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Abstract

We propose a new top down probabilistic saliency model for egocentric video

content. It aims to predict top-down visual attention maps focused on manip-

ulated objects, that are then used for psycho-visual weighting of features in

the problem of manipulated object recognition. The model is probabilistically

defined using both global and local appearance features extracted from auto-

matically segmented arm areas and objects. A psycho-visual experiment has

been conducted in a guided framework that compares our proposal and other

popular state-of-the-art models with respect to human gaze fixations. The ob-

tained results show that our approach outperforms several popular bottom-up

saliency approaches in a well-known egocentric dataset. Furthermore, an addi-

tional task-driven assessment for object recognition in egocentric video reveals

that the proposed method improves the performance of several state-of-the-art

techniques for object detection.
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1. Introduction and motivation

The rationale and application of this research is in the objective assessment

and life-logging of Alzheimer patients in their Instrumental Activities of Daily

Living (IADLs). For this particular task, egocentric video analysis has gained

a lot of interest. Indeed this kind of video content is recorded by cameras worn5

by a person, representing a cheap and effective way to record users’ activity,

and offering a unique point of view on the manipulated objects (see Figure 1).

Recent studies have demonstrated how crucial is the recognition of manipulated

objects for activity recognition under this scenario [? ? ]. Considering methods

for object recognition, two kinds of approaches can be identified in the literature:10

those relying on sliding windows, and those ones that first try to segment the

foreground area containing the object of interest.

Concerning the first type, the authors of [? ] applied the well-known Dis-

criminatively Trained Deformable Part-Based (DPM) Models [? ] to egocentric

video. The second kind of approaches follows the well-known paradigm of fore-15

ground object segmentation to guide the object recognition process. The authors

of [? ] proposed a method that firstly segments the foreground areas from the

background of each frame. Once the segmentation is made, the method detects

and labels regions associated with the hands and the object being manipulated,

respectively, and finally assigns an object label to the frame.20

Concerning the second line of research, to drive the recognition process to

relevant areas in the images, saliency or visual attention modelling was incor-

porated to the object recognition paradigms, showing an increase in the system

performances [? ? ]. In this paper, we will follow this line of research, as we

are particularly interested in the modelling of human visual attention based on25

task-oriented top-down cues.

Generally speaking, two types of attention are commonly distinguished in the

literature: bottom-up or stimulus-driven and top-down attention or goal-driven.

[? ],[? ]. The authors of [? ] define the top-down attention as the voluntary

allocation of attention to certain features, objects, or regions in space. They also30
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(a) GTEA Dataset [? ] (b) EDSHK dataset [? ]

(c) ADL dataset [? ]

Figure 1: Examples of egocentric datasets illustrating the unique point of view on manipulated

objects.

state that attention is not only voluntary directed as low-level salient stimuli

can also attract attention, even though the subject had no intention to attend

these stimuli. A recent study [? ] about how saliency maps are created in the

human brain, shows that an object captures our attention depending both on

its bottom-up saliency and top-down control.35

Modelling of human visual attention has been an intensively explored re-

search subject since the last quarter of the 20th century and nowadays the

majority of saliency computation methods are designed from a bottom-up per-

spective [? ]. Bottom-up models are stimulus-driven, mainly based on low-level

properties of the scene such as color, gradients orientation, motion or even40

depth. Consequently, bottom-up attention is fast, involuntary and, most likely

feed-forward [? ].

One of the first complete models of visual attention was proposed as a fusion

of features based on the Human Visual System modelling (HVS) by Itti [? ].
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Since then, much work has been made in this domain ([? ? ? ]). The reader is45

referred to a recent benchmark of several saliency models for more details [? ].

However, although the literature concerning models of top-down attention

is clearly less extensive, the introduction of top-down factors (e.g., face, speech

and music, camera motion) into the modelling of visual attention has provided

impressive results in previous works [? ? ]. In addition, some attempts in the50

literature have been made to model both kinds of attention for scene under-

standing in a rather “generic” way. In [? ] the authors claim that the top-down

factor can be well explained by the focus in image, as the producer of visual

content always focuses his camera on the object of interest. Nevertheless, it is

difficult to admit this hypothesis for expressing the top-down attention of the55

observer of the content: it is always task-driven [? ].

More recent works using machine learning approaches to learn top-down be-

haviours based on eye-fixation or annotated salient regions, have proven also to

be very useful for static images [? ? ? ] as well as for videos [? ? ]. Further-

more, with advent of Deep Learning Networks (DNN), some novel approaches60

have been designed in the field of object recognition, which build class-agnostic

object detectors to generate candidate salient bounding-boxes which are then

labeled by later class-specific object classifiers [? ? ]. However, it seems impos-

sible for us to propose a universal method for prediction of the top-down visual

attention component, as it is voluntary directed attention and therefore it is65

specific for the task of each visual search. Nevertheless, the prior knowledge

about the task the observer is supposed to perform, allows extracting semantic

clues from the video content which would ease such a prediction.

The current state-of the art in computer vision allows detection of some

categories of objects with a high confidence. A variety of face or skin detectors70

have been proposed since the last two decades [? ]. Hence, when modelling

a top-down attention in a specific visual search task, we can use such “easily

recognisable” semantic elements that are relevant to the specific task of the

observer and may help to identify the real areas/objects of interest.

In this paper we propose to use domain specific knowledge to predict top-75
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down visual attention in the task of recognizing manipulated objects in egocen-

tric video content. In particular, our “recognisable elements” that are relevant

to the task, are the arms and hands of the user wearing the camera and per-

forming the action. Their quantized poses with regard to different elementary

components of a complex action such as object manipulation will help in the80

definition of the area where the attention of the observer searching for manipu-

lated objects will be directed. We evaluate our model from two points of view: i)

prediction strength of gaze fixations of subjects observing the content with the

goal of recognition of a manipulated object, and ii) performance in the target

object recognition by a machine learning approach.85

The rest of the paper is organized as follows: in section 2 we present our

approach to generate top-down visual saliency maps. Section 3 describes the

dataset, different experimental set-ups and provides the evaluation of the results.

Finally section 4 draws main conclusions of this work and introduces research

perspectives.90

2. Goal-oriented top-down visual attention model

In this section we define a model of visual attention prediction in the task

of manipulated object recognition. Our model relies on the detection and seg-

mentation of some objects, considered as references, that help to locate the

real areas of interest in a scene, namely the objects being manipulated. In95

our proposal, arms/hands are automatically computed for each frame using the

approach introduced by Fathi et al. [? ].

We propose to build our model as a combination of two distinct sets of fea-

tures: global and local. The former describes the geometric configuration of the

segmented arms, which are clustered into a pre-defined set of states/configurations.100

This global information is used to select one of the components in a mixture

model. The second set, concerning the local features, is then modelled using

the particular distributions corresponding to the selected global component.

Since the original approach in [? ] generates not only an automatic segmen-
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tation masks for arms/hands, but also for manipulated objects, one can wonder105

if building saliency maps around manipulated objects is needed as the objects

have been already segmented. The automatic object segmentation tends to sup-

ply very small parts of objects due to the occlusions by hands (see Figure 9(c)).

Our intended saliency maps, on the contrary, cover the whole zone of interest

even in the presence of occlusions. As we will show in the experimental section,110

even fitting a 2D Gaussian on the segmented objects as a trivial approximate of

salient zones, in order to unify the possible segmented parts of objects, provide

poor object recognition results.

2.1. Defining global features

The features we propose are based on the geometry of arms in the camera115

view field, which is correlated with manipulated object size and position. Each

arm, from elbow to the hand extremity, is approximated by an elliptic region

in the image plane. Hence an ellipse is first fitted to each segmented arm area

and, then, several global features are defined, namely:

• Relative location of hands: Two features are extracted that encode the120

relative location of one hand with respect to the other (see figure 2(a)).

For that end, taking the left hand centre as the origin of coordinates, the

vector that joins the origin and the right hand is represented by means

of its magnitude ρRel and phase ϕRel . Magnitude and phase are strong

indicators of the objects width and holding pose, respectively.125

• Left arm orientation and Right arm orientation: As illustrated on figure

2(b) the orientation of each arm ( ϕL and ϕR) is defined by the angle

between principle axis of ellipse and Y-axis in image plane. The arms

are mostly oriented depending on the objects being manipulated, e.g.:

holding a cup or pouring something (milk, juice, . . . ) present usually130

distinguishable arms orientations.

• Left arm depth and Right arm depth with regard to the camera: an object

size is likely to be correlated with the “depth” of the arms, i.e. a measure
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(a) (b)

(c)

Figure 2: Illustrations of the 6 global features. 2(a): Relative location of hands, 2(b): Left

arm orientation, 2(c): Left arm depth and Right arm depth with regard to the camera.

of its closeness to the camera. In this work, the body-worn cameras do not

provide a real depth information. A trivial approximate of the “depth” of135

an arm, is the minor axis length dL and dR of the fitted ellipse (see figure

2(c)).

A vector g = (ρRel, ϕRel, ϕL, ϕR, dL, dR) containing these six geometrical

features is computed for each image in the training set, and then clustered into

K global appearance models using k-means algorithm. It is worth noting that140

a Z-score normalization has been performed over the data, in order to prevent

outweighing features with large range over attributes with small ones [? ].

Figure 3 illustrates results in case of 8 clusters in our training dataset. The

difference between the global appearance states (a) - (h) is easily noticeable.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Representation of the arm segmentations closest to the centre of 8 global appearance

model clusters. Each cluster is represented by the sample that is closest to the cluster centre.

2.2. Defining local features145

Global appearance models define the most common states in which the arms

can be found. Depending on these models, the zones of interest are different

and the saliency computation needs to be adapted to. The “local” features we

introduce serve for refining the underlying saliency distribution in the frame for

a given global state. These features are the coordinates of a hand centre c (or150

hand centres in case the global state contains two hands). Their computation

is also based on geometrical considerations.

Intuitively, when only the hand appears in the image, the hand centre c

should be situated around the barycentre of the whole segmented image. Sim-

ilarly, if the whole arm appears such on figure 4, the hand centre should be

located closer from the extremity of the arm. Looking at Fig. 4, let us define

two segments: xhs is the segment that joins the beginning of the arm (origin

of coordinates) with the beginning of the hand, and xae is the full arm-length.

We have observed that the ratio d = xhs/xae is closely related with the ratio

r between the minor and major axis of the fitted ellipse. In particular, to es-

tablish this relationship, we have randomly select 2615 arm segmentations for
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Figure 4: Illustration of the hand centre c computed as the barycentre of the orange box and

the key points around: xhs the starting position of the hand on the major ellipse axis, and

xae the end position of the whole arm.

which we annotated the hands starting points xhs over the major axis of the

ellipse (represented as blue dots in Fig. 5), and then optimized an exponential

model as:

d(r) = aebr (1)

where a and b are the coefficients computed by direct exponential fitting, r is

the ratio between minor/major axis of the ellipse fitting the segmented arm, and

d(r) gives the ratio between the starting points xhs of hands on the major ellipse155

axis and the arm length xae as a function of r. The results of this optimization

are shown in Fig. 5) (continuous red line). Finally, the 2 dimensional center c

coordinates are then defined as the barycentre of the segmented area that lies

between the starting point of the hand and the end of the arm (the barycentre

of the orange dotted box in Fig. 4). Computed “hand centre” c coordinates160

will serve to generate the resulting hand-related saliency map.

In order to evaluate the robustness against outliers we also performed re-

gression using RANSAC [? ] (with two thresholds, see green dashed and cyan

dotted lines in Fig. 5). For all annotated data we computed the hand centres as

well as the ones obtained with our three regression methods. Table 1 shows the165
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Direct exponen-

tial regression

Exponential regres-

sion with Ransac,

Threshold=0.1

Exponential re-

gression with

RANSAC, Thresh-

old=0.01

Average

distance (in

pixels)

18.6 17.9 17.5

Table 1: NSS mean scores (with standard deviations) between human fixation points and

different saliency map models. Our model outperforms the others

absolute average distances in pixels between the centres annotated by human

annotators and the ones obtained with our three methods.

These results show that even though there are outliers, the final center ap-

proximations are very close (the difference is of order of 1 pixel) with and without

outlier rejection by RANSAC. Furthermore, we noticed that stronger errors oc-170

cur when the size of the hand is large (close-up view) in which case the saliency

map are also larger.

2.3. A Probabilistic Model for Top-down Visual Attention Prediction

As a human observer would be attracted to the objects manipulated by

hands, we consider the joint locations of arms/hands and objects as predictors175

of top-down visual attention. Hence, we have developed a probabilistic model

for top-down visual attention that incorporates both global and local features

distributions. The graphical model of our approach for Top-Down visual atten-

tion is shown in Fig. 6. Given a corpus of D training images, the objective is to

learn the process that chooses a set of N salient spatial locations x within each180

frame.

Let us first introduce a simplified model considering just the set of K global

arm configurations z = {z1, ..., zK}, and their relationship with the global fea-

tures g. Given z, the probability density function (pdf) of the vector g can be
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Figure 5: Graph representing the ratio between hands beginning and arm length depending on

the minor/major axis lengths of the ellipse fitting the segmented arms. Blue dots correspond

to the values manually annotated, red continuous line to the direct exponential regression,

dotted cyan and dashed green line to the exponential regressions with RANSAC and different

thresholds

modelled as a Gaussian mixture.

p(g|z) =
K∑

k=1

wkp(g|zk) (2)

Here K is the number of clusters in section 2.1, and remains an open parameter

in our model. The weights wk stand for the prior probabilities of the compo-

nents in the mixture and are derived from the results of the clustering stage,

by computing the proportion of training images assigned to each cluster. In

Gaussian formulation, the likelihood of the global features given the component

is defined as:

p(g|zk) = N(g;µz
k,Σ

z
k) (3)

with mean vector µz
k and covariance matrix Σz

k. Both parameters are obtained

from the results of the clustering stage, by computing the parameters of the
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Figure 6: Graphical model of our approach Top-down visual attention modelling with manip-

ulated objects. Nodes represent random variables, edges show dependencies among variables,

and boxes refer to different instances of the same variable. Latent variables (transparent back-

ground): z set of global arms configurations, h set or arm labels, c set of hand centre positions.

Observable variables (shaded-green background): g global features, x spatial locations. D and

N refer respectively to the number of training images and number of pixels in a frame.

Gaussian distribution over the set of samples assigned to each cluster (global

configuration).185

After introducing our simplified model for global features, let us extend it

by considering the distributions that depend on local features. For each elemen-

tary arms model zk, we introduce the pdf of each hand p(h|zk), where h is an

index variable with two possible values h = 0, 1 for left and right hand respec-

tively. Once given the arms model zk and the selected hand h, its local centre190

coordinates are also probabilistically modelled by the distribution p(c|h, zk).

Finally, the likelihood of a point x belonging to the area of interest is ex-

pressed by the conditional distribution p(x|h, c, zk). This distribution models

the probability of a pixel to belong to the object being manipulated given the

current geometric configuration of arms and hands. It is easy to note that the195

relative object location and pose is different for various global configurations

such as the ones shown in Fig. 3.

Putting everything together, we can define the partial model involving the
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local features:

p(x|zk) = p(h|zk)p(c|h, zk)p(x|h, c, zk) (4)

Next, we can define the selected distributions for the local variables as:200

1. The pdf p(h|zk) is given by an experimental discrete distribution (p(h =

j|zk), j = 0, 1)

2. The hand centre c follows a Gaussian distribution p(c|h = j, zk) = N(c;µc
j ,Σ

c
j).

3. The experimental pdf p(x|h = j, c, zk) is computed also on training set by

superimposing all left and right hands from object segmentation images205

belonging to the cluster zk.

The first two pdfs are simply learned by computing their parameters us-

ing samples on the training set (see sec. 2.2 for the details). For the third

distribution p(x|h = j, c, zk), it becomes necessary to firstly crop object seg-

mentation images (or Bounding Boxes instead of segmentation) by selecting210

a region around the hand centre, and then superimpose and accumulate all

cropped object images belonging to the same global component. The resulting

accumulated map for each hand and global configuration is then normalized to

sum to one over spatial locations (to become a pdf).

Once in test, in order to compute the saliency map of a particular video215

frame, the learned distribution is accordingly shifted to the hand centre in the

frame. Figure 7 shows different examples of these distributions for left and right

hands, and a given five global appearance models.

Finally, integrating the distributions of global and local features, the salience

value of a pixel x is defined as its likelihood over the proposed model for saliency:

S(x) = p(x,g) =
K∑

k=1

wkp(g|zk)p(x|zk)

=
K∑

k=1

wkp(g|zk)
1∑

j=0

p(h = j|zk)p(c|h = j, zk)p(x|h = j, c, zk) (5)
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Figure 7: Five examples of the obtained experimental distributions p(x|h, c, zk). Left column:

arm segmentation closest to cluster, Middle column: left hand distribution, Right column:

right hand distribution.

Let us note that the model in eq.(5) allows to compute saliency even in the

case where one of the arms is absent by simply considering the corresponding220

probabilities p(h = 0|zk) or p(h = 1|zk) as zero.

To summarize, we have developed a probabilistic model that explains how

salient pixels are chosen based on hands/arms configuration and the relative

expected location of the object being manipulated within each geometric ar-

rangement.225
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3. Experiments and results

In this section we present the dataset and provide a whole description of the

different experimental set-ups for the comparison of our probabilistic top-down

saliency model against other saliency approaches. We also assess its contribution

regarding manipulated object recognition performances.230

3.1. Dataset description

The GTEA dataset we work on was introduced in [? ]. It is a publicly

available database of egocentric videos of 4 subjects performing 7 types of in-

strumental activities of daily living. The segmentations of arms and objects of

interest are provided for 17 videos. The frames were annotated with the ob-235

jects of interest but we manually extended this annotation by drawing bounding

boxes on them. The bounding boxes provide the “ground truth” results that

could be reached with an “ideal” rectangular salient area. We did not use the

setup proposed in [? ], where the authors used videos from 3 subjects to train

their system and the last one for evaluation, since the arm segmentations pro-240

vided with the dataset do not cover all videos from Fathi’s setup. Instead we

have split the dataset into a training and test set of videos in such a manner as

to even the number of samples of each object category in both sets.

For a better understanding, Table 2 contains the list of videos belonging to

the training and test sets, Figure 8 shows the number of occurrences of each245

category in both sets. Let us note that this set-up can be consireded more

challenging than the one presented in [? ] since there is less training data and

more test data. Furthermore we would also like to explain that, although videos

from the same user are contained in both training and test datasets, it does not

simplify the recognition task with respect to the original set-up as, in practice,250

both the scenario and manipulated objects are the same for every user in the

dataset.
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Figure 8: Occurences of each class in our Train and Test sets. The dataset has been split by

videos so that the number of samples of each category in both sets is closest.

Training Set Test Set

S3 Hotdog C1 S3 Tea C1

S1 Cheese C1 S2 Tea C1

S2 Peanut C1 S2 Cheese C1

S2 Coffee C1 S2 Pealate C1

S3 Coffee C1 S1 Coffee C1

S1 Tea C1 S1 Hotdog C1

S1 Pealate C1 S1 CofHoney C1

S3 Peanut C1 S1 Peanut C1

S2 Hotdog C1

Table 2: List of videos in Training and Test sets.
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3.2. Selected visual saliency models for comparison

The following saliency prediction models were selected for comparison due

to their popularity or particular suitability to egocentric video.255

• The well-known reference model developed by Itti [? ]. We will denote it

as “ITTI” in the follow up of the paper.

• The graph-based visual saliency model developed by Harel [? ]. It will

now be referred to by the acronym “GBVS”.

• The spatio-temporal-geometric model presented in [? ] since it has260

been specifically developed for saliency extraction in egocentric videos

and presents the state-of-the art in saliency-based object recognition in

this content [? ]. This model will be referred as “STG”.

• Visual Attention maps built on gaze fixations by reference Wooding’s

method [? ]: the fovea projection for each fixation is modelled with a265

Gaussian of two visual degrees spread and resulting multi-Gaussian sur-

face is normalized.

Figure 9 contains computed saliency maps for a randomly selected frame

(a). We also display the manually annotated bounding box of the manipulated

object (b), as well as the automatically extracted segmentation mask (c).270

3.3. Psycho-visual evaluation of proposed saliency model

In this section we assess the capacity of our top-down model to predict human

visual attention in the task-guided psycho-visual experiment. The saliency mod-

els presented in section 3.2 were also assessed for the sake of comparison. The

psycho-visual experiment was designed for recording gaze fixations of subjects275

who observed the egocentric video with the task of recognition of manipulated

objects. For this experiment 31 participants have been gathered, 10 women and

21 men. They were given a written instruction to look specifically at the manip-

ulated object in videos. Each video was watched by at least 15 subjects. The

gaze positions have been recorded with a HS-VET 250Hz Cambridge Research280
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(a) Original frame (b) Bounding Box (c) Fathi’s segmenta-

tion

(d) Visual attention

Map

(e) ITTI (f) GBVS (g) STG (h) Ours

Figure 9: Saliency models selected for comparison.

Systems Ltd eye-tracker. The experiment conditions and the experiment room

were compliant with the recommendation ITU-R BT.500-11 [? ]. Videos were

displayed on a 23 inches LCD monitor with a native resolution of 960 × 540

pixels. To avoid image distortions, videos were not resized to screen resolution

but instead a grey frame was inserted around the displayed video. In order to285

avoid the visual fatigue, the duration of observation was not longer than 15

minutes for each subject.

Automatically predicted saliency maps can be compared to human gaze fix-

ations with the help of dedicated metrics. From [? ] and previous work [? ],

we retained the Normalized Scan Path (NSS) as the most frequently used and

suitable for the comparison of saliency maps with human eye fixations:

NSS(p) =
SM(p)− µSM

σSM
(6)

where p is the location of one fixation and SM is the saliency map with its

mean µSM and standard deviation σSM . The final NSS score is given by the

average of the NSS(p) values for all N eye fixations.290

We measured the similarity of recorded eye fixations from the experiment

with automatically generated saliency maps from our top-down probabilistic

model and the ones presented in section 3.2. In total 8244 frames were compared

18



ITTI GBVS STG OURS

mean NSS score 1.05± 0.7269 1.29± 0.6551 1.52± 0.2490 2.28± 1.2226

Table 3: NSS mean scores (with standard deviations) between human fixation points and

different saliency map models. Our model outperforms the others

for each saliency model and the final mean scores with standard deviations are

presented in Table 3. As shown in the table, our proposed top-down probabilistic295

model corresponds better to real human eye fixations than the other state-of-

the-art saliency models. Since the standard deviation are high, we computed

the p-values to back up the hypothesis that the NSS mean using our top down

approach is significantly higher than with the other attention prediction models.

At the 5% significance level, the data do provide sufficient evidence to conclude300

that the mean NSS score using our top-down saliency is greater than the mean

obtained using other saliency models. It is however important to underline that

the GVBS and ITTI models are bottom-up and were not designed for a task of

recognition of specific objects of interest.

3.4. Object recognition performances305

The ultimate goal of developing a model of top-down visual saliency is in

the task of manipulated object recognition. Hence, we first present the object

recognition approach with saliency-based psycho-visual weighting of features.

This approach, combined with the proposed saliency model, is then compared

to other state of the art paradigms for object recognition. We also benchmark310

it with other saliency models presented in section 3.2.

3.4.1. Saliency-based object recognition approach

In this study we used the saliency-based object recognition method presented

in [? ]. The approach is based on the well-known Bag-of-Visual Words (BoVW)

paradigm [? ? ]. It uses dense SURF descriptors [? ] and the BoVW is built315

when weighting each quantized feature by underlying predicted saliency value.
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Since the saliency depends on the segmentation of the arms it is possible

to find cases where arms do appear on the image or are not detected by the

segmentation algorithm (this has happened only in 720 cases, meaning around

4.1% of all the segmentations provided by Fathi in the dataset). In these cases320

our model obviously does not provide a saliency map and it is up to the user to

decide which saliency model to use. The models in section 3.2 constitute valid

alternatives among which the STG ([? ]) stands out as it has been specifically

developed for saliency extraction in egocentric videos. In this work however, in

order to rely solemnly on our model during the computation of performances,325

no other saliency model was computed to replace cases where arms are not

detected. Instead we chose to build non-weighted signatures as in the original

BoVW framework.

For the computation of BoVWs, we use a dictionary size of 4000 visual words.

Once each image is represented by its weighted histogram of visual words, an330

SVM classifier [? ] is used with χ2 kernel. Posterior probabilistic estimates for

the occurrence of the object of class C in the frame t are finally obtained using

Platt’s approximation [? ].

3.4.2. Influence of the number of clusters in the global appearance model

The number of clusters K introduced in section 2.1 is an open parameter335

in our model. We have performed an optimization of the target mean Average

Precision (mAP) of object recognition in regard to this parameter using the

paradigm previously introduced in section 3.4.1. Table 4 below illustrates the

influence of the number of clusters K to the target mAP. Having too few clusters

might lead to a lack of information about certain arm models while having too340

many leads to poorly populated clusters. The case of K = 1 is the specific

case where we do not consider the information given by global features. We

observed that its high generality makes it perform well in most categories of

objects. However, some categories of objects with specific shapes (“water”,

“ketchup”, “sugar”, . . . ) are manipulated in certain ways such that removing345

global features yields a drop in recognition performances.
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K = 1 K = 20 K = 50 K = 100

mAP 0.301 0.316 0.353 0.342

Table 4: Validation of the number of global appearance models K

For the rest of the experiments the saliency model referred as “Ours” corre-

sponds to the methodology presented in section 2 with K = 50 clusters, which

has turned out to be the optimal value in our experiments.

3.4.3. Influence of the arm segmentation performances350

As stated previously, this paper aims to provide a model for computing top-

down semantic saliency maps given the arm segmentations. Hence the perfor-

mance of our approach is deeply linked to the quality of the arm segmentation.

In this part we aim to study how much segmentation errors could alter the

performance of our proposed model. It is possible, based on the data provided355

in this dataset, to alter the given arm segmentations by applying varyingly im-

portant transformations to the previously segmented arms (e.g. homographies).

However in order to truly degrade segmentation performances, we chose to im-

plement a genuine hands segmentation framework and train it with different

amount of training data.360

Detection of hands/arms in egocentric videos has already been the core of

several recent studies ([? ? ? ? ]). In this work, we retained the framework

of [? ] which has shown to provide good performances in similar contents. It

is based on training modls for hand (arm) pixels with a training set of patches.

Then a binary classification of pixel is performed. This segmentation paradigm365

was pioneer in the domain since it was the first to propose a model adapting

to different illumination conditions, which proved to be essential in egocentric

videos where lighting conditions vary often. Figure 10 shows some examples of

how the segmentation gets affected by varying the number of training data.

In order to measure the segmentation performances 327 images were ran-

domly chosen among the whole dataset and were manually segmented. We
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Figure 10: Illustration of arm segmentation outputs with Li’s model ([? ]) for different

amount of training data

therefore compared the similarity between automatic segmentation model and

manually annotated data using the Jaccard’s similarity coefficient:

J(Sm, Sa) =
|Sm ∩ Sa|
|Sm ∪ Sa|

(7)

where Sm and Sa respectively stand for manual and automatic segmentation.370

Figure 11 shows the average similarity between Li’s segmentation ([? ]) and the

327 manual segmentations based on the amount of training data. We can see

that the segmentation similarity with the ground truth grows with the amount

of training data until convergence. The rise of performance is more pronounced

for small numbers of training samples, and good similarity scores are rapidly375

reached (65% for 16 training samples). For 78 training samples, Li’s segmen-

tation obtains a similarity score equal to Fathi’s, which gets even slightly out-

performed for higher numbers of training samples until stabilization around a

score of 71.5%. The standard deviation is however almost twice as small as the

one obtained with Fathi’s segmentation. The rationale behind is that Fathi’s380

segmentation does not always detect arms leading to a Jaccard’s coefficient of
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Figure 11: Average similarity between Li’s segmentation ([? ]) and the 327 manual segmen-

tations based on the amount of training data. The last column is the similarity with Fathi’s

provided segmentation.

0 but, when it does, provides segmentations that are very close to the ground

truth.

In Table 5 we present object recognition performances as mean Average

Precision scores based on the number of data used to train the arm segmentation385

models. As expected, there is a significant drop of performance for low number

of training data (and hence poor arm segmentation). A gap of more than 5%

in mAP is noticeable between the lowest and highest object recognition scores.

Two observations can be pointed out from these values however:

• As for the similarity scores in Figure 11, the variation of performance is390

not linear. We notice indeed that performances stay at their lowest point

for segmentation similarity scores below 55% but abruptly raise and even

start reaching convergence when getting closer to 60%.

• Even for a very low number of training data leading to notably poor arm
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Number of training

samples for Arm seg-

mentation models

5 9 12 16 78 190

mAP 0.309 0.299 0.344 0.347 0.352 0.356

Table 5: Object recognition performances for different number of data used to train the arm

segmentation models

Figure 12: Object recognition performances between different paradigms. The results are

given in average precision per category and averaged.

segmentation, our top-down model, coupled with the object recognition395

paradigm presented in section 3.4.1 still achieves higher performances with

a simple BoVW framework (mAP of 0.246). This can be explained by

the modularity of our model. Indeed, we observed that the K global

Arm Models introduced in section 2.1 adapt to the poor segmentation

by creating arm models even for these cases and learning an adequate400

experimental distribution p(x|h = j, c, zk).

3.4.4. Comparing with other object recognition approaches and saliency models

For the sake of comparison, we have compared our approach with a base-

line model that implements a BoVW without any saliency maps, using a dense

sampling of features on the whole frame. This method is referred as “Simple405

BoVW” in the experiments. In addition, we have also included in the compari-
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son a “ground truth” model where descriptors were extracted only in manually

annotated bounding boxes. In this method, referred as “BoVW with BB”, we

consider the ground truth bounding boxes as “ideal” saliency maps.

Figure 12 shows the category detailed and average results for the object410

recognition. As can be seen from the mAP score (last set of bars), our method

outperforms the two famous paradigms for object recognition in this kind of

video content: i) it achieves an absolute improvements of 10.7% with respect to

the base-line BoVW, and ii) a 8.6% absolute improvement with respect to the

DPM model [? ]. In addition, also achieves close performances to the “ideal”415

case, which was added for the upper bound estimate.

In section 2 we already raised the question of the need of building saliency

maps if the objects have been already segmented. Indeed, segmentation as such

cannot be used in our object recognition paradigm, as segmented objects are

often represented by very small and sparse areas (see an example in Figure 9(c)).420

The extraction of relevant descriptors is thus strongly affected and yields a mAP

of only 0.07. Nevertheless, one could object that segmented objects are too

restrictive for a comparison to be possible. In this regard, we computed trivial

saliency maps as a 2-dimensional fitted Gaussian on the segmented objects,

allowing in the process to unify cluttered zones. Such saliency maps gave an425

object recognition mAP of 0.21, which is still very far from the score of 0.35

achieved by our model.

In their paper, Fathi et al. [? ] use a different object recognition method

based on the segmented zones. We also computed object recognition accuracy

in our test set in the same way it was computed by Fathi. As can be seen in430

Figure 13 the precision obtained by our approach was slightly higher in average

that Fathi’s. However it is important to note that the comparison is unfair

since, as we already mentioned in section 3.1, we have evaluated our detectors

under a more challenging set-up with less training data and more test data.

Also an interesting thing to point out is how different both approaches detect435

better certain categories than other.

We also compare our model with those described in section 3.2 using the
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Figure 13: Object recognition accuracy comparison between the model presented in [? ] and

our approach.

same object recognition approach. Results for per-category and averaged ob-

ject recognition are displayed in Figure 14 in terms of AP. Compared to ITTI

and GBVS models, our model performs better for almost all categories. These440

bottom-up saliency models are stimuli-driven, make use of spatial contrast and

were not designed to model a top-down, intentional attention component. The

performances of bottom-up STG saliency maps, developed for video were also

beaten for almost all categories. This is due to the overestimation by STG of

the spread of Gaussian expressing central bias hypothesis on visual attention.445

It also achieves slightly better performances than the ones provided by Hu-

man Visual Attention maps [? ]. It is indeed better for some categories since as

illustrated in Figure 9(d), the visual attention maps are perfectly located but

sometimes do not cover the objects of interest enough, contrarily to our model

(see Figure 9(h) for an example).450

On Figure 14 we can see it is not necessarily that our top-down model

outperforms other saliency methods in each category. We want to find out

if the mean value of the population consisting in category APs (mAP) from
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ITTI/Ours GBVS/Ours STG/Ours

p-value 0.0876 0.0118 0.0541

Table 6: p-values between the population consisting in category APs (mAP) from our method

and the ones obtained with APs of each of the other automated Saliency prediction methods

(ITTI, GBVS, STG)

Figure 14: Object recognition performances between different saliency models applied to the

saliency weighted BoVW paradigm.The results are given in AP per category and averaged.

our method is significantly different from the mAP obtained with each of the

other automated Saliency prediction methods (ITTI, GBVS, STG). Hence we455

performed Student’s t-tests with significance level of 0.10 for comparison and

found the null hypothesis to be consistently rejected (p-values provided in table

tab:pValuesSaliencies).

4. Conclusions and perspectives

In this paper we have proposed a top-down probabilistic visual saliency460

model for the target task of recognition of manipulated objects in egocentric

video. It is based on global and local features and uses domain knowledge, i.e.

the fact that the object of interest is manipulated by hands. The model pre-

dicts well human attention in a task-driven psycho-visual experiment and shows

better performances than several bottom-up models widely used in literature,465

both in terms of comparison with human gaze fixations and target performance
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in manipulated object recognition task.

Despite the fact that this model has been developed for the specific case of

egocentric video content and the task of manipulated object recognition, the

idea behind is generic. It is indeed our belief that this model could be extended470

to other domains of application and not only egocentric videos with detection of

arms. The model could be adapted to many scenarios where there exist reference

objects, which can be easily recognized, and where the top-down attention is

related to them. One interesting example is the aided robotic surgery or the

generation of post-surgery video reports. Here, the reference objects are the475

medical instruments, so that the attention is driven to the close operation field.

Further examples are the recognition of e.g. robot-sorted objects on a conveyor

belt, carried objects by a crane in a surveillance scenario. Another example,

again with egocentric video content, is the real-time detection of objects with

wearable glasses for manipulation by neuro-prostheses. Anyway this is a general480

principle: task-driven visual attention can be easily predicted if we can detect

the presence of reference objects for such a task, which in this paper were the

hands of the user performing the action.

In visual attention modelling we need to use domain knowledge and con-

textual information. Visual attention is a complex combination of bottom-up,485

stimuli driven, and top-down, intentional components. In the perspective of the

present research, combining of bottom-up and top-down prediction and spatio-

temporal evolution of visual saliency in a video scene is envisaged with a target

application to object and action recognition.
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