
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Signal Processing: Image Communication 21 (2006) 688–703

Adaptive image replica detection based on support
vector classifiers

Yannick Maret�, Frédéric Dufaux, Touradj Ebrahimi

Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-ITS-LTS1, Yannick MARET, ELD241, Station 11,

Institut de Traitement des Signaux, CH-1015 Lausanne, Switzerland

Received 8 November 2005; received in revised form 27 June 2006; accepted 12 July 2006

Abstract

This paper presents a system for image replica detection. The idea behind the proposed approach is to adapt a system for

detecting the replica of a specific reference image. The system is then able to classify test images as replicas of the reference

image or as unrelated images. More precisely, the test procedure is as follows. A set of features is extracted from a test

image, representing texture, colour and grey-level characteristics. These features are then feed into a preprocessing step,

which is fine-tuned to the reference image. Finally, the resulting features are entered to a support vector classifier that

determines if the test image is a replica of the reference image. Experimental results show the effectiveness of the proposed

system. Target applications include search for copyright infringement (e.g. variations of copyrighted images) and known

illicit content (e.g. paedophile images known to the police).

r 2006 Elsevier B.V. All rights reserved.

Keywords: Image replica detection; Features extraction; Support vector machine; Dimensionality reduction; Copyright infringement

detection

1. Introduction

In this paper, we propose a system to detect image
replicas. By replica, we refer not only to a bit exact
copy of a given reference image, but also to
modified versions of the image after minor manip-
ulations, malicious or not, as long as these
manipulations do not change the perceptual mean-
ing of the image content. In particular, replicas

include all variants of the reference image obtained
after common image processing manipulations such
as compression, filtering, and adjustments of con-
trast, saturation or colours.

The proposed image replica detection system can
be applied to detect copyright infringement by
identifying variations of a given copyrighted image.
Another application is to discover known illicit

content such as child pornography images known
to the police.

The problem of image replica detection is a
particular subset of the more general problem of
content-based search and retrieval of multimedia
content. In recent years, multimedia search and
retrieval have been the subject of extensive research
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works and standardisation activities (MPEG-7
[16,29] and more recently JPSearch [17]). However,
the specific problem of image replica detection has
so far been the focus of fewer research efforts.

Two approaches to detect image replicas are
watermarking [12] and robust fingerprinting

[21,33,36]. Watermarking techniques [12] consist in
embedding a signature in the reference image before
dissemination. Replicas of the reference image can
subsequently be detected by verifying the presence
of the watermark. This class of techniques typically
achieves high efficiency for the correct classification
of replicas and non-replicas. However, it requires to
modify the reference image, namely to embed a
signature, prior to its distribution. Unfortunately,
this is not always possible. For instance, the method
is not applicable to already disseminated copy-
righted content or in the case of illicit content.
Robust fingerprinting techniques [21,33,36] analyse
the reference image in order to extract a signature
associated with the image content. Replicas are then
identified whenever their signatures are close to that
of the reference. This class of techniques is often
based on a single feature, for example characteristic
points of the Radon transform [21], log-mapping of
the Radon transform [33], or intra-scale variances of
wavelet coefficients [36]. While it is usually robust,
computationally efficient, and suitable for fast
database indexing and retrieval, it often performs
poorly for the accurate classification of replicas and
non-replicas.

More recently, techniques for image replica
detection have been described in [18,30]. Ke et al.
[18] propose a method based on the extraction of
features, referred to as key points (KPs), which are
stable in a scale-space representation. An image is
typically represented by thousands of KPs. Test
images are then classified as replicas or non-replicas
using local sensitive hashing to match their KPs to
those of the reference image. More specifically, no
distance is directly computed, but it is rather the
number of matching KPs which quantifies the
similarity between two images. While this approach
achieves very good performance for replica detec-
tion, it requires a computationally complex features
extraction step. Qamra et al. [30] propose a different
method based on the computation of a perceptual
distance function (DPF). More precisely, a DPF is
generated for each pair of reference and unknown
image, to measure the similarity between the two.
The main idea of the approach is to activate
different features for different image pairs. Hence,

only the most similar features are taken into
account to compute the distance. While this method
achieves good performance, it is inferior to [18].

In this paper, we introduce a new approach for
image replica detection based on our earlier works
[25–27]. The idea behind our approach is to adapt a
system for detecting the replica of a specific
reference image. The system is then able to classify
test images as replicas of the reference image or as
unrelated images. More precisely, the test procedure
is as follows. A set of 162 features is extracted from
a test image, representing texture, colour and grey-
level characteristics. These features are then feed
into a preprocessing step, which is fine-tuned to the
reference image. First, the extracted features are
weighted by comparing the proportion of pixels
contributing to each feature in the test image to the
corresponding one in the reference image. Second,
the dimensionality of the features space is reduced
to keep only a subset of features relevant to replica
detection of the specific reference image. In the final
step, the resulting features are entered to a support
vector classifier that determines if the test image is a
replica of the reference image.

Simulation results show the effectiveness of the
proposed system. For instance, for an average false
negative rate of 8%, one achieves a fixed false
positive rate of 1� 10�4. Indeed, the proposed
technique significantly outperforms DPF [30], at
low false positive rates, even if we use fewer
features. Although the achieved performance is
not as good when compared to KPs [18], a speed
up in terms of computational complexity, in the
range of one to two orders of magnitudes, is
achieved.

The paper is structured as follows. We present an
overview of the proposed replica detection system in
Section 2, and a thorough description of the various
algorithmic steps in Section 3. In order to evaluate the
performance of the proposed system, an evaluation
methodology is defined in Section 4, and experimental
results are reported in Section 5. Section 6 discusses
applications of the proposed algorithm. Finally,
conclusions are drawn in Section 7.

2. Overview and preliminary remarks

The notations used throughout this paper are first
detailed. Subscripts in greek letters index vector
elements. Subscripts in roman letters index vectors
(or scalars). Training patterns (or examples) are
denoted as xi, with i ¼ 1; . . . ;m where m is the total
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number of training patterns. During the training
phase, a label yi is assigned to each pattern xi. A
pattern corresponding to a replica is simply called a
replica and labelled yi ¼ þ1. Otherwise it is called a
non-replica and labelled yi ¼ �1. We denote the ath
feature of an image as f a. All features of an image
can be held in a column vector denoted as f.

We now present an overview of the proposed
replica detection system. The system consists of six
steps as shown in Fig. 1a. An outline of each step is
provided in Section 2.1. The method can be
decomposed into two distinct parts. The first one,
consisting of the steps shown in the upper part of
Fig. 1a, is independent from the reference image.
Conversely the second one, comprising the steps
shown in the lower part of Fig. 1a, depends on the
reference image. Therefore, a training is needed for
the latter steps. To achieve this, training examples
are needed for both replicas and non-replicas, as
detailed in Section 2.2. The training phase is
outlined in Fig. 1b. The training performance is
assessed using the F-score metric described in
Section 2.3.

2.1. Method overview

Image preprocessing: In the first step, the test
image is preprocessed. More specifically, the image

is resized, and represented in a modified HSI colour
space. This adds some degree of invariance against
common image processing operations, such as
resizing and illumination changes.

Feature extraction: Feature extraction maps
images into a common space, where comparison is
easier. For this purpose global statistics, such as
colour channels and textures, are extracted from the
test image.

Weighted inter-image differences: In the third
step, the test image features are subtracted from
those of the reference image, and ‘incommensur-
able’ features are penalised. For example, statistics
about yellow pixels are considered as incommensur-
able when the test and reference images contain very
different proportions of yellow pixels.

Statistical normalisation: In the fourth step, the
inter-image differences are statistically normalised.
In other words, the same importance is given to
each feature, independently of their value range.

Dimensionality reduction: In the fifth step, the
feature dimensionality is reduced. Less training
examples are needed to train the decision function,
and only feature mixtures relevant to the replica
detection task are kept.

Decision function: Finally, in the last step, a
decision function is used to determine if the test
image is a replica of the reference image.
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Fig. 1. System block diagram. The system is composed of two phases, namely training and testing. (a) presents the block diagram for the

testing phase. A test image is given to the system that determines if it is a replica of a given reference image contained in the database. The

method can be decomposed into two distinct parts: the upper part of (a) shows steps that are independent from the reference image while

the lower part of (a) depicts steps that depend on the reference image. (b) depicts the block diagram for the training phase of a single

reference image. The features fref of the reference image, the training examples ff igi , and the corresponding labels fyigi are fed to the

training algorithm that produces the parameters of the steps depending on the reference image.

Y. Maret et al. / Signal Processing: Image Communication 21 (2006) 688–703690



Aut
ho

r's
   

pe
rs

on
al

   
co

py

2.2. Training examples

Examples of replica images can be generated
artificially. Indeed, the reference image can be
modified using different operations, resulting in
several replicas. In this work, the replicas are
generated by the operations listed in Table 1.
Furthermore, it is possible to have a richer set of
training examples by nesting two or more opera-
tions to form a new operator known as a composi-

tion. However, we assume that an operation cannot
be nested more than once in the same composition.
For example, a JPEG compression cannot be
followed by another JPEG compression with the
same or a different quality factor. In this way, 419
replicas of the reference image are synthesised by
using up to two nesting levels of compositions. Note
that the number of generated examples becomes
quickly unmanageable when the number of levels
increases. For example, 14,293 replica examples are
already generated by using only up to three nesting
levels of composition.

Examples of non-replica images can be obtained
by using a set of images that are known to be
different from the reference image. This set can also
be enriched by applying operations on its elements.
In this study, we only consider the grey-level
conversion. It permits to enrich the training set
with grey-level images in order to avoid relying too
heavily on the colour features.

2.3. Training metric

The F-score metric F ð�Þ is used to assess the
detection performance during the training phase.

The F-score is defined as follows [9]:

F ðTP;FP;PÞ ¼
TP

P
�

TP

TPþ FP
, (1)

where P is the total number of positive instances,
TP is the number of positive instances correctly
classified, and FP is the number of negative
instances wrongly classified. The first term in the
right-hand side of (1) corresponds to the recall.
Conversely, the second term represents the preci-

sion. F-score balances these two conflicting proper-
ties: precision increases as the number of false
positives decreases and recall decreases as the
number of false negatives diminish (usually meaning
that the number of false positives increases). Eq. (1)
can be rewritten as

Frðrfp; rfnÞ ¼ ð1� rfnÞ �
ð1� rfnÞ

1þ r � rfp � rfn
, (2)

where rfp ¼ FP=N and rfn ¼ FN=P are the false
positive and false negative rates. r ¼ N=P gives the
ratio between the number of negative and positive
instances. As for (1), the first term in the right-hand
side of (2) corresponds to the recall, and the second
one to the precision. In the rest of the document, we
use the formulation given by (2). One ‘drawback’ of
this metric lies in the ratio r between the number of
negative and positive instances; it has to be known
beforehand.

3. Replica detection system

We now thoroughly describe the proposed replica
detection system. In particular, each step presented
in Fig. 1 is detailed along with the training
procedures whenever required.

3.1. Image preprocessing

Before extracting features, an image is first
cropped such that only 70% of its centre region is
kept. This introduces a kind of weak robustness to
operations such as framing. Then, it is resized such
that it contains approximately 216 pixels (corre-
sponding to a square image of 256� 256 pixels),
while keeping its original aspect ratio. A weak form
of scale invariance is introduced since the size of the
preprocessed image is mostly constant regardless of
the test image size. Moreover, this permits to speed
up feature extraction by reducing the number of
pixels to process.

ARTICLE IN PRESS

Table 1

Training replicas generation

Operations Parameters

JPEG compression Q ¼ 10; 50
Gaussian noise addition s ¼ 20=255; 60=255
Resizing s ¼ 0:8; 1:2
Averaging filter order¼ 2; 4
Gamma correction g ¼ 0:8; 1:2
Horizontal flipping NA

Grey-level conversion NA

Rotation y ¼ 90�; 180�; 270�

Cropping keep 50% and 80%

V channel change �10% and +10%

S channel change �10% and +10%

Image operations and their parameters.

Y. Maret et al. / Signal Processing: Image Communication 21 (2006) 688–703 691
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The cropped and scaled image is then represented
in a modified Hue saturation intensity (HSI) space:
the logarithmic Hue, saturation, and equalised-
intensity space. More specifically, the logarithmic
Hue, H log, is defined as follows [10]:

H log ¼
logR� logG

logRþ logG � 2 logB
, (3)

where R, G and B are the red, green and blue values
of a pixel. The logarithmic Hue has the advantage
to be invariant to gamma and brightness changes
[10]. The saturation, S, is the same as for classical
HSI [11]:

S ¼ 1�
3minðR;G;BÞ

Rþ G þ B
. (4)

By construction, the saturation is quite invariant to
changes in illumination. Finally, the equalised
illumination, I equ, is given by

I equ ¼ T
Rþ G þ B

3

� �
, (5)

where Tð�Þ is the global histogram equalisation
operator [11]. The equalisation permits to make the
intensity mostly invariant to changes of gamma and
brightness as shown in the Appendix.

3.2. Features choice and extraction

In order to compare the similarity between two
images, visual features are extracted. The goal of
feature extraction is twofold. First, it maps images
onto a common space where they can be more easily
compared. Second, it reduces the space dimension-
ality by keeping only the relevant information.

Several visual features can be envisioned: colour,
texture, shape, etc. For an extensive survey on
general features extraction, refer to [31]. The choice
of features depends on the image type. In the case of
the image replica detection problem, it also depends
on the type of replicas that are to be detected. For
instance, if rotated images are considered, it would
make sense to choose at least one feature that is
rotation invariant.

The features used in this work are of three types:
texture, colour and grey-level statistics. They are
similar to those used in [30], in which they are found
to give good results in image retrieval applications.
The main differences are the added 24 grey-level
features and the absence of ‘local’ statistics. The
added grey-level features capture characteristic
missed by the colour features (namely the distribu-

tion of the illumination level) and bring increased
performance as demonstrated in Section 5.3. As
shown in Table 2, we extract 162 features which are
detailed in the following subsections.

3.2.1. Texture features

The texture features are composed of the first and
second order statistics of each subband of the
Gabor transform. The latter is performed as in [24]
on the equalised illumination. More precisely, the
used parameters are 0.75 for the upper centre
frequency, 0.05 for the lower centre frequency, five
scales and six orientations. For more details about
these parameters, refer to [24]. Mean and standard
deviation estimates of the squared coefficients are
computed for each of the 30 subbands. This results
in a total of 30 mean and 30 variance estimates.

3.2.2. Colour features

The colour features are based on the modified
HSI colour space presented in Section 3.1. Each
pixel in the image is classified into one of 10 colour

classes depending on its position in this space. The
classes are the achromatic colours (S ¼ 0) black,
grey and white, and the chromatic colours (S40)
red, orange, yellow, green, cyan, blue and purple. The
equalised illumination is used to classify a pixel into
one of the three achromatic classes. The logarithmic
Hue is used to classify a pixel in one of the seven
chromatic classes.

This is similar to the ‘culture’ colour approach
proposed in [30]. In this study, pink and brown are
also considered, whereas in our case they are
classified as red or orange. Brown and pink have
similar values for the Hue channel as red or orange,
but differ in the intensity and/or saturation

ARTICLE IN PRESS

Table 2

Features overview

Name ] features

Gabor, squared coeff. mean 30

Gabor, squared coeff. std. dev. 30

Colour, histogram 10

Colour, channel mean 24

Colour, channel std. dev. 24

Colour, spatial distribution 20

Grey level, histogram 8

Grey level, spatial distribution 16

Total 162

List the types of used features and the number of extracted

statistics.

Y. Maret et al. / Signal Processing: Image Communication 21 (2006) 688–703692
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channels. Operations such as saturation or intensity
changes are common in image processing; they
modify the intensity and the saturation channels but
not the Hue channel. If brown and pink are
considered, red or orange pixels could be trans-
formed into brown or pink pixels, or vice versa. For
this reason, we have decided to include brown and
pink within the red and orange classes.

Colour classes histogram: A histogram is com-
puted, giving the proportion of each colour class in
the image. It is normalised such that it sums to one,
and comprises 10 values.

Channel statistics: Mean and variance estimates
of the equalised intensity channel are computed for
each colour class. Mean and variance estimates of
saturation and logarithmic Hue channels are also
computed for each chromatic colour class. This
results in a total of 24 mean and 24 variance
estimates.

Spatial distribution shape: The shape of the spatial
distribution of each colour class is computed. This is
achieved by computing two shape characteristics for
each colour class: spreadness and elongation [13,22].
The first characteristic measures the compactness of
the spatial distribution of a colour class. The second
one gives the ratio between the shape length and
width. Note that even if pixels assigned to a colour
form totally disconnected components, this feature
still captures useful information (namely the spatial
distribution of these components). This results in 10
spreadness and 10 elongation measures.

3.2.3. Grey-level features

The grey-level features are based on the equalised
intensity channel of the HSI model. The dynamic
range of the image is linearly partitioned into eight
bins corresponding to as many classes. Each pixel of
the image falls into one of these bins.

The use of grey-level feature is important because
the colour features can be unsuited in some cases.
For instance, it can happen when the reference or
the test images are grey level, or when conversion to
grey level is one of the considered operations in the
replica detection system.

Grey-level classes histogram: A grey-level classes
histogram is computed, giving the proportion of
eight intensity ranges in the image. It is normalised
such that it sums to one, and comprises eight values.

Spatial distribution shape: Similarly to colour, the
shape of the spatial distribution of each grey-level
class is computed. This results in eight spreadness
and eight elongation measures.

3.3. Weighted inter-image differences

Inter-image differences are computed during this
step. They are basically the difference between the
statistics of the test images and those of the
reference image. Additionally, a weight is used to
penalise certain statistics.

The channels statistics and spatial distribution
shape for colour classes, and the spatial distribution
shape for grey level correspond to non-overlapping
regions of the images. These regions have not
necessarily the same size for different images.
Therefore, a legitimate question is whether image
statistics are comparable when the regions from
which they are estimated differ significantly in size.

In the following, a method is proposed that
generates small inter-image features when inter-
image class proportions are similar and large ones
when they are dissimilar. More precisely, inter-
image statistics corresponding to significantly dif-
ferent region size are penalised.

A ‘weight’ wa is associated to each feature f a. The
weight gives the proportion of pixels taken into
account to compute f a. For the colour features, the
weights are the entries of the colour histogram.
Likewise, the weights corresponding to grey-level
features are those of the grey-level histogram. For
the remaining features, no weight is used.

We define the weighted inter-image difference da
as

da ¼ f a � f ref
a þ ŝa � sgnðf a � f ref

a Þ � ðwa � wref
a Þ

2,

(6)

where f ref
a and wref

a are the ath feature, respectively
weight, of the reference image, and ŝa is a non-
negative parameter that gives more or less impor-
tance to the discrepancy between the weights.

The idea behind (6) is as follows. On the one
hand, a replica feature is assumed to be close to that
of the reference image. Consequently, f a � f ref

a and
wa � wref

a are small, resulting in small da. On the
other hand, a non-replica feature has no relation to
that of the reference image. Therefore, it is less
likely that both f a and wa are simultaneously close
than only f a or wa. That is, (6) ensures that da is,
with higher probability, smaller for a replica than
for a non-replica.

The parameters sa are found through a training
procedure. To achieve this, simple classifiers are
considered. There are as many simple classifiers as
there are features, and the decision functions are
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given by

sgnðTa � jdaðsaÞjÞ, (7)

where Ta are thresholds chosen among the jdaðsaÞj
corresponding to the replicas. The ŝa maximising the
F-score of these classifiers are then chosen. Namely,
the ŝa are computed as follows:

ŝa ¼ arg
sa

max
sa;Ta

Frðr̂fp; r̂fnÞ, (8)

where r̂fp and r̂fn give estimates of the false positive
and false negative rates on the simple classifiers
using thresholds Ta and parameters sa. To reduce
computational complexity, the sa are chosen among
the following candidates ~ma � 10k, where the ~ma are
the average value of the jf aj over all training non-
replicas for the ath feature, and k ¼ �1;�1;
0;þ1;þ2.

3.4. Normalisation

The weighted inter-image difference are normal-
ised using a statistical normalisation method [34].
More precisely, let ma and sa be the mean and
standard deviation estimates of the ath inter-image
difference over a subset of the training set. Training
examples for which any feature is an extremum over
the training set are ignored. Therefore, outliers are
not taken into account. The normalised inter-image
difference ~da is then given by

~da ¼
da � ma
k � sa

, (9)

where da is the inter-image feature given in (6). By
Tchebychev’s theorem, at least a fraction 1� 1=k2

of the ~da are within the interval ½�1; 1�. In the
following k is set to 10 so that more than 99% of the
features are within ½�1; 1�. The features outside this
interval are clipped to þ1 or �1.

The goal of normalisation is to ensure that the
feature elements are commensurable. This is espe-
cially important for dimensionality reduction.

3.5. Dimensionality reduction

The relatively large number of features prevents
to directly use many classification techniques on the
weighted inter-image differences, as this would
require a prohibitively large number of training
examples, and the optimisation process would
probably yield an overtrained decision function
due to the ‘curse of dimensionality’ [5]. For this
reason, the dimensionality D of the vector ~d is

reduced to d. In our case, the initial dimension D is
162. The dimensionality reduction makes use of the
following linear transformation:

x ¼WD!d � ~d, (10)

where the d �D matrix WD!d is computed using
the method proposed in [20]. This method is based
on independent component analysis (ICA) [14]. It
adds the class information to the feature vector in
order to elect the independent components best
suited to the binary classification problem.

As opposed to the other steps, the dimensionality
reduction step is not based on the optimisation of the
F-score. Future research works include therefore the
development of a specific dimensionality reduction
step based on the maximisation of the F-score.

3.6. Decision function

The decision function needs to determine whether
the vector x corresponds to a replica of the reference
image. This is a binary classification problem, where
the two classes correspond to replicas and non-
replicas, respectively. The goal is to build, using a
limited number of training examples, a classifier
that generalises well to novel patterns. Many
classification algorithms can be used for this
purpose. In our previous works [26,27], we showed
that support vector machine (SVM) yielded good
performance for the replica detection problem.

The basic SVM [32,2] is a binary classifier that
separates two classes with a hyperplane. Further-
more, non-linear kernels allow to map patterns into
a space where they can be better discriminated by a
hyperplane.

3.6.1. Support vector machine

We use the n-parameterisation [32,4] of the SVM,
and a radial basis function as kernel. The dual
constrained optimisation problem is given in (11).
In the dual form, the Lagrangian is maximised by
optimising the Lagrangian multipliers ai

max
a
�
1

2

Xm

i;j¼1

aiajyiyjkðxi;xjÞ, (11)

subject to the constraints
Pm

i¼1 aiyi ¼ 0,
Pm

i¼1 aiXn,
and 0paip1=m. In this work, we use a radial basis
function (RBF) kernel given by

kðxi;xjÞ ¼ exp �
kxi � xjk

2

s2

� �
. (12)
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The particular choice of kernel is motivated by
several considerations. Not only is the linear SVM a
particular case of the RBF kernel, but also the
sigmoid and the RBF kernels behave similarly for
certain choices of parameters [19]. Additionally, the
RBF kernel presents less numerical difficulties than,
for instance, the polynomial kernel. Finally, the
RBF kernel is governed by only one parameter
instead of two for the polynomial kernel.

The parameters of this classification technique are
n 2 ½0; 1� and s 2 Rþ. The parameter n can be shown
to be an upper bound on the fraction of training
errors, and a lower bound on that of support
vectors [32,4]. The kernel parameter s controls the
complexity of the decision boundary. The con-
strained optimisation problem given in (11) can be
solved by means of standard quadratic program-
ming techniques.

Finally, the decision function indicates to which
class the test pattern z belongs. It is given by

f ðzÞ ¼ sgn
Xm

i¼1

yiaikðz;xiÞ þ b

 !
, (13)

where the constant b is determined by the support
vectors. More precisely, b ¼ yk �

Pm
i¼1 yiaikðxi;xkÞ,

for all xk such that 0oako1=m. The name support
vectors stems from the fact that many of the
optimised ai are equal to 0. Hence, only a relatively
small fraction of the training patterns defines the
decision function.

3.6.2. Determination of the classification parameters

In the n-SVM, the kernel parameter s and the
parameter n are to be determined in order to
minimise the generalisation error. The latter is the
error obtained when testing novel pattern with a
trained decision function.

More precisely, we want to minimise the F-score
F ðrfp; rfn;rÞ where rfp is the generalisation error for
false positive (novel non-replicas classified as
replicas), rfn is the generalisation error for false
negative (novel replicas classified as non-replicas),
and r is the ratio between the number of novel non-
replicas and replicas. In the considered application,
there are usually many more non-replicas than
replicas so that rb1. Nevertheless, r remains a
priori unknown. Moreover, rfp and rfn are also
unknown and need to be estimated.

Cross-validation is a popular technique for
estimating generalisation error. In k-fold cross-
validation, the training patterns are randomly split

into k mutually exclusive subsets (the folds) of
approximately equal size. The SVM decision func-
tion is obtained by training on k � 1 of the subsets,
and is then tested on the remaining subset. This
procedure is repeated k times, with each subset used
for testing once. Averaging the test error over the k

trials gives an estimate of the expected general-
isation error. This method has been shown to yield a
good estimation of the generalisation error [6].

In the following, we use a normalised version of
the radial basis function kernel where s in (12) is
replaced by k � s. The normalisation constant k is
set to the second decile of the distribution of the
intra-replica distances within the training set. It
ensures that the optimal value of s is larger than one
with high probability.

While n has an intuitive signification, it is not
clear what should be its optimal value [35,4]. It was
shown that twice R̄, a close upper bound on the
expected optimal Bayes risk, is an asymptotically
good estimate [35]. While no such bound can be
easily determined a priori, this theorem induces an
algorithm to find a good n by starting with the
classification error of a well-trained classifier as an
approximation of the optimal Bayes risk [35].

In this work, a good a priori approximation of
the optimal Bayes risk is not available. Conse-
quently, good parameters for s and n are estimated
through a full grid search [35]. The procedure is
divided into two steps: coarse and fine grid searches.
In each step, a tenfold cross-validation is carried out
for each feasible pairs ðn; sÞ. The pair for which the
estimated F-score is the highest is then chosen. The
tried pairs are the following:

� Coarse search: ðs; nÞ for n ¼ 0:05 � 2k; k ¼
�4; . . . ; 4 and s ¼ k; k ¼ 1; . . . ; 10.
� Fine search: ðs; nÞ for n ¼ n1 � ð1þ k=6Þ; k ¼
�2; . . . ;þ2 and s ¼ s1 � ð1þ kÞ; k ¼ �2; . . . ;þ2.
Here, n1 and s1 denote the value determined in
the first step.

4. Evaluation methodology

4.1. Test images

To simulate the performance of the proposed
approach, we used the same image collection as in
[18]. It contains 18,785 photographs including (but
not limited to) landscapes, animals, constructions,
and people. The image sizes and aspect ratios are
variables, for example 900� 600, 678� 435, or
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640� 480. They are mostly colour images, except
for about 1000 images that are grey levels.

For training, we randomly selected 700 images in
the collection. Among the selected pictures, 200 are
randomly chosen to be the reference images, and the
remaining are used as non-replica examples during
the training phase. For each reference image, a
replica detector is built as described in Section 3.

The replica detectors are then tested on the
remaining images in the collection. This permits to
estimate the false positive rate for each reference
image. The false negative rate is estimated by testing
the replica detectors on test replica examples. They
are generated by the transforms listed below. These
operations are the same than those used in [30,18].
They are implemented using the free software suite
ImageMagick [15]. There are 12 categories, as
shown thereafter. An example for each of them is
depicted in Fig. 2.

� Colourising: Tint the red, green, or blue channel
by 10%;
� Changing contrast: Increase or decrease the

contrast using ImageMagick’s default parameter;
� Cropping: Crop by 5%, 10%, 20%, or 30%;
� Despeckling: Apply ImageMagick’s despeckling

operation;
� Downsampling: Downsample by 10%, 20%,

30%, 40%, 50%, 70%, or 90% (without
antialiasing filtering);
� Flipping: Flip along the horizontal axis.
� Colour depth: Reduce the colour palette to 256

colours;
� Framing: Add an outer frame of 10% the image

size. Four images are produced with different
frame colour.

� Rotating: Rotate by 901, 1801 or 2701.
� Scaling: Scale up by 2, 4, 8 times, and down by 2,

4, 8 times (use antialiasing filter).
� Changing saturation: Change the values of the

saturation channel by 70%, 80%, 90%, 110%, or
120%.
� Changing intensity: Change the intensity channel

by 80%, 90%, 110%, or 120%.

4.2. Evaluation metrics

In order to evaluate the performance of the
proposed system, we measure the trade-off between
the false positive and false negative rates. The
receiver operating characteristic (ROC) curve [9] is
often used to represent the trade-off between error
types; in this representation the true positive rate
(one minus false negative rate) is plotted as a
function of the false positive rate. In this study, we
use a variant of the ROC curve called detection
error trade-off (DET) curve [28]. Contrary to
ROC curves, the DET curves represent the false
negative rate as a function of the false positive rate.
Since both axes correspond to error measurements,
they can both make use of a logarithmic scale. The
interpretation of DET curves is analogous to that of
ROC curves: a classifier X is more accurate than a
classifier Y when its DET curve is below that of Y.

The system’s trade-off between false positive and
false negative rates is assessed by making use of a
single DET curve constructed as follows. For each
reference image detector, a test set is produced
(using the test images proposed in Section 4.1) by
gathering the values under the sign function in the
right-hand side of (13). For each test, a DET curve
is then computed using Algorithm 2 in [9] (the false
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Fig. 2. Examples of test replicas. (a) is the original while (b) represents examples of test replicas. There is one replica example per category,

the order used is the same than in the text (left–right, top–down).
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negative rates are given by one minus the true
positive rates); this algorithm works by using the
different values in the test set as the thresholds.
Finally, all curves are synthesised in a single
DET curve, denoted DET , by using vertical aver-
aging [9, Algorithm 5]. This implies that a working
point on the average DET curve corresponds to
thresholds that are (possibly) different for each
reference image detector. In practice, a lookup table
can be used to determine the correct threshold
values in function of the chosen working point
(which depends on the application as shown in
Section 6). Additionally, the precision of the
DET curve is limited since the number of test
examples is relatively low. Accordingly, the max-
imal absolute precision that can be achieved on
the vertically averaged DET curve is reported in
Table 3. It takes into account the number of test
replicas (P ¼ 40), the number of test non-replicas

(N ¼ 18; 085), and the number of individual
DET curves (n ¼ 200).

5. Results

In this section, we present experimental results in
order to evaluate the performance of the proposed
replica detection system. In the following, the used
parameters are d ¼ 50 for dimensionality reduction,
and r ¼ 104 for the F-score parameterisation, unless
stated otherwise. Additionally, whenever appropri-
ate, the equal error rate (EER) working points of
the DET curve is also shown by depicting the EER

curve.

5.1. Influence of the F-score metric parameterisation

In a first experiment, we explore the effect of
possible parameterisation of the F-score metric. The
value r gives the ratio between the number of
expected non-replica instances and that of expected
replica instances. In the considered applications,
these numbers can hardly be determined a priori.
However, we can safely assume that r is much larger
than one because there are many more non-replicas
than replicas.

Fig. 3a shows DET curve for r ¼ 1. Additionally,
Fig. 3b depicts the vertical differences between
DET curves for r ¼ f102; 104; 106g and that for
r ¼ 1. Globally, different values of r influence only
slightly on the results, namely the difference is less
than 1%. However, high r values favour classifiers
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Table 3

DET curve precision

Error type Maximal absolute precision

rfp � 1
18;085 ¼ �5:5� 10�5

rfn � 1
40�200

¼ �1:3� 10�4

The precision is obtained by taking into account the number of

test examples (18,085 for the non-replicas, and 40 for the

replicas), and the number of individual DET curves used for

averaging (200).
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Fig. 3. Influence of r. All curves used a fixed number of dimensions d ¼ 50, only the value of r is changed. (a) shows the DET curve for

r ¼ 1, as well as the equal error rate (EER) curve. (b) depicts the vertical differences between the DET curves corresponding to r ¼
f102; 104; 106g and that corresponding to r ¼ 1.
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with very low false positive rates while keeping
reasonable false negative rates.

5.2. DET curves distribution

We now analyse the distribution of the
DET curves before vertical averaging. Fig. 4 shows
the false negative rates histograms for a fixed false
positive rate rfp ¼ 5� 10�5 (leftmost value of the
curves in Fig. 3) and two different values of r,
namely 1 and 104. On the one hand, the two
histograms show that over half of the individual
classifiers have false negative rates below 0.05.
Actually, about one-fourth of the classifiers have
no false negative at all. On the other hand, the two
histograms show that a small number of classifiers
presents false negative rates above 0.5. The corre-
sponding reference images possess few colours, or
are grey-level images. It shows that colour related
features are very powerful discriminating features,
and that the lack of colour variety complicates the
replica detection task. Moreover, these ‘bad’ classi-
fiers participate heavily in increasing the average
false negative rates. When their proportion di-
minishes, so does the average false negative error.
This explain the results obtained in Fig. 3 since the
number of ‘bad’ classifiers decreases from 15 to 9
when r augments from 1 to 104.

5.3. Grey-level features

In this trial, the detection performance obtained
by using grey-level features is compared to that

when not using them. Fig. 5 depicts the performance
improvement brought by adding grey-level features.
The performance gap augments as the false positive
rate decreases. Note that grey-level images are
present in both the reference images and the test
images. Directly making use of grey-level features
greatly improves the performance on these images.
Moreover, it also increases the performance for
colour images. Indeed, grey-level features capture
information that is missed by the colour features,
namely the global intensity shape.

A possible improvement is to use a replica
detection system to test colour images, and another
one which does not make use of colour features to
test grey-level images. The drawback of such an
approach is that it requires storing two descriptions
for each reference image.

5.4. Weighted inter-image differences

In this experiment, we analyse the advantage of
using weighted inter-image differences. Fig. 6
illustrates the performance increase due to the
weighted inter-image differences. The DET curve
with sa ¼ 0 corresponds to the situation where the
differences are not weighted. In this case, (6)
becomes da ¼ f a � f ref

a . The other DET curve cor-
responds to the case where the sa have been
optimised as described in Section 3.3. The perfor-
mance gap increases as the false positive rate
diminishes. For low false positive rates, the false
replicas are mainly images that are similar to the
reference image. For example, if the reference is a
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Fig. 4. False negative histograms. For a fixed false positive rate

rfp ¼ 5� 10�5 (leftmost value of the curves in Fig. 3), number of

dimensions d ¼ 50, and two different values of r.
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Fig. 5. Influence of grey-level features. DET curves with, and

without, using grey-level features. The equal error rate (EER)

curve is also shown.
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picture of a city, most false replicas contain
buildings or straight structures. That is, many of
the features of the false replicas are close to those of
the reference image. In this situation, the use of
weighted inter-image differences helps in taking the
correct decision.

5.5. Dimensionality reduction performance

We now explore the efficiency of the dimension-
ality reduction step. Fig. 7 illustrates the perfor-
mance obtained with different dimensions d. In
general, the larger the number of dimensions, the
better the performance. However, the gain is not
very important when going beyond d ¼ 50. The
thick line represents the performance achieved
without dimensionality reduction. In this case, the
performance is mostly equivalent to that of d ¼ 40
for low false positive rates (rfpo10�4) and signifi-
cantly lower for higher false positive rates. This can
be easily explained by the limited number of
training examples. Indeed, the number of needed
training examples grows as the number of dimen-
sions increases [7,5].

Another factor explaining the results obtained in
Fig. 7 is related to metric consideration. When no
dimensionality reduction is applied, the distance
used for the kernel computation is proportional to a
weighted Euclidian distance where the weights are
given by the inverse of the standard deviation, as
shown by (9) and (12). This gives a priori equal
weights to each feature. However, there is no reason
that each feature carries the same amount of

discriminative information. Moreover, they depend
on each other. When dimensionality reduction is
applied, the reduced patterns xi are of unit variance,
and theoretically independent [14]. In that case,
giving equal weights to each feature makes more
sense and gives better results. In fact, recent works
have shown that using metrics that are learned from
side-information can improve classification results
[37,1]. In the case of the replica detection problem,
two side-information are available: the class (replica
or non-replica), and the relative distance to the
reference for replicas (for example, a JPEG com-
pressed image with a quality factor of 10 is farther
to the reference than one compressed with a quality
factor of 90). Future research will study the
improvements brought by using learned metric in
the replica detection problem.

5.6. Efficiency

The replica detection method efficiency is now
analysed in terms of storage requirement and
computational effort.

A number of parameters are needed to compare a
test image to a given reference. Namely, they are the
reference image features and weights, the normal-
isation constants, the dimensionality reduction
matrix, and the support vectors of the decision
functions. In the following, we refer to the afore-
mentioned elements as the description of the
reference image. The storage requirement are listed
in Table 4. On average, about 25 kbytes are needed
to store each description. In other words, one

ARTICLE IN PRESS

rfp

sα = 0

r f
n

'optimised' sα

EER

10-4 10-3 10-2 10-1 100
0

0.2

0.15

0.10

0.05
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megabyte can held, on average, up to 40 descrip-
tions. This is a negligible amount of memory for
today’s computer.

Another important aspect is that of computa-
tional complexity of the method. The proposed
method requires a training for each reference image.
The training is computationally complex and takes
up to 15min per reference image on a PC with a
2.8GHz processor and 1Go of RAM. Feature
extraction from the replica examples is the most
complex part of the training, and takes up to 75%
of the running time. Since training can be done off-
line, its computational complexity is less critical.

The computational complexity of testing is
estimated in Table 5. Note that except for the
SVM part, the method is implemented in Matlab
without any optimisation. This incurs longer run-
ning time. For instance, the feature extraction could
be reduced to, at least, 0.1 s [30]. In the discussion
that follows, we assume an optimised feature
extraction step. The preprocessing and feature
extraction steps are reference image independent,
and take about 0.3 s. The remaining steps are
reference image dependent, and take about
0:2� 10�3 s. When the reference image database
contains less than 1500 images, most of the testing
time is spent on the test image preprocessing and the
feature extraction. In that case, up to four test
images can be processed per second. For larger
reference databases, most of the testing time is spent
on the reference image dependent steps. The
number of test images that can be processed each
second decreases linearly as the number of reference
images grows. Future research will concentrate on
pruning the reference images, in order to avoid
testing them all. That is, only the reference images
for which the test image can be potentially a replica

are selected. Such methods can reduce the testing
time, and have been applied with success in [18,30].

5.7. Comparison with existing replica detection

methods

Fig. 8 compares the performance of the proposed
replica detection system with state of the arts
techniques in [18,30]. The continuous line corre-
sponds to the vertically averaged DET curve
obtained with our system, using d ¼ 50 and
r ¼ 104. The dashed line represents the performance
of a replica detection method based on DPF [30].
The circle point indicates the performance of a
replica detection system based on KPs [18]. Both
methods are set in the image retrieval framework
and, therefore, give the result in terms of pre-
cision–recall measurements. It is, however, possible
to translate a precision–recall curve into a
DET curve. Indeed, the first term in the right-hand
side of (2) is equal to the recall, and permits to
trivially compute the false negative rate. Similarly,
since the second term in the right-hand side of (2) is
equal to the precision, it is also straightforward to
determine the false positive rate given the ratio r
and the previously computed false negative rate.
Accordingly, the DET curve for the DPF method is
obtained by inspecting the precision–recall curve
reported in Fig. 5 of [30] and r ¼ 20;000

40
. The point

for KPs method is computed using the information
reported in Tables 1 and 2 of [18] and r ¼ 18;722

40
.

It can be seen that the proposed method achieves
good performance. For instance, an average false
negative rate of 8% corresponds to a fixed false
positive rate of 1� 10�4. On the one hand, the
proposed method outperforms that of DPF for false
positive rates below 10�2. Moreover, it should be
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Table 4

Storage requirements estimation

Name Size (bytes)

Image features 162� 2 ¼ 324

Image weights 162� 0 ¼ 0

Norm. const. 2� 162� 2 ¼ 648

Dim. reduct. matrix 50� 162� 2 ¼ 16; 200
Support vectors 50� 85� 2 ¼ 8; 500

Total 25,672 ¼ 25 kb

Real number are coded on 16 bits (two bytes). The number of

dimensions after dimensionality reduction is 50. In our experi-

ment (using d ¼ 50 and r ¼ 104), the average number of support

vectors is found to be about 85.

Table 5

Average running time for testing

Name Time [s]

Reference image independent Preprocessing 0.2

Feature extraction 1.8a

Reference image dependent Weighted features 48� 10�6

Normalisation 90� 10�6

Dim. reduction 17� 10�6

Decision function 50� 10�6

The experiments were carried out on a PC with a 2.8GHz

processor and 1Go of RAM.
a0.1 s when optimised as in [30].
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noted that the features used in the current work are
mainly a subset of those used in DPF: we use 162
features against 298 in the latter study. On the other
hand, the proposed method is outperformed by
KPs. In our method, most of the wrongly classified
replicas (false negative errors) correspond to repli-
cas for which the illumination or the intensity have
been changed to a great extent. The KPs method
uses features (salient points, or key points [23])
invariant to this change but computationally more
complex to extract. Indeed, the feature extraction
time of KPs is between 1 and 10 s per image [18,30].
This is between 10 to 100 times slower than that for
the proposed method (when optimised as in [30]).

6. Applications and scenarios

The proposed image replica detection system is
suitable to detect copyright infringement or to
identify illicit content known to the police. In this
section, we discuss in more details the scenarios to
use the proposed technique in such a task.

In the design of our system, we assume a given
database of reference images, and we test input test
images towards this database in order to identify
replicas. Furthermore, we assume that the set of test
images can be extremely large, but the set of
reference images is moderate in size. To guarantee
a fast testing procedure, we consider a limited
number of low-level features, as previously dis-
cussed. Note that in order to handle large set of
reference images, a subset of all the features can be
used in a first step in order to quickly drop test

images which are classified as non-replicas with high
confidence.

In the target applications, the database of
reference images can for instance be a collection of
copyrighted images or illicit child pornography
images. To perform the task of copyright infringe-
ment or illicit content detection, several configura-
tions are possible. In one scenario, we consider a
proxy server performing network sniffing at nodes
of the Internet. The proxy server contains the
database of reference images, or more specifically
the extracted features, normalisation constants,
reduction matrix and classifier for each reference.
Subsequently, the proxy server processes each
incoming image, applying preprocessing and fea-
tures extraction, compares it pairwise with each
reference image, and finally decides whether it is a
replica of one image in the database. In another
scenario, we consider a web crawler to search for
replicas on the Internet. Similarly to the previous
case, the crawler looks for test images and compares
them to a database of reference images in order to
identify replicas.

Other applications and scenarios are also possi-
ble, although the proposed system may be less
suited for them. For instance, the technique can also
be used in an image web search engine in order to
prune the results of a query by eliminating replicas.
Alternatively, it is also possible to build an index of
web images, and to check whether a given reference
image has replicas in this index.

As common in a classification technique, a trade-
off exists between the false positive and false
negative rates. On the one hand, a low false positive
rate is desired whenever a user does not want to be
overwhelmed by false positive. On the other hand, a
low false negative rate is preferable for a user who
wishes to detect all possible replicas. The optimal
trade-off is therefore application dependent.

7. Conclusion

In this paper, we have described a technique to
decide whether a test image is a replica of a given
reference image. We performed experiments on a
large collection containing 18,785 photographs
representing a wide range of content. We were able
to detect, on average, 92% of the replicas while
achieving a fixed false positive rate of only 1� 10�4.
Moreover, we showed that using a replica detector
that is fine-tuned to each reference image can greatly
improve the performance.
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Fig. 8. Comparison with other methods. The proposed method is

compared against other methods: KPs [18] and DPF [30]. The

equal error rate (EER) curve is also shown.
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Future works include the addition of a pruning
step in order to decrease the number of reference
image to be tested (presently all reference images are
to be tested). It can be accomplished by means of
tree-based indexing techniques. Another direction
consists in using additional side information to
improve the fine-tuning of the replica detector.
Finally, the performance of the system could be
improved by taking into account a larger set of
invariant features, which is also among the future
research directions under consideration.

Acknowledgements

The first author is partly supported by the Swiss
National Science Foundation—‘‘Multimedia Secur-
ity’’, Grant number 200021-1018411. This research
was also partially supported by the European
Commission under contract FP6-027026-K-SPACE
[8]; this work presents the view of the authors but
not necessarily that of the community. Additionally,
the authors would like to thank the creators of the
SVM library libsvm [3], and those of the image
processing software suite ImageMagick [15]. Final-
ly, we are grateful to David Marimón Sanjuán for
fruitful discussions and insights.

Appendix A. Invariance of equalised illumination to

reversible transformation

In this appendix, we give the proof of the
invariance of equalised illumination to gamma and
illumination changes. Intensity and gamma changes
are modelled as

gðrÞ ¼ arg, (A.1)

where r is the intensity of the input image (in the
range ½0; 1�), and gðrÞ that of the output image.

Let piðwÞ be the probability density of pixels of
the input image. It follows that the probability
density of the output image is given by

poðwÞ ¼ h0ðwÞpiðhðwÞÞ, (A.2)

where hðwÞ ¼ g�1ðwÞ ¼ ðw=aÞ1=g and h0ðwÞ is its first
derivative.

The global histogram equalisation maps the
image with a given probability density pðwÞ to an
image with an uniform probability density. The
mapping is given by [11]

s ¼ TðrÞ ¼

Z r

0

pðwÞdw, (A.3)

where r is the intensity before equalisation, and s the
one after.

Let s0 ¼ Tðr0Þ be the equalised intensity after
changes of illumination and gamma on ri. More
precisely,

s0 ¼ Tðr0Þ ¼ TðgðriÞÞ ¼

Z gðriÞ

0

poðwÞdw ðA:4Þ

¼

Z gðriÞ

0

h0ðwÞpiðhðwÞÞdw ðA:5Þ

¼

Z hðgðriÞÞ¼ri

0

h0ðgðvÞÞpiðhðgðvÞÞÞg
0ðvÞdv ðA:6Þ

¼

Z ri

0

h0ðgðvÞÞpiðvÞg
0ðvÞdv ðA:7Þ

¼

Z ri

0

d

dv
hðgðvÞÞ|fflfflffl{zfflfflffl}
¼v

2
4

3
5piðvÞdv ðA:8Þ

¼

Z ri

0

piðvÞdv ¼ TðriÞ ¼ si. ðA:9Þ

An image and its versions processed by (A.1) are
mapped to the same equalised image by (A.3). The
only fact used above is that an inverse exists for the
function gð�Þ. Therefore, the above results can be
generalised to any reversible transformation of the
image.

Note that it cannot be proved in general that the
discrete version of the histogram equalisation
produces the discrete equivalent of a uniform
probability function [11]. However, in practice,
discrete histogram equalisation yields images that
are mostly invariant to the gamma and illumination
changes.
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