4%; 95% CI 3.192 – 4.053; P < 0.001). 

In the generalized linear mixed model the effect of the intervention on the occurrence of hyperkalemia 

was not significant (OR 1.091, 95% CI 0.172 – 6.919). 

Conclusion: The proposed strategy seems effective to get a grip on the delicate balance between over- 

and under alerting. 

Keywords:  

clinical decision support systems, electronic health records, drug interactions, alert fatigue, hyperkalemia  
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1. INTRODUCTION 

One key cause of preventable adverse drug events (ADEs) are drug-drug interactions (DDIs)[1]. 

Computerized physician order entry (CPOE) with built-in clinical decision support systems (CDSS) have the 

potential to prevent medication errors and consecutive ADEs at the very moment of prescribing[2-7]. Yet, 

the evidence on the impact of CDSS on patient outcomes remains scarce[8, 9]. It is well established that 

CDSS for DDI checking are often overly sensitive generating excessive alerts with low specificity leading to 

alert fatigue and high override rates, often exceeding 80%[10-16]. The main problems are the low 

specificity of the alerts and their perceived lack of clinical importance[4, 12, 16, 17]. This makes it difficult 

for clinicians to distinguish between clinically significant and insignificant alerts leading to both types of 

alerts being overridden which compromises the primary objective of patient safety[4, 13, 18, 19]. 

Integration of patient characteristics in the clinical decision support (CDS) logic was suggested to improve 

alert specificity [20, 21]. Specifically, linkage and follow-up of laboratory values with the CDS rules was 

proposed[22-27]. However, just displaying laboratory values in the alert did not significantly improve the 

alert adherence in high-risk patients[28].  

We have encountered the same problem of low specificity and high override rates in our hospital[29, 30]. 

Of all DDI alerts generated by the CDSS from the 1st of January 2010 till the 30th of June 2011, 72.1% were 

alerts for the risk of hyperkalemia due to the interaction between potassium-sparing diuretics and 

potassium supplements, with an override rate of 85.7%[31]. Hyperkalemia is a serious and potentially life-

threatening electrolyte disorder caused by an imbalance in potassium homeostasis and is associated with 

increased mortality and adverse cardiovascular effects such as cardiac arrhythmia and cardiac arrest[32-

34]. Uijtendaal et al. found that DDI-induced hyperkalemia occurred in 10% of hospitalized patients who 

were prescribed at least one potassium increasing drug[24].  

Context-specific alerts for potassium-increasing DDIs with patient-specific risk assessments for 

hyperkalemia were developed as part of our CDSS. Alerts for low-risk patients were not shown to the 
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physicians to improve the specificity, as suggested by Duke et al.[28]. The main objective of this study was 

to investigate whether these context-specific alerts reduced the alert burden and had a higher alert 

acceptance compared to alerts without context-specific rules. Because it is important to improve the 

efficiency of the DDI alerting system without compromising patient safety, the effect of the optimized 

CDSS on the patient outcome, occurrence of hyperkalemia, was also examined. 

2. MATERIALS AND METHODS  

2.1. Design and setting  

This pre-post study was conducted at the UZ Brussel, a 721-bed tertiary university hospital in Brussels, 

Belgium. The in-house developed software system “Primuz” is fully integrated within the workflow and 

provides different functionalities including CPOE and CDS for DDIs[26, 35, 36]. The knowledge base used 

for DDI checking is the commercially available DelphiCare® database[37]. The intervention was the hospital 

wide implementation of a context-specific DDI alerting system, discussed in detail elsewhere[29]. In this 

study, the focus was on the context-specific alerts for potassium-increasing DDIs. All patients with a DDI 

for risk of hyperkalemia due to prescription of a potassium-sparing diuretic concomitantly with a 

potassium supplement were included in this study. The study was approved by the UZ Brussel Medical 

Ethics Committee with reference BUN 143201421156. 

2.2. Intervention  

2.2.1. Pre-intervention situation 

In the pre-intervention period the DDI between potassium-sparing diuretics and potassium supplements 

generated an interruptive level 1 alert (Figure 1). A fixed screening interval of 3 days back in the medication 

history and 2 days ahead in the medication planning was used. The screening interval is the defined interval 

between the administrations of two interacting drugs for which an alert is triggered. If the interval 

between two drugs is longer than this specified time period, no alert is triggered[29].  
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Figure 1: The alert screen in the pre-intervention period for the combination of a potassium-sparing diuretic and a potassium 
supplement.  

2.2.2. Post-intervention situation 

In the new CDSS, customization of the commercial Delphicare® database is performed by adding context-

specific information and changes to the commercial knowledge base in a so-called shadow table[29]. For 

the potassium-increasing DDIs, this context-specific information is a recent laboratory value of potassium, 

which determines the alert level of the DDI. The alert level no longer uniquely depends on the intrinsic risk 

category of the specific drugs, but also on patient-specific information. When in the last 3 days prior to the 

DDI a potassium value of ≥ 5 mmol/L is found, an interruptive level 1 alert is generated (Figure 2). The 

value on which the risk assessment is based, is provided on the alert screen and is directly linked with the 

laboratory overview screen. By clicking on the value, the laboratory overview screen opens so the 

physician can evaluate other and older laboratory values. Additionally, in the new system the screening 

interval between administrations of the two interacting drugs is narrower and set on 24h back in the 

medication history and 24h ahead in the medication planning.  



6 
 

 

Figure 2: The alert screen from a level 1 alert in the post-intervention period for the combination of a potassium-sparing diuretic 
and a potassium supplement with a recent potassium value ≥ 5 mmol/L. 

When either no recent potassium value or a potassium value with an exception code (e.g. severe hemolysis 

of the blood sample) is detected, an interruptive level 2 alert which advises monitoring of the potassium 

levels, is generated (Figure 3). In case a potassium value < 5 mmol/L is identified, a level 3 alert is created, 

which is informative and not shown to the end users, but which can be consulted by clinical pharmacists.  
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Figure 3: The alert screen from a level 2 alert in the post-intervention period for the combination of a potassium-sparing diuretic 
and a potassium supplement when either no recent potassium value is available or a potassium value with an exception code is 
detected.  

2.3. Data collection  

2.3.1. Study population 

Based on an a priori sample size calculation a study period of 1 year in both periods was deemed suitable 

(Supplementary file 1). The pre-intervention period started on November 18, 2012 and ended on 

November 18, 2013. Between November 19, 2013 and November 23, 2015, the new CDSS was 

implemented on all clinical departments of our hospital. Post-intervention data was collected between 

November 24, 2015 and November 24, 2016. Alert data was acquired from the automatically generated 

alert reports from the CDSS. All consecutive hospitalized patients for whom an alert for risk of 

hyperkalemia was triggered were included. Patients having the same DDI alert for the same combination 

of drugs twice or more on the same day, were included only once to avoid bias in acceptance rates.  

2.3.2. Alert acceptance 
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An alert was considered accepted if the physicians adhered to the proposed measures. Level 1 alerts 

advised absolute contraindication, so for these alerts, alert acceptance was defined as the discontinuation 

of the prescription triggering the DDI alert or as the non-administration of the interacting drug 

combination. Level 2 alerts in the new system don’t advise absolute contra-indication but close monitoring 

of potassium levels. For these alerts, alert acceptance was defined as an available potassium measurement 

within 24h after the alert was triggered or within 24h after the last simultaneous administration of the 

interacting drug combination. 

Sometimes cancelling a pre-existing order and not the order triggering the alert is the best solution to the 

DDI, but this is not directly possible from the alert screen. Physicians then frequently opt to override the 

alert and prescribe the new drug, but then immediately cancel the pre-existing order. Therefore, 

acceptance rates for level 1 alerts were not only analyzed based on prescription rates, but also based on 

actual administration of the drug combination. This information was retrieved from the electronic nursing 

record and categorized as administered when the drug combination was administered either 

simultaneously or sequentially. When one of the two drugs was not administered, this was classified as no 

administration. In order to calculate an overall alert acceptance, the alert acceptance was conceptualized 

as a composite outcome, i.e. as prescription discontinued or non-administration of the drug combination 

for level 1 alerts or as monitoring of the potassium values for level 2 alerts.  

2.3.3. Occurrence of hyperkalemia 

The outcome measurement was a serum potassium level within 24h after the last simultaneous 

administration of the interacting drug combination or within 24h after the DDI alert was triggered in case 

no simultaneous administration occurred. This post-DDI alert potassium measure was classified as 

hyperkalemia when it was ≥ 5 mmol/L. Potassium levels from hemolyzed blood samples were excluded for 

the outcome assessment because these levels could be falsely elevated leading to bias in the occurrence 

of hyperkalemia. Potential confounders were taken into account in the analysis in order to correct for 
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factors other than the intervention contributing to the effect size. These potential confounders are risk 

factors previously described as being associated with hyperkalemia and included the patient’s age, sex, 

BMI, diabetic status, renal function, baseline serum potassium value, serum magnesium value, and the co-

administration of potential confounding drugs[24, 38, 39]. The renal function was identified as the most 

recent estimated glomerular filtration rate (eGFR) of maximum 3 days prior to the DDI alert. The baseline 

potassium value or the pre-DDI alert potassium value was the most recent potassium value with a 

maximum of 3 days prior to the DDI alert. In the post-intervention period, the baseline potassium value 

was the value upon which the risk assessment was based. The magnesium value was the lowest value in 

the interval between 3 days prior to the DDI alert and the time of the post-DDI alert potassium value. The 

co-administration of other potential confounding drugs besides the ones triggering the DDI alert within a 

time window of 24h was also recorded. These drug classes are potassium supplements, potassium-sparing 

diuretics, NSAIDs, calcineurin inhibitors, systemic corticosteroids, angiotensin II receptor antagonists and 

ACE inhibitors.  

2.4. Data analysis  

Descriptive and statistical analyses were performed using IBM SPSS Statistics and the R package lme4[40, 

41]. Potassium, magnesium and eGFR measurements were categorized for evaluation of the 

characteristics. The population characteristics between pre- and post-intervention were compared with 

the Mann-Whitney U test for continuous variables and with the Pearson Chi-square test for categorical 

variables. Comparison of the population characteristics between patients having the outcome 

measurement and those missing the outcome measurement was performed in an analogous way. The 

Pearson Chi-square test was used to compare the alert acceptance between pre- and post-intervention 

period. To account for clustering on the level of the patient, a generalized linear mixed model for binary 

data with patients as random intercept was used to determine the effect of the intervention on the 

occurrence of hyperkalemia. Backward selection based on the Akaike information criterion value was used 
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to obtain the final model. All statistical analyses were performed with a 0.05 significance level and 95% CI 

were calculated for the odds ratios (ORs).  

3. RESULTS 

3.1. Characteristics of study population  

The patient characteristics in the pre- and post-intervention period are provided in Table 1. Significant 

differences were found for sex (P = 0.001), the frequency of diabetes (P = 0.038), the distribution of 

magnesium (P = 0.018) and eGFR values (P = 0.005), and for the administration of extra potassium 

supplements (P < 0.001), extra potassium-sparing diuretics (P = 0.011), NSAIDs (P < 0.001), and calcineurin 

inhibitors (P = 0.048). There was also a significant difference for the distribution of pre-DDI alert potassium 

values (P < 0.001). The percentage of missing values was lower in the post-intervention period compared 

to the pre-intervention period for BMI, pre-DDI alert potassium levels, post-DDI alert potassium levels and 

magnesium levels. The decrease was highest for the outcome measurement (33.4% to 17.5%).  
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 Pre-intervention Post-intervention P valuec 

    

Number of drug alerts  1461 1237  

Sex   0.001 

Male 630 (43.1%) 616 (49.8%)  

Female  831 (56.9%) 621 (50.2%)  

Age (median, range) 73 (28-102) 72 (1-102) 0.192 

BMI (median, range) 26.04 (14.65 – 45.85) 26.10 (15.32 – 48.83) 0.817 

Missing values 189 (12.9%) 81 (6.5%)  

Diabetes Mellitus   0.038 

No diabetes 1081 (74.0%) 871 (70.4%)  

Diabetes   380 (26.0%) 366 (29.6%)  

Pre-DDI alert potassium level (mmol/L)   < 0.001 

Normal 3.4-4.9 675 (47.7%) 508 (41.5%)  

Hyperkalemia ≥ 5.0 19 (1.3%) 3 (0.2%)  

Hypokalemia < 3.4 720 (50.9%) 714 (58.3%)  

Missing values  47 (3.2%) 12 (1%)  

Magnesium level (mmol/l)   0.018 

Normal 0.66-0.95 594 (66.4%) 519 (60.1%)  

Hypomagnesemia < 0.66 196 (21.9%) 215 (24.9%)  

Hypermagnesemia > 0.95 104 (11.6%) 129 (14.9%)  

Missing values  567 (38.8%) 374 (30.2%)  

eGFR (ml/min/1.73m2)a   0.005 

Normal ≥ 60 893 (61.7%) 755 (61.6%)  

Moderate impairment 30-59 467 (32.3%) 367 (30.0%)  

Severe impairment 15-29 54 (3.7%) 81 (6.6%)  

ESRDb < 15 34 (2.3%) 22 (1.8%)  

Missing values  13 (0.9%) 12 (1.0%)  

Extra potassium supplements   < 0.001 

No  920 (63.0%) 564 (45.6%)  

Yes 541 (37.0%) 673 (54.4%)  

Extra potassium-sparing diuretics   0.011 

No 1223 (83.7%) 989 (80.0%)  

Yes 238 (16.3%) 248 (20.0%)  

NSAIDs   < 0.001 

No 1347 (92.2%) 1194 (96.5%)  

Yes 114 (7.8%) 43 (3.5%)  

Calcineurin inhibitors   0.048 

No 1455 (99.6%) 1224 (98.9%)  

Yes 6 (0.4%) 13 (1.1%)  



12 
 

Table 1: Patient characteristics in the pre-intervention period versus the post-intervention period.  

a eGFR = estimated Glomerular Filtration Rate 
b ESRD = end stage renal disease 
c Pearson Chi-square test was used for categorical variables and the Mann-Whitney U test for the 

continuous variables age and BMI 

3.2. Number of alerts 

In the pre-intervention period 1461 unique alerts and in the post-intervention period 1237 unique alerts 

were retrieved. In the pre-intervention period, there was only one type of alert for the risk of 

hyperkalemia, which means all 1461 alerts (100%) were level 1 alerts advising absolute contraindication. 

In the post-intervention period there were 4 types of alerts for the same combination of drugs, depending 

on the context factors (Table 2). In the post-intervention period 3 alerts (0.2%) were level 1 alerts advising 

absolute contraindication and 86 alerts (7.0%) were level 2 alerts advising close monitoring of the 

potassium values. The remaining 1148 level 3 alerts (92.8%) were not shown to physicians.  

  

Systemic corticosteroids   0.315 

No 1228 (84.1%) 1057 (8.4%)  

Yes 233 (15.9%) 180 (14.6%)  

Angiotensin II receptor antagonists   0.078 

No  1355 (92.7%) 1168 (94.4%)  

Yes 106 (7.3%) 69 (5.6%)  

ACE inhibitors   0.407 

No 1000 (68.4%) 865 (69.9%)  

Yes 461 (31.6%) 372 (30.1%)  

Post-DDI alert potassium level (mmol/l)    

No hyperkalemia <5.0 935 (96.1%) 968 (94.9%) 0.200 

Hyperkalemia ≥ 5.0 38 (3.9%) 52 (5.1 %)  

Missing values  488 (33.4%) 217 (17.5%)  
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 Alert level  Advice Context factors Number (%) 

     

Pre-intervention 

period 

1 = very serious  Absolute 

contraindication 

None 1461 (100%) 

 

 

 

 

Post-intervention 

period 

1 = very serious  Absolute 

contraindication 

Recent potassium 

level ≥ 5 mmol/l 

3 (0.2%) 

2 = serious  Monitor potassium 

values 

Unknown recent 

potassium level 

28 (2.3%) 

2 = serious  Monitor potassium 

values 

Recent potassium 

level has been 

flagged by clinical 

biologist 

(hemolysis, 

extreme low) 

58 (4.7%) 

3 = informative Not shown to 

physicians 

Recent potassium 

level  < 5 mmol/l 

1148 (92.8%) 

Table 2: Types of DDI alerts for the risk of hyperkalemia in the pre-intervention period and post-intervention period with their 
corresponding levels, advices, context factors taken into account and percentages of the total alert burden within the 
intervention period. 

3.3. Alert acceptance 

For level 1 alerts, acceptance rates were measured both on prescription and administration level. For the 

pre-intervention period the alert acceptance based on prescription rates was 5.7%, but increased to 24.4% 

when based on actual administration rates. In the post-intervention period only three level 1 alerts were 

triggered with 66.7% alert acceptance based on prescription rates and 100% acceptance based on 

administration rates. For level 2 alerts, acceptance was achieved when the potassium levels were 

monitored, which was the case for 75 of the 86 (87.2%) level 2 alerts. In table 3 the overall alert acceptance 

with the alert acceptance rates for the pre-intervention period based on either prescription or 

administration rates and for the post-intervention period as a composite outcome based on prescription 

or administration rates for level 1 alerts and monitoring rates for level 2 alerts is provided. With the alert 

acceptance based on prescription rates, the relative risk (RR) for overall acceptance rate was 15.048 (86.5% 

vs 5.7%; 95% CI 12.037 – 18.811; P < 0.001). When the alert acceptance for level 1 alerts was based on 

actual administration, the RR was 3.597 (87.6% vs 24.4%; 95% CI 3.192 – 4.053, P < 0.001).  
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 Pre-

intervention 

Post-intervention 

(level 1 and level 2) 

Statistics 

    

Override = Prescription continued 

(level 1) or no monitoring (level 2) 

1377 (94.3%) 12 (13.5%) P = < 0.001 

RR = 15.048 (95% CI 

12.037 – 18.811) 

 

Acceptance = Prescription 

discontinued (level 1) or monitoring 

(level 2) 

84 (5.7%)  77 (86.5%) 

    

Override = DDI administered (level 

1) or no monitoring (level 2)  

1105 (75.6%) 11 (12.4%) P = < 0.001 

RR = 3.597 (95% CI 

3.192 – 4.053)  Acceptance = DDI not administered 

(level 1) or monitoring (level 2)  

356 (24.4%) 78 (87.6%) 

Table 3: Overall alert acceptance with a composite outcome based on prescription rates and administration rates for level 1 
alerts and based on monitoring rates for level 2 alerts. 

3.4. Risk of hyperkalemia   

The crude incidence of hyperkalemia after a DDI alert was triggered, was 3.9% in the pre-intervention 

period and 5.1% in the post-intervention period (P = 0.200, Table 1, RR = 1.305 with 95% CI 0.867 – 1.965).  

The adjusted OR of the intervention variable was 1.091 (95% CI 0.172 – 6.919, Table 4). The only significant 

confounder was the pre-DDI alert potassium value with an OR of 5.703 (95% CI 2.569 – 12.657). Other 

retained confounders were sex, BMI, the use of systemic corticosteroids or ACE inhibitors and the renal 

function. For this analysis, only patients with an available post-DDI measurement could be included. Of 

the missing outcomes 69.22% were from patients from the pre-intervention period and high-risk patients 

were more likely to have a post-DDI alert measurement (Supplementary file 2).  

Variable OR 95% CI 

Intervention  1.091 0.172 – 6.919 

Sex: female vs male 1.005 0.154 – 6.538 

Pre-DDI alert potassiuma 5.703 2.569 – 12.657 

BMIa 0.915 0.748 – 1.118 

Systemic corticosteroidsb 1.790 0.484 – 6.620 

ACE inhibitorsb 0.611 0.155 – 2.409 

eGFR: impaired vs normal 2.476 0.667 – 9.193 

Table 4: Odds ratios and 95% CI for the intervention variable and the confounders of the generalized linear mixed model for 
binary data with patients as a random intercept variable. 
a Continuous variable  
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b Dichotomous variable (yes vs no)  

4. DISCUSSION  

The optimized CDSS which uses context factors for the individual risk assessment of hyperkalemia 

significantly reduced the alert burden without a significant difference in occurrence of hyperkalemia. The 

intervention converted 92.8% of the alerts – which would have been fixed level 1 alerts in the old CDSS – 

into level 3 alerts which are not shown to the physicians. This means a significant reduction of the alert 

burden, which was our primary purpose. Since most studies only measure alert acceptance based on 

prescription rates, it is an important strength of the present study to also measure alert acceptance based 

on actual administration. Indeed, an important difference in alert acceptance was observed when based 

on administration rates instead of prescription rates (24.4% vs. 5.7% in the pre-intervention period). 

Nevertheless, a significant difference for the composite outcome of alert acceptance based on both 

prescription and administration rates for level 1 alerts and monitoring rates for level 2 alerts was observed. 

The suppressing of the alerts for patients with low risk of hyperkalemia did not have a significant negative 

effect on the occurrence of hyperkalemia, thus preserving patient safety. This finding is very important in 

the endeavor to obtain the right balance between over- and under alerting many institutions struggle with. 

Our results align with the findings of a systematic review by Van de Velde et al. which identified that CDSS 

might be more effective in terms of adherence and patient outcomes when it is more patient-specific[9]. 

Several studies have stated that overridden alerts in terms of continuation of prescription still have value 

if they prompt physicians to monitor more closely, to discuss other treatment options with the patient, or 

modify the prescription in any other way [13, 15, 20]. However, Slight et al. demonstrated that when 

physicians said they would monitor the patient as recommended, only 35.5% actually completed the 

monitoring[42]. In this study, we demonstrate that 87.2% of the patients with a level 2 alert were 

effectively monitored.  

4.1. Limitations  
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Our study has several limitations. First, since this was a single-center study where the CDSS was 

implemented in all departments no RCT could be performed. The best alternative design was a pre-post 

design with multivariable regression analysis for correction for confounding factors. Only adjustments for 

known and measured confounders could be made so there is still a risk of residual confounding. Second, 

our study didn’t include potassium-increasing DDIs other than the combination of potassium supplements 

and potassium-sparing diuretics because these DDIs were not yet active in the pre-intervention period. 

Other studies on DDIs for risk of hyperkalemia also included DDIs with other potassium-increasing drugs 

such as ACE inhibitors, angiotensin II receptor antagonists, and calcineurin inhibitors but these are 

intrinsically less serious DDI alerts [23, 24, 37, 39]. Third, only patients with an available post-DDI alert 

potassium measurement were included in the mixed effect logistic regression.  Therefore, the population 

with an outcome measurement may differ from the population without an outcome measurement causing 

the results not to be generalizable to a general hospital population. 

4.2. Future perspectives 

The important differences between alert acceptance rates based on prescription or administration rates 

indicate that pre-existing orders are frequently changed to act upon the DDI. Therefore, the system should 

offer the possibility to discontinue pre-existing orders directly from the alert screen as a possible solution 

for the DDI. A further optimization priority for our CDSS is the activation of asynchronous testing, where 

alert warnings can be generated in response to changed context factors after the DDI was prescribed. This 

function was already developed but was activated in 2018 after the post-intervention period evaluated in 

this study. This may result in a further optimization as Eschmann et al. already showed that continuous 

monitoring of potassium levels better predicted the risk of hyperkalemia compared to the risk prediction 

at onset of potassium-increasing DDIs[43].  

5. CONCLUSION 



17 
 

In conclusion, we succeeded to reduce the DDI alert burden of physicians without compromising patient 

safety by reducing the number of alerts shown to the physician by 92.8% without a significant difference 

in the occurrence of hyperkalemia. This study demonstrates the proposed strategy seems effective to get 

a grip on the delicate equilibrium between over- and under alerting many institutions struggle with. 

Further research into the development, optimization and evaluation of context-specific prediction rules 

for complex DDIs is warranted. 

6. SUMMARY TABLE  

What was already known on the topic? 

 Most CDSS are overly sensitive generating alerts with low specificity leading to high override 

rates and alert fatigue  

 Potassium-increasing DDIs are frequently observed and are of high clinical significance because 

hyperkalemia can be potentially life-threatening    

 Integration of patient characteristics into the CDS logic was suggested to improve alert 

specificity  

 The evidence on the impact of CDSS on patient outcomes remains scarce  

What this study added to our knowledge 

 The inclusion of context factors into the CDS logic for potassium-increasing DDIs made it possible 

to suppress alerts for low-risk patients which led to a large reduction in alert burden  

 A marked increase in alert acceptance (based on either prescription rates or administration 

rates) was observed with the patient-specific CDSS  

 The suppressing of the alerts for patients with low risk of hyperkalemia did not have a significant 

negative effect on the occurrence of hyperkalemia, thus preserving patient safety 
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