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ABSTRACT 

Data encryption is one of the key information security technologies used for safeguarding 

multimedia content from unauthorised access and manipulation in end-to-end delivery and 

access chains. This technology, combined with the appropriate cryptographic methods, 

effectively prevents the content against malicious attacks, so as to protect its authenticity as 

well as integrity. While encryption based security is ensuring the authorised consumption of 

the multimedia content, content adaptation technologies have the primary goal of providing 

means for wider dissemination of the content across diverse networks, devices and users, and 

thus enriching user satisfaction and experience of the delivered content within a given set of 

usage environment constraints. Traditionally, protected contents can only be adapted at 

trusted adaptation engines residing between the source and end-users since they have to be 

fully decrypted before performing the necessary adaptation operations. The drawback of such 

a process is that it significantly limits the availability and flexibility of adaptation engines 

applicable for adapting protected contents on the fly. Thus, this paper proposes a novel 

scalable H.264/Advance Video Coding (AVC)-compatible video encryption technique, which 

is also transparent to adaptation engines in an end-to-end video delivery scenario. The 

proposed technology relies on keeping syntax elements required for performing the adaptation 

operations clear (i.e., not encrypted). The effectiveness of the proposed technique has been 

successfully verified in scenarios, where both conventional Joint Scalable Video Model 

(JSVM) bit stream extracting and random packet dropping mechanisms are used. 

                                                 
*
 Corresponding author. Tel: +441483684742, Fax: +441483686011 



1. Introduction 

Today’s multimedia communication landscape has been greatly shaped by the coexistence of 

a number of complementary as well as competing codec, access, delivery and consumption 

technologies. With this heterogeneity of the underlying technologies in mind, guaranteeing 

the Quality of Experience (QoE) [1][2] expected by users is a nontrivial exercise. In addition 

to the technological factors, the diversity of user preferences, as well as when and where the 

content is consumed add additional dimensions to the already complex dilemma. As a result, 

under the umbrella of the Universal Multimedia Access (UMA) concept, the notion of 

transparent access to rich multimedia content is widely discussed in the research community 

[3]. The MPEG-21 standard, one of the most recognised efforts to pave the way to the success 

of UMA, has promoted the content adaptation to achieve the goals of the UMA [4].  

 

While UMA is laying out the foundation for seamless access to multimedia resources, there is 

also an undeniable demand for certain restrictions to accessing protected multimedia contents. 

In the wake of a technological challenge to prevent sheer levels of piracy, the entertainment 

industry well understood the importance of such restrictions and used Digital Rights 

Management (DRM) technologies to protect their invaluable contents. These techniques 

effectively limit the use of copyrighted contents. It is not only the consumer multimedia 

industry that takes measures to prevent the unauthorised access of the content, but also those 

who have a pressing need for protecting sensitive contents delivered over hard-to-trust 

communication infrastructures such as users of Virtual Collaboration Systems (VCS) also 

benefit from these technologies. However, these content security technologies also limit the 

content adaptation possibilities. 

 

This paper focuses on protecting visual media content through encryption, in order to prevent 

unauthorised access. Traditionally, protected content can only be adapted at trusted adaptation 

engines residing between the source and end-users since such content has to be fully 

decrypted before performing the necessary adaptation operations. Therefore, only a trusted set 

of Adaptation Engines (AEs) can be used for adapting protected contents. However, this 

restriction effectively limits the choice of AEs. To the best of our knowledge, any attempt to 

eliminate the need of a trusted AE for adapting encrypted scalable video has not been reported 

in the literature to date. Video adaptation and encryption has been discussed together for 

encrypting adapted video contents only. The techniques proposed in [5],[6],[7] and [8] 

assume that either the content is received unencrypted or they are decrypted prior to 

performing the adaptation operation. Consequently, none of these techniques are fit for end-

to-end adaptation architectures. Thus, this paper proposes a novel adaptation-aware 

encryption concept for securing scalable video. The paper also proposes enabling 

technologies for Scalable Video Coding (SVC) extension of H.264/AVC-compatible 

(H.264/SVC) [9][10] video to achieve transparency to AEs in an end-to-end delivery scenario. 

The high level view of such a scenario, in which the proposed adaptation-aware encryption 

architecture is employed, is illustrated in Figure 1.The proposed encryption mechanism offers 

full protection to scalable content while still providing necessary transparency for AEs to 

perform adaptation operations. The transparency is achieved by encrypting only a part of the 

bit stream so that necessary syntax elements needed for performing intended adaptation 

operations are available without decrypting the content. One of the advantages of the 

proposed algorithm is that a compatible decryptor is capable of identifying the encrypted 

segments even without any assistance from the encryptor through signalling. Another 

advantage of the proposed technique is that it can identically be used in both the packet 

oriented and byte stream [10] oriented transmission scenarios. 



 

The rest of the paper is organised as follows: Section 2 briefly introduces the background on 

the encryption and scalable video adaptation concepts. Section 3 presents the security 

architectures for content adaptation followed by the description of the proposed adaptation-

aware encryption technique in Section 4. Section 5 discusses experimental results, and finally 

Section 6 concludes the paper. 

 

 

Figure 1. High level view of a typical end-to-end secure content delivery scenario 

2. Background 

2.1. Introduction to basic cryptographic algorithms 

This subsection introduces basic concepts related to symmetric cryptographic algorithms, i.e., 

those in which the same key is used for encryption and decryption. Further details on these 

concepts can be found in various references, such as [11], [12] and [13]. 

 

Two basic types of symmetric encryption algorithms exist: stream ciphers and block ciphers. 

Stream cipher combines the plaintext with a pseudo-random bit sequence, known as 

keystream, generated from the encryption key. In contrast, the block cipher encryption 

algorithm works on separate input blocks of fixed length, typically 64 or 128 bits, to produce 

output blocks of the same length. Encryption with a block cipher may require padding of the 

input plaintext in order to process an integral number of blocks. 

 

Stream ciphers have the property that repetitions in the plaintext are not detectable in the 

ciphertext. If two or more fragments of the input are identical, when they are combined with 

corresponding fragments of the pseudo-random keystreams, they yield different output 

fragments. This also means that an attacker cannot insert duplicate fragments of ciphertext 

with the hope that they are interpreted, when decrypted, as repetitions of the original content. 

If there is some integrity check in the contents, such repetitions would be detected as 

corrupted data. This property is of particular interest in audiovisual applications such as video 

surveillance. 

 

Block encryption, if used in a straightforward manner, does not show this behaviour. Equal 

input blocks, when encrypted with the same key, produce equal output blocks. In order to 

conceal possible repetitions in the output bit stream, the so-called modes of operation of block 

ciphers are defined. The same technology is also capable of detecting forged repetitions in the 



encrypted bit stream when Message Authentication Codes (MAC) are used. Examples of such 

modes are those known as Cipher Block Chaining (CBC), Cipher Feedback (CFB) and Output 

Feedback (OFB). In these modes, each block of ciphertext Ci is not obtained from the 

corresponding block of plaintext Pi alone, but from some combination of Pi and the previous 

encrypted block Ci-1. In this way, there is an additional input to each instance of the 

encryption algorithm, which is variable and propagates through the data to be encrypted, and 

therefore masks any possible repetition in the input blocks. 

 

Moreover, in some modes like CFB or OFB the encryption algorithm is applied to some 

values computed from Ci-1, and the result is then combined with the plaintext block Pi. Thus, 

CFB and OFB effectively transform the block cipher into a stream cipher, where the block 

encryption algorithm is used as the pseudo-random generator. This means that in these modes 

the length of the input does not need to be multiple of the block length, and padding is 

therefore unnecessary. 

 

If each block Pi is encrypted in combination with Ci-1, for encrypting the first block of 

plaintext P1 it is necessary to use some C0 block. This is called the Initialisation Vector (IV) 

and is simply a sequence of n bits, where n is the block length of the algorithm, which are 

generated randomly and used for encrypting the first block as though they were the result of a 

previous encryption. 

 

A side effect of this is that using a different IV every time a new block cipher encryption is 

started, the output always is different even for identical inputs. In other words, duplicates are 

masked in the output not only within a run of the encryption system, but also from one run to 

another. However, this is not true in pure stream ciphers. Encrypting some input and then 

restarting the system and encrypting the same input again with the same key necessarily 

produces the same output. For this reason some stream cipher algorithms have been adapted 

to accept an IV thus making them parametrisable. The IV in this case determines the initial 

state of the keystream generator. 

 

In either cipher type, stream or block, the IV is generally prepended or otherwise attached to 

the encrypted data because it is needed for correct decryption, and it is not necessary to keep 

it secret since an attacker does not gain any useful information by analysing the value of the 

IV nor comparing it with the ciphertext. 

2.2. Adaptation of H.264/SVC video  

H.264/AVC has a two-layered architecture [14]. The top layer, the video coding layer, derives 

a set of compact code sequence representing the input video sequence. The bottom layer of 

H.264/AVC, which is known as the Network Abstraction Layer (NAL), organises these 

codewords into a set of logical units called Network Abstraction Layer Units (NALUs) for 

optimal delivery over a given communication network. These NALUs can be parsed 

independently and if the reference frames are available, they can subsequently be decoded. 

 

Evolving H.264/SVC standard [10] inherits all the features of the H.264/AVC standard. The 

objective of this extension is to address the increasing demand for context-aware content 

adaptation through simple, low complexity operations and also to improve the error resilience 

[9]. The standard supports a number of scalability options including spatial, temporal and 

Signal-to-Noise Ratio (SNR) scalabilities. The basis of the scalability in H.264/SVC is the 

NALU. It encodes the picture data in such a way that the adaptation can be performed by 

simply dropping a set of NALUs from the bit stream. Temporal scalability is achieved 



through developing a hierarchical prediction structure in which the pictures belong to higher 

temporal resolution layers are predicted from pictures belong to the same temporal resolution 

layers or lower. In contrast, the spatial resolution layers are predicted from lower spatial 

layers and temporally neighbouring pictures. Similarly, SNR enhancement layers are 

predicted from the corresponding base layer and temporally neighbouring pictures. Due to the 

above discussed hierarchy, adaptation can be achieved through discarding NALUs defining 

unwanted scalability layers. The importance of these NALUs in content adaptation and 

specific adaptation scenarios are briefly discussed in the following subsections.  

2.2.1. Types of NALUs and their importance in adaptation 

Basically, there are two classes of NALUs. The first class is called the Video Coding Layer 

(VCL) NALUs and they carry coded representation of the base layer or an enhancement layer 

of a picture. Generally, an AE discards a selected set of VCL NALUs to perform the 

adaptation operation. However, the content of these NALUs are not altered during the 

adaptation operation. The second class of NALUs is known as non-VCL NALUs. These 

NALUs deliver supporting information, which may be required for decoding the encoded 

picture data or presenting them. Parameter sets (i.e., Sequence Parameter Sets (SPS), SPS 

extension, sub-SPS and Picture Parameter Sets (PPS)), Supplemental Enhancement 

Information (SEI) and Video Usability Information (VUI) are some examples of NALUs 

belong to this category. Amongst these NALU types, those carrying parameter sets have 

direct impact on the decoding process. This is because syntax elements defined in these 

parameter sets are needed for decoding VCL NALUs. Therefore, VCL NALUs have direct or 

indirect references to parameter sets. As a result these NALUs can only be discarded if none 

of the remaining NALUs in the bit stream refers to them. More importantly, these NALUs 

cannot afford to be lost because they are needed for decoding many VCL NALUs. However, 

SEI and VUI NALUs have no direct impact on decodability of VCL NALUs. They carry 

extra information to help displaying the decoded pictures. Therefore, depending on the 

context, this information can be dropped or altered. 

2.2.2. Random packet dropping and prioritised packet dropping 

Random packet dropping can be considered as adaptation to ease bottleneck situations over 

communication networks when routers cannot cope with high volumes of traffic that pass 

through them. Since each NALU can be decoded independently, the H.264/SVC bit streams 

offer some resilience to random packet droppings during the transmission over a lossy 

channel. More accurately, the loss of a VCL NALU makes only one scalability layer or a part 

of the layer unavailable. When the lost information is recovered with an appropriate error 

concealment technique, the rest of the bit stream can be decoded. However, as mentioned 

earlier, the loss of one or more parameter sets may prevent decoding of a large number of 

frames if not the entire sequence. Hence, it is necessary to make sure that these NALUs reach 

the destination. Various techniques such as repeated transmission of those NALUs at regular 

intervals, use of out-of-band secure channel, and hard coding parameters sets at the decoder 

have been proposed to mitigate this problem [14]. 

 

In contrast, the prioritised packet dropping makes use of the priority indices to select the 

packets to drop for traffic shaping. The advantage of this technique over random packet 

dropping is that the decoded picture quality can be improved by carefully assigning the 

priority indices for each NALU before transmission. H.264/SVC supports such exercise by 

offering a dedicated syntax element in the NALU header. Nevertheless, there is a high chance 

that the priority index stored in the Real-time Transport Protocol (RTP) packet header [15] is 



used for this purpose since it provides more generic solution. In any case, the encoder (or any 

third-party entity before transmission) should assign the priority indices. 

2.2.3. Systematic adaptations 

Systematic adaptations are performed by specialised AEs. Even though, there is no standard 

to define a systematic AE, MPEG-21 Digital Item Adaptation (DIA) [16] outlines a generic 

architecture. This architecture, however, depends on the availability of an associated Bit-

stream Syntax Description (BSD) [17] for each encoded bit stream. Nevertheless, the 

implementation of a systematic AE can follow any liberal architecture. An example of such a 

systematic AE is the JSVM bit stream extractor. 

 

Similar to any adaptation of scalable contents, these AEs eliminate a selected set of NALUs. 

However, the NALU selection algorithm considers more factors than just the priority of the 

NALU. For example, the JSVM Bit Stream Extractor (BSE) considers the spatial, temporal 

and quality layer IDs available in NALU headers, and also the frame size (width and height in 

pixels). Since it considers the frame size, which is defined in the scalability information SEI 

message, the AE should be able to decode the SEI messages. A possible adaptation operation, 

which can be performed using the information available in NALU headers and scalability 

information SEI messages, is the extraction of a scalability layer with an expected spatial 

resolution or smaller. Moreover, these AEs can drop not only unnecessary VCL NALUs, but 

also the subset SPSs and PPSs which are not useful to decode remaining VCL NALUs and 

modify SEI messages such as scalability information and sub-sequence information. Table 1 

shows the non-VCL NALUs present at the beginning of the bit stream before and after 

adaptation. Here, the adaptation of the Foreman test sequence (CIF, i.e., 352x288 at 30 frames 

per second, fps resolution) encoded with two spatial and four temporal scalability layers to 

extract the lowest spatial resolution (QCIF, 176x144) at highest temporal resolution (30 fps) 

is considered. 

Table 1. Non-VCL NALUs present in the original and adapted bit streams 

Original bit stream Adapted bit stream 

NALU 

number 
NALU type 

NALU 

length 

NALU 

number 
NALU type 

NALU 

length 

0
†
 SEI 250 0

‡
 SEI 147 

1 SPS 9 1 SPS 9 

2 Subset SPS 12 2 PPS 4 

3 PPS 4    

4 PPS 5    

5 PPS 5    

 

Since systematic adaptation techniques require some specific information from the bit stream, 

AEs that perform such adaptations need access to the relevant information. This information 

includes scalability layer IDs specified in VCL NALU headers, PPS IDs specified in the slice 

headers of VCL NALUs and some SEI messages. 

3. Security architectures for content adaptation 

None of the traditional encryption approaches consider the adaptability of scalable video. 

Consequently, adaptation of video encrypted with these techniques relies on trusted AEs, 

                                                 
†
 Scalability information SEI message 

‡
 Scalability information SEI message 



which decrypt the content before performing the adaptation. Novel to the technique proposed 

in this paper is that the encryption is transparent to scalable video adaptations. Therefore, with 

the introduction of the new encryption technique, there are two basic security architectures 

that can be considered for content adaptation: security based on trusted AEs and end-to-end 

security. 

3.1. Trusted AE based architecture 

In this architecture, the AE must perform a decryption, adaptation and re-encryption cycle in 

order to adapt the secured contents as illustrated in Figure 2. The cryptographic keys, which 

are known to the source and the legitimate end-user, must also be shared with the AE. In a 

possible variant scheme, the original contents can be encrypted with one key known to the 

source and the AE, and the adapted contents can be encrypted with another key known to the 

AE and the end-user. 

 

The fact that the AE decrypts the input content prior to adaptation has the following security 

implications: 

 

� Trust must be placed on the AE, because the content in unencrypted form will be 

available to it after decryption. Therefore, the use of the trusted AE is based on the 

confidence that it is not under the control of an opponent that could make illegitimate 

use of the adapted content. 

 

� The trusted AE must also be robust so that the unencrypted content will never be 

revealed to unauthorised third parties accidentally. This robustness implies that an 

attacker cannot gain profit from the AE's reaction to unusual or unexpected conditions. 

For example, if restrictions apply to some certain content, the AE must guarantee that, 

if they are applicable to any form of the content, they cannot be bypassed through an 

adapted version, e.g. by requesting an unusual resolution. 
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Figure 2. A trusted AE for encrypted content adaptation  

When sharing the encryption keys with the AE, special care must be taken in order to prevent 

capture of these keys by the third parties, and to ensure that they are being sent to the 

authentic AE and not to a fraudulent entity impersonating it. If the keys are sent over the 

network, an appropriate secure key exchange protocol should be used. 

3.2. End-to-end security adaptation architecture 

In order to overcome the issues that may arise with trusted AEs, an alternative solution is to 

use adaptation techniques that do not require the AE to decrypt the input content as illustrated 

in Figure 3. In this way, end-to-end security is attained since no attacks to the AE will impair 

the protection of the content. 



 

 

Figure 3. An AE for an end-to-end security adaptation architecture  

This scenario is more secure but also more complex on the encoder side, and not as generic as 

the trusted AE case because not all types of adaptations can be applied “blindly” to contents, 

i.e., without knowing the actual value of the contents. Only those adaptations which consist of 

dropping parts of the content, such as spatial cropping, Region Of Interest (ROI) selection, 

lowering temporal resolution or discarding higher quality layers, are candidate techniques to 

end-to-end adaptation. The actual feasibility of these transformations depends on the encoding 

method used for conveying the audiovisual contents. 

 

With regards to security, the advantages of the end-to-end architecture can be summarised as 

follows: 

 

• The bit stream is not available in an unencrypted form at any moment during the 

adaptation, thus there is no risk that the protected content is leaked, intentionally or 

accidentally, out of the AE. 

• Since the AE does not need to decrypt the bit stream, no cryptographic keys have to 

be shared or exchanged with the AE. Thus, this architecture removes the need for 

implementing key management protocols in the AE. 

• The fact that the AE does not have access to the unencrypted content or to the 

encryption keys implies that no special security measures have to be applied to it. 

Then, there is no need to deposit trust on the AE, which in turn means that 

identification and authentication protocols for the AE are not necessary either. 

 

From the performance point of view, on one hand the end-to-end architecture may require 

specific additional computations in order to guarantee content protection in this blind 

adaptation scenario (e.g., for obtaining appropriate initialisation vectors as in the technique 

described in Section 4 below). But on the other hand, the use of a non-trusted AE relieves this 

architecture of authentication and key exchange procedures with the AE, which reduces the 

complexity of the implementation. 

4. Proposed adaptation-aware encryption method 

The objective of the proposed adaptation-aware encryption algorithm is to keep the bit stream 

as transparent as possible for an AE in order to achieve the end-to-end protection discussed in 

Subsection 3.2. Therefore, the proposed technique encrypts only the carefully selected parts 

of the bit stream so that the syntax elements potentially carrying useful information to 

facilitate the adaptation operation are available unencrypted. As a result, the secured bit 

stream contains encrypted portions as well as unencrypted (clear) portions. Since necessary 

syntax elements are available clear in the bit stream, a compatible decryptor is capable of 

locally deriving information needed for decrypting the encrypted bit stream. In order to 

encrypt the selected encryptable portions of the bit stream, any standard encryption algorithm 

can be used. This section elaborates on the proposed method. 



4.1. Security requirements for end-to-end adaptation 

The proposed adaptation method is designed to meet the following security functional 

requirements: 

• Data confidentiality: During the adaptation process, the audiovisual contents must be 

protected from disclosure to any entity, including the AE itself. 

• Concealment of data patterns: The internal relationships between parts of the protected 

contents must not be observable or deducible, in particular any repetition of previously 

transmitted contents must not be detectable. 

• Cryptographic support: The system must use cryptographic algorithms, which are 

standardised or approved by reliable organisations, with the recommended modes of 

operation and minimum key lengths. 

This adaptation scheme does not address any key management requirements other than those 

applicable to the encryption of content in general. Since the AE is completely unaware of the 

keys used for end-to-end security, any existing key management technique can be used 

alongside this algorithm. 

4.2. Selection of data for encrypted 

In general, there are three approaches to select the portions needed for encryption. The first 

approach is to encrypt only a few bytes from the beginning of each NALU. Since the rest of 

the NALU cannot be parsed without correctly parsing the first part due to the use of variable 

length coding, it can be assumed that the information in the unencrypted part of the NALU is 

safe. Since the NALU header is not entropy coded, encrypted part should be extended at least 

few bytes into the rest of the NALU. However, this technique does not offer the full 

protection to the content since a deterministic hacker may still be able to decode the clear 

content using the properties of entropy coding technologies that were used to encode the data 

stream. Nevertheless, it must also be noted that in this case the encrypted part should be at 

least as long as the encryption key. Otherwise a brute-force search on the encrypted parts of 

the bit stream would be more effective than a brute-force search on the key. The second 

approach is to encrypt the entire NALU irrespective of whether the information is significant 

or not providing the strongest protection to the video stream.  

 

The last approach is to encrypt a selected set of syntax elements. The encryption technique 

described in this paper is based on this approach. The technique should be operated carefully 

while selecting which syntax elements to be encrypted since the unencrypted elements may 

reveal enough information for an unauthorised user to guess the content of the entire video. 

For example, one can consider encrypting the motion vectors. However, motion compensated 

residual signal may carry some visual information. Therefore, such an approach may not be 

ideal for an application that needs absolute protection.  

 

The proposed algorithm leaves the first part of each NALU, which spans over the NALU 

header and a part of the slice header, clear. The significant advantages of this approach are: 

• The simplicity since complicated content analysis techniques are not necessary to 

select important syntax elements to be encrypted  

• The greater protection against unauthorised access since all the visual information 

resides in the encrypted portion.  

 

The selection of clear syntax elements is performed by considering whether any of those 

elements are useful for performing the adaptation operation. Adaptation scenarios discussed 

in Subsection 2.2 are critically evaluated to identify the required syntax elements for 

performing adaptation operations 



 

For most of the adaptation operations, information in the VCL NALU headers such as the 

scalability layer identifications is required. Therefore, the VCL NALU headers are not 

encrypted. Some adaptation decisions may also benefit from certain information available 

from parameter sets, such as the frame size. Therefore, the parameter set identification syntax 

element, which can be found in the slice header of VCL NALUs, is also left clear. Need for a 

unique Initialisation Vector (IV) for encrypting each VCL NALU, as discussed in Subsection 

4.2 below, is another reason for not encrypting some of the specific syntax elements. 

Furthermore, all of the syntax elements, which are available in the bit stream before the last 

useful syntax element, are also left clear even if they are not useful for any adaptation 

operation (e.g., reserved bits) in order to simplify the encryption process. Considering these 

factors, the syntax elements in a VCL NALU illustrated in Table 2 are identified for not 

encrypting. These syntax elements are available in the first part of the NALU and therefore, 

the rest of the NALU can simply be encrypted. Since the syntax elements shown in the table 

do not carry any encoded picture samples, there is no risk of exposing visual information to 

unauthorised users. It should be noted that some of the optional syntax elements have not 

been shown in this table for simplicity. 

 

Furthermore, all of the non-VCL NALUs are also made available unencrypted in the bit 

stream. These NALUs are also free from encoded picture samples and therefore there is no 

threat of visual information leaking through these NALUs. Nevertheless, syntax elements in 

parameter sets are needed for parsing some of the syntax elements, such as frame_num, in the 

slice header which are useful for encryption. 

4.3. Initialisation Vector (IV) 

Audiovisual contents, considered as static data, can be encrypted with any type of encryption 

algorithm. But if these contents are to be transmitted in real time, as in a live streaming 

session, some algorithms are more appropriate than the others. 

 

If a stream cipher is to be used, some synchronisation information such as a packet number 

needs to be sent in the clear portion of the video stream, in order to detect loss, repetition or 

re-ordering of packets. With this information, the receiver can detect packet loss and skip over 

the fragment of keystream matching the lost packets, so that decryption may continue at the 

right point with the next received packet. The skipped keystream may have to be generated 

nevertheless if a feedback generator is used in which each bit of the keystream depends on the 

value of the previous ones as it is common in stream ciphers. 

 

With a block cipher, or with a stream cipher that accepts an IV, there are two main 

approaches: to use one single IV for the whole session, or one IV for each individual packet. 

Possible intermediate solutions would be based on groupings of packets and using an IV for 

each group. If a single IV is used, the same considerations apply as for pure stream ciphers 

mentioned above. Furthermore, in some modes of operation, e.g. CBC and CFB, loss of one 

block prevents decryption of that block and the next one encrypted with the same IV. 

 



Table 2. Syntax elements which are made available unencrypted 
 

Name of the syntax element as defined 

in the H.264/SVC specifications 
Description 

Used 

for IV 

forbidden_zero_bit   

nal_ref_idc   

nal_unit_type Identifies the NALU type  

reserved_one_bit   

idr_flag   

priority_id Indicates the priority of the NALU  

no_inter_layer_pred_flag   

dependency_id Spatial layer identification � 

quality_id Quality layer identification � 

temporal_id Temporal layer identification  

use_ref_base_pic_flag 

If set, the quality layers are predicted from the base 

quality layer of the reference frame and otherwise 

higher quality layers have been used  

 

discardable_flag If set, the NALU can be discarded  

output_flag   

N
A

L
U

 h
ea

d
er

 

reserved_three_2bits   

first_mb_in_slice 
Identifies the first macroblock of the picture the slice 

starts from 
� 

slice_type Slice coding type (intra, inter, bidirectional)  

pic_parameter_set_id Identifies the PPS corresponding to the slice  

frame_num An identifier for pictures
§
 � 

field_pic_flag If set, the slice is a slice of a coded field  

bottom_field_flag If set, the slice is part of a coded bottom field � 

idr_pic_id 

When two consecutive pictures in decoding order are 

both Instantaneous Decoding Refresh (IDR) pictures, 

a different value is assigned to the latter 

� 

pic_order_cnt_lsb An identification for the picture
**

 � 

delta_pic_order_cnt_bottom  � 

S
li

ce
 h

ea
d

er
 

redundant_pic_cnt 

If the slice is a redundant representation for a coded 

picture is a non-zero value is assigned to this syntax 

element. 
� 

 

A possible additional requirement for live streaming transmissions is that participants may be 

able to join the session at any moment. If a block cipher with one single IV or a stream cipher 

is used, a new participant will need information on the updated encryption vector or the 

current state of the keystream generator, respectively. The latter must not be revealed to third 

parties or else an attacker could easily compute the rest of the keystream. 

 

For these reasons, and because of some issues related to the use of an IV in stream ciphers 

[18], it is typical for encrypted streaming protocols to use block ciphers with an independent 

IV for each packet. This is the case in e.g. the Secure Real-time Transport Protocol (SRTP) 

[19], the secure version of the RTP streaming protocol (RFC 3550). In RTP, packets consist 

of two parts: header and payload. In SRTP a compatible header format is used, and the 

payload, i.e. the audiovisual content, is encrypted with a block cipher algorithm, Advanced 

Encryption Standard (AES) [20], using an IV constructed from certain fields of the header, 

one of which is a packet sequence number, thereby guaranteeing the uniqueness of the IV. 

 

                                                 
§
 This syntax element does not uniquely identify a picture in the encoded bit stream. More than one consecutive 

picture may share the same value for frame_num. 
**

 This syntax element does not uniquely identify a picture in the encoded bit stream. Values may be reused at a 

later stage in the bit stream. 



In our system, in addition to all of the previously mentioned requirements, we need to cope 

with content adaptation. When adaptation is performed in an end-to-end fashion, it consists 

basically of dropping parts of the content and perhaps duplicating certain parts (for enhanced 

error resilience). Therefore, we need an encryption scheme that allows decrypting the bit 

stream successfully even when some fragments of the encrypted content are missing, in a 

situation similar to that of packet losses in an unreliable network. For the same reasons 

explained above, we are using a block cipher algorithm with an IV derived from selected 

fields in the NALU header combined with a global IV, whose value is common for all of the 

NALUs in the same stream. This global IV is generated randomly every time a stream is to be 

encrypted, so that encrypting the same stream twice produces different results. 

 

In our tests, we have used the AES algorithm, against which no realistically effective attacks 

are known today [21], with 128-bit keys and both in the CBC and CFB modes. In order to 

make sure the IV is unique for each NALU, it is constructed using a number of syntax 

elements from the NALU header and the slice header as shown in Table 2. In the picture 

level, the value of the frame_num syntax element may be shared among a number of 

consecutive pictures. When combined with the pic_order_cnt_lsb syntax element, which has 

different values for consecutive pictures, it is possible to make an identity for each picture. 

However, if redundant representations for a given picture are also available in the bit stream, 

the redundant_pic_cnt syntax element is used to identify each redundant NALU uniquely 

since the frame_num and pic_order_cnt_lsb combination remains the same for all the 

redundant representations. Similarly, delta_pic_order_cnt_bottom is necessary for identifying 

the top and bottom fields of an interlaced picture. In a rare case, the encoder may decide to 

encode a number of consecutive pictures as Instantaneous Decoding Refresh (IDR) pictures 

[10]. In this case, idr_pic_id can uniquely identify each IDR picture even if the frame_num 

and pic_order_cnt_lsb combination resets to zero after encoding each IDR picture.  

 

Even if the above discussed combination of syntax elements uniquely identifies a picture in an 

H.264/SVC bit stream, the issue of multiple NALUs generated by encoding a picture should 

also be addressed in order to generate a unique IV for each NALU. It is obvious that NALUs 

representing different scalability layers of a given picture bear the same picture identification 

code generated combining the syntax elements described in the previous paragraph. 

Therefore, it is necessary that the dependency_id and quality_id syntax elements are also 

incorporated. In case of an AVC compatible base layer case, those syntax elements are both 

assumed to be equal to zero. Still, there is an issue: the total number of macroblocks of a 

given scalability layer of a picture may be distributed into more than one NALU since the 

length of a NALU can be in the range of just one macroblock to all of the macroblocks in the 

scalability layer. In this case, consecutive NALUs may have to share the same IV. Therefore, 

the first_mb_in_slice syntax element is also used to distinguish each NALU. 

4.4. Encryption 

Two distinctive architectures are proposed to encrypt H.264/SVC compatible bit streams. The 

first architecture, which is called the encoder-assisted encryption, relies on the encoder to 

obtain the necessary information for generating the IV and identifying the portions of the bit 

stream to be encrypted. Therefore, in this architecture the encryptor is tightly coupled with the 

encoder. The proposed architecture is shown in Figure 4. The IV generator obtains the values 

of syntax elements required for generating the IV for each NALU from the encoder. The 

encyptor passes input bits to the output clear (i.e., unencrypted) until it receives the signal 

from the encoder to start encrypting them. With this signalling, all of the NALU types, except 

for the VCL NALUs, are passed through to the output unencrypted. In case of a VCL NALU, 



the first part of the NALU is passed to the output unencrypted since it carries the information 

needed for performing the adaptation operations and those needed for generating the IV. The 

rest of the NALU is encrypted. The algorithm to identify the encryptable portions of a bit 

stream is depicted in Figure A1 in Appendix A. 

 

In contrast, the second architecture, which is known as the standalone encryption, is proposed 

for encrypting pre-encoded contents. This architecture is illustrated in Figure 5. The bit 

stream parser parses the first few bytes of the bit stream to extract the syntax elements to 

compose the IV. At the same time, it also determines the start byte of each NALU to be 

encrypted. Once the start location is determined, the parser signals the encryptor to encrypt 

the input. The same algorithm proposed for encoder-assisted encryption scenario is used for 

determining the encryption boundaries. 

 

 

Figure 4. Encoder-assisted encryption 

4.5. Decryption 

Similar to encryption architectures presented in the previous subsection, two decrypting 

architectures are proposed. The first architecture, which is known as the decoder-assisted 

decrypting, depends on a H.264/SVC decoder for obtaining the required parameters for 

decrypting the content. Therefore, the decoder must have the understanding of which syntax 

elements have been left clear by the encryption technique. The proposed architecture is 

illustrated in Figure 6.  

 

The decoder can parse (and decode) the NALUs, which do not carry any encoded picture 

data, without any extra processing since they are not encrypted. However, when a given 

NALU carries encoded picture data, the decoder can parse only the unencrypted syntax 

elements. The latter part of the NALU must be decrypted before decoding the NALU. Now 

the problem is how to determine the encryption boundary. Fortunately, this information can 

easily be obtained by parsing syntax elements known to have been unencrypted. Therefore, 

the decoder parses the first part of the NALU to extract unencrypted syntax elements, which 

are also required for generating the IV. At the same time, the decoder determines the 

encryption boundaries for the NALU. When the last unencrypted byte is parsed, it signals the 

decryptor to start decrypting the rest of the NALU. This algorithm is depicted in Figure A2 in 

Appendix A. 

 



 

Figure 5. Standalone encryption 

The drawback of the decoder-assisted decryption architecture discussed above is the need of a 

fully customised decoder, which is fully aware of the encrypting mechanism. This closely 

coupled architecture may not be practical especially when a third party decoder is used for 

decoding purposes. Considering this difficulty, the second decryption architecture, which is 

identified as the standalone decryption architecture, is proposed. This architecture is 

illustrated in Figure 7. In this architecture, a bit stream parser is used for extracting syntax 

elements for generating the IV and deriving the encryption boundary of a given NALU. 

Furthermore, it also identifies the clear and encrypted parts of the NALU by invoking an 

algorithm similar to the one proposed for the same purpose for the decoder-assisted 

decryption architecture. This information is passed to the decryptor through the decryptor 

control signal. 

IV

Values of 

selected syntax 

elements for IV

Decoded 

video

Encrypted 

bit stream
Decryptor

IV Generator

Decryptor 

control

 

Figure 6. Decoder-assisted decryption 

4.6. Security evaluation 

The following properties of the proposed adaptation scheme can be considered in order to 

assess the fulfilment of the security requirements specified in Subsection 4.1: 

• Data confidentiality: The AE does not need to look at the protected parts of each 

NALU to perform its function. Therefore if the input bit stream is encrypted the 

output remains encrypted, and the actual contents are never disclosed during the 

adaptation process. 

• Concealment of data patterns: The use of a different encryption IV for each NALU, 

derived from carefully selected elements in the non-encrypted part to guarantee 

their uniqueness as detailed in Subsection 4.3, and the use of a random global IV 

for each bit stream, assure that all of the encrypted data will be uncorrelated even if 

the same input sequence is repeated multiple times. 

• Cryptographic support: The proposed method makes use of symmetric block 

ciphers, in one of the chaining modes of operation (e.g., CBC or CFB), but does not 



impose any restrictions on the actual cryptographic algorithm used or on the key 

length. Specific applications may choose the cryptographic engines which are best 

suited to their security needs. 

4.7. Start code emulation prevention 

The encryptor shown in Figure 4 and Figure 5 implements a standard encryption algorithm. 

However, this encryption process may produce specific three-byte sequences that shall not 

occur at any byte-aligned position in the H.264/SVC bit stream [10]. The H.264/SVC 

standard specifies four such codes and replacement codes for each of these codes as shown in 

Table 3. An AE may react to these sequences, if they are available in the encrypted bit stream, 

as specified by the standard resulting in undesirable behaviours. Especially, three-byte 

sequences 0x000000 and 0x000001 should not occur in the encrypted bit stream, since they 

are parts of NALU start code prefixes for applications that deliver NALU stream as an 

ordered stream of bytes such as MPEG-2 Systems [22]. Therefore, if any of these sequences 

is detected in the encrypted bit stream, the encryptor inserts an emulation prevention byte 

(i.e., 0x03) as shown in Table 3 to ensure that none of these forbidden three-byte sequences 

occurs in any NALU. This process is known as start code emulation prevention and it makes 

sure the encrypted bit stream is compatible for both packet oriented and byte stream oriented 

delivery scenarios. Analogously, the decryptor shown in Figure 6 and Figure 7 maps any 

occurrence of the replacement sequences into the original three-byte sequences prior to 

applying the decryption algorithm 

 

Table 3. Three-byte sequences that shall not occur at any byte-aligned position in the 

H.264/SVC bit stream and replacement when present  

Forbidden three-byte sequences Replacement sequences when 

present in the bit stream 

0x000000 0x00000300 

0x000001 0x00000301 

0x000002 0x00000302 

0x000003 0x00000303 

 

 

Figure 7. Standalone decryption 

4.8. Signalling 

The bit stream corresponding to the encrypted contents, before and after adaptation, must 

provide enough information for the decoder to be able to decrypt the contents. With the 

proposed technique for encrypting the streams, the minimum information required is the 

encryption algorithm and the global per-stream IV. In some cases, certain algorithm-

dependent parameters may also be necessary, such as the variable key length or number of 



iterations. A simple data structure, which can be delivered using any existing signalling 

technique used in secured content delivery, is used for including this information. Apart from 

these, no further parameters are required since the local IV for each NALU is algorithmically 

determined from its header fields. 

4.9. Implications on the error resilience 

One of the major advantages of H.264 standard is that it incorporates a number of error 

resilience features by design [23][24]. The proposed encryption technique treats individual 

NALUs independently that makes it possible to decrypt any NALU regardless of whether 

previous NALUs are available at the decryptor. Therefore, there is no known implication on 

any of the error resilience features available in the H.264 standard in random packet drop 

situations. Besides the random packet dropping, a sophisticated decoder may also be able to 

cope with random bit errors up to a certain extent [25]. With a stream cipher, flipping one bit 

in the encrypted input stream simply causes the corresponding bit in the decrypted output 

stream to be flipped. Therefore, these sophisticated decoding techniques can easily be used 

with decrypted contents. 

 

With a block cipher in general, however, changing one bit of a block affects the whole block, 

so that every bit in this block will be changed with 50% probability. Therefore, error detection 

and correction algorithms such as [25] become increasingly ineffective. However, the use of 

different modes of operation can expand or reduce the error propagation. In the CBC and CFB 

modes, errors within a block (of length n) will produce changes in bits that can be up to 2n 

positions apart. However, the OFB mode behaves in this respect like a stream cipher, so that 

each single bit error produces exactly one bit change in the output. 

5. Results  

The first set of experiments was carried out aiming to investigate the transparency of 

encryption for AEs. Three publicly available test video sequences were encoded with the 

configurations depicted in Table 4. These test sequences were encoded using the H.264/SVC 

reference encoder (JSVM encoder). The NALU length was limited to 1000 bytes, and 

therefore each scalability layer produced one or more NALUs. The base layer is H.264/AVC 

compatible and the scalability information related to each base layer NALU was coded into a 

prefix NALUs [10]. 

 

Table 4. Details of the scalability structure and the length of the test sequences used for 

evaluating the proposed adaptation-aware encryption technique 

Test sequence Number of 

frames 

Spatial 

scalability layers 

(width x height 

in pixels) 

Temporal 

scalability layers 

(fps) 

Total bit rate 

(kbps) 

Forman 400 352 x 288 

176 x 144 

30, 15, 7.5, 3.75  255.30 

Soccer 400 704 x 576 

352 x 288 

176 x 144 

30, 15, 7.5, 3.75  453.22 

CrowdRun 400 1280 x 704 

640 x 352 

320 x 176 

60, 30, 15, 7.5 28849.14 



Both the CFB and CBC encryption modes were used for encrypting the encoded content and 

the bit streams generated with variety of scalability structures. The JSVM BSE was used as 

the AE. After a number of exhaustive experiments, it was concluded that the proposed 

encryption technique is transparent for H.264/SVC compatible video adaptation. This can be 

asserted by comparing the outcome of the whole encryption-adaptation-decryption cycle with 

the result of conventional adaptation, i.e., without encryption. Since both results are the same, 

it can be concluded that the goal of transparency has been satisfactorily achieved. 

 

Subsequently, a similar set of experiments were carried out for validating the algorithm for 

random and prioritised packet dropping scenarios. The criteria for validation were, as in the 

case of transparency, comparison of results between the setup with encryption and that 

without encryption. In order to demonstrate the effect of random packet losses to encrypted 

bit streams, a simulation study was carried out using an IP channel model. The IP channel 

model was implemented using the AVC/SVC loss simulator described in [26] and ITU-VCEG 

loss patterns [27].The test conditions specified in [28] are observed during the simulation 

study. Moreover, the error concealment algorithm used in this experiment considers all the 

lost macroblocks coded with the BLSkip mode [14]. The decoded quality of the encrypted 

and non-encrypted bit streams, which are received over the lossy channel, is compared in 

Figure 8. These bit streams are encoded with IPPP temporal prediction structure and have 

four temporal scalability levels. Experimental results clearly verify that random losses have 

little or no impact on the decryptability of the received bit streams. 
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Figure 8. Effect of transmitting the encrypted bit stream over a lossy IP channel for (a) 

Foreman and (b) Crowdrun test sequences 

 

Theoretically, the proposed encryption technology must also be resilient to any prioritised 

packet dropping scenario. To test this condition, an experiment was carried out in this kind of 

a scenario, in which the Foreman test sequence was encoded with two levels of temporal and 

four levels of quality scalability. Each scalability layer is assigned the priority according to 

the importance so that dropping packets from the lower priority levels minimally affects the 

quality of the decoded video. Hence, the base layer of the bit stream is assigned the highest 

priority (i.e., priority = 7). The quality enhancement layers of the lower temporal scalability 

layer (i.e., 12.5 frames per second, fps) are assigned with the next three priority levels. 

Moreover, the base layer of the highest temporal layer is assigned priority = 3 and the quality 



enhancement layers are assigned the next three priority levels. In our test, it is assumed that 

the router drops the lower priority packets to recover from congestion. If the congestion is 

light, only the lowest priority level is dropped. Table 5 compares the resulting bit rates and 

objective qualities when each quality layer is dropped from the non-encrypted and encrypted 

bit streams. These results show that the encryption algorithm performs well under the 

prioritised packet dropping scenario. 

Table 5. Evaluation of the effect of encryption on the prioritised packed dropping scenario 

Non-encrypted Encrypted Dropped 

priority level 

frame rate 

(fps) Bit rate 

(kbps) 

PSNR (dB) Bit rate 

(kbps) 

PSNR (dB) 

none 25 1,842 37.14 1,842 37.14 

7 25 1,554 36.20 1,554 36.20 

6 25 1,250 35.34 1,250 35.34 

5 25 741 33.92 741 33.92 

4 12.5 723 37.69 723 37.69 

3 12.5 602 36.63 602 36.63 

2 12.5 480 35.72 480 35.72 

1 12.5 298 34.44 298 34.44 

 

The objective of the next set of experiments is to assess the processing and bit rate overheads 

due to the proposed encryption technology. Same test setup used for assessing the 

transparency for AEs was also used for these experiments. Table 6 shows the CFB encryption 

performance for the selected bit streams. Here, AES-128 algorithm is used for encrypting the 

data streams. This experiment was carried out on a 3 GHz Pentium 4 dual-core machine 

running a Linux operating system. It shows that over 95% of the total data bytes have been 

encrypted. It also shows that when the bit rate is smaller, the percentage of encrypted bytes 

reduces. This is because the length of NALU header and the slice header become increasingly 

dominant at lower bit rates. Moreover, encryption time shown in Table 6 indicates that the 

processing overhead per frame is negligible. 

 

Table 6. Encryption performance 

  Foreman Soccer CrowdRun 

Total bytes  425500 755367 24040953 

Number 411493 738601 23686537 Bytes 

encrypted  Percentage  96.70% 97.80% 98.50% 

Number 14007 16766 354416 Bytes not 

encrypted  Percentage 3.30% 2.20% 1.50% 

Total time (ms)  17 26 665 

Bytes/s  24.2 x 10
6
 28.4 x 10

6
 35.6 x 10

6
 

Encryption 

overhead 

Per frame processing time (µs) 77.5 117.5 1797.5 

 

Even though the CFB encryption mode does not have a bit rate penalty, the CBC encryption 

has a bit rate overhead as shown in Table 7, which is a direct consequence of the padding 

algorithm that is applied in CBC for making the input data length a multiple of the cipher 

block length. It should be noted that expected theoretical average padding in an algorithm of 

block length N is (N + 1)/2. Since N = 16 bytes in our experiments, the average padding 

length should be 8.5 bytes. The results shown in Table 7 clearly agree with this theoretical 



average. Furthermore, the Rate-Distortion (RD) due to each encryption mode is illustrated in 

Figure 9. According to Figure 9 (a), the CFB mode does not have any RD penalty. In contrast, 

when the CBC mode encryption is used, there is an RD penalty as shown in Figure 9 (b). 

Again, this is caused by the padding inserted in CBC mode. However, this RD penalty is 

negligible. 

 

Table 7. CBC encryption overheads introduced to the bit stream  

  Foreman Soccer CrowdRun 

Input length  425500 755367 24040953 

Encrypted length  433992 765470 24261093 

Total extra bytes  8492 10103 220140 

Encrypted NALUs  984 1186 25419 

Avg. extra bytes / NALU  8.63 8.52 8.66 
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Figure 9. RD performance of the Foreman test sequence before and after (a) CFB mode and 

(b) CBC mode encryption 

6. Conclusions  

This paper has presented a proposed adaptation-aware encryption concept and discussed the 

enabling technologies for encrypting H.264/SVC compatible video. The proposed technique 

enables end-to-end transparency for scalable video adaptation. Therefore, it is possible to reap 

the advantages of scalability in video coding without compromising the content security since 

the AE does not need to decrypt the content. This objective was achieved by leaving syntax 

elements required for performing the adaptation operation clear (i.e., unencrypted). Moreover, 

some of the clear syntax elements are also used for generating the IV for the encryption 

process. The transparency of the encrypted bit streams was successfully validated for 

systematic scalable video adaptations as well as random and prioritised packet dropping 

scenarios through a comprehensive set of experiments. Experimental results have shown that 

the proposed technique incurs negligible processing overhead. 

 

A disadvantage of the proposed encryption techniques is its strong dependency on the 

H.264/SVC standard. Further experiments are being carried out to exploit MPEG-21 Bit-

stream BSD to develop video-coding-agnostic encryption technologies. 
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Figure A1. The algorithm to determine the encryption boundaries 
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Figure A2. The decryption algorithm for decoder-assisted decrypting a bit stream 

 


