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Abstract

This paper describes a method of introducing spatial consistency constraints in the process

of matching set-based descriptors extracted from digital images. The proposed matching

technique is guided by a rule that can be summarized as follows: a descriptoris important

for the match if it is similar to some descriptor from the other image and its spatial neigh-

bors are important. The resulting match is partial in the sense that it deliberatelyavoids the

complexity of searching for one to one correspondences among particular descriptors, but

established affinity among groups of descriptors instead.

Formally, the proposed method is expressed as an eigenvalue problem, where the princi-

pal eigenvector’s components render the importance values of individual descriptors, while

the corresponding eigenvalue represents an estimate of the overall strength of affinity be-

tween images being matched. These measures of descriptor importance and image affinity

are shown to provide a natural basis for intra- and inter-image prototype selection. Several

variations of the proposed technique are empirically evaluated on the task ofcontent-based

image retrieval, demonstrating encouraging results.

Preprint submitted to Elsevier



1 Introduction

This work is situated in the domain of content-based image retrieval where digi-

tal images are represented by a variable number of feature vectors commonly re-

ferred to as set-based descriptors. The main contribution of this work is a spatially-

consistent partial matching method designed to establish correspondence between

groups of descriptors rather than between individual descriptors themselves. The

described method is empirically evaluated as an intra- and inter-image prototype

selection approach. In the former case, the method allows tofind descriptors that

contribute best to the match, whereas in the latter case, thetechnique allows to se-

lect descriptors that are representative of a group of images belonging to a certain

class.

Our choice of the set-based descriptors is motivated by their superior performance [1]

and applicability in a wide range of content-based image retrieval applications.

In general, most of these descriptors characterize local image features extracted

at certain interest points within an image. Examples of these descriptors include

maximally stable extremal regions (MSER) [2], scale-invariant feature transform

(SIFT) [3], speeded up robust features (SURF) [4], as well as their extensions such

as PCA-SIFT [5], SIFT with global context [6], gradient location-orientation his-

togram (GLOH) [1].

Further, our additional motivation in this work is to improve the two following
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characteristics of the popular matching and retrieval techniques for set-based de-

scriptors: spatial consistency and many to many correspondence.

Spatial consistency. The former aspect relates to the fact that spatial configuration

of descriptors and their positions relative to each other are seldom considered when

a match is calculated. We believe that this kind of approach may be detrimental

to the overall performance, since oftentimes images contain a large number of high

similarity descriptors that are not localized on the visualobjects of interest and thus

lead to an erroneous match (see section 3.1 for such an example).

Certainly, there exists earlier work that attempts to add some context to the in-

formation content of the local feature descriptors. But these contributions together

with their advantages have a number of drawbacks as well. Forinstance, in [6]

the authors add only the shape context information to that ofthe SIFT descriptor,

while the semi-local constraints proposed in [7] require threshold tuning for neigh-

bor match percentage and impose complicated restrictions on admissible angles

between neighboring descriptors being matched. The proposed approach described

below strives to take into account both spatial proximity and feature-based similar-

ity information during the matching process, while at the same time trying to avoid

the above mentioned pitfalls.

Many to many correspondence. The latter aspect concerns the way the correspon-

dence is established between matching descriptors in two images being compared.

In the proposed method, we focus on deriving a common qualityestimate (impor-

tance) for each descriptor in an image, and use this value to decide whether a given

descriptor belongs to a group that constitutes a match. Thus, a many to many corre-

spondence is found between groups of image descriptors, without the need to resort

to model- (e.g., RANSAC [8]) and graph-based (e.g., bipartite graph matching, as-
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signment problem [9]) techniques that can be quite costly from the computational

complexity point of view.

In the section that follows we will introduce the method of spatially-consistent de-

scriptor matching. In so doing, we will provide a detailed description of how it

calculates descriptor importance and image affinity, and show how these two mea-

sures may serve as a basis for various intra- and inter-imageprototype selection

techniques. Then, in section 3, we will present the experimental results which in-

clude exploratory data analysis and an empirical evaluation of the proposed method

on the task of content-based image retrieval. The article will conclude with a sum-

mary of the developed techniques and their important properties.

2 Spatially-consistent descriptor matching

This section presents the method of spatially-consistent partial matching of local

image descriptors. Here, we detail the problem formulationof the proposed method

and provide an illustrative example of its usage. We also show how descriptor im-

portance and image affinity measures computed by the proposed approach are ap-

plied to the problem of intra- and inter-image prototype selection problem.

2.1 Descriptor importance

One way of introducing the spatial consistency constraintsin a given matching

procedure is to make sure that the quality of a match of a givendescriptor depends

on both descriptor itself and its neighbors. In order to substantiate this idea, we

introduce the concept ofdescriptor importanceand the following rule to define it:
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A descriptor is important if it matches well some descriptor from the other image

and its spatial neighbors are important.

The above rule is fairly straightforward to cast as a mathematical expression:

α
(A)
i =

n(A)
∑

t=1

α
(A)
t · p

(

D
(A)
t , D

(A)
i

)

· sim
(

D
(A)
i , I(B)

)

, (1)

where bracketed superscripts refer to the image index that the corresponding pa-

rameter pertains to. In this notation,n(A) is the number of descriptors in imageA.

Similarly, α(A)
i (for i ∈ 1 . . . n(A)) is the importance ofi-th descriptor in imageA.

The valuep
(

D
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(A)
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)

∈ (0, 1] is the normalized proximity between descriptors

t andi within imageA, andsim
(

D
(A)
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)

∈ (0, 1] is the feature-based similarity

between thei-th descriptor from imageA and some descriptor from imageB. In

order to simplify Equation (1), we may omit the superscriptsand indices to define

importance vector:

α =
[

α
(A)
1 , α

(A)
2 , . . . , α

(A)

n(A)

]T
, (2)

proximity matrixP :

P =









































1 pij · · · · · ·

· · · 1 · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · 1









































, (3)

5



wherepij = p
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matrixS:

S =









































s11 0 · · · 0

0 s22 · · · 0

· · · · · · sii · · ·

0 0 · · · snn









































, (4)

wheresii = sim
(

D
(A)
i , I(B)

)

for i ∈ 1 . . . n(A).

Taking advantage of the simplified notation of Equations (2)-(4), Equation (1) may

finally be written down as:

α = SPα, (5)

which is a standard eigenvalue problem. The importance vector α, solution of (1),

has to be a non-negative eigenvector such asα fullfill the relation λα = λSPα

(whereλ is an eigenvalue) andαi ≥ 0,∀k. As SP is a non-negative matrix,

the Perron-Frobenius theorem [10] guarantees the non-negativity of the principal

eigenvector (corresponding to the largest eigenvalue). Wethus obtainα as theSP ’s

principal eigenvector whose components are importance estimates of the respective

image descriptors. The larger the magnitude of the principal eigenvector’s compo-

nent, the more important the corresponding descriptor is for the match between two

given images. A fast estimation ofα may be obtained with the power method [11],

an iterative procedure used to approximate the principal eigenvector of a matrix

α
k+1 =

SPα
k

||SPαk||
. (6)

Finally, by carrying out this procedure for both images and selecting their most im-

portant descriptors, we obtain a spatially-consistent partial matching, which consti-
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tutes the essence of the proposed method.

Note that the derived matching is partial in the sense that itdeliberately avoids the

complexity of searching for one to one correspondences among particular descrip-

tors, but established correspondence among groups of descriptors instead. In the

section that follows, we consider an illustrative example of the method outlined

above.

2.2 Illustrative example

Consider a simplified example where the two images to be matched are 8 by 8 grids

with some colored tiles, as shown in Figure 1.
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Fig. 1. Example of spatially consistent partial matching: The dashed line shows the match-

ing groups of tiles between which the proposed method established correspondence, see

text. (This is image is best viewed in color)

These tiles in general represent image regions, SIFT pointsor any other kind of set-

based image descriptors. The first image, shown on the left ofFigure 1, contains 5

tiles, while the other one has 11 tiles. Euclidean distancesbetween tiles on the grid

within an image,d(A)
grid(i, j) for i, j ∈ 1 . . . n(A), are transformed into normalized
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Fig. 2. Example of spatially consistent partial matching: The bar graph of descriptor im-

portance values computed for each of the 5 tiles of the first image (left), and11 tiles of the

second image (right). The dashed line marks the threshold separating the tilesimportant

enough to belong to a match from the rest.

proximities, as follows:
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whereσgrid is the Gaussian kernel width parameter that controls what range of dis-

tance values gets mapped into the(0, 1] interval. Ideally, a judicious choice ofdgrid

and an optimal setting ofσgrid (using automatic scale selection [12] for instance)

would ensure the method to be scale invariant. However this issue has not been

formally addressed in this study.

Analogously, Euclidean distances between 3-dimensional RGB vectors represent-

ing the color content of each tile,d(AB)
RGB (i, j) for i ∈ 1 . . . n(A) andj ∈ 1 . . . n(B),

are transformed into normalized similarities:

sim
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D
(A)
i , D

(B)
j

)

= exp



−
d

(AB)
RGB (i, j)

σ2
RGB



 , (8)
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with a similarly definedσRGB parameter. The match quality matrix elements are

then derived as the best possible similarity between a givendescriptor and any

descriptor in the other image:

sim
(

D
(A)
i , I(B)

)

= max
j∈1...n(B)

sim
(

D
(A)
i , D

(B)
j

)

. (9)

Finally, using the above proximities (Equation (7)) and feature-based similarities

(Equation (9)), we solve the eigenvalue problem (Equation (5)) for each of the

two images and thus obtain importance estimates for every tile in both images,

as shown plotted in Figure 2. Then, we select the tiles belonging to a match by

simple thresholding of the tile importance at around0.4, as shown in Figure 2 with

a dashed line. The matching tiles in the first image (left) are2, 3, 4, 5, and 4, 5, 7, 8

in the second image (right). As can be easily confirmed from Figure 1, the matching

tile indices correspond to the green cube object found in both images. The spatial

consistency of the resulting match is also apparent from Figure 1. Indeed, the tiles

constituting the match have similar feature-based content, i.e. green color, and are

located close to each other within their respective images.In contrast, the other

tiles that might have matched if judged solely by their either feature-based content

(e.g., tile 1 in image 1, tiles 10, 11 in image 2) or close proximity (e.g. tiles 1, 2,

3, 6 in image 2), but not both, are assigned low importance andhence left out. In

addition to that, this example demonstrates that the match found by the proposed

technique is partial, since there is no extra effort spent ontrying to establish one

to one correspondences between individual matching tiles from the two images.

Instead, only the groups of corresponding tiles are discovered.
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2.3 Image affinity

As one would naturally expect, the solution of Equation (5) is typically found in

terms of eigenvectors together with their respective eigenvalues. In order to pro-

vide a meaningful interpretation to the eigenvalue that corresponds to the principal

eigenvector ofSP , consider the following ideal case:

• all descriptors are close to each other,pij = 1,

• all descriptors match very well,sii = 1.

In this ideal case, every element of the matrix productSP is equal to one, the

principal eigenvector’s components are all equal to a constant indicating that all of

the descriptors are important, while the corresponding eigenvalue is equal to the

number of descriptors:

λ
(A) = n(A), (10)

whereA is a given image. Thus, when divided by the number of descriptors, this

eigenvalue gives a summary estimate of the overall image match quality normal-

ized within the(0, 1] interval. By extending this observation to the case when both

imageA is matched to imageB, and imageB is matched to imageA by solv-

ing Equation (5), we define theimage affinityvalue between images A and B, as

follows:

a
(AB) =

λ
(A)

n(A)
·
λ

(B)

n(B)
. (11)

While alternative formulations are certainly possible, Equation (11) appears to be a

reasonable choice sincea(AB) has the advantageous properties of being normalized,

symmetric and close to one only when both images match well.
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2.4 Prototype selection

In the above sections we have discussed two measures of descriptor importance and

image affinity that may be considered in a more general context of the prototype

selectionproblem. According to [13], prototype selection is the process of storing

a well-chosen, proper subset of available training data instances. These instances

thereby selected are referred to asprototypesand used with instance-based classi-

fiers, such as nearest neighbor [14], that predict a class of an unseen data instance

by comparing it to a set of prototypes.

In the case of content-based image retrieval where images are represented by set-

based descriptors, the problem of prototype selection appears to be quite important

because of the vast number of instances that a classifier mustdeal with in a realistic

usage scenario. For instance, a moderate size group of one thousand images with

one thousand descriptors per image creates a million descriptors for this group

representing a certain class, of which there could be many.

In this context, the descriptor importance measure discussed in section 2.1 may be

treated as an intra-image prototype selection technique, while image affinity cov-

ered in section 2.3 can be considered an inter-image prototype selection method.

Indeed, the former quantity allows one to select the important descriptors that con-

tribute to the match while disregarding those that do not, and the latter may help

one find those images that match very well to others within their group and thus are

worth being given priority when choosing what image to select descriptors from.

Naturally, various other ways of prototype selection approaches are also possible

based on combinations of descriptor importance and image affinity, such as those

listed in the examples below.
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• Affinity-weighted importanceq1 of descriptorD(A)
i from imageA within a group

of imagesG representing a certain semantic class:

q1

(

D
(A)
i

)

=
∑

B∈G,B 6=A

a
(AB)α

(A)
i (12)

combines the overall match quality expressed by image affinity together with the

importance of a particular descriptor to derive its prototype quality score,q1;

• Affinity-weighted importance rankq2:

q2

(

D
(A)
i

)

=
∑

B∈G,B 6=A

a
(AB)rank

(

α
(A)
i

)

(13)

computes prototype quality scoreq2 by combining the overall match quality ex-

pressed by image affinity together with the rank of a particular descriptor as

found in the list of descriptors sorted by their importance,emulating the voting

mechanism whereby a descriptor receives one vote whenever it is more important

than some other descriptor within an image;

• Importance rankq3:

q3

(

D
(A)
i

)

=
∑

B∈G,B 6=A

rank
(

α
(A)
i

)

(14)

only emulates the voting mechanism (see above) disregarding the overall image

match quality conveyed by the image affinity.

In the following section we are going to evaluate the above prototype selection

techniques based on the described quality scoresq1, q2 andq3, and also compare

their performance alongside a baseline method that makes nouse of descriptor

spatial information.
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3 Experimental results

Here we present the details of the experimental results obtained while evaluating the

proposed technique. Throughout all of the experiments, we chose to use SIFT [3]

descriptors to provide set-based representation of image contents. Proximity and

similarity functions are respectively the same to those defined in equations (7) and

(9), butdgrid is the Euclidean distance measured in pixels normalized by the size

of the image, anddRGB becomesdSIFT , the Euclidean distance between SIFT de-

scriptors. The corresponding scale parametersσgrid andσSIFT are empirically set

to respectively70 and20 for all experiments.

Unless stated otherwise, any reference to a baseline methodin the discussion that

follows refers to a prototype selection approach based exclusively on the feature-

based portion of SIFT descriptors’ data with no regard to their spatial properties.

3.1 Exploratory analysis

While the toy example reviewed in section 2.2 is illustrativein demonstrating the

essential properties of the proposed method, it is helpful to examine how the ap-

proach works with real-world examples before doing a full-scale evaluation. To this

end, we perform a preliminary exploratory analysis of the results of computing de-

scriptor importance and image affinity, as well as performing prototype selection,

as described below.

First, we examine how the intra-image prototype selection results obtained by com-

puting descriptor importance via spatially consistent matching are different from

those of the baseline method, as depicted in Figure 3. As is apparent from the
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figure, the 15 most important SIFT descriptors derived from spatially consistent-

matching seem to localize around visual objects of interestfound in both pictures.

These results also indicates that in some cases background descriptors may also be

selected as important while using the proposed method, which suggests that some

voting procedure, such as one mentioned in section 2.4, overa large number of

images may be beneficial.

After this, we inspect image affinity values computed for every pair of pictures

over a subsample of the Caltech data set representing three semantic classes. In the

examined subsample we consider 30 images per class, where the image classes are:

cars, faces, motorbikes.

The obtained affinity values are shown in Figure 4 together with a baseline calcu-

lated as median SIFT similarity.

One may notice that the class structure, i.e. square blocks of brighter regions that

correspond to each of the three classes, is more pronounced in the case of the pro-

posed method, as can be seen in Figure 4(a). This confirms our earlier suggestion

that image affinity measure described in section 2.3 may serve as a suitable instru-

ment for inter-image prototype selection. In contrast, thebaseline technique relying

on the median of all SIFT descriptor similarities across allpairs of images does not

show as much class discriminatory power, as can depicted in Figure 4(b).

Finally, we examine how the various prototype selection approaches suggested in

section 2.4 manage to select relevant descriptors from the groups of images sampled

from the three classes of the Caltech data set [15], as shown inFigures 5 to 8. Here,

those SIFT descriptors that are selected as class prototypes are shown as yellow

colored circles. As one may notice from the shown example images, the prototype

selection method that relies on affinity-weighted importance appears to select SIFT
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descriptors that all belong to the visual objects of interest, albeit in a somewhat

greedy fashion (see Figure 5). Also, both prototype selection techniques that use

importance ranks (see Figures 6 and 7) tend to choose SIFT descriptors over a

larger number of images and pick up some unrelated background elements. The

latter shortcoming is more apparent with the importance rank selection method that

disregards the image affinity information altogether, as can be seen in Figure 7.

While these examples may be helpful in probing and analyzing the traits and prop-

erties of the proposed prototype selection methods, they cannot replace an overall

evaluation that must be carried out on all of the data set, which is the main focus of

the section to follow.

3.2 Evaluation

In our experimental evaluation we use the following experimental setup. The exper-

imental data is a subset of the Caltech data set that consists of 1155 images of cars,

450 images of faces and 826 images of motorbikes. This data issubdivided into

the training and testing portions. A hundred images per class are used for training,

while all of the remaining 2131 images constitute the testing data. Then, within

each group of training images belonging a certain class, we select a predefined

number of SIFT descriptors across all images as representative class prototypes via

the techniques described in section 2.4. Having selected these SIFT descriptors, we

consider them as a pseudo-image, against which test images may be compared. Fi-

nally, we rank the test images according to their image affinity (Equation (11)) with

the class representative pseudo-images, and compute the non-interpolated average

precision [16] for each of the three image classes.
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It is important here to recall that the spatial information of the descriptors com-

prising the pseudo-image need not be known when matching a given test image

to a pseudo-image using the proposed method of spatially-consistent descriptor

matching. This explains why the descriptors of the pseudo-image may or may not

necessarily come from the same training image.

In every experiment, we evaluate the proposed techniques alongside the baseline

prototype selection method that discards the spatial information found in SIFT de-

scriptors. The results of these experiments are summarizedin Tables 1 and 2.

Table 1

Non-interpolated average precision (%) vs. prototype set cardinality

Prototype set cardinality Image affinity Baseline

25 49.83 37.70

50 49.60 43.54

100 48.67 40.09

150 48.04 40.18

The first table shows that even a relatively small number of prototype descriptors

selected as a representative pseudo-image for a given classis enough to achieve

reasonable results that compare favorably with the baseline technique.

As for the second table, one may observe that, across all of the evaluated proto-

type selection techniques, the ranking according to image affinity provides better

results. It can also be seen from Table 2 that there still roomfor improvement for

the individual prototype selection methods.
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Table 2

Non-interpolated average precision (%) vs. prototype selection method

Prototype selection method Image affinity Baseline

Affinity-weighted importance,q1 39.52 35.17

Affinity-weighted importance rank,q2 47.09 36.66

Importance rank,q3 38.00 35.24

SIFT feature similarity 49.83 37.70

4 Conclusion

We have introduced a spatially-consistent descriptor matching method and demon-

strated its possible application in the domain of content-based image retrieval. The

developed approach incorporates descriptor proximity data when the matching is

computed to make sure that the quality of a match of a given descriptor depends on

both descriptor itself and its neighbors.

The proposed matching method has been formulated and shown to be equivalent

to a standard eigenvalue problem, where the principal eigenvector’s components

render the importance values of individual descriptors, while the corresponding

eigenvalue represents an estimate of the overall strength of affinity between images

being matched. These measures of descriptor importance andimage affinity have

been used as a natural basis for some new intra- and inter-image prototype selection

techniques, several variations of which have been empirically evaluated on the task

of content-based image retrieval, demonstrating encouraging results.
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Detailed list of change following the reviewer comments

4.1 R1

Experiments with more classes and more images per class oughtto be conducted.

Unfortunately, the new results we wish to obtain with the PASCAL Video Object

Challenge (VOC) are not ready yet, and thus cannot be incorporated in the final

version of the article. In place we propose an evaluation made on a large subset

(2500 images) of the well know Caltech image data set. This corpus is widely used

in computer vision and permits an easy comparison with the state of the art.

4.2 R2

I continue to ask that in Eqs. (1) and (5) an eigen-value symbol (e.g. λ) should

appear. Concerning the ”positiveness” of the importance vector I suggest referring

to the Perron-Frobenius theorem on the principal eigenvector of a positive matrix.

We modified section 2.1 according to the reviewer comment.

I think that their spatial distribution is restricted. These features could be redun-

dant, while semantically important features might be omitted. A concluding com-

ment on this aspect would be useful for the readers.

This aspect is treated in the initial assumption on the matching rule,eg”a descriptor

is important for the match if it is similar to some descriptorfrom the other image

and its spatial neigh- bors are important”. The spatial consistency rule is a reason-

able way to extract semantic feature as explain in the introduction. Making other

assumptions to extract more important semantic features makes sense, but should

be considered as an extension of the present work.

20



4.3 R3

The only suggestion I would have is to make the reference to thedefinition of the

average precision - I was confused in my first review by this term.”

Trecvid guidelines are provided as reference on AP.
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Fig. 3. Example of spatially consistent partial matching. Selected SIFT descriptor locations

are shown as solid colored spots. (This is image is best viewed in color).
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Fig. 4. Visual comparison of image affinity and SIFT feature similarity values over a sub-

sample of 90 images from the Caltech data set (3 classes, 30 images per class). The brighter

regions correspond to larger values. Main diagonal entries are zeroed out, i.e. self-matching

excluded.

Fig. 5. Examples of inter-image prototype selection by affinity-weighted importance

Fig. 6. Examples of inter-image prototype selection by affinity-weighted importance rank

Fig. 7. Examples of inter-image prototype selection by importance rank
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Fig. 8. Examples of inter-image prototype selection by SIFT feature similarity only (base-

line)
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