
Adaptation-aware encryption of scalable
H.264/AVC video for content security

H. Kodikara Arachchia,*, X. Perramonb, S. Dogana, A. M.
Kondoza

a I-Lab, Centre for Communication Systems Research (CCSR), University of Surrey,
Guildford GU2 7XH, Surrey, UK
{H.KodikaraArachchi, S.Dogan, A.Kondoz}@surrey.ac.uk

b Dept. of Information and Communication Technologies, Universitat Pompeu Fabra,
Barcelona, Spain
xavier.perramon@upf.edu

ABSTRACT

Data encryption is one of the key information security technologies used for safeguarding

multimedia content from unauthorised access and manipulation in end-to-end delivery and

access chains. This technology, combined with the appropriate cryptographic methods,

effectively prevents the content against malicious attacks, so as to protect its authenticity as

well as integrity. While encryption based security is ensuring the authorised consumption of

the multimedia content, content adaptation technologies have the primary goal of providing

means for wider dissemination of the content across diverse networks, devices and users, and

thus enriching user satisfaction and experience of the delivered content within a given set of

usage environment constraints. Traditionally, protected contents can only be adapted at

trusted adaptation engines residing between the source and end-users since they have to be

fully decrypted before performing the necessary adaptation operations. The drawback of such

a process is that it significantly limits the availability and flexibility of adaptation engines

applicable for adapting protected contents on the fly. Thus, this paper proposes a novel

scalable H.264/Advance Video Coding (AVC)-compatible video encryption technique, which

is also transparent to adaptation engines in an end-to-end video delivery scenario. The

proposed technology relies on keeping syntax elements required for performing the adaptation

operations clear (i.e., not encrypted). The effectiveness of the proposed technique has been

successfully verified in scenarios, where both conventional Joint Scalable Video Model

(JSVM) bit stream extracting and random packet dropping mechanisms are used.

*
 Corresponding author. Tel: +441483684742, Fax: +441483686011

1. Introduction

Today’s multimedia communication landscape has been greatly shaped by the coexistence of

a number of complementary as well as competing codec, access, delivery and consumption

technologies. With this heterogeneity of the underlying technologies in mind, guaranteeing

the Quality of Experience (QoE) [1][2] expected by users is a nontrivial exercise. In addition

to the technological factors, the diversity of user preferences, as well as when and where the

content is consumed add additional dimensions to the already complex dilemma. As a result,

under the umbrella of the Universal Multimedia Access (UMA) concept, the notion of

transparent access to rich multimedia content is widely discussed in the research community

[3]. The MPEG-21 standard, one of the most recognised efforts to pave the way to the success

of UMA, has promoted the content adaptation to achieve the goals of the UMA [4].

While UMA is laying out the foundation for seamless access to multimedia resources, there is

also an undeniable demand for certain restrictions to accessing protected multimedia contents.

In the wake of a technological challenge to prevent sheer levels of piracy, the entertainment

industry well understood the importance of such restrictions and used Digital Rights

Management (DRM) technologies to protect their invaluable contents. These techniques

effectively limit the use of copyrighted contents. It is not only the consumer multimedia

industry that takes measures to prevent the unauthorised access of the content, but also those

who have a pressing need for protecting sensitive contents delivered over hard-to-trust

communication infrastructures such as users of Virtual Collaboration Systems (VCS) also

benefit from these technologies. However, these content security technologies also limit the

content adaptation possibilities.

This paper focuses on protecting visual media content through encryption, in order to prevent

unauthorised access. Traditionally, protected content can only be adapted at trusted adaptation

engines residing between the source and end-users since such content has to be fully

decrypted before performing the necessary adaptation operations. Therefore, only a trusted set

of Adaptation Engines (AEs) can be used for adapting protected contents. However, this

restriction effectively limits the choice of AEs. To the best of our knowledge, any attempt to

eliminate the need of a trusted AE for adapting encrypted scalable video has not been reported

in the literature to date. Video adaptation and encryption has been discussed together for

encrypting adapted video contents only. The techniques proposed in [5],[6],[7] and [8]

assume that either the content is received unencrypted or they are decrypted prior to

performing the adaptation operation. Consequently, none of these techniques are fit for end-

to-end adaptation architectures. Thus, this paper proposes a novel adaptation-aware

encryption concept for securing scalable video. The paper also proposes enabling

technologies for Scalable Video Coding (SVC) extension of H.264/AVC-compatible

(H.264/SVC) [9][10] video to achieve transparency to AEs in an end-to-end delivery scenario.

The high level view of such a scenario, in which the proposed adaptation-aware encryption

architecture is employed, is illustrated in Figure 1.The proposed encryption mechanism offers

full protection to scalable content while still providing necessary transparency for AEs to

perform adaptation operations. The transparency is achieved by encrypting only a part of the

bit stream so that necessary syntax elements needed for performing intended adaptation

operations are available without decrypting the content. One of the advantages of the

proposed algorithm is that a compatible decryptor is capable of identifying the encrypted

segments even without any assistance from the encryptor through signalling. Another

advantage of the proposed technique is that it can identically be used in both the packet

oriented and byte stream [10] oriented transmission scenarios.

The rest of the paper is organised as follows: Section 2 briefly introduces the background on

the encryption and scalable video adaptation concepts. Section 3 presents the security

architectures for content adaptation followed by the description of the proposed adaptation-

aware encryption technique in Section 4. Section 5 discusses experimental results, and finally

Section 6 concludes the paper.

Figure 1. High level view of a typical end-to-end secure content delivery scenario

2. Background

2.1. Introduction to basic cryptographic algorithms

This subsection introduces basic concepts related to symmetric cryptographic algorithms, i.e.,

those in which the same key is used for encryption and decryption. Further details on these

concepts can be found in various references, such as [11], [12] and [13].

Two basic types of symmetric encryption algorithms exist: stream ciphers and block ciphers.

Stream cipher combines the plaintext with a pseudo-random bit sequence, known as

keystream, generated from the encryption key. In contrast, the block cipher encryption

algorithm works on separate input blocks of fixed length, typically 64 or 128 bits, to produce

output blocks of the same length. Encryption with a block cipher may require padding of the

input plaintext in order to process an integral number of blocks.

Stream ciphers have the property that repetitions in the plaintext are not detectable in the

ciphertext. If two or more fragments of the input are identical, when they are combined with

corresponding fragments of the pseudo-random keystreams, they yield different output

fragments. This also means that an attacker cannot insert duplicate fragments of ciphertext

with the hope that they are interpreted, when decrypted, as repetitions of the original content.

If there is some integrity check in the contents, such repetitions would be detected as

corrupted data. This property is of particular interest in audiovisual applications such as video

surveillance.

Block encryption, if used in a straightforward manner, does not show this behaviour. Equal

input blocks, when encrypted with the same key, produce equal output blocks. In order to

conceal possible repetitions in the output bit stream, the so-called modes of operation of block

ciphers are defined. The same technology is also capable of detecting forged repetitions in the

encrypted bit stream when Message Authentication Codes (MAC) are used. Examples of such

modes are those known as Cipher Block Chaining (CBC), Cipher Feedback (CFB) and Output

Feedback (OFB). In these modes, each block of ciphertext Ci is not obtained from the

corresponding block of plaintext Pi alone, but from some combination of Pi and the previous

encrypted block Ci-1. In this way, there is an additional input to each instance of the

encryption algorithm, which is variable and propagates through the data to be encrypted, and

therefore masks any possible repetition in the input blocks.

Moreover, in some modes like CFB or OFB the encryption algorithm is applied to some

values computed from Ci-1, and the result is then combined with the plaintext block Pi. Thus,

CFB and OFB effectively transform the block cipher into a stream cipher, where the block

encryption algorithm is used as the pseudo-random generator. This means that in these modes

the length of the input does not need to be multiple of the block length, and padding is

therefore unnecessary.

If each block Pi is encrypted in combination with Ci-1, for encrypting the first block of

plaintext P1 it is necessary to use some C0 block. This is called the Initialisation Vector (IV)

and is simply a sequence of n bits, where n is the block length of the algorithm, which are

generated randomly and used for encrypting the first block as though they were the result of a

previous encryption.

A side effect of this is that using a different IV every time a new block cipher encryption is

started, the output always is different even for identical inputs. In other words, duplicates are

masked in the output not only within a run of the encryption system, but also from one run to

another. However, this is not true in pure stream ciphers. Encrypting some input and then

restarting the system and encrypting the same input again with the same key necessarily

produces the same output. For this reason some stream cipher algorithms have been adapted

to accept an IV thus making them parametrisable. The IV in this case determines the initial

state of the keystream generator.

In either cipher type, stream or block, the IV is generally prepended or otherwise attached to

the encrypted data because it is needed for correct decryption, and it is not necessary to keep

it secret since an attacker does not gain any useful information by analysing the value of the

IV nor comparing it with the ciphertext.

2.2. Adaptation of H.264/SVC video

H.264/AVC has a two-layered architecture [14]. The top layer, the video coding layer, derives

a set of compact code sequence representing the input video sequence. The bottom layer of

H.264/AVC, which is known as the Network Abstraction Layer (NAL), organises these

codewords into a set of logical units called Network Abstraction Layer Units (NALUs) for

optimal delivery over a given communication network. These NALUs can be parsed

independently and if the reference frames are available, they can subsequently be decoded.

Evolving H.264/SVC standard [10] inherits all the features of the H.264/AVC standard. The

objective of this extension is to address the increasing demand for context-aware content

adaptation through simple, low complexity operations and also to improve the error resilience

[9]. The standard supports a number of scalability options including spatial, temporal and

Signal-to-Noise Ratio (SNR) scalabilities. The basis of the scalability in H.264/SVC is the

NALU. It encodes the picture data in such a way that the adaptation can be performed by

simply dropping a set of NALUs from the bit stream. Temporal scalability is achieved

through developing a hierarchical prediction structure in which the pictures belong to higher

temporal resolution layers are predicted from pictures belong to the same temporal resolution

layers or lower. In contrast, the spatial resolution layers are predicted from lower spatial

layers and temporally neighbouring pictures. Similarly, SNR enhancement layers are

predicted from the corresponding base layer and temporally neighbouring pictures. Due to the

above discussed hierarchy, adaptation can be achieved through discarding NALUs defining

unwanted scalability layers. The importance of these NALUs in content adaptation and

specific adaptation scenarios are briefly discussed in the following subsections.

2.2.1. Types of NALUs and their importance in adaptation

Basically, there are two classes of NALUs. The first class is called the Video Coding Layer

(VCL) NALUs and they carry coded representation of the base layer or an enhancement layer

of a picture. Generally, an AE discards a selected set of VCL NALUs to perform the

adaptation operation. However, the content of these NALUs are not altered during the

adaptation operation. The second class of NALUs is known as non-VCL NALUs. These

NALUs deliver supporting information, which may be required for decoding the encoded

picture data or presenting them. Parameter sets (i.e., Sequence Parameter Sets (SPS), SPS

extension, sub-SPS and Picture Parameter Sets (PPS)), Supplemental Enhancement

Information (SEI) and Video Usability Information (VUI) are some examples of NALUs

belong to this category. Amongst these NALU types, those carrying parameter sets have

direct impact on the decoding process. This is because syntax elements defined in these

parameter sets are needed for decoding VCL NALUs. Therefore, VCL NALUs have direct or

indirect references to parameter sets. As a result these NALUs can only be discarded if none

of the remaining NALUs in the bit stream refers to them. More importantly, these NALUs

cannot afford to be lost because they are needed for decoding many VCL NALUs. However,

SEI and VUI NALUs have no direct impact on decodability of VCL NALUs. They carry

extra information to help displaying the decoded pictures. Therefore, depending on the

context, this information can be dropped or altered.

2.2.2. Random packet dropping and prioritised packet dropping

Random packet dropping can be considered as adaptation to ease bottleneck situations over

communication networks when routers cannot cope with high volumes of traffic that pass

through them. Since each NALU can be decoded independently, the H.264/SVC bit streams

offer some resilience to random packet droppings during the transmission over a lossy

channel. More accurately, the loss of a VCL NALU makes only one scalability layer or a part

of the layer unavailable. When the lost information is recovered with an appropriate error

concealment technique, the rest of the bit stream can be decoded. However, as mentioned

earlier, the loss of one or more parameter sets may prevent decoding of a large number of

frames if not the entire sequence. Hence, it is necessary to make sure that these NALUs reach

the destination. Various techniques such as repeated transmission of those NALUs at regular

intervals, use of out-of-band secure channel, and hard coding parameters sets at the decoder

have been proposed to mitigate this problem [14].

In contrast, the prioritised packet dropping makes use of the priority indices to select the

packets to drop for traffic shaping. The advantage of this technique over random packet

dropping is that the decoded picture quality can be improved by carefully assigning the

priority indices for each NALU before transmission. H.264/SVC supports such exercise by

offering a dedicated syntax element in the NALU header. Nevertheless, there is a high chance

that the priority index stored in the Real-time Transport Protocol (RTP) packet header [15] is

used for this purpose since it provides more generic solution. In any case, the encoder (or any

third-party entity before transmission) should assign the priority indices.

2.2.3. Systematic adaptations

Systematic adaptations are performed by specialised AEs. Even though, there is no standard

to define a systematic AE, MPEG-21 Digital Item Adaptation (DIA) [16] outlines a generic

architecture. This architecture, however, depends on the availability of an associated Bit-

stream Syntax Description (BSD) [17] for each encoded bit stream. Nevertheless, the

implementation of a systematic AE can follow any liberal architecture. An example of such a

systematic AE is the JSVM bit stream extractor.

Similar to any adaptation of scalable contents, these AEs eliminate a selected set of NALUs.

However, the NALU selection algorithm considers more factors than just the priority of the

NALU. For example, the JSVM Bit Stream Extractor (BSE) considers the spatial, temporal

and quality layer IDs available in NALU headers, and also the frame size (width and height in

pixels). Since it considers the frame size, which is defined in the scalability information SEI

message, the AE should be able to decode the SEI messages. A possible adaptation operation,

which can be performed using the information available in NALU headers and scalability

information SEI messages, is the extraction of a scalability layer with an expected spatial

resolution or smaller. Moreover, these AEs can drop not only unnecessary VCL NALUs, but

also the subset SPSs and PPSs which are not useful to decode remaining VCL NALUs and

modify SEI messages such as scalability information and sub-sequence information. Table 1

shows the non-VCL NALUs present at the beginning of the bit stream before and after

adaptation. Here, the adaptation of the Foreman test sequence (CIF, i.e., 352x288 at 30 frames

per second, fps resolution) encoded with two spatial and four temporal scalability layers to

extract the lowest spatial resolution (QCIF, 176x144) at highest temporal resolution (30 fps)

is considered.

Table 1. Non-VCL NALUs present in the original and adapted bit streams

Original bit stream Adapted bit stream

NALU

number
NALU type

NALU

length

NALU

number
NALU type

NALU

length

0
†
 SEI 250 0

‡
 SEI 147

1 SPS 9 1 SPS 9

2 Subset SPS 12 2 PPS 4

3 PPS 4

4 PPS 5

5 PPS 5

Since systematic adaptation techniques require some specific information from the bit stream,

AEs that perform such adaptations need access to the relevant information. This information

includes scalability layer IDs specified in VCL NALU headers, PPS IDs specified in the slice

headers of VCL NALUs and some SEI messages.

3. Security architectures for content adaptation

None of the traditional encryption approaches consider the adaptability of scalable video.

Consequently, adaptation of video encrypted with these techniques relies on trusted AEs,

†
 Scalability information SEI message

‡
 Scalability information SEI message

which decrypt the content before performing the adaptation. Novel to the technique proposed

in this paper is that the encryption is transparent to scalable video adaptations. Therefore, with

the introduction of the new encryption technique, there are two basic security architectures

that can be considered for content adaptation: security based on trusted AEs and end-to-end

security.

3.1. Trusted AE based architecture

In this architecture, the AE must perform a decryption, adaptation and re-encryption cycle in

order to adapt the secured contents as illustrated in Figure 2. The cryptographic keys, which

are known to the source and the legitimate end-user, must also be shared with the AE. In a

possible variant scheme, the original contents can be encrypted with one key known to the

source and the AE, and the adapted contents can be encrypted with another key known to the

AE and the end-user.

The fact that the AE decrypts the input content prior to adaptation has the following security

implications:

� Trust must be placed on the AE, because the content in unencrypted form will be

available to it after decryption. Therefore, the use of the trusted AE is based on the

confidence that it is not under the control of an opponent that could make illegitimate

use of the adapted content.

� The trusted AE must also be robust so that the unencrypted content will never be

revealed to unauthorised third parties accidentally. This robustness implies that an

attacker cannot gain profit from the AE's reaction to unusual or unexpected conditions.

For example, if restrictions apply to some certain content, the AE must guarantee that,

if they are applicable to any form of the content, they cannot be bypassed through an

adapted version, e.g. by requesting an unusual resolution.

D
e
c
ry
p
ti
o
n

E
n
c
ry
p
ti
o
n

Figure 2. A trusted AE for encrypted content adaptation

When sharing the encryption keys with the AE, special care must be taken in order to prevent

capture of these keys by the third parties, and to ensure that they are being sent to the

authentic AE and not to a fraudulent entity impersonating it. If the keys are sent over the

network, an appropriate secure key exchange protocol should be used.

3.2. End-to-end security adaptation architecture

In order to overcome the issues that may arise with trusted AEs, an alternative solution is to

use adaptation techniques that do not require the AE to decrypt the input content as illustrated

in Figure 3. In this way, end-to-end security is attained since no attacks to the AE will impair

the protection of the content.

Figure 3. An AE for an end-to-end security adaptation architecture

This scenario is more secure but also more complex on the encoder side, and not as generic as

the trusted AE case because not all types of adaptations can be applied “blindly” to contents,

i.e., without knowing the actual value of the contents. Only those adaptations which consist of

dropping parts of the content, such as spatial cropping, Region Of Interest (ROI) selection,

lowering temporal resolution or discarding higher quality layers, are candidate techniques to

end-to-end adaptation. The actual feasibility of these transformations depends on the encoding

method used for conveying the audiovisual contents.

With regards to security, the advantages of the end-to-end architecture can be summarised as

follows:

• The bit stream is not available in an unencrypted form at any moment during the

adaptation, thus there is no risk that the protected content is leaked, intentionally or

accidentally, out of the AE.

• Since the AE does not need to decrypt the bit stream, no cryptographic keys have to

be shared or exchanged with the AE. Thus, this architecture removes the need for

implementing key management protocols in the AE.

• The fact that the AE does not have access to the unencrypted content or to the

encryption keys implies that no special security measures have to be applied to it.

Then, there is no need to deposit trust on the AE, which in turn means that

identification and authentication protocols for the AE are not necessary either.

From the performance point of view, on one hand the end-to-end architecture may require

specific additional computations in order to guarantee content protection in this blind

adaptation scenario (e.g., for obtaining appropriate initialisation vectors as in the technique

described in Section 4 below). But on the other hand, the use of a non-trusted AE relieves this

architecture of authentication and key exchange procedures with the AE, which reduces the

complexity of the implementation.

4. Proposed adaptation-aware encryption method

The objective of the proposed adaptation-aware encryption algorithm is to keep the bit stream

as transparent as possible for an AE in order to achieve the end-to-end protection discussed in

Subsection 3.2. Therefore, the proposed technique encrypts only the carefully selected parts

of the bit stream so that the syntax elements potentially carrying useful information to

facilitate the adaptation operation are available unencrypted. As a result, the secured bit

stream contains encrypted portions as well as unencrypted (clear) portions. Since necessary

syntax elements are available clear in the bit stream, a compatible decryptor is capable of

locally deriving information needed for decrypting the encrypted bit stream. In order to

encrypt the selected encryptable portions of the bit stream, any standard encryption algorithm

can be used. This section elaborates on the proposed method.

4.1. Security requirements for end-to-end adaptation

The proposed adaptation method is designed to meet the following security functional

requirements:

• Data confidentiality: During the adaptation process, the audiovisual contents must be

protected from disclosure to any entity, including the AE itself.

• Concealment of data patterns: The internal relationships between parts of the protected

contents must not be observable or deducible, in particular any repetition of previously

transmitted contents must not be detectable.

• Cryptographic support: The system must use cryptographic algorithms, which are

standardised or approved by reliable organisations, with the recommended modes of

operation and minimum key lengths.

This adaptation scheme does not address any key management requirements other than those

applicable to the encryption of content in general. Since the AE is completely unaware of the

keys used for end-to-end security, any existing key management technique can be used

alongside this algorithm.

4.2. Selection of data for encrypted

In general, there are three approaches to select the portions needed for encryption. The first

approach is to encrypt only a few bytes from the beginning of each NALU. Since the rest of

the NALU cannot be parsed without correctly parsing the first part due to the use of variable

length coding, it can be assumed that the information in the unencrypted part of the NALU is

safe. Since the NALU header is not entropy coded, encrypted part should be extended at least

few bytes into the rest of the NALU. However, this technique does not offer the full

protection to the content since a deterministic hacker may still be able to decode the clear

content using the properties of entropy coding technologies that were used to encode the data

stream. Nevertheless, it must also be noted that in this case the encrypted part should be at

least as long as the encryption key. Otherwise a brute-force search on the encrypted parts of

the bit stream would be more effective than a brute-force search on the key. The second

approach is to encrypt the entire NALU irrespective of whether the information is significant

or not providing the strongest protection to the video stream.

The last approach is to encrypt a selected set of syntax elements. The encryption technique

described in this paper is based on this approach. The technique should be operated carefully

while selecting which syntax elements to be encrypted since the unencrypted elements may

reveal enough information for an unauthorised user to guess the content of the entire video.

For example, one can consider encrypting the motion vectors. However, motion compensated

residual signal may carry some visual information. Therefore, such an approach may not be

ideal for an application that needs absolute protection.

The proposed algorithm leaves the first part of each NALU, which spans over the NALU

header and a part of the slice header, clear. The significant advantages of this approach are:

• The simplicity since complicated content analysis techniques are not necessary to

select important syntax elements to be encrypted

• The greater protection against unauthorised access since all the visual information

resides in the encrypted portion.

The selection of clear syntax elements is performed by considering whether any of those

elements are useful for performing the adaptation operation. Adaptation scenarios discussed

in Subsection 2.2 are critically evaluated to identify the required syntax elements for

performing adaptation operations

For most of the adaptation operations, information in the VCL NALU headers such as the

scalability layer identifications is required. Therefore, the VCL NALU headers are not

encrypted. Some adaptation decisions may also benefit from certain information available

from parameter sets, such as the frame size. Therefore, the parameter set identification syntax

element, which can be found in the slice header of VCL NALUs, is also left clear. Need for a

unique Initialisation Vector (IV) for encrypting each VCL NALU, as discussed in Subsection

4.2 below, is another reason for not encrypting some of the specific syntax elements.

Furthermore, all of the syntax elements, which are available in the bit stream before the last

useful syntax element, are also left clear even if they are not useful for any adaptation

operation (e.g., reserved bits) in order to simplify the encryption process. Considering these

factors, the syntax elements in a VCL NALU illustrated in Table 2 are identified for not

encrypting. These syntax elements are available in the first part of the NALU and therefore,

the rest of the NALU can simply be encrypted. Since the syntax elements shown in the table

do not carry any encoded picture samples, there is no risk of exposing visual information to

unauthorised users. It should be noted that some of the optional syntax elements have not

been shown in this table for simplicity.

Furthermore, all of the non-VCL NALUs are also made available unencrypted in the bit

stream. These NALUs are also free from encoded picture samples and therefore there is no

threat of visual information leaking through these NALUs. Nevertheless, syntax elements in

parameter sets are needed for parsing some of the syntax elements, such as frame_num, in the

slice header which are useful for encryption.

4.3. Initialisation Vector (IV)

Audiovisual contents, considered as static data, can be encrypted with any type of encryption

algorithm. But if these contents are to be transmitted in real time, as in a live streaming

session, some algorithms are more appropriate than the others.

If a stream cipher is to be used, some synchronisation information such as a packet number

needs to be sent in the clear portion of the video stream, in order to detect loss, repetition or

re-ordering of packets. With this information, the receiver can detect packet loss and skip over

the fragment of keystream matching the lost packets, so that decryption may continue at the

right point with the next received packet. The skipped keystream may have to be generated

nevertheless if a feedback generator is used in which each bit of the keystream depends on the

value of the previous ones as it is common in stream ciphers.

With a block cipher, or with a stream cipher that accepts an IV, there are two main

approaches: to use one single IV for the whole session, or one IV for each individual packet.

Possible intermediate solutions would be based on groupings of packets and using an IV for

each group. If a single IV is used, the same considerations apply as for pure stream ciphers

mentioned above. Furthermore, in some modes of operation, e.g. CBC and CFB, loss of one

block prevents decryption of that block and the next one encrypted with the same IV.

Table 2. Syntax elements which are made available unencrypted

Name of the syntax element as defined

in the H.264/SVC specifications
Description

Used

for IV

forbidden_zero_bit

nal_ref_idc

nal_unit_type Identifies the NALU type

reserved_one_bit

idr_flag

priority_id Indicates the priority of the NALU

no_inter_layer_pred_flag

dependency_id Spatial layer identification �

quality_id Quality layer identification �

temporal_id Temporal layer identification

use_ref_base_pic_flag

If set, the quality layers are predicted from the base

quality layer of the reference frame and otherwise

higher quality layers have been used

discardable_flag If set, the NALU can be discarded

output_flag

N
A

L
U

 h
ea

d
er

reserved_three_2bits

first_mb_in_slice
Identifies the first macroblock of the picture the slice

starts from
�

slice_type Slice coding type (intra, inter, bidirectional)

pic_parameter_set_id Identifies the PPS corresponding to the slice

frame_num An identifier for pictures
§
 �

field_pic_flag If set, the slice is a slice of a coded field

bottom_field_flag If set, the slice is part of a coded bottom field �

idr_pic_id

When two consecutive pictures in decoding order are

both Instantaneous Decoding Refresh (IDR) pictures,

a different value is assigned to the latter

�

pic_order_cnt_lsb An identification for the picture
**

 �

delta_pic_order_cnt_bottom �

S
li

ce
 h

ea
d

er

redundant_pic_cnt

If the slice is a redundant representation for a coded

picture is a non-zero value is assigned to this syntax

element.
�

A possible additional requirement for live streaming transmissions is that participants may be

able to join the session at any moment. If a block cipher with one single IV or a stream cipher

is used, a new participant will need information on the updated encryption vector or the

current state of the keystream generator, respectively. The latter must not be revealed to third

parties or else an attacker could easily compute the rest of the keystream.

For these reasons, and because of some issues related to the use of an IV in stream ciphers

[18], it is typical for encrypted streaming protocols to use block ciphers with an independent

IV for each packet. This is the case in e.g. the Secure Real-time Transport Protocol (SRTP)

[19], the secure version of the RTP streaming protocol (RFC 3550). In RTP, packets consist

of two parts: header and payload. In SRTP a compatible header format is used, and the

payload, i.e. the audiovisual content, is encrypted with a block cipher algorithm, Advanced

Encryption Standard (AES) [20], using an IV constructed from certain fields of the header,

one of which is a packet sequence number, thereby guaranteeing the uniqueness of the IV.

§
 This syntax element does not uniquely identify a picture in the encoded bit stream. More than one consecutive

picture may share the same value for frame_num.
**

 This syntax element does not uniquely identify a picture in the encoded bit stream. Values may be reused at a

later stage in the bit stream.

In our system, in addition to all of the previously mentioned requirements, we need to cope

with content adaptation. When adaptation is performed in an end-to-end fashion, it consists

basically of dropping parts of the content and perhaps duplicating certain parts (for enhanced

error resilience). Therefore, we need an encryption scheme that allows decrypting the bit

stream successfully even when some fragments of the encrypted content are missing, in a

situation similar to that of packet losses in an unreliable network. For the same reasons

explained above, we are using a block cipher algorithm with an IV derived from selected

fields in the NALU header combined with a global IV, whose value is common for all of the

NALUs in the same stream. This global IV is generated randomly every time a stream is to be

encrypted, so that encrypting the same stream twice produces different results.

In our tests, we have used the AES algorithm, against which no realistically effective attacks

are known today [21], with 128-bit keys and both in the CBC and CFB modes. In order to

make sure the IV is unique for each NALU, it is constructed using a number of syntax

elements from the NALU header and the slice header as shown in Table 2. In the picture

level, the value of the frame_num syntax element may be shared among a number of

consecutive pictures. When combined with the pic_order_cnt_lsb syntax element, which has

different values for consecutive pictures, it is possible to make an identity for each picture.

However, if redundant representations for a given picture are also available in the bit stream,

the redundant_pic_cnt syntax element is used to identify each redundant NALU uniquely

since the frame_num and pic_order_cnt_lsb combination remains the same for all the

redundant representations. Similarly, delta_pic_order_cnt_bottom is necessary for identifying

the top and bottom fields of an interlaced picture. In a rare case, the encoder may decide to

encode a number of consecutive pictures as Instantaneous Decoding Refresh (IDR) pictures

[10]. In this case, idr_pic_id can uniquely identify each IDR picture even if the frame_num

and pic_order_cnt_lsb combination resets to zero after encoding each IDR picture.

Even if the above discussed combination of syntax elements uniquely identifies a picture in an

H.264/SVC bit stream, the issue of multiple NALUs generated by encoding a picture should

also be addressed in order to generate a unique IV for each NALU. It is obvious that NALUs

representing different scalability layers of a given picture bear the same picture identification

code generated combining the syntax elements described in the previous paragraph.

Therefore, it is necessary that the dependency_id and quality_id syntax elements are also

incorporated. In case of an AVC compatible base layer case, those syntax elements are both

assumed to be equal to zero. Still, there is an issue: the total number of macroblocks of a

given scalability layer of a picture may be distributed into more than one NALU since the

length of a NALU can be in the range of just one macroblock to all of the macroblocks in the

scalability layer. In this case, consecutive NALUs may have to share the same IV. Therefore,

the first_mb_in_slice syntax element is also used to distinguish each NALU.

4.4. Encryption

Two distinctive architectures are proposed to encrypt H.264/SVC compatible bit streams. The

first architecture, which is called the encoder-assisted encryption, relies on the encoder to

obtain the necessary information for generating the IV and identifying the portions of the bit

stream to be encrypted. Therefore, in this architecture the encryptor is tightly coupled with the

encoder. The proposed architecture is shown in Figure 4. The IV generator obtains the values

of syntax elements required for generating the IV for each NALU from the encoder. The

encyptor passes input bits to the output clear (i.e., unencrypted) until it receives the signal

from the encoder to start encrypting them. With this signalling, all of the NALU types, except

for the VCL NALUs, are passed through to the output unencrypted. In case of a VCL NALU,

the first part of the NALU is passed to the output unencrypted since it carries the information

needed for performing the adaptation operations and those needed for generating the IV. The

rest of the NALU is encrypted. The algorithm to identify the encryptable portions of a bit

stream is depicted in Figure A1 in Appendix A.

In contrast, the second architecture, which is known as the standalone encryption, is proposed

for encrypting pre-encoded contents. This architecture is illustrated in Figure 5. The bit

stream parser parses the first few bytes of the bit stream to extract the syntax elements to

compose the IV. At the same time, it also determines the start byte of each NALU to be

encrypted. Once the start location is determined, the parser signals the encryptor to encrypt

the input. The same algorithm proposed for encoder-assisted encryption scenario is used for

determining the encryption boundaries.

Figure 4. Encoder-assisted encryption

4.5. Decryption

Similar to encryption architectures presented in the previous subsection, two decrypting

architectures are proposed. The first architecture, which is known as the decoder-assisted

decrypting, depends on a H.264/SVC decoder for obtaining the required parameters for

decrypting the content. Therefore, the decoder must have the understanding of which syntax

elements have been left clear by the encryption technique. The proposed architecture is

illustrated in Figure 6.

The decoder can parse (and decode) the NALUs, which do not carry any encoded picture

data, without any extra processing since they are not encrypted. However, when a given

NALU carries encoded picture data, the decoder can parse only the unencrypted syntax

elements. The latter part of the NALU must be decrypted before decoding the NALU. Now

the problem is how to determine the encryption boundary. Fortunately, this information can

easily be obtained by parsing syntax elements known to have been unencrypted. Therefore,

the decoder parses the first part of the NALU to extract unencrypted syntax elements, which

are also required for generating the IV. At the same time, the decoder determines the

encryption boundaries for the NALU. When the last unencrypted byte is parsed, it signals the

decryptor to start decrypting the rest of the NALU. This algorithm is depicted in Figure A2 in

Appendix A.

Figure 5. Standalone encryption

The drawback of the decoder-assisted decryption architecture discussed above is the need of a

fully customised decoder, which is fully aware of the encrypting mechanism. This closely

coupled architecture may not be practical especially when a third party decoder is used for

decoding purposes. Considering this difficulty, the second decryption architecture, which is

identified as the standalone decryption architecture, is proposed. This architecture is

illustrated in Figure 7. In this architecture, a bit stream parser is used for extracting syntax

elements for generating the IV and deriving the encryption boundary of a given NALU.

Furthermore, it also identifies the clear and encrypted parts of the NALU by invoking an

algorithm similar to the one proposed for the same purpose for the decoder-assisted

decryption architecture. This information is passed to the decryptor through the decryptor

control signal.

IV

Values of

selected syntax

elements for IV

Decoded

video

Encrypted

bit stream
Decryptor

IV Generator

Decryptor

control

Figure 6. Decoder-assisted decryption

4.6. Security evaluation

The following properties of the proposed adaptation scheme can be considered in order to

assess the fulfilment of the security requirements specified in Subsection 4.1:

• Data confidentiality: The AE does not need to look at the protected parts of each

NALU to perform its function. Therefore if the input bit stream is encrypted the

output remains encrypted, and the actual contents are never disclosed during the

adaptation process.

• Concealment of data patterns: The use of a different encryption IV for each NALU,

derived from carefully selected elements in the non-encrypted part to guarantee

their uniqueness as detailed in Subsection 4.3, and the use of a random global IV

for each bit stream, assure that all of the encrypted data will be uncorrelated even if

the same input sequence is repeated multiple times.

• Cryptographic support: The proposed method makes use of symmetric block

ciphers, in one of the chaining modes of operation (e.g., CBC or CFB), but does not

impose any restrictions on the actual cryptographic algorithm used or on the key

length. Specific applications may choose the cryptographic engines which are best

suited to their security needs.

4.7. Start code emulation prevention

The encryptor shown in Figure 4 and Figure 5 implements a standard encryption algorithm.

However, this encryption process may produce specific three-byte sequences that shall not

occur at any byte-aligned position in the H.264/SVC bit stream [10]. The H.264/SVC

standard specifies four such codes and replacement codes for each of these codes as shown in

Table 3. An AE may react to these sequences, if they are available in the encrypted bit stream,

as specified by the standard resulting in undesirable behaviours. Especially, three-byte

sequences 0x000000 and 0x000001 should not occur in the encrypted bit stream, since they

are parts of NALU start code prefixes for applications that deliver NALU stream as an

ordered stream of bytes such as MPEG-2 Systems [22]. Therefore, if any of these sequences

is detected in the encrypted bit stream, the encryptor inserts an emulation prevention byte

(i.e., 0x03) as shown in Table 3 to ensure that none of these forbidden three-byte sequences

occurs in any NALU. This process is known as start code emulation prevention and it makes

sure the encrypted bit stream is compatible for both packet oriented and byte stream oriented

delivery scenarios. Analogously, the decryptor shown in Figure 6 and Figure 7 maps any

occurrence of the replacement sequences into the original three-byte sequences prior to

applying the decryption algorithm

Table 3. Three-byte sequences that shall not occur at any byte-aligned position in the

H.264/SVC bit stream and replacement when present

Forbidden three-byte sequences Replacement sequences when

present in the bit stream

0x000000 0x00000300

0x000001 0x00000301

0x000002 0x00000302

0x000003 0x00000303

Figure 7. Standalone decryption

4.8. Signalling

The bit stream corresponding to the encrypted contents, before and after adaptation, must

provide enough information for the decoder to be able to decrypt the contents. With the

proposed technique for encrypting the streams, the minimum information required is the

encryption algorithm and the global per-stream IV. In some cases, certain algorithm-

dependent parameters may also be necessary, such as the variable key length or number of

iterations. A simple data structure, which can be delivered using any existing signalling

technique used in secured content delivery, is used for including this information. Apart from

these, no further parameters are required since the local IV for each NALU is algorithmically

determined from its header fields.

4.9. Implications on the error resilience

One of the major advantages of H.264 standard is that it incorporates a number of error

resilience features by design [23][24]. The proposed encryption technique treats individual

NALUs independently that makes it possible to decrypt any NALU regardless of whether

previous NALUs are available at the decryptor. Therefore, there is no known implication on

any of the error resilience features available in the H.264 standard in random packet drop

situations. Besides the random packet dropping, a sophisticated decoder may also be able to

cope with random bit errors up to a certain extent [25]. With a stream cipher, flipping one bit

in the encrypted input stream simply causes the corresponding bit in the decrypted output

stream to be flipped. Therefore, these sophisticated decoding techniques can easily be used

with decrypted contents.

With a block cipher in general, however, changing one bit of a block affects the whole block,

so that every bit in this block will be changed with 50% probability. Therefore, error detection

and correction algorithms such as [25] become increasingly ineffective. However, the use of

different modes of operation can expand or reduce the error propagation. In the CBC and CFB

modes, errors within a block (of length n) will produce changes in bits that can be up to 2n

positions apart. However, the OFB mode behaves in this respect like a stream cipher, so that

each single bit error produces exactly one bit change in the output.

5. Results

The first set of experiments was carried out aiming to investigate the transparency of

encryption for AEs. Three publicly available test video sequences were encoded with the

configurations depicted in Table 4. These test sequences were encoded using the H.264/SVC

reference encoder (JSVM encoder). The NALU length was limited to 1000 bytes, and

therefore each scalability layer produced one or more NALUs. The base layer is H.264/AVC

compatible and the scalability information related to each base layer NALU was coded into a

prefix NALUs [10].

Table 4. Details of the scalability structure and the length of the test sequences used for

evaluating the proposed adaptation-aware encryption technique

Test sequence Number of

frames

Spatial

scalability layers

(width x height

in pixels)

Temporal

scalability layers

(fps)

Total bit rate

(kbps)

Forman 400 352 x 288

176 x 144

30, 15, 7.5, 3.75 255.30

Soccer 400 704 x 576

352 x 288

176 x 144

30, 15, 7.5, 3.75 453.22

CrowdRun 400 1280 x 704

640 x 352

320 x 176

60, 30, 15, 7.5 28849.14

Both the CFB and CBC encryption modes were used for encrypting the encoded content and

the bit streams generated with variety of scalability structures. The JSVM BSE was used as

the AE. After a number of exhaustive experiments, it was concluded that the proposed

encryption technique is transparent for H.264/SVC compatible video adaptation. This can be

asserted by comparing the outcome of the whole encryption-adaptation-decryption cycle with

the result of conventional adaptation, i.e., without encryption. Since both results are the same,

it can be concluded that the goal of transparency has been satisfactorily achieved.

Subsequently, a similar set of experiments were carried out for validating the algorithm for

random and prioritised packet dropping scenarios. The criteria for validation were, as in the

case of transparency, comparison of results between the setup with encryption and that

without encryption. In order to demonstrate the effect of random packet losses to encrypted

bit streams, a simulation study was carried out using an IP channel model. The IP channel

model was implemented using the AVC/SVC loss simulator described in [26] and ITU-VCEG

loss patterns [27].The test conditions specified in [28] are observed during the simulation

study. Moreover, the error concealment algorithm used in this experiment considers all the

lost macroblocks coded with the BLSkip mode [14]. The decoded quality of the encrypted

and non-encrypted bit streams, which are received over the lossy channel, is compared in

Figure 8. These bit streams are encoded with IPPP temporal prediction structure and have

four temporal scalability levels. Experimental results clearly verify that random losses have

little or no impact on the decryptability of the received bit streams.

15

20

25

30

35

40

0 5 10 15 20 25

Packet loss rate (%)

P
S

N
R

 (
d

B
)

Non-encrypted

Encrypted

15

17

19

21

23

25

27

29

31

33

35

0 5 10 15 20 25

Packet loss rate (%)

P
S

N
R

 (
d

B
)

Non-encrypted

Encrypted

 (a) (b)

Figure 8. Effect of transmitting the encrypted bit stream over a lossy IP channel for (a)

Foreman and (b) Crowdrun test sequences

Theoretically, the proposed encryption technology must also be resilient to any prioritised

packet dropping scenario. To test this condition, an experiment was carried out in this kind of

a scenario, in which the Foreman test sequence was encoded with two levels of temporal and

four levels of quality scalability. Each scalability layer is assigned the priority according to

the importance so that dropping packets from the lower priority levels minimally affects the

quality of the decoded video. Hence, the base layer of the bit stream is assigned the highest

priority (i.e., priority = 7). The quality enhancement layers of the lower temporal scalability

layer (i.e., 12.5 frames per second, fps) are assigned with the next three priority levels.

Moreover, the base layer of the highest temporal layer is assigned priority = 3 and the quality

enhancement layers are assigned the next three priority levels. In our test, it is assumed that

the router drops the lower priority packets to recover from congestion. If the congestion is

light, only the lowest priority level is dropped. Table 5 compares the resulting bit rates and

objective qualities when each quality layer is dropped from the non-encrypted and encrypted

bit streams. These results show that the encryption algorithm performs well under the

prioritised packet dropping scenario.

Table 5. Evaluation of the effect of encryption on the prioritised packed dropping scenario

Non-encrypted Encrypted Dropped

priority level

frame rate

(fps) Bit rate

(kbps)

PSNR (dB) Bit rate

(kbps)

PSNR (dB)

none 25 1,842 37.14 1,842 37.14

7 25 1,554 36.20 1,554 36.20

6 25 1,250 35.34 1,250 35.34

5 25 741 33.92 741 33.92

4 12.5 723 37.69 723 37.69

3 12.5 602 36.63 602 36.63

2 12.5 480 35.72 480 35.72

1 12.5 298 34.44 298 34.44

The objective of the next set of experiments is to assess the processing and bit rate overheads

due to the proposed encryption technology. Same test setup used for assessing the

transparency for AEs was also used for these experiments. Table 6 shows the CFB encryption

performance for the selected bit streams. Here, AES-128 algorithm is used for encrypting the

data streams. This experiment was carried out on a 3 GHz Pentium 4 dual-core machine

running a Linux operating system. It shows that over 95% of the total data bytes have been

encrypted. It also shows that when the bit rate is smaller, the percentage of encrypted bytes

reduces. This is because the length of NALU header and the slice header become increasingly

dominant at lower bit rates. Moreover, encryption time shown in Table 6 indicates that the

processing overhead per frame is negligible.

Table 6. Encryption performance

 Foreman Soccer CrowdRun

Total bytes 425500 755367 24040953

Number 411493 738601 23686537 Bytes

encrypted Percentage 96.70% 97.80% 98.50%

Number 14007 16766 354416 Bytes not

encrypted Percentage 3.30% 2.20% 1.50%

Total time (ms) 17 26 665

Bytes/s 24.2 x 10
6
 28.4 x 10

6
 35.6 x 10

6

Encryption

overhead

Per frame processing time (µs) 77.5 117.5 1797.5

Even though the CFB encryption mode does not have a bit rate penalty, the CBC encryption

has a bit rate overhead as shown in Table 7, which is a direct consequence of the padding

algorithm that is applied in CBC for making the input data length a multiple of the cipher

block length. It should be noted that expected theoretical average padding in an algorithm of

block length N is (N + 1)/2. Since N = 16 bytes in our experiments, the average padding

length should be 8.5 bytes. The results shown in Table 7 clearly agree with this theoretical

average. Furthermore, the Rate-Distortion (RD) due to each encryption mode is illustrated in

Figure 9. According to Figure 9 (a), the CFB mode does not have any RD penalty. In contrast,

when the CBC mode encryption is used, there is an RD penalty as shown in Figure 9 (b).

Again, this is caused by the padding inserted in CBC mode. However, this RD penalty is

negligible.

Table 7. CBC encryption overheads introduced to the bit stream

 Foreman Soccer CrowdRun

Input length 425500 755367 24040953

Encrypted length 433992 765470 24261093

Total extra bytes 8492 10103 220140

Encrypted NALUs 984 1186 25419

Avg. extra bytes / NALU 8.63 8.52 8.66

34

35

36

37

38

39

40

41

42

43

44

0 1000 2000 3000 4000

Bit rate (kbps)

P
S

N
R

 (
d

B
)

Original bit

stream

Encrypted

bit stream

34

35

36

37

38

39

40

41

42

43

44

0 1000 2000 3000 4000

Bit rate (kbps)

P
S

N
R

 (
d

B
)

Original bit

stream

Encrypted

bit stream

 (a) (b)

Figure 9. RD performance of the Foreman test sequence before and after (a) CFB mode and

(b) CBC mode encryption

6. Conclusions

This paper has presented a proposed adaptation-aware encryption concept and discussed the

enabling technologies for encrypting H.264/SVC compatible video. The proposed technique

enables end-to-end transparency for scalable video adaptation. Therefore, it is possible to reap

the advantages of scalability in video coding without compromising the content security since

the AE does not need to decrypt the content. This objective was achieved by leaving syntax

elements required for performing the adaptation operation clear (i.e., unencrypted). Moreover,

some of the clear syntax elements are also used for generating the IV for the encryption

process. The transparency of the encrypted bit streams was successfully validated for

systematic scalable video adaptations as well as random and prioritised packet dropping

scenarios through a comprehensive set of experiments. Experimental results have shown that

the proposed technique incurs negligible processing overhead.

A disadvantage of the proposed encryption techniques is its strong dependency on the

H.264/SVC standard. Further experiments are being carried out to exploit MPEG-21 Bit-

stream BSD to develop video-coding-agnostic encryption technologies.

Acknowledgments

The work presented has been developed within VISNET II, a European Network of

Excellence (http://www.visnet-noe.org), funded under the European Commission IST FP6

programme. Authors would also extend their sincere gratitude to Ubong Ukommi of I-Lab,

CCSR, University of Surrey, UK for his invaluable help for performing validation

experiments.

Reference:

[1] F. Pereira, “A triple user characterization model for video adaptation and quality of

experience evaluation”, in Proc. 7
th

 IEEE Multimedia Sig. Process. Workshop, Oct.

2005, pp. 1-4.

[2] P. Reichl, “From ‘quality-of-service’ and ‘quality-of-design’ to ‘quality-of-experience’:

A holistic view on future interactive telecommunication services”, in Proc. 15
th

 Int.

Conf. Software, Telecommun. and Computer Networks, Sep. 2007, pp. 1-6.

[3] F. Pereira and I. Burnett, “Universal Multimedia Experiences for Tomorrow”, IEEE Sig.

Process. Mag., vol. 20, no. 2, Mar. 2003, pp. 63-73.

[4] I. Burnett, R Van de Walle, K. Hill, Bormans, J. F. Pereira, “MPEG-21: Goals and

Achievements,” IEEE Multimedia, vol. 10, no. 6, pp. 60-70, Oct.–Dec. 2003.

[5] R. Iqbal, S. Shirmohammadi, A. El Saddik, “Secured MPEG-21 Digital Item Adaptation

for H.264 Video,” in Proc. IEEE International Conference on Multimedia and Expo,

July 2006.

[6] R. Iqbal, S. Shirmohammadi, A. El Saddik, “Compressed-Domain Encryption of

Adapted H.264 Video,” in Proc. of Eighth IEEE International Symposium on

Multimedia, San Diego, CA, pp. 979-984, Dec. 2006.

[7] R. Iqbal, S. Shirmohammadi, A. El Saddik, ‘‘A Framework for MPEG-21 DIA Based

Adaptation and Perceptual Encryption of H.264 Video,’’ in Proc. SPIE/ACM

Multimedia Computing and Networking Conf., vol. 6504, article 650403, SPIE, 2007.

[8] R. Iqbal, S. Shirmohammadi, A. El Saddik, and J. Zhao, “Compressed-domain video

processing for adaptation, encryption, and authentication,” IEEE Multimedia, vol. 15,

no. 2, pp. 38-50, April-June 2008.

[9] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding

extension of the H.264/AVC standard”, IEEE Trans. Circuits Syst. Video Technol., vol.

17, no. 9, Sep. 2007, pp. 1103-1120.

[10] Advanced video coding for generic audiovisual services, Draft revised ITU-T

Recommend. H.264, Jun. 2008.

[11] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied

Cryptography. CRC Press, 1996. (Available online at

http://www.cacr.math.uwaterloo.ca/hac/)

[12] B. Schneier, Applied Cryptography, 2nd ed. John Wiley & Sons, 1996.

[13] N. Ferguson and B. Schneier, Practical Cryptography, John Wiley & Sons, 2003.

[14] Advanced Video Coding for Generic Audiovisual Services, ITU-T Recommend. H.264,

Mar. 2005.

[15] S. Wenger, M.M. Hannuksela, T. Stockhammer, M. Westerlund, and D. Singer, RTP

Payload Format for H.264 Video, RFC 3984, Feb. 2005.

[16] “Information Technology – Multimedia Framework (MPEG-21) – Part 7: Digital Item

Adaptation,” ISO/IEC Standard, ISO/IEC 21000-7:2007, November 2007.

[17] G. Panis, A. Hutter, J. Heuer, H. Hellwagner, H. Kosch, C. Timmerer, S. Devillers and

M. Amielh, “Bitstream Syntax Description: A Tool for Multimedia Resource Adaptation

within MPEG-21,” EURASIP Signal Processing: Image Communication J., vol. 18, no.

8, pp. 721-747, 2003.

[18] Erik Zenner, “Why IV Setup for Stream Ciphers is Difficult”, in Proc. Dagstuhl Seminar

“Symmetric Cryptography”, 2007. (Available online at

http://www.erikzenner.name/docs/2007_Dagstuhl_Paper.pdf)

[19] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman. RFC 3711: The Secure

Real-time Transport Protocol (SRTP). IETF, 2004. (Available online at

http://www.ietf.org/rfc/rfc3711.txt)

[20] FIPS Publication 197, Specification for the Advanced Encryption Standard (AES). FIPS,

2001. (Available online at http://www.csrc.nist.gov/publications/fips/fips197/fips-

197.pdf)

[21] “National Policy on the Use of the Advanced Encryption Standard (AES) to Protect

National Security Systems and National Security Information,” National Security

Agency, CNSS Policy No. 15, Fact Sheet No. 1, June 2003. (Available online at

http://www.cnss.gov/Assets/pdf/cnssp_15_fs.pdf)

[22] ISO/IEC, “Generic Coding of Moving pictures and Associated Audio: Systems,”

(MPEG-2 Systems Specification), ISO/IEC 13818-1, Nov. 1994.

[23] S. Wenger, “H.264/AVC over IP,” IEEE Trans. Circuits and Systems for Video

Technology, vol. 13, no. 7, pp. 645- 656, July 2003.

[24] T. Stockhammer, M. M. Hannuksela, and S. Wenger, “H.264/AVC in wireless

environments,” IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no. 7,

pp. 657- 673, July 2003.

[25] E. Khan, S. Lehmann, H. Gunji, and M. Ghanbari, “Iterative error detection and

correction of H.263 coded video for wireless networks,” IEEE Trans. Circuits Syst.

Video Techn., vol. 14, no. 12, pp. 1294-1307, 2004.

[26] Y. Guo, H. Li, and Y. Wang, “SVC/AVC loss simulator donation”, JVT input document,

JVT-Q069, Oct. 2005.

[27] S. Wenger, “Error patterns for internet experiments,” ITU VCEG Q15-I-16r1, 2002.

[28] Y.-K. Wang, S. Wenger, and M. M. Hannuksela, “Common conditions for SVC error

resilience testing,” JVT Output Document, JVT-P206, July 2005.

Appendix A: Flow diagrams

Start

Get next NALUEnd of stream?

Is a VCL NALU?

Can Bn be

encrypted?

Get n
th
 byte, Bn

Determine whether Bn can be

encrypted or not. If Bn or part

of Bn belongs to a syntax

element required for

performing adaptation

operations or generating the

IV, Bn cannot be encrypted.

Output = Encrypted Bn Output = Non-encrypted Bn

n < NALU length?

End

Yes

No

No

Yes

Yes No

Yes

No

Do not encrypt

n = n + 1

n = 1

Figure A1. The algorithm to determine the encryption boundaries

Start

Get next NALU

End of stream?

Is NALU carry encoded

picture data?

Has B been encrypted?

Determine whether B has been encrypted

or not. If B or part of B belongs to a syntax

element required for performing adaptation

operations or generating the IV, B has not

been encrypted.

Replace B with the decrypted B

All data bytes in the NALU

processed?

End

Yes

No

No

Yes

Yes No

Yes No

Decode NALU

Get the first byte, B, of the NALU

Get the next byte, B, of the NALU

Figure A2. The decryption algorithm for decoder-assisted decrypting a bit stream

