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Abstract 

Research interest in rapid structured-light imaging has grown increasingly for the modeling 

of moving objects, and a number of methods have been suggested for the range capture in a 

single video frame. The imaging area of a 3D object using a single projector is restricted 

since the structured light is projected only onto a limited area of the object surface. 

Employing additional projectors to broaden the imaging area is a challenging problem since 

simultaneous projection of multiple patterns results in their superposition in the light-

intersected areas and the recognition of original patterns is by no means trivial. This paper 

presents a novel method of multi-projector color structured-light vision based on projector-

camera triangulation. By analyzing the behavior of superposed-light colors in a chromaticity 

domain, we show that the original light colors cannot be properly extracted by the 

conventional direct estimation. We disambiguate multiple projectors by multiplexing the 

orientations of projector patterns so that the superposed patterns can be separated by explicit 

derivative computations. Experimental studies are carried out to demonstrate the validity of 

the presented method. The proposed method increases the efficiency of range acquisition 

compared to conventional active stereo using multiple projectors. 
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1. Introduction 

Depth imaging is a critical step in object modeling, and structured light-based range sensing 
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is probably the most accurate and reliable way of obtaining depth data. Each depth image 

contains part of a 3D object model, and several depth images should be combined to 

represent a 3D object. Modeling a moving object requires depth capture from multiple views 

simultaneously in realtime, but structured light is not easy to use since multiple projections of 

active lights generally result in the superposition of light patterns on some parts of the object 

surfaces. The objective of the work described in this paper is to develop a method for 

projecting multiple light patterns in one video frame (one shot) and recognizing those to 

reconstruct the shapes of different but overlapping object regions. 

 

 

 

Structured light has been an active area of research for decades. The most basic form of 

depth sensing is the swept stripe scanner on which much research has been carried out [1, 2]. 

Its main disadvantage is the large number of images required to be taken as a plane of light 

sweeps across an object surface. Sato and Inokuchi developed a set of hierarchical black-and-

white stripe patterns to reduce the number of images to log2 N where N is the total number of 

stripes [3]. For more drastic reduction, a variety of special black-and-white, grey-level, or 

color patterns have been presented: color-stripe patterns [10, 4, 33], hybrid pattern [24], grey-

level pattern [5], gray-level ramp [6], rainbow pattern [7], black-and-white boundary codes 

[21], 2D stripe patterns (or grid patterns) [26, 28, 29], M-array pattern [27], color sinusoidal 

patterns [8, 22], color dot pattern [9], de Bruijn sequence patterns [12, 13], and permutation 

Figure 1.  Multi-projector structured-light range imaging. Two projectors project the light 

patterns onto an object, and a camera observes the scene. The light patterns are superposed in 

the intersection of two projections. 



patterns [11, 31]. Some researchers have focused on scene properties [23], and scattering 

environment [25]. 

With a single projector, a structured-light pattern is projected only onto a partial area of a 

3D object due to self shadows (surface orientation being more than π/2 away from the 

lighting direction) and cast shadows (light occlusion by other parts). The only realistic way of 

increasing the imaging area is to use light sources from multiple directions. For modeling a 

static object, structured-light ranging is performed sequentially from multiple directions, and 

the acquired multiple depth images are aligned and merged using sensor/light calibration or 

range data registration technique. For modeling a dynamic object, on the other hand, 

simultaneous multi-view ranging is required but multiple structured-light patterns from 

different directions interfere with each other in the intersection of light projections as shown 

in Figure 1. This overlap of light patterns is unavoidable for general 3D object geometry 

unless an undesirable gap between the projected areas is made deliberately. Seamless 

modeling of a dynamic object can be made highly practicable if we can extract the original 

light patterns superposed in the intersections. This motivates our work presented in this paper. 

 

Table 1 shows taxonomy of active vision. Conventional active stereo vision methods based 

on camera-camera triangulation are in general capable of real-time depth imaging. They add 

structured light to create uniquely identifiable features for dense stereo correspondence. Light 

patterns include stripes [14, 15, 16], circular color spots [9], and IR random dots [17]. 

Recently some researchers have begun using multiple projectors for imaging wider surface 

areas, and they obtained the shape of a moving object from a small number of frames [18] or 

from a single frame [17]. Zhang et al. use spacetime matching of active stereo 

correspondences by employing time-varying grayscale random stripe patterns [16, 18], and 

Ypsilos et al. use a random dot IR pattern for stereo matching [17]. 

When multiple structured-light patterns are simultaneously projected onto an object to 

increase the imaging area seamlessly, the patterns are almost always superposed in the 

intersections of projections (see Figure 1). This may not cause a serious problem for 

conventional active stereo vision (ASV) based on camera-camera triangulation. However, in 

conventional structured-light vision (SLV) based on projector-camera triangulation, 

extracting the original light patterns is the core problem, and this has hindered multi-projector 

SLV. In this paper, we present a method of multi-projector color structured-light range 

imaging based on projector-camera triangulation. By analyzing the behavior of the 

superposed-light colors in a chromaticity domain, we show that the original light colors 



cannot be properly extracted based on the conventional direct estimation. We disambiguate 

multiple projectors by multiplexing the orientations of projector patterns so that the 

superposed patterns can be separated by explicit derivative computations. Experimental 

studies are carried out to demonstrate the validity of the presented method. 

 

 

 

 

This paper is mostly based on the sixth chapter of Je’s PhD thesis presented early in 2008 

[32], and provides improved analyses on color behavior in multi-projector, separation of 

superposed patterns, and estimation of stripe encoding directions, as well as a scheme of 

range merging and diverse comparisons of related methods. In 2010, Furukawa et al. 

independently presented a closely related method [30]. Nevertheless, our approach still has 

strong advantages compared to the method of Furukawa et al. [30] although our method has 

been originally presented much earlier. We will present the comparison of the two methods in 

Section 5. 

The rest of this paper is organized as follows. Section 2 analyzes the color behavior in 

multi-projector illumination, Section 3 presents the orientation multiplexing in multi-

projector, and the experiments are shown in Section 4. Section 5 discusses on the related 

shape-measuring methodologies, and Section 6 concludes this paper. 

 

2. Color behavior in multi-projector illumination 

In range imaging based on SLV, the range of object surface can be reliably obtained only for 

Table 1 

Active Vision Taxonomy 

 Camera vs. Camera Projector vs. Camera 

Single pattern 
Conventional ASV : 

Chen et al. [15] 

Existing SLV: 

Boyer and Kak [10] 

Caspi et al. [4] 

Hall-Holt and 

Rusinkiewicz [21] 

Zhang et al. [12] 

Je et al. [11, 31] 

Multiple 

patterns 

Conventional ASV : 

Zhang et al. [16, 18] 

Ypsilos et al. [17] 

Multi-projector SLV: 

Our approach [32] 

Furukawa et al. [30] 

 

 



the area in which the intensity profile is sufficiently stronger than the random noise level and 

in which the viewing space of a camera and the lighting space of a projector are intersected. 

In single-projector SLV, images frequently have dark areas due to shadows (self shadows 

and/or cast shadows), shading, and camera settings selected to avoid extreme saturation of 

highlight areas (e.g., specularity). 

Reliable range imaging for the whole area in an image is almost impossible in a typical-

complicate situation using a single projector for the following reasons. (1) The spaces of 

viewing and lighting are usually different in that the projector and camera components cannot 

be at the exactly same position. (2) The triangulation angle should be sufficiently large for 

accurate measurement. For example, the baseline of a Kinect [34] depth sensor is about 7.96 

cm that is smaller than a baseline in a typical projector-camera configuration. If the distance 

from a Kinect depth sensor to an object is bigger than 1 m, the triangulation angle is smaller 

than 4.6 degrees. As a result, a Kinect depth sensor acquires only coarse shapes of 1 m or 

more distant objects. In general, the triangulation angle should be substantially bigger than 5 

degrees for acquiring satisfactory shape of an object, resulting in smaller overlap of lighting 

and sensing spaces. To make matters worse, a larger triangulation angle for the accuracy 

makes the effects of shadows and shading bigger. Recently, systems employing multiple 

cameras have increased in popularity, requiring multiple light sources more often. However, 

in SLV, employing multiple projectors has been prohibited since superposition of multiple 

patterns makes the original patterns ambiguous. This means multi-projector makes the 

resulted state far from the original objective of structured light. 

Now we discuss the behavior of colors of the superposed patterns in multi-projector 

structured light. The reflected intensity of a wavelength (λ) on a Lambertian surface point can 

be given by the equation, 
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where S, g , and E are the surface reflectance, geometric shading factor, and the 

illumination, respectively, and the wavelength λ represents color. 

When light patterns from two projectors are superposed with ambient illumination on a 

surface, the image irradiance can be modified by the equation, 
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where g1, g2, gA, E1, E2, and A are the geometric shading factors and the illumination from the 

projectors 1 and 2, and the ambient light, respectively. From the above equation, the number 

of unknowns (the illumination intensities from both projectors) for a known (the image 

intensity) is two at least even if the reflectance, shading, and ambient illumination are ignored 

by the assumption that the spatial variations of them in a camera image are not so severe 

usually, compared to those of structured-light patterns. 

Let us assume projectors and camera(s) have three color-channels (R, G and B). The pixel 

value corresponding to a scene point on the object surface illuminated by multiple projectors 

is a combination of three scalar values of red (R), green (G) and blue (B). However, the 

number of unknowns includes at least three (RGB) times of the number of light sources 

illuminating the scene area even under the assumption that the reflective properties are 

perfectly diffuse and spectrally moderate. For example, in the case of two projectors the 

number of unknowns is six. Therefore, it is almost impossible to acquire the colors of 

multiple superposed patterns from the image color unless other exceptional information is 

provided. 

Figure 2(a) and 2(b) depict the color distribution where the three primary colors (RGB) are 

projected separately onto an achromatic surface and a moderate-colored surface by a single 

projector, respectively. Figure 2(c) shows the color distribution where the three colors are 

projected by two projectors and the colors are superposed. In Figure 2(c), it is shown that 

when two different colors (from the two different projectors) are superposed, and the 

intermediate colors are made.  

Figure 3(a) and 3(b) depict the color distribution where concatenated RGB stripes are 

projected onto an achromatic surface and a moderate-colored surface, by a single projector, 

respectively. Figure 3(c) shows the color distribution where the RGB stripes are projected 

onto a moderate-colored surface by two projectors. In Figure 3(a) and 3(b), it is shown that 

there comes the intermediate colors between the two consecutive color stripes. Figure 3(c) 

depicts the intermediate colors are superposed, and an arbitrary combination of the three 

primary colors is produced. 

In Figure 2(a), 2(b), 2(c), 3(a) and 3(b), the colors can be easily separated and the stripes 

can be properly segmented by a suitable method like hue thresholding [11, 31]. However, in 

Figure 3(c), it cannot be easily known which two colors made a color. In addition, in Figure 

2(c) and 3(c), even if the two colors can be correctly estimated, it cannot be easily known 

which projector produced each of the estimated colors. 



 

 

 

 

 

3. Orientation Multiplexing in Multi-projector 

As discussed in Section 2, direct estimation of the original color in multi-projector is not 

possible. We add another cue, say, orientation cue of the projection patterns to distinguish 

multiple patterns. We disambiguate the patterns of different projectors by projecting multi-

projector patterns in dissimilar orientations. As we use different colors in two consecutive 

stripes to distinguish the stripes in a color-stripe pattern, we use different orientations in 

simultaneous projections by multi-projector to distinguish the projections. 

 

3.1. Derivative Analysis for Orientation Demultiplexing 

We now describe derivative analysis based on two discrete color-stripe patterns projected in 

substantially different orientations by two different projectors, but it can be extended to more 

(a)                       (b)                         (c) 

Figure 2.  Chromaticity diagram: (a) RGB projection onto an achromatic surface by a single 

projector, (b) RGB projection onto a moderate-colored surface by a single projector, and (c) 

RGB projection onto a colored surface by two projectors. 

(a)                       (b)                      (c) 

Figure 3.  Chromaticity diagram: (a) RGB stripes projection onto an achromatic surface by 

a single projector, (b) RGB stripes projection onto a moderate-colored surface by a single 

projector, and (c) RGB stripes projection onto a colored surface by two projectors. 



than two projectors. 

The image irradiance at a camera is given by Equation (2). The exact extraction of the 

irradiance components from E1 and E2 is an underconstrained problem; hence our method 

seeks to find the spatial derivative terms of E1 and E2 separately using the following 

constraints described below. In other words, we are not interested in estimating the actual 

image intensities and colors from E1 and E2 but in recovering the color codes encoded in E1 

and E2 from their derivative terms. 

 

 

 

Since a light pattern is one-dimensionally encoded, its derivatives across the stripes should 

not be much affected by the presence of another pattern as far as their directions are 

maximally different. If it is assumed that the two patterns are exactly perpendicular, for 

instance, the partial derivative with respect to the spatial variable, x1 of the encoding direction 

(say, 1x̂ ) of E1 (see Figure 4) is:  

 

Figure 4.  Local variables and directions. x1 and x2 are the encoding directions of E1 and E2, 

respectively. 

E1 pattern  

encoding direction 

x2 

x1 

Figure 5.  (a) The encoding directions of the two patterns E1 and E2, and the differentiation 

direction xα. (b) The plot of D in Equation (7) for φ1−φ2 = 70°. 

(a)                                        (b) 

E1 

E2 



1

1
1

1

)(
)(

)(

x

E
Sg

x

I








 



.                                     (3) 

 

In the above equation, it is also assumed that the local variation of image irradiance due to 

geometric shading, reflectance and ambient light is negligible compared to that of E1. Since 

subpatterns based on the spatial derivatives of color across the stripes are as unique as those 

based on stripe colors, they can be used for stripe (boundary) identification and for 

triangulation. 

As a matter of fact, the stripe directions on an object surface are not mostly made mutually 

perpendicular due to the projector perspectivity and local surface geometry. When two light 

patterns are superposed in arbitrary orientations, the partial derivative with respect to the 

spatial variable, x  of an arbitrary direction ( x̂ ) (see Figure 5 (a)) is given by: 
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where x2 is the spatial variable of the encoding direction of E2. Since ∂x1/∂xα = cos(φα−φ1) 

and ∂x2/∂xα = cos(φα – φ2) as shown in Figure 5(a), the partial derivatives of E1 and E2 in 

Equation (4) are respectively scaled by the cosines of the angle between x1 and xα and that 

between x2 and xα, i.e., the scale factors vary depending on the selection of xα. It is now 

obvious that the influence of the light pattern E2 can be minimized by choosing xα 

perpendicular to x2. Notice that this choice of xα also maximizes the difference of the absolute 

values of the two derivative scaling factors in Equation (4) (Let D be the difference), 
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since it has the maximums at 2/2   . Figure 5(b) shows the plot of D for 

 7021  . 

As far as we have good estimations of x1 and xα, we can extract the derivative information 

on the projected patterns by taking the derivatives as follows: 
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where y1 and y2 are perpendicular to x1 and x2, respectively. We can obtain the shape 

independently based on the derivative of the projected pattern from Equations (6) and (7) (the 

range estimation process is described in Section 4.2). When N multiple patterns are 

superposed on a surface in N different orientations, we can estimate the term only from one 

pattern by successively eliminating the influence of (N−1) patterns. For example, triple-

pattern case is as follows. 

Let the image irradiance from three superposed patterns as: 

 

)]()()()()[()( 332211  AgEgEgEgSI A .               (8) 

 

We assume again that the local variation of image irradiance due to geometric shading, 

reflectance and ambient light is negligible compared to that of E1, E2, and E3. By 

differentiating this according to the spatial variable of the direction perpendicular to the 

encoding direction of the third pattern, the pattern term can be eliminated: 
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Then, the second pattern can be eliminated by differentiating the above equation according to 

the direction perpendicular to the encoding direction of the pattern: 
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The only difference from the double-pattern case is that the order of the final derivative is 

two. Hence, we should decode the final profile according to the sequence of the second-order 

derivative of the original pattern. By the same way, the second and third patterns can be 



extracted and decoded. Although this pattern extraction method can be applied for general N-

pattern case, in a real situation (limited dynamic range and resolution) stable results cannot be 

drawn for the superposition of so many patterns. In our work, we have implemented the 

method for the superposition of double- and triple-pattern. It is known that differentiations 

usually raise sensitivities to high-frequency noise. In case of triple-pattern, differentiation is 

needed twice for extracting each single pattern. However, successful separation of the stripe 

patterns can be achieved by using highly distinguishable stripe colors compared to noise 

uncertainties. Otherwise, slight Gaussian smoothing (with a small radius, e.g., 0.5 pixels) can 

be used for decreasing the effect of high-frequency noise. 

In the pattern extraction, we need to determine the stripe-encoding direction to differentiate 

the images. The encoding directions can be assumed globally constant if the object geometry 

is not relatively steep. Otherwise, the stripe directions should be locally estimated. In the 

following subsection, we describe a method for computing stripe-encoding directions 1x̂  and 

2x̂  locally. 

 

3.2. Estimation of Stripe Encoding Directions 

Successful extraction of structured light patterns depends on the estimation of their stripe 

encoding directions. We take rather a generic approach to this based on gradient histogram. 

The gradients of individual RGB color-channels that can exist in a region of two color-

stripe patterns are illustrated in Figure 6(a), in which for the sake of simplicity the two color-

stripe patterns are assumed perpendicular. Figure 6(c) shows typical directions of gradients in 

a case of non-perpendicular patterns. In addition to the gradients along the stripe-encoding 

directions 1x̂  and 2x̂ , there can be fringe gradients (along roughly 12x̂  and 12ŷ ) across the 

corners made by the two stripe patterns. Fortunately, the population of the fringe gradients is 

usually substantially smaller than that of the gradients along 1x̂  and 2x̂ , since the corner 

area (around the intersection of boundaries) is definitely smaller than the single-boundary 

area in an image (see the split RGB-channel images in Figure 6(b)). 

Before a gradient histogram is constructed, the gradient angles are multiplied by two to 

make the gradients in the opposite directions have the same polarity. Then, a doubly angled 

histogram will have the same number of dominant lobes as the number of superposed patterns 

in a region. Figure 6(d) illustrates a doubly angled gradient histogram that has two dominant 

lobes (bimodal) corresponding to the two superposed patterns in a region. When an area 

includes a single pattern the histogram will have a single dominant lobe (unimodal). Figure 7 



shows how the gradient vectors are distributed in a pattern-superposed region. (a) shows a 

synthesized image of superposed two color-stripe patterns containing moderate noise (1.3% 

Gaussian noise), and (b) depicts the double-angled gradient-vector distribution of (a). As 

shown in Figure 7(b) the two dominant directions of gradient vectors can be easily estimated. 

Compare Figure 7(b) with the illustrative gradient histogram in Figure 6(d). 

 

 

Figure 6.  (a) Gradients which can occur where two color-stripe patterns are superposed in 

different orientations. (b) The split RGB-channel gray images of (a). (c) Classification of 

gradients. The direction of x12 is equal to the mean direction of x1 and x2, and the direction of y12 

is perpendicular to that of x12. (d) Gradient histogram. The angle of each gradient is scaled up 

by two. (e) The eight angular locations for an angle window are illustrated by distinct arrows in 

unique colors. (f) Gaussian-weighted fitting. The bright yellow rectangle represents the initial 

peak, and the red arrow indicates the fitting result. (g) The estimated encoding directions and 

the instances of the angle window. 

(a)                                     (b) 

(c)                                        (d) 

       (e)                     (f)                        (g) 



 

 

 

To find the lobes along the 1x̂  and 2x̂  directions locally, we run a spatial window of 77 

for localization. We also run an angle window in the histogram with the width of π/2 and scan 

the histogram in π/4 steps as shown in Figure 6(e). In this angle window, only one major lobe 

is expected to be present. Figure 6(d) shows an angle window centered at π. Once a peak is 

detected by finding the maximum value in an angle window, we locally fit a Gaussian 

function using the values around the peak to find the major direction in a manner similar to 

that in [19] as shown in Figure 6(f) and (g). After detecting lobes in the eight angle windows, 

one or two major directions (or also three directions in a triple-pattern case) are selected for 

1x̂  and 2x̂  as shown in Figure 6(g). 

Different size of window can be selected for localization of stripe encoding directions. The 

width and height of a window should be bigger than stripe width in a camera image. To 

substantially localize the encoding direction, we select 7 pixels for the width and height of 

window, which is near twice stripe width in our camera images. However, bigger window 

size can be selected when spatial variation of stripe encoding directions is not much in a 

camera image. 

 

4. Experiments 

We have tested our multi-projector method for various real objects. For capturing real scene 

images, we used Epson EMP-7700 1024×768 color LCD projectors and Sony XC-003 3-

(a)                                       (b) 

Figure 7.  Gradient-vector distribution of a synthesized image. (a) A synthesized image of 

superposed two color-stripe patterns containing moderate noise. (b) The double-angled 

gradient-vector distribution of (a). The darker area has the higher population. The two 

dominant directions of gradient-vectors are the two directions of x1 and x2. The direction of 

the primed is the double-angled direction of the unprimed. 



CCD 640×480 color cameras. A small number of the color-stripe permutation patterns with 

192 unique codes are projected on the object scene with mutually distant orientations by the 

projectors. The mutual angles of the orientations are roughly 90 degrees and 60 degrees in 

double-pattern and triple-pattern case, respectively. For imaging the scene, one or two 

cameras are employed according to the target area. The captured images are processed for 

obtaining the ranges, and for a human face and a Venus face, the ranges are meshed and 

rendered. 

In the following subsection, we describe the used color-stripe pattern. 

 

 

 

 

4.1. Color-Stripe Permutation Pattern 

We employ the one-shot imaging pattern described in [11, 31, 35] for light projection, but use 

its spatial derivatives for the separation of superposed stripe patterns and for stripe 

identification. Only the three primary colors, red (R), green (G) and blue (B), are used for 

generating a pattern since the use of the most distant three colors in a chromaticity space 

facilitates accurate color stripe segmentation according to the analysis shown in [11, 31]. 

With the number of stripes in a subpattern, k=7 and the number of colors, N=3, 192 uniquely 

identifiable subpatterns can be generated as shown in the top image of Figure 8. The 

subpatterns based on the color derivatives across the stripes, RG, GB, BR, have the same 

level of uniqueness as those based on stripe colors, and the color derivatives shown in the 

Figure 8.  Color-stripe permutation pattern for multi-projector structured-light range imaging. 

(Top) the color-stripe pattern is generated based on the permutation of three primary colors (R, 

G, and B) with length seven. (Bottom) image representation for the horizontal derivative of the 

pattern (255 is added to the original derivative, and the result is divided by 2 to make a proper 

image intensity). 



bottom image of Figure 8 are also maximized by using the three primary RGB colors. As 

discussed in [31], the color-stripe pattern is robust to surface discontinuity since sufficiently 

many stripes can be projected onto a very narrow continuous region. 

 

 

 

 

 

(a)   (b) (c)   

(d)   (e) (f)   

(g)   (h) 

Figure 9.  Experimental results of a human face. (a) Right view of the color-striped human 

face, and (b,c) stripe-segmentation from the gradient image of (a). (d) Left view of the subject, 

and (e,f) stripe-segmentation from the gradient image of (d). (g) Merged and rendered result in 

three different views, and (h) the rendered front view of the four individual meshed results from 

the four stripe-segmented images (b), (c), (e) and (f) in different colors. 



 

 

4.2. Range Estimation Process 

The process of range estimation from an image is as follows. The superposed light patterns 

have to be separated by differentiating the image through the estimated encoding directions 

for range imaging from each projector as described in Section 3. After separating derivative 

images, we segment each stripes based on each pixel color of the separated images by 

classifying the derivative colors into the six classes (RG, GB, BR) and then classifying 

the colors into the three classes, R={+BR, −RG}, G={+RG, −GB}, and B={+GB, −BR}. 

Now the color-stripe permutations are decoded by matching the designed codes to the color 

sequences of the stripe-segmented image. To diminish decoding errors, we perform multi-

layer decoding as described in [31]. An appropriate geometric calibration for SLV [20] is 

done for obtaining range data from the decoded stripe information. In data merging stage, we 

merge the ranges from the separated patterns for each image first, and then merge the results 

from the multiple cameras when multiple cameras are used. 

Noise effect reduction: In our experimental system, the measured standard deviations of 

spacetime (50 frames of 7×7 window) noise for red, green and blue channels are 1.8138, 

1.2923 and 1.6745 (in units of gray levels), respectively, and they are smaller than those in 

Figure 10.  The arrangement of projectors and cameras. Two projectors project light patterns 

onto an object from the different angles and two cameras observe the scene with the different 

viewpoints. In this configuration, the proposed SLV (Structured-Light Vision) utilizes the four 

correspondences (projector1-camera1, projector1-camera2, projector2-camera1, and projector2-

camera2), and obtains the four range images from a single video-frame. 



[4]. The noise was measured by the setting that the intensity levels are close to 128 in the 

camera image, to avoid the clipping error. One method of discounting the effect of high-

frequency noise is Gaussian smoothing. 

 

4.3. Results 

Dynamic object: Figure 9 shows the experimental results for a human face. Two cameras and 

two projectors are employed to capture a broad area of the face (see Figure 10). Four depth 

images are obtained from the four triangulation instances between the two projectors and two 

cameras: Projector 1 vs. Camera 1, Projector 1 vs. Camera 2, Projector 2 vs. Camera 1, and 

Projector 2 vs. Camera 2. On the surfaces where multiple light patterns are superposed, four 

different range data are obtained and their median is taken for merging. 

 

 

 

Figure 11.  (a) A scene of Venus face illuminated by three patterns, (c,d,e) the three separated 

stripe-segmented images, and (b) rendered view of the merged range obtained from the three 

stripe-segmented images. 

(a)                     (b) 

(c)                       (d)                      (e) 



 

 

Triple-pattern: Figure 11 shows the results from a Venus face illuminated by three 

projectors. The three stripe-segmentation images are extracted from a single scene image. 

The three ranges are obtained from them, and they merge into one, which is meshed and 

rendered. Although only one camera image is used to estimate the surface geometry, the 

much complete shape is acquired by utilizing the three color-stripe patterns extracted from 

the single image. 

 

Figure 12.  Results of paper cups. (a) The scene image of color-striped cups, (c,e) the stripe-

segmented images of (a). The ranges (d) and (f) are obtained from the two stripe-segmented 

images, and they are merged into the one (b) which is much completer than the initial two 

ranges. 

(a) (b) 

(c) (d) 

(e) (f) 



 

 

Occlusion: Figure 12 shows the results from paper cups with much extended occlusions. 

The two ranges (d) and (f) lack for either side, but a much completer range (b) is obtained by 

merging the two ranges. In merging the two ranges, we use a variant of median filter as 

follows. For each pixel location, valid range values in a 3×3 window are collected to be a set 

from each range image, so at most nine range values can be included in a set. Between the 

two sets, we select a set to compute the median as follows. If the difference between the 

numbers of components in the two sets is bigger than three, we select the set that has more 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 13.  Experimental results of a panel with strong colors (RGBCMY). (a) The color 

panel with multi-projector structured-light patterns, (b) The color panel with white 

illumination, (c,d) the stripe-segmented images, and (e,f) the range results from the stripe-

segmented images (c) and (d). 



components. Otherwise, we select the set that has a smaller variance (if the two variances are 

the same, we compute the median of the all components). There are some degenerate cases. If 

a set has only one component, the variance should be the maximum programmable value. If a 

set is empty, it should not be selected. 

Strong-colored object: The presented method is also tested with a flat color panel that 

consists of RGBCMY squares. Figure 13 shows the experiments with the color panel. The 

image in (b) is not used in any process for obtaining range information. To diminish the 

influence of surface colors in the stripe segmentation, the intensity in the separated image is 

divided by the locally averaged color. Using this simple processing, the stripes are segmented 

accurately and the ranges are reliably obtained. Some errors exist around edges of surface 

color and near image boundary in (d), (e), and (f) because of the following reasons: (1) Pixels 

around edge between strong surface colors have gradients similar to the gradients of 

illumination pattern. (2) Gradients are not properly defined at boundary pixels, and thus some 

subpatterns might be falsely recognized around the image boundary even after multi-layer 

decoding [31]. 

 

5. Discussion and Implication 

By using multiple projectors, multiple structured-light patterns can be projected into an object 

scene. Multi-projector lighting from the multiple directions increases the properly illuminated 

area, and decreases unwelcome effects of specularities and shading as well as shadows (most 

vision algorithms are seriously affected by them) by diffusing reflected rays under the 

existence of specularities and by counterbalancing shading effects. However, multi-projector 

structured-light vision has been prohibited by interference between multiple illumination 

patterns, which is considerably resolved by the proposed method. 

SLV is one branch of the triangulation-based shape-measuring method that additionally 

includes its other branches, conventional passive stereo vision (PSV) and ASV. The most 

basic setup of PSV, SLV, and ASV consists of camera + camera, projector + camera, and 

camera + projector + camera, respectively. In general, SLV and ASV have better accuracy 

than PSV since they actively employ light patterns for simplifying the correspondence 

problem. Besides, SLV basically requires lower hardware cost compared to ASV, and is 

independent of the occlusions between viewing sensors. Based on our multi-projector color 

SLV, the required hardware, number of images and processing time for modeling a 

static/dynamic 3D object can be much more decreased than in conventional active/passive 

stereo methods. In addition, the number of range images obtainable from a single image 



corresponds to that of superposed light patterns in the image. Since multi-projector SLV 

allows superposing structured-light patterns and extracts the multiple patterns, it acquires a 

more amount of 3D data from multiple ranges, and reconstructs more complete geometry of 

an object. Table 2 compares relative amounts and completeness of 3D data obtainable by 

conventional SLV and multi-projector SLV. In the table, a 3D object is assumed topologically 

similar to a sphere, and the relative completeness represents the proportion of the solid angle 

of obtainable 3D data to that of the bounding sphere of the 3D object. The relative amount of 

data is the proportion of the amount of obtainable 3D data to that of the single-scan data of 

the 3D object under the assumption that the single scan is performed with similar resolutions 

in lighting and sensing. The relative amount of 3D data and relative completeness are 

computed based on five simple assumptions: (1) One, two, three, and four projector(s) 

properly illuminate 40%, 70%, 90%, and 100% of the object surface, respectively. (2) One, 

two, three, and four camera(s) properly capture 40%, 70%, 90%, and 100% of the object 

surface, respectively. (3) One, two, three, and four projector(s) properly illuminate 70%, 80%, 

90%, and 100% of camera image(s), respectively. (4) One, two, three, and four camera(s) 

properly capture 70%, 80%, 90%, and 100% of projector projection(s), respectively. (5) 

Adding one more projector-camera triangulation results in 0.03% loss of 3D data amount per 

triangulation since the average error rate slightly increases with the number of triangulations. 

 

 

 

Table 2 

Relative Amounts and Completeness of 3D Data Obtainable by Conventional SLV and Multi-

Projector SLV 

The number of 

projectors 

The number of 

cameras 

Relative amount 

of 3D data [%] 

Relative 

completeness [%] 

1 1 28 28 

1 2 54 32 

2 1 54 32 

2 2 102 56 

3 1 79 36 

3 2 144 63 

3 3 198 81 

4 4 284 100 

 

 



Comparison to Furukawa et al. [30]: We originally presented most of our approach in a 

PhD thesis [32] about three years earlier than Furukawa et al. [30] which is the only closely 

related work (multi-projector SLV), currently. However, their work has the following 

differences compared to ours. 

- Their work has no sense of generality for orientation cue, whereas ours does. They just 

employed the concept of two perpendicular directions (vertical and horizontal lines). On the 

other hand, we generalized orientation cue to the arbitrary angle between any two stripe 

patterns among an arbitrary number of superposed stripe patterns (practically up to three 

superposed patterns), and provided the analytic validation of the explicit derivative 

computations for separation of superposed patterns. 

- For detecting lines of different projectors, they just rotated the image to be processed 

without any description on how the directions of patterns are determined. Moreover, this is 

similar to the way presented in our previous conference paper [26]. On the contrary, we 

provided the method of estimating stripe-encoding directions. 

- The number of unique subpatterns is just eight for each projector pattern of theirs. It is 

much smaller than those in [12] (125) and ours (192), and thus has a strong disadvantage in 

that the projector-camera disparity should be assumed very small. This means practically a 

smaller triangulation angle which brings lower accuracy, and is improper for the capture of 

detailed surface geometry (compare their results to ours). 

- They have not presented results of more challenging scenes such as the results of a real 

human face (Figure 9) and those of a strong-colored object (Figure 13) presented in this paper. 

By the way, the result of a hand in [30] actually seems to be a glove. Finger parts of a glove 

are substantially wider than fingers of a real hand, and thus attaining a good result for a glove 

is much easier than for a real hand (compare the results in [30] and [26]). 

 

6. Conclusion and future work 

Simultaneous use of multiple structured-light patterns for modeling a dynamic object has 

been a challenging problem since active light patterns from multiple sources can interfere 

with each other. After analyzing color phenomena in multi-projector light, we presented a 

method of using multiple structured-light projectors simultaneously for modeling a moving 

object in the temporal resolution of a video. A color-stripe permutation pattern suitable for 

range capture in a single video frame is employed, and a small number of the identical 

patterns are simultaneously projected onto a 3D object surface in different orientations. The 

presented technique extracts the original structured-light patterns based on the analysis of 



spatial color derivatives. The experimental results demonstrated the validity of our method. 

Our method is applicable to complete-3D modeling of dynamic objects. 

Research on multi-projector SLV is now in its childhood. Superposition of illuminations 

from multiple light sources makes estimation of each illumination highly difficult by itself. In 

addition, variation of illumination patterns in multi-projector SLV will need more complex 

analyses and methods that are more delicate. In addition, increasing the number of 

superposed patterns in a certain area will raise the range errors, since the estimation of each 

illumination will be more sensitive to the limits in the dynamic range and SNR of cameras, 

which all should be investigated in the future work. When multiple cameras are employed 

together with single or multiple projectors for range imaging, additional range data can be 

obtained from the camera-camera correspondences based on ASV and PSV. In this regard, 

structured-light stereo [36] has been presented as a method of integrating SLV and ASV. 
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