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Abstract

With the continuous growth in the consumer markets of mobile smartphones and in-
creasingly in augmented binocular vision wearable devices, several avenues of research
investigate the relationships between the quality perceived by mobile users and the de-
livery mechanisms at play to support a high quality of experience for mobile users. In
this paper, we present the first study that evaluates the relationships of mobile movie
quality and the viewer–perceived quality thereof in an augmented binocular vision set-
ting employing commercially available head–mounted see–through devices. We find that
participants tend to overestimate the video quality when compared to a scaled represen-
tation and exhibit a significant variation of accuracy that leans onto the movie content
and its dynamics. Our findings, thus, can broadly impact future media adaptation and
delivery mechanisms for this new display format of mobile multimedia and spur follow–up
research in this increasingly popular domain.

Keywords: Augmented reality, Multimedia systems, Perceptual quality, Quality of
experience, Quality of service

1. Introduction

In recent years, the amount of connected devices that are carried by mobile users
has increased drastically and will become one of the dominant drivers for future mobile
networking, as described by Cisco, Inc. [1]. A secondary forecasted trend is the con-
tinuously large fraction of mobile data that is required due to multimedia consumption
while users are “on–the–go.” While currently, smartphones and tablet computers are the
dominant form of media consumption and display, the prospect of reality–augmenting
wearable devices will likely account for a significant portion of the interaction with mobile
multimedia content in future immersive communications systems [2]. Augmented reality
has been an area of research in ubiquitous computing for some time [3] and is subject to
ongoing research efforts [4]. Several application scenarios were evaluated in recent years
in different domains, such as smartphone–based information overlay systems [5, 6], out-
door systems with multiple elements [7, 8], navigation [9], or general information systems
combining both [10].
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Several industry-based solutions were developed recently in parallel to augmented
reality devices, which target the multimedia playback application scenario in the pre-
dominantly consumer market space. Augmented reality devices that are performing in
a heads-up-display (HUD) or Head–Mounted Display (HMD) manner are increasingly
targeting the professional and consumer application space alike, indicating future broad
adaptation. While these types of devices are available in a broad variety of implementa-
tions (see, e.g., [11] for an overview of different types), a slow convergence of systems has
begun, especially in the consumer space. Examples for current commercial off-the–shelf
(COTS) devices available include the Occulus Rift, Sony HMZ-T1 Personal 3D Viewer,
Epson Moverio BT-100, or Google Glasses. We note that only the latter two are optical
see–through devices and thus similar to the one presented in [12], showcasing how these
device types have undergone additional improvements and are now consumer–graded.

The evaluation of these types of systems and related issues have attracted different
research groups and a recent survey [13] highlights ongoing issues for the various system
types. Evaluations performed also target the user–perception of augmentation for daily
life scenarios, such as in [14], or how to limit the amount of additional information, as
in, e.g., [15]. Perceptual evaluations oftentimes consider the segmentation of virtual-
ized/augmented items, such as in, e.g., [16]. There are several constraints that have to
be considered in this particular scenario, especially from a communications point of view,
when targeting the delivery of video data to these types of systems, as the replication
of video content with natural features might behave significantly different from overlaid
computer–generated information. In [17], the authors evaluate an industrial system that
consists of an opaque HMD that displays video sequences at different target bit rates
(and resulting imperfection or distortion levels) and user select different encoder proper-
ties at the target rate–points, resulting in a combination of frame rate and compression.
Our evaluation is significantly different in that we provide participating users with a
see–trough COTS HMD at prescribed video frame rates. Significant differences can be
expected for the perceived video quality based on the type of the visual display [13].

In this paper, we investigate the applicability of existing video quality metrics, such
as the frequently used Peak Signal–to–Noise Ratio (PSNR), Structural Similarity Index
Metric (SSIM), and Video Quality Metric (VQM), in the augmented reality space and
correlate encoded video quality with subjectively rated perceived video quality levels.
The perceptual video quality is measured using mean opinion scores (MOS) obtained
from multiple human test subjects according to [18]. We note that currently, no specific
testing standard has been established for the determination or evaluation of audio–visual
objective or perceptual qualities employing COTS see–through devices or for augmented
reality settings. In turn, we consider the existing standard as outlined in recommendation
ITU–T BT.500–13 [18] as a general guideline for the experiments we perform here. In this
seminal work, we provide a high–level overview of subjective quality ratings for longer
movie segments performing an initial view at the underlying characteristics at play.

The broad potential for implementation in future systems that contain augmented
single view or binocular vision display modalities is manifold, as media adaptations for
specific video material might benefit content and network providers while maintaining a
sufficiently high level of quality of experience [21]. Here, we focus on the evaluation of
video compression quality without potentially lossy network transport when viewed in a
scenario where binocular vision is augmented.

In the remainder of this contribution, we initially describe the measurement setup
2
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Figure 1: Schematic view of the head–wearable binocular see–through glassses with in–
ear headphones and the main processing unit that additionally stores the audio–visual
content for local playout.

(including the wearable device, the developed mobile application, and the encoded video
sequence characteristics) in greater detail. We continue with a detailed description of the
obtained results in Section 3 and evaluate the participating users’ video quality selection
performance in Section 4. We conclude with an outlook on future activities in Section 5.

2. Measurement Setup

In this section, we initially describe the employed wearable head–mounted optical
see–through display and the application we developed for the experimentation. We con-
tinue with a description of media characteristics and performed experimentation with
volunteering participants.

2.1. Binocular Augmented Vision Heads–Up Display

We employed the Epson Moverio BT–100 mobile viewer, which consists of a wearable
3D–capable heads–up display unit and a central processing unit. The processing unit
features both a directional pad and a touch pad and employs the Android Operating
System version 2.2 (“Froyo”). The unit is connected via wires to deliver video signals
and power to the see–through display unit, with a display control being integrated into
the wired connection. We illustrate the overall system configuration in Figure 1, noting
that no networking is involved for the display of the content, as it is contained on the
processing unit.

The display unit has a resolution of 960 × 540 pixels of 24–bit color with LED light
sources and a 23 degree field of view. Without the additionally available shade, a maxi-
mum of 70 % transparency is realized for the display. The images are projected from a
display panel built into the device’s sides, from which light is reflected through a lens,
and in turn hits a half–mirror layer in the light guide material. As we consider an eval-
uation of a commercially available off-the–shelf augmented binocular vision HMD, no
specific calibration was performed. Factory settings were applied, which allow for 24-bit
color reproduction at 60 Hz and the built–in LED light intensity was set to maximum
for highest contrast.
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Figure 2: Overall flow of the mobile application: Participants are presented with a
random selected quality for each segment and asked for a rating at the end of the segment
until all segments are played out.

2.2. Mobile Application

We developed a mobile Android application that can be executed on the wearable dis-
play’s control unit. The application displays a movie sequence (video and audio content),
followed by a Likert–scale question to rate the quality of the last displayed sequence. We
illustrate this approach in Figure 2.

Initially, a random quality for a movie sequence is selected and its value stored in a
text file on–device before starting the audio/video play–out from the on–device storage,
disabling potential network transmission impacts. After play–out, the user is asked to
select a quality level from a presented Likert–scale, with each selection of a quality level
captured in the same text file on–device. We do not enforce a time limit for the rating
procedure, as users need to interface with the mobile application through the processing
unit’s touchpad. Adding a time limit at this stage would increase the potential stress on
participants as they make their selections, in turn potentially influencing their ratings.
This process continues until all movie sequences are played out. The created text file with
the randomly chosen movie qualities and user rankings of movie qualities can afterwards
be copied from the device to a desktop computer for further processing.

2.3. Multimedia Description

We employ the publicly available and Creative Commons licensed Tears of Steel short
movie as source, which depicts an epic struggle between humans and robots in the future.
The video was made by the Blender foundation, merging computer–generated graphics
generated by the the open–sourced Blender software with real–world filmed scenes in Am-
sterdam, The Netherlands. We employ this short film as representative of today’s video
contents which commonly feature a combination of real–world and computer–generated
source materials (we refer the interested reader to http://tearsofsteel.org for more
details about the movie).

4
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Figure 3: Segmentation and encoding of the original video sequence resulting in 12
segments, each encoded into five different quality levels.

We employ the publicly available 720p version of the movie and segment this source
into logically connected scenes for processing, as illustrated in Figure 3. The individual
video segments were resized to support the native 960× 540 resolution of the augmented
binocular vision glasses and re–encoded using the popular open–source ffmpeg video tool
in 24 frames per second. The encoder used was libx264 with constant rate factor (also
known as constant quantization scale factor) settings of 1, 30, 35, 40, and 45, resulting
in a constant quality encoding with variable bitrates. We selected this approach, as
the source video sequence itself was professionally encoded with high fidelity settings,
and minimal encoding losses; these are contained in our encodings as well. The output
was visually inspected to ensure that the settings provided significant differences in visual
quality to allow mapping to a quality scale from 1–5, respectively. This represents quality
level differences observable within typical streaming scenarios; the resulting values for
the PSNR as an objective video quality metric comparing the source video quality to the
encoded video are provided in Table 1.

The average segment length is 1486 frames, with the shortest segment covering 817
frames and the longest segment covering 3499 frames. (We note that the individual
lengths are longer than the common 10 s employed in current perceptual video quality
evaluations, as the goal of this evaluation is a high–level content overview, leaving a
more detailed evaluation for future works.) Segments 4 and 10 contain significantly less
frames than the other segments; this was required to group multiple scenes into logically
fitting segment enabling end of segment questioning about quality. The longest segment
of the movie is the last one, which includes the titles and a short end sequence. The
average quality in each segment s, denoted as qs and measured as averaged PSNR of
the video frames within the sequence, is above 55 dB for the highest quality level and
just above 29 dB for the lowest. The largest difference typically is encountered from
the highest quality level to the second one, representing the introduction of visually
recognizable encoding losses. Afterwards, the difference between the different quality
levels is around 3 dB. Comparing the variability of the individual video frame i quality
qi,s in the different segments, either as standard deviation σ(qs) or coefficient of variation
CoV(qs), we observe a significantly higher level for the first and last two segments of the
video. The reason for this increased level is the number of all–black and title/credit
content video frames that are encountered in the beginning of the movie and towards the
end. The homogeneous single–color content increases the coding efficiency and results in
no measurable coding losses, bringing the PSNR to an increased level (indicated by the
maximum video frame quality value qmax

s ).
As the PSNR is not the most correlated to user–perceived qualities, albeit a frequently

used one, especially in network performance and video coder evaluations, we additionally
provide the Structured Similarity Index Metric (SSIM) and Video Quality Metric (VQM)
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Table 1: Overview of characteristics for the Tears of Steel movie used for experimentation
segmented into shorter segments at different quality levels. The typical difference between
quality levels is 3 dB, starting with visually identifiable encoding losses in the second
quality level.

Segment Frames Level PSNR

qmin
s [dB] qs [dB] qmax

s [dB] σ(qs) [dB] CoV(qs)

1 1548

1 52.497 64.350 188.131 27.402 0.426
2 34.846 45.035 188.131 25.105 0.557
3 32.056 42.205 188.131 25.619 0.607
4 29.391 39.375 188.131 26.101 0.663
5 26.715 36.380 188.131 26.405 0.726

2 1327

1 53.490 58.963 188.131 5.713 0.097
2 35.835 41.521 188.131 5.174 0.125
3 33.090 38.537 188.131 5.191 0.135
4 30.292 35.573 188.131 5.226 0.147
5 27.247 32.500 62.358 3.096 0.095

3 1259

1 53.333 57.216 65.594 2.753 0.048
2 36.237 40.371 44.755 1.444 0.036
3 33.307 37.504 41.913 1.539 0.041
4 30.428 34.572 38.952 1.612 0.047
5 27.736 31.531 35.939 1.627 0.052

4 823

1 52.859 56.537 65.128 2.926 0.052
2 34.397 39.234 43.729 1.742 0.044
3 31.589 36.347 41.049 1.853 0.051
4 29.030 33.426 38.176 1.895 0.057
5 26.379 30.454 35.215 1.809 0.059

5 1227

1 52.084 56.091 65.310 2.856 0.051
2 33.364 37.876 44.670 1.465 0.039
3 30.617 34.911 41.981 1.514 0.043
4 27.685 32.015 38.688 1.518 0.047
5 24.963 29.164 34.953 1.460 0.050

6 1699

1 51.612 55.879 65.490 2.733 0.049
2 33.492 38.527 44.238 2.179 0.057
3 30.947 35.641 41.965 2.455 0.069
4 28.399 32.735 39.661 2.638 0.081
5 26.046 29.793 37.143 2.696 0.091

7 1308

1 52.164 56.742 65.984 2.788 0.049
2 36.311 39.802 44.135 1.551 0.039
3 33.425 36.977 41.526 1.717 0.046
4 30.322 34.084 38.752 1.821 0.053
5 27.385 31.126 35.924 1.838 0.059

8 1160

1 52.162 56.562 65.327 2.812 0.050
2 33.748 40.078 43.457 1.493 0.037
3 30.807 37.318 40.735 1.608 0.043
4 27.779 34.425 37.905 1.675 0.049
5 25.204 31.338 34.926 1.615 0.052

9 1737

1 52.168 56.634 66.097 2.235 0.039
2 32.315 38.736 47.341 2.230 0.058
3 29.132 35.723 45.146 2.287 0.064
4 26.166 32.573 42.381 2.210 0.068
5 23.447 29.405 38.572 2.023 0.069

10 817

1 51.994 56.337 65.958 3.067 0.054
2 34.013 38.588 43.726 2.076 0.054
3 30.999 35.700 40.875 2.283 0.064
4 28.087 32.801 37.993 2.402 0.073
5 25.029 29.916 35.196 2.424 0.081

11 1216

1 52.913 57.439 188.131 11.682 0.203
2 35.194 39.431 188.131 12.984 0.329
3 32.101 36.529 188.131 13.249 0.363
4 29.068 33.671 188.131 13.503 0.401
5 26.274 30.813 188.131 13.751 0.446

12 3499

1 49.845 61.468 188.131 25.622 0.417
2 30.756 41.336 188.131 29.331 0.710
3 26.764 38.066 188.131 30.013 0.788
4 23.177 35.026 188.131 30.648 0.875
5 19.929 32.158 188.131 31.223 0.971
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as additional objective video quality evaluation metrics, see, e.g., [22, 23]. We illustrate
the segment averages of these two metrics in Figure 4.

Focusing on the average SSIM initially, we note that the highest values represent
the smallest encoding losses. The higher encoding quantization scales (or constant rate
factors) result in varying SSIM averages, based on the individual segment content. Seg-
ments 5 and 11 exhibit the overall lowest average SSIM values obtained for each encoding
setting within our setup. In addition, we observe that the changes between the individual
segments’ different encodings are relatively comparable. For the segment average VQM
values in Figure 4b, we observe a similar, albeit reverse trend due to the VQM measuring
the visual impairments. We again note that scenes 5 and 11 exhibit higher values, but
the VQM average for the final scene 12 exhibits the highest level of approximated visual
impairments. We again note that the lowest encoder quantization scale results in only
negligible quality impairments as identified by the VQM. Corroborating the observation
for the SSIM, we find that the relative changes in between the different settings for the
individual segments are very comparable.

As the perceived multimedia quality is the result of audio–visual stimuli interplays [24],
we note that we do not process the audio component of the movie segments and copy
the original audio source to the various new segment versions. The original source audio
is 48 kHz sampled stereo and encoded in the MPEG Advanced Audio Coding (AAC)
standard. Though this encoding standard is lossy, the 128 kbps used for compression of
the audio are common in consumer applications and represent a common quality level
that should not impact the overall perception.

2.4. Experimental Set–Up

Original research protocol submission to the Institutional Review Board (IRB) at
Central Michigan University was performed in February, 2014 and approval was ob-
tained beginning of April, 2014. Participating volunteers were recruited from students,
faculty, and staff of the Department of Computer Science at Central Michigan Univer-
sity from April through May, 2014. The participants were instructed about the nature of
the experiment and its overall procedural flow; this was followed by a description of the
wearable display and the required interaction with it. The instruction part was followed
by consent form administration before fitting the wearable display and commencing ex-
perimentation. The experiments took place in well–lit office spaces and classrooms, with
participants being instructed to look at a stretch of white wall or a white–board to allow
for comparability of results. All of the participants used the in–ear headphones to play
back audio accompanying the visual content to be evaluated.

3. Experimental Results

In this section, we discuss the results obtained through the experimentation with
participants. We report findings for experiments conducted with 15 volunteers, which is
the required sample size for audio–visual experiments outlined in [18]. We note, however,
that the experimental design resulted in not every segment encoding level having the
same number of viewers. We present the encoded video quality levels v, which have been
ranked based on the average segment PSNR as one potential approach, as in Table 1.
We subsequently present the participant–selected qualities p for each user u and segment
s, both are provided in Table 2.
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Figure 4: Segment averages of the Structured Similarity Index Metric (SSIM) and Video
Quality Metric (VQM).
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Table 2: Experimental results for encoded video quality levels v and the participant–
selected qualities p for each user u and segment s.

Segm. Mode User u
s v/p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
v 2 1 1 3 5 1 5 3 5 1 3 5 5 5 1
p 3 3 1 2 4 2 4 4 3 3 5 3 3 5 2

2
v 2 5 4 5 4 3 5 4 1 1 5 1 4 1 1
p 4 4 4 5 4 2 2 3 2 3 4 1 4 4 3

3
v 4 2 1 5 1 5 3 3 3 3 1 2 1 4 3
p 5 3 1 5 2 3 2 4 3 4 1 2 1 5 4

4
v 3 1 4 1 5 4 3 4 5 3 3 5 1 5 5
p 5 2 4 5 3 3 4 4 4 2 3 1 5 5

5
v 5 1 1 2 1 1 2 3 4 3 4 3 3 3 3
p 5 3 2 3 1 2 1 3 3 4 2 3 2 5 4

6
v 3 5 2 2 2 3 4 3 4 4 1 3 3 3 5
p 5 3 3 3 3 2 2 4 4 4 2 3 1 5 4

7
v 1 2 5 1 1 2 2 3 1 5 4 2 1 5 4
p 2 3 4 3 2 2 2 5 1 4 3 2 1 5 4

8
v 3 5 4 2 2 1 1 2 3 1 4 2 1 2 2
p 5 4 3 3 3 1 1 2 3 2 3 2 1 5 3

9
v 3 3 3 1 3 4 4 1 1 5 1 4 2 2 2
p 5 3 3 1 3 4 4 1 1 5 3 4 1 5 3

10
v 4 1 3 1 3 2 5 1 1 5 5 5 5 5 3
p 5 3 3 1 2 3 4 1 2 4 3 3 4 5 4

11
v 1 3 4 4 4 5 4 4 5 4 4 2 5 2 1
p 2 3 5 5 3 4 4 4 5 4 3 2 4 5 3

12
v 3 2 4 2 4 3 1 1 4 3 4 1 3 2 4
p 3 5 4 4 3 3 2 3 3 1 1 2 4 5

9
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Figure 5: Mean Opinion Score (MOS) ratings related to identified video quality levels.

The overall average for the randomly chosen video quality levels is µv = 2.94 with a
standard deviation of σv = 1.44, while the user–selected ones exhibit a higher average
with slightly smaller variability (µp = 3.13, σp = 1.24). The differences between the two
indicates that users overall select slightly higher quality levels than actually encoded,
based on our initial ranking scale.

3.1. Mean Opinion Scores

We illustrate the mean opinion scores from all video segments and users based on our
video encoding ranking in Figure 5.

We observe that our initial quality ranking from 1–5 is reflected trend–wise in the user
selection. We note, however, that the mean user selection score begins at an average of 2,
which is higher than our initial ranking of video qualities. The increased video qualities
result in a progressive, almost logarithmic increase as our ranking increases. We also
note that the individual ratings at each of the quality rankings exhibit fairly high levels
of variability in between participants.

Rather than just relying on our classification of the video sequences by modifying a
constant quantization scale, we additionally present the mean opinion score as result of
the underlying video segment qualities a participant experienced as part of the study. We
employ the PSNR, SSIM, and VQM metrics as previously described in Section 2.3. We
illustrate these relationships in Figure 6. We initially observe that the different encoding
settings result in a widespread range of qualities indicated by the average segment PSNR
values. Furthermore, due to our initial high quality setting, these encoded segments
stand out a separate cluster towards the high end of PSNR values. For the medium
range, we observe the significant number of high ratings performed by the participants.
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Figure 6: Mean opinion scores (MOS) determined from segment averages of the PSNR,
SSIM, and VQM metrics.
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Evaluating the overall relationship, we derive a fitted logarithmic relationship of

MOS = 3.028 · ln(PSNR)− 7.8402,

which, due to the variability of user ratings, resulted in R2 = 0.366. Next, we evaluate
the interplay of the MOS and the average segment SSIM, illustrated in Figure 6b. As the
similarity–based metric is related to the participant opinions, we note that the overall
spread is somewhat reduced visibly, which is attributed to the high ratings of participants
towards the higher SSIM values, as well as the SSIM values approaching one for the high
quality (i.e., low quantization scale) encodings. We note that the relationship tends to be
inverse to the one observed for the PSNR in Figure 6a. Indeed, a fitted curve indicates
an exponential relationship described by

MOS = 0.0142 · e5.7414·SSIM,

resulting in a higher R2 = 0.59993.
Thirdly, we consider the MOS in relationship to the average segment VQM values

in Figure 6c. We initially observe an almost inverse relationship between the VQM and
SSIM, due to one rating similarities, the other one rating negative impacts on quality.
We additionally note that a slightly more condensed relationship between viewer ratings
and average VQM values can be observed for the medium ranges. The fitted declining
function can be expressed as

MOS = 4.5622 · e−0.27·VQM,

with a resultant R2 = 0.51815.
Overall, the relationships between the participant–reported MOS scores and the ob-

jective indicators measured by PSNR, SSIM, and VQM metrics are in line with prior
findings between QoS and QoE, such as those reported in [19], [20]. We note, how-
ever, that additional studies are required to reduce the currently inherent variability in
participant reported MOS values.

3.2. Comparing Video Quality Ranking and MOS Results

Comparing the means through an ANalysis Of VAriance (ANOVA) to test for differ-
ence of means reveals that they are to be considered related F (1, 354) = 1.89, p > 0.169.
For all pairs, independently of the segment, we observe a correlation of ρv,p = 0.62,
which indicates a possible relationship between the encoded video quality level and user–
identified one. Next, we consider the relationship within the individual segments to derive
a more detailed view on the participant selection given content and segment length dif-
ferences. We compare the pair–wise correlation between the set and user–selected video
quality values on the 5–point scale and their two–tailed T–Test significance (for a 95 %
confidence level) in Table 3. We initially observe that with exceptions for segments 5
and 10, the difference average is slightly negative, indicating that on average, participants
chose higher quality levels than displayed. The comparatively large standard deviation
indicates that users deviate significantly from the actual displayed values in almost every
segment, with the exceptions of segments 8 and 9. These two segments exhibits higher
levels of content dynamics as the plot of the movie moves towards its climax. We note
that the correlation is with few exceptions over 0.5, indicating again that user–selected

12



Table 3: Overview of correlation and paired sample T–Test two–tailed significance values
for segment–based video quality levels and user selections.

Segm. Samples Diff. Avg. Diff. Std. Dev. Corr. T Sign.
s N µv−p(s) σv−p(s) ρv,p(s) t p
1 15 -0.067 1.486 0.562 -0.174 0.865
2 15 -0.2 1.568 0.446 -0.494 0.629
3 15 -0.267 0.884 0.809 -1.169 0.262
4 15 -0.267 1.163 0.563 -0.888 0.389
5 14 0.071 0.997 0.725 0.268 0.793
6 15 -0.067 1.387 0.255 -0.186 0.855
7 15 -0.267 0.961 0.798 -1.075 0.301
8 15 -0.4 1.121 0.603 -1.382 0.189
9 15 -0.467 1.06 0.718 -1.705 0.11
10 15 0.133 1.187 0.720 0.435 0.67
11 15 -0.267 1.163 0.554 -0.888 0.389
12 14 -0.286 1.383 0.368 -0.773 0.453

values and randomly displayed video quality levels are potentially related. We compare
these findings by performing paired T–Tests for the individual user selections in each
segment and present results in Table 3 as well. The relatively small differences in av-
erage, paired with the calculated standard deviations, do not indicate that there is a
statistically significant difference between the video categories presented and the ones
that were participant–selected, which is corroborated by the p–values obtained for the
individual segments. The smallest p–value determined is 0.11, which is slightly above
typical significance levels.

4. Selection Performance

In this section, we interpret the selection of the video quality by participants as a
retrieval process and calculate the typical performance measures. We denote the user–
selected quality level u and the randomly displayed encoded video quality level v for each
segment s as in the preceding Section 3 and provided in Table 2. We note that throughout
this section, we assume that the the video quality level v is at least a ranking–wise close
representation of the grounded truth. Commonly, a determination of the ground truth
requires extensive human subject ratings to allow for a broad judgment base. Here, we
assume that the ranking of video qualities as performed based on the different metrics is
a reflection of the ground truth. This assumption leans itself onto prior comparisons of
full reference metrics, such as [25] for still images or [26] for applications.

4.1. Metrics

We employ the common notation introduced in, e.g., [27], by defining the confusion
matrix in dependence of a specific video quality level ν (where [·] denotes the Iverson
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Bracket) as follows:

TruePositive tp(ν) =
∑
s,u

[v(s, u) = ν] · [u(s, u) = ν] (1)

FalsePositive fp(ν) =
∑
s,u

[v(s, u) 6= ν] · [u(s, u) = ν] (2)

FalseNegative fn(ν) =
∑
s,u

[v(s, u) = ν] · [u(s, u) 6= ν] (3)

TrueNegative tn(ν) =
∑
s,u

[v(s, u) 6= ν] · [u(s, u) 6= ν] (4)

Omitting the relationship to ν for clarity, the common performance metrics are defined
as:

Accuracy acc =
tp+ tn

tp+ fp+ fn+ tn
(5)

Precision prec =
tp

tp+ fp
(6)

Recall rec =
tp

tp+ fn
(7)

F− Score F1 =
2 · prec · rec
prec+ rec

(8)

We employ these values to determine the performance of the participant selection of a
displayed video quality as result of the human quality perception in relationship to the
encoded video quality levels for the individual segments.

4.2. Video Quality Dependence

We initially note an overall average accuracy in video quality selection of acc = 75.6
% (or error rate of 25.4 %), indicating that for the majority of segments, participants
were able to discern the video quality without training correctly into one of the five
quality levels. The precision and recall values observed are prec = 40.8 % and rec = 35.9
%, respectively, resulting in an F-score of F1 = 0.38. This indicates that overall, users
were only exhibiting low–medium ability to correctly identify the video quality level.
The error rate can be explained by the nature of the see–through display, which might
allow certain types of video quality impairments to go unnoticed. The dependency of
the different values becomes more apparent when evaluating the user performance in
dependency of the underlying video quality, as illustrated in Figure 7.

We observe that the accuracy and F1 scores both start on a high level, decrease with
higher quality levels, followed by an additional increase. Only the F1 score exhibits a
slight decrease for the highest quality. The accuracy is the lowest for the medium quality,
which can be explained with parts of sequences exhibiting higher levels of complexity,
which result in higher levels of compression artifacts even in medium quality settings. As
a result, participants are rating the displayed quality lower than it actually is; opposite
considerations apply for a better quality rating. At the extreme ends, there are either
significant quality impairments throughout a segment or only very few, which likely
makes it relatively easy to discern these endpoints and, thus, results in higher accuracy.
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Figure 7: Selection performance results in terms of accuracy and F1-score depending on
the video quality level v. Medium video quality level ranges result in lower participant
selection performance.
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Figure 8: Segment–dependent participant selection performance. Selection performance
coincides with overall movie content and storyline dynamics.

4.3. Segment Dependence

We now shift the view to evaluate the impact of the content present in the different
segments on the accuracy and F1 score of the participants’ selection of the video quality
when compared to the actual ones, illustrated in Figure 8.

We observe an average accuracy that overall remains around or above 70 %. We
note an initial rise, followed by a drop to the middle of the complete movie, followed
by an increase and a final decrease. This behavior is followed closely by the F1 score as
well, but with larger differences in the rising and falling trends. Segment 9 exhibits the
highest values for both, with an accuracy above 85 % and an F1 score just above 60 %.
As a segment with several highly dynamic action–scenes, the imperfections become more
obvious, e.g., pixelations or blockiness in explosions. However, the rise to this point
also coincides with the tension of the actual movie (that climaxes in segments 9 and
10), which might be an additionally contributing factor. Overall, these results indicate
that content variation has an impact on accuracy and precision/recall and needs to be
considered as in regular display facilities for video encodings.

5. Conclusion

The mobile consumption of movie content in augmented reality settings gives rise to
the question of how mobile users perceive the display of multimedia content on their de-
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vices; here, we presented the the first study addressing this research domain for wearable
binocular vision see–through displays using a commercial off-the–shelf consumer device.

For the publicly available Tears of Steel short movie, segmented into multiple shorter
sequences, we find that users tend to slightly overestimate the video quality, with no
statistically significant difference of means (but approaching it for individual segments).
The participant–selected high quality levels tend to correlate with the content of the seg-
ments, with higher levels of content dynamics exhibiting larger positive ratings compared
to the presented video quality level. Though overall, we notice a medium–high accuracy
level around 75 %, the precision and recall values are significantly lower, corroborating
the general results. We reason that a significant portion of the positive viewer bias stems
from the nature of the optical see-through device, which likely obscures smaller visual
imperfections when compared to a traditional display method. This is substantiated by
participant selections exhibiting higher levels of accuracy, precision, and recall for high
and low video quality levels throughout, but lower values in the medium range, where
some obfuscation might lead to higher quality ratings.

Future multimedia delivery systems targeting this form of media display can take
these findings into account to optimize content modification and delivery mechanisms.
A necessary refinement required for future evaluations of content characteristics, com-
pression, delivery, and adaptation methods is the determination of a detailed testing
protocol that allows researchers to perform comparable evaluations. With a consensus
on such a protocol, future investigations in this domain will become enabled to target
fine–grained parameters commonly employed in today’s traditional display settings. Fu-
ture research avenues can evaluate more interplays of audio quality or “background”
real–world settings and their influence on the perceived quality.
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