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Abstract

This paper describes a method of introducing spatial consistency datsstrethe process
of matching set-based descriptors extracted from digital images. Theggopnatching
technique is guided by a rule that can be summarized as follows: a des@iptgortant
for the match if it is similar to some descriptor from the other image and its spatidi-neig
bors are important. The resulting match is partial in the sense that it delibesatédis the
complexity of searching for one to one correspondences among partiederiptors, but

established affinity among groups of descriptors instead.

Formally, the proposed method is expressed as an eigenvalue problera thdprinci-
pal eigenvector’'s components render the importance values of indiddseriptors, while
the corresponding eigenvalue represents an estimate of the overaiftistoéraffinity be-
tween images being matched. These measures of descriptor importance gedifimaty
are shown to provide a natural basis for intra- and inter-image protoglpet®n. Several
variations of the proposed technique are empirically evaluated on the tesktent-based

image retrieval, demonstrating encouraging results.

Preprint submitted to Elsevier



1 Introduction

This work is situated in the domain of content-based imaggex@l where digi-
tal images are represented by a variable number of featutergecommonly re-
ferred to as set-based descriptors. The main contribufitmsowork is a spatially-
consistent partial matching method designed to estabtistespondence between
groups of descriptors rather than between individual detses themselves. The
described method is empirically evaluated as an intra- atei-image prototype
selection approach. In the former case, the method alloiisdadescriptors that
contribute best to the match, whereas in the latter cas¢ethaique allows to se-
lect descriptors that are representative of a group of imbgéonging to a certain

class.

Our choice of the set-based descriptors is motivated bysheerior performance [1]
and applicability in a wide range of content-based imageenetl applications.
In general, most of these descriptors characterize locay@features extracted
at certain interest points within an image. Examples ofehasscriptors include
maximally stable extremal regions (MSER) [2], scale-inaatifeature transform
(SIFT) [3], speeded up robust features (SURF) [4], as welas extensions such
as PCA-SIFT [5], SIFT with global context [6], gradient locai-orientation his-
togram (GLOH) [1].

Further, our additional motivation in this work is to impethe two following
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characteristics of the popular matching and retrievaliepes for set-based de-

scriptors: spatial consistency and many to many correspured

Spatial consistency The former aspect relates to the fact that spatial configura
of descriptors and their positions relative to each othesatdom considered when
a match is calculated. We believe that this kind of approaely be detrimental
to the overall performance, since oftentimes images comtéarge number of high
similarity descriptors that are not localized on the visulgects of interest and thus

lead to an erroneous match (see section 3.1 for such an exjampl

Certainly, there exists earlier work that attempts to addesaontext to the in-
formation content of the local feature descriptors. But ¢hesntributions together
with their advantages have a number of drawbacks as wellinstaince, in [6]
the authors add only the shape context information to th#te@SIFT descriptor,
while the semi-local constraints proposed in [7] requireshold tuning for neigh-
bor match percentage and impose complicated restrictionsdmissible angles
between neighboring descriptors being matched. The peabagproach described
below strives to take into account both spatial proximity éeature-based similar-
ity information during the matching process, while at themedime trying to avoid

the above mentioned pitfalls.

Many to many correspondenceThe latter aspect concerns the way the correspon-
dence is established between matching descriptors in t@gesibeing compared.

In the proposed method, we focus on deriving a common queditiynate (impor-
tance) for each descriptor in an image, and use this valuediold whether a given
descriptor belongs to a group that constitutes a match., Bhmsiny to many corre-
spondence is found between groups of image descriptotsutithe need to resort

to model- (e.g., RANSAC [8]) and graph-based (e.g., bipagiaph matching, as-



signment problem [9]) techniques that can be quite costinfthe computational

complexity point of view.

In the section that follows we will introduce the method o&sally-consistent de-
scriptor matching. In so doing, we will provide a detailedscigption of how it
calculates descriptor importance and image affinity, amdvdiow these two mea-
sures may serve as a basis for various intra- and inter-irpegjetype selection
techniques. Then, in section 3, we will present the expertadeesults which in-
clude exploratory data analysis and an empirical evalonatiohe proposed method
on the task of content-based image retrieval. The artidlecannclude with a sum-

mary of the developed techniques and their important ptigser

2 Spatially-consistent descriptor matching

This section presents the method of spatially-consistartigb matching of local
image descriptors. Here, we detail the problem formuladicthe proposed method
and provide an illustrative example of its usage. We alsevdimmwv descriptor im-
portance and image affinity measures computed by the prd@gg@oach are ap-

plied to the problem of intra- and inter-image prototypeesgbn problem.

2.1 Descriptor importance

One way of introducing the spatial consistency constraimta given matching
procedure is to make sure that the quality of a match of a giescriptor depends
on both descriptor itself and its neighbors. In order to taigate this idea, we

introduce the concept afescriptor importancand the following rule to define it:



A descriptor is important if it matches well some descriptont the other image

and its spatial neighbors are important

The above rule is fairly straightforward to cast as a mathisaleexpression:

(A
oM = Y ol p (D, D) - sim (DY, 18)) (1)
t=1

(2

where bracketed superscripts refer to the image index ligataorresponding pa-
rameter pertains to. In this notation!) is the number of descriptors in image
Similarly, aEA) (fori € 1...n") is the importance oi-th descriptor in image.
The valuep (DISA), D,(A)) € (0, 1] is the normalized proximity between descriptors
¢ andi within imageA, andsim (D,(A), ](B)) € (0, 1] is the feature-based similarity
between the-th descriptor from imagel and some descriptor from image In
order to simplify Equation (1), we may omit the superscrgotsl indices to define
importance vector:

T
a= agA),agA), ,ai’?},) , (2)

proximity matrix P:
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wherep;; = p (DZ(A), D§A)) fori,j € 1...n“, and the diagonal match quality

matrix S: )
s;0 0 .-+ 0
0 890 --- O
S = , (4)
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wheres;; = sim (DZ(A), I(B)> foriel...n@.

Taking advantage of the simplified notation of Equations(@) Equation (1) may
finally be written down as:

a = SPa, (5)
which is a standard eigenvalue problem. The importancevectsolution of (1),
has to be a non-negative eigenvector such dslifill the relation \a = \SPa
(where X is an eigenvalue) and; > 0,Vk. As SP is a non-negative matrix,
the Perron-Frobenius theorem [10] guarantees the nortiviegaf the principal
eigenvector (corresponding to the largest eigenvalue}hWeobtainx as theS P’s
principal eigenvector whose components are importanaaas of the respective
image descriptors. The larger the magnitude of the priheiggnvector's compo-
nent, the more important the corresponding descriptorihfmatch between two
given images. A fast estimation of may be obtained with the power method [11],

an iterative procedure used to approximate the princiggreiector of a matrix

SPa*
k+1 _
T flsPat] ©
Finally, by carrying out this procedure for both images aglécting their most im-

portant descriptors, we obtain a spatially-consistertigdanatching, which consti-



tutes the essence of the proposed method.

Note that the derived matching is partial in the sense thdgliberately avoids the
complexity of searching for one to one correspondences grparticular descrip-
tors, but established correspondence among groups ofiplessrinstead. In the
section that follows, we consider an illustrative exampiehe method outlined

above.

2.2 lllustrative example

Consider a simplified example where the two images to be metee8 by 8 grids

with some colored tiles, as shown in Figure 1.

Fig. 1. Example of spatially consistent partial matching: The dashed linessth@wmatch-
ing groups of tiles between which the proposed method established aordesce, see

text. (This is image is best viewed in color)

These tiles in general represent image regions, SIFT poirgey other kind of set-
based image descriptors. The first image, shown on the I&figofre 1, contains 5
tiles, while the other one has 11 tiles. Euclidean distabegéseen tiles on the grid

within an imagedéﬁzi(z',j) fori,j € 1...nM, are transformed into normalized
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Fig. 2. Example of spatially consistent partial matching: The bar graphsafrigtor im-
portance values computed for each of the 5 tiles of the first image (left)l Atitks of the
second image (right). The dashed line marks the threshold separating thenfilasant

enough to belong to a match from the rest.

proximities, as follows:

P (5,017 oy (D). .
whereog,iq is the Gaussian kernel width parameter that controls wimateraf dis-
tance values gets mapped into thel| interval. Ideally, a judicious choice @, 4
and an optimal setting of,,;; (using automatic scale selection [12] for instance)

would ensure the method to be scale invariant. However 8sisei has not been

formally addressed in this study.

Analogously, Euclidean distances between 3-dimensiond R&&tors represent-
ing the color content of each tildiry (i, ) fori € 1...n andj € 1...n®),
are transformed into normalized similarities:

' ! g %{GB

(4) (B) diin (i, 7)
sim(D , D )zcxp — BB (8)



with a similarly definedrrgg parameter. The match quality matrix elements are
then derived as the best possible similarity between a gilestriptor and any

descriptor in the other image:

sim (DZ(A), I(B)> = max sim (DZ(A), D§B)) : 9

jel..n(B)

Finally, using the above proximities (Equation (7)) andtfiee-based similarities
(Equation (9)), we solve the eigenvalue problem (Equat®y) for each of the
two images and thus obtain importance estimates for evieryrtiboth images,
as shown plotted in Figure 2. Then, we select the tiles bahgntp a match by
simple thresholding of the tile importance at around as shown in Figure 2 with
a dashed line. The matching tiles in the firstimage (left)2ai® 4, 5,and 4, 5, 7, 8
in the second image (right). As can be easily confirmed froguife 1, the matching
tile indices correspond to the green cube object found ih boages. The spatial
consistency of the resulting match is also apparent fromar€id. Indeed, the tiles
constituting the match have similar feature-based contentgreen color, and are
located close to each other within their respective imalyesontrast, the other
tiles that might have matched if judged solely by their aitleature-based content
(e.g., tile 1 in image 1, tiles 10, 11 in image 2) or close pmuky (e.g. tiles 1, 2,
3, 6 in image 2), but not both, are assigned low importancehamde left out. In
addition to that, this example demonstrates that the matchd by the proposed
technique is partial, since there is no extra effort spentrging to establish one
to one correspondences between individual matching tites the two images.

Instead, only the groups of corresponding tiles are diseaize



2.3 Image affinity

As one would naturally expect, the solution of Equation jypically found in
terms of eigenvectors together with their respective eigleres. In order to pro-
vide a meaningful interpretation to the eigenvalue thatesgonds to the principal

eigenvector of5 P, consider the following ideal case:

e all descriptors are close to each othey,= 1,

e all descriptors match very wel;; = 1.

In this ideal case, every element of the matrix prodti¢t is equal to one, the
principal eigenvector’s components are all equal to a @mishdicating that all of
the descriptors are important, while the correspondingreiglue is equal to the

number of descriptors:

AW = ), (10)

where A is a given image. Thus, when divided by the number of desospthis
eigenvalue gives a summary estimate of the overall imagehmtiality normal-
ized within the(0, 1] interval. By extending this observation to the case when both
image A is matched to image3, and imageB is matched to imagel by solv-

ing Equation (5), we define thenage affinityvalue between images A and B, as

follows:

AA AB)
aAB) — R

(11)

(B
n(d)  nB)’

While alternative formulations are certainly possible, &tipn (11) appears to be a
reasonable choice sine#*?) has the advantageous properties of being normalized,

symmetric and close to one only when both images match well.
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2.4 Prototype selection

In the above sections we have discussed two measures oifdestnportance and
image affinity that may be considered in a more general cowtethe prototype
selectionproblem. According to [13], prototype selection is the @eg of storing

a well-chosen, proper subset of available training dateaites. These instances
thereby selected are referred topstotypesand used with instance-based classi-
fiers, such as nearest neighbor [14], that predict a class ohaeen data instance

by comparing it to a set of prototypes.

In the case of content-based image retrieval where imagesepresented by set-
based descriptors, the problem of prototype selectionapye be quite important
because of the vast number of instances that a classifierdealbtvith in a realistic
usage scenario. For instance, a moderate size group of ousahid images with
one thousand descriptors per image creates a million g¢sigifor this group

representing a certain class, of which there could be many.

In this context, the descriptor importance measure discugssection 2.1 may be
treated as an intra-image prototype selection technighée wnage affinity cov-
ered in section 2.3 can be considered an inter-image ppeatglection method.
Indeed, the former quantity allows one to select the impodascriptors that con-
tribute to the match while disregarding those that do nad, the latter may help
one find those images that match very well to others withiir lreup and thus are
worth being given priority when choosing what image to setkxscriptors from.
Naturally, various other ways of prototype selection apphes are also possible
based on combinations of descriptor importance and imdgetafsuch as those

listed in the examples below.

11



e Affinity-weighted importance; of descriptorDZ(A) from imageA within a group

of imagesG representing a certain semantic class:

o (D)= Y a"Pal (12)
BeG,B#A

combines the overall match quality expressed by image gftogether with the

importance of a particular descriptor to derive its propetyuality scorey;;

o Affinity-weighted importance rank,:

G2 (DZ(A)) = Z a“PBrank (%(A)) (13)
BeG,B£A
computes prototype quality scoge by combining the overall match quality ex-
pressed by image affinity together with the rank of a pardicaescriptor as
found in the list of descriptors sorted by their importare@ulating the voting
mechanism whereby a descriptor receives one vote wheriévenore important
than some other descriptor within an image;

e Importance ranks:

g3 (DZ(A)) = ) rank (ong)) (14)
BeG,B#A
only emulates the voting mechanism (see above) disregatidéenoverall image

match quality conveyed by the image affinity.

In the following section we are going to evaluate the abowaqgbype selection
techniques based on the described quality sc@reg andgs, and also compare
their performance alongside a baseline method that makesamf descriptor

spatial information.
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3 Experimental results

Here we present the details of the experimental resultsrautavhile evaluating the
proposed technique. Throughout all of the experiments, vese to use SIFT [3]
descriptors to provide set-based representation of imageects. Proximity and
similarity functions are respectively the same to thosengéelfin equations (7) and
(9), butd,,,, is the Euclidean distance measured in pixels normalizedhéysize

of the image, andr;5 becomesis;rr, the Euclidean distance between SIFT de-
scriptors. The corresponding scale parametgrg andos;rr are empirically set

to respectivelyr0 and20 for all experiments.

Unless stated otherwise, any reference to a baseline mattibd discussion that
follows refers to a prototype selection approach basedusix@ly on the feature-

based portion of SIFT descriptors’ data with no regard ta syatial properties.

3.1 Exploratory analysis

While the toy example reviewed in section 2.2 is illustraiivelemonstrating the
essential properties of the proposed method, it is helpfexamine how the ap-
proach works with real-world examples before doing a falide evaluation. To this
end, we perform a preliminary exploratory analysis of theutes of computing de-
scriptor importance and image affinity, as well as perfogmnototype selection,

as described below.

First, we examine how the intra-image prototype selec&sunlits obtained by com-
puting descriptor importance via spatially consistentahig are different from

those of the baseline method, as depicted in Figure 3. Asparapt from the
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figure, the 15 most important SIFT descriptors derived frgratially consistent-
matching seem to localize around visual objects of intefoestd in both pictures.
These results also indicates that in some cases backgresodmtors may also be
selected as important while using the proposed method,hnhiggests that some
voting procedure, such as one mentioned in section 2.4, avarge number of

images may be beneficial.

After this, we inspect image affinity values computed forrgveair of pictures
over a subsample of the Caltech data set representing thremte classes. In the
examined subsample we consider 30 images per class, wiedredhe classes are:

cars, faces, motorbikes.

The obtained affinity values are shown in Figure 4 togethén wibaseline calcu-

lated as median SIFT similarity.

One may notice that the class structure, i.e. square bldckeghter regions that
correspond to each of the three classes, is more pronoundlee case of the pro-
posed method, as can be seen in Figure 4(a). This confirmsadieresuggestion
that image affinity measure described in section 2.3 mayes#s\a suitable instru-
ment for inter-image prototype selection. In contrastfdhgeline technique relying
on the median of all SIFT descriptor similarities acrospalts of images does not

show as much class discriminatory power, as can depictedjurdé-4(b).

Finally, we examine how the various prototype selectionrapghes suggested in
section 2.4 manage to select relevant descriptors fronrthgpg of images sampled
from the three classes of the Caltech data set [15], as shokigunes 5 to 8. Here,
those SIFT descriptors that are selected as class protogeeshown as yellow
colored circles. As one may notice from the shown exampl@esathe prototype

selection method that relies on affinity-weighted impot&appears to select SIFT

14



descriptors that all belong to the visual objects of intgrakbeit in a somewhat
greedy fashion (see Figure 5). Also, both prototype saledichniques that use
importance ranks (see Figures 6 and 7) tend to choose SIFFipless over a

larger number of images and pick up some unrelated backdrelements. The
latter shortcoming is more apparent with the importanck satection method that

disregards the image affinity information altogether, aslmaseen in Figure 7.

While these examples may be helpful in probing and analyZiadraits and prop-
erties of the proposed prototype selection methods, theyataeplace an overall
evaluation that must be carried out on all of the data set;hkvsithe main focus of

the section to follow.

3.2 Evaluation

In our experimental evaluation we use the following expenial setup. The exper-
imental data is a subset of the Caltech data set that congiki®&b images of cars,
450 images of faces and 826 images of motorbikes. This databdivided into

the training and testing portions. A hundred images pesd@as used for training,
while all of the remaining 2131 images constitute the tgstiata. Then, within

each group of training images belonging a certain class, electsa predefined
number of SIFT descriptors across all images as represantédss prototypes via
the techniques described in section 2.4. Having seleces#t8IFT descriptors, we
consider them as a pseudo-image, against which test imamebe&rcompared. Fi-
nally, we rank the test images according to their image #ff{quation (11)) with

the class representative pseudo-images, and compute nhiategoolated average

precision [16] for each of the three image classes.
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It is important here to recall that the spatial informatidnttee descriptors com-
prising the pseudo-image need not be known when matchingea gest image
to a pseudo-image using the proposed method of spatiatigistent descriptor
matching. This explains why the descriptors of the pseud@ge may or may not

necessarily come from the same training image.

In every experiment, we evaluate the proposed techniquegyside the baseline
prototype selection method that discards the spatialmmédion found in SIFT de-

scriptors. The results of these experiments are summarZegbles 1 and 2.

Table 1
Non-interpolated average precision (%) vs. prototype set cardinality
Prototype set cardinality | Image affinity | Baseline
25 49.83 37.70
50 49.60 43.54
100 48.67 40.09
150 48.04 40.18

The first table shows that even a relatively small number ofglype descriptors
selected as a representative pseudo-image for a givenislass®ugh to achieve

reasonable results that compare favorably with the bastdichnique.

As for the second table, one may observe that, across alleoévhluated proto-
type selection techniques, the ranking according to imdfy@tg provides better
results. It can also be seen from Table 2 that there still remmmprovement for

the individual prototype selection methods.
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Table 2

Non-interpolated average precision (%) vs. prototype selection method

Prototype selection method Image affinity | Baseline
Affinity-weighted importancey; 39.52 35.17
Affinity-weighted importance ranky, 47.09 36.66
Importance rankgs 38.00 35.24
SIFT feature similarity 49.83 37.70

4 Conclusion

We have introduced a spatially-consistent descriptor hiiagcmethod and demon-
strated its possible application in the domain of conteagtelol image retrieval. The
developed approach incorporates descriptor proximita ddten the matching is
computed to make sure that the quality of a match of a giveoriggsr depends on

both descriptor itself and its neighbors.

The proposed matching method has been formulated and slwola ¢quivalent
to a standard eigenvalue problem, where the principal geggar's components
render the importance values of individual descriptorsilevthe corresponding
eigenvalue represents an estimate of the overall strefmgtffirdty between images
being matched. These measures of descriptor importancereage affinity have
been used as a natural basis for some new intra- and intgeipratotype selection
techniques, several variations of which have been empyrieaaluated on the task

of content-based image retrieval, demonstrating encngagsults.
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Detailed list of change following the reviewer comments

41 R1

Experiments with more classes and more images per class tamghtconducted.
Unfortunately, the new results we wish to obtain with the A& Video Object
Challenge (VOC) are not ready yet, and thus cannot be incdgabia the final
version of the article. In place we propose an evaluationem@da large subset
(2500 images) of the well know Caltech image data set. Thisusois widely used

in computer vision and permits an easy comparison with e sif the art.

42 R2

| continue to ask that in Egs. (1) and (5) an eigen-value syrtdg. \) should
appear. Concerning the "positiveness” of the importanceteetsuggest referring
to the Perron-Frobenius theorem on the principal eigenveot a positive matrix.

We modified section 2.1 according to the reviewer comment.

| think that their spatial distribution is restricted. Theeg¢eatures could be redun-
dant, while semantically important features might be ordit#® concluding com-
ment on this aspect would be useful for the readers.

This aspect is treated in the initial assumption on the niagatule,eg”a descriptor
is important for the match if it is similar to some descripb@m the other image
and its spatial neigh- bors are important”. The spatial sd@scy rule is a reason-
able way to extract semantic feature as explain in the ioctdn. Making other
assumptions to extract more important semantic featurégsnsense, but should

be considered as an extension of the present work.
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43 R3

The only suggestion | would have is to make the reference tdefueition of the
average precision - | was confused in my first review by thismter

Trecvid guidelines are provided as reference on AP.
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Fig. 3. Example of spatially consistent partial matching. Selected SIFTigesdpcations

are shown as solid colored spots. (This is image is best viewed in color).
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cars faces motorbikes cars faces motorbikes

cars

faces faces

motorbikes motorbikes

(A) Image affinity matrix (B) Median SIFT feature similar-
ity matrix
Fig. 4. Visual comparison of image affinity and SIFT feature similarity values a sub-
sample of 90 images from the Caltech data set (3 classes, 30 images peftiagsighter
regions correspond to larger values. Main diagonal entries aredzeubg.e. self-matching

excluded.

Fig. 7. Examples of inter-image prototype selection by importance rank
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Fig. 8. Examples of inter-image prototype selection by SIFT feature similarlyy(base-

line)
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