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Abstract—The robust coding of natural images and the ef-
fective compression of encrypted images have been studied
individually in recent years. However, little work has beendone
in the robust coding of encrypted images. The existing results in
these two individual research areas cannot be combined directly
for the robust coding of encrypted images. This is because the
robust coding of natural images relies on the elimination ofspatial
correlations using sparse transforms such as discrete wavelet
transform (DWT), which is ineffective to encrypted images due
to the weak correlation between encrypted pixels. Moreover, the
compression of encrypted images always generates code streams
with different significance. If one or more such streams are lost,
the quality of the reconstructed images may drop substantially
or decoding error may exist, which violates the goal of robust
coding of encrypted images. In this work, we intend to design
a robust coder, based on compressive sensing withstructurally
random matrix, for encrypted images over packet transmission
networks. The proposed coder can be applied in the scenario that
Alice needs a semi-trusted channel provider Charlie to encode
and transmit the encrypted image to Bob. In particular, Alice first
encrypts an image using globally random permutation and then
sends the encrypted image to Charlie who samples the encrypted
image using astructural matrix. Through an imperfect channel
with packet loss, Bob receives the compressive measurements
and reconstructs the original image by joint decryption and
decoding. Experimental results show that the proposed coder
can be considered as an efficient multiple description coderwith
a number of descriptions against packet loss.

Index Terms—Multiple description code, packet loss, robust
coding of encrypted image, structural matrix.

I. I NTRODUCTION

T HE traditional approach of transmitting an image via
a communication channel is to perform compression

preceding encryption at the sender side; and to decrypt the
cipher-image followed by decompression at the receiving side.
However, consider a particular scenario in which Alice needs
to transmit an image to Bob but wants to keep the image
confidential to an untrusted channel provider Charlie. This
implies that Alice should encrypt the image moderately and
Charlie has to compress the encrypted image without any
knowledge of the cryptographic key. At the receiving side, Bob
performs both decompression and decryption to reconstructthe
original image.

Some works for compressing encrypted images have been
reported in recent years. A scheme for compressing encrypted
images using a 2-D source model and LDPC codes was
developed in [1]. It is based on the finding that encrypted
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data are as compressible as unencrypted ones by considering
the problem as distributed source coding. The lossless com-
pression of encrypted grayscale and color images has been
presented in [2], by decomposing the image pixels into bit-
planes. By applying the approach of [3] to the prediction
error domain, a better lossless compression performance on
the encrypted grayscale and color images is achieved [4]. A
progressive compression approach for processing an encrypted
image has been suggested, in which the decoder needs to
study the local statistics of a low-resolution image and then
decodes the next resolution level [5]. Meanwhile, the lossy
compression of encrypted images was also studied to achieve
higher compression ratios [3, 6–10]. For example, based on the
results of [3], a practical model for compressing encrypted
binary image has been developed in [6]. Zhang proposed a
novel scheme for the lossy compression of an encrypted image
at a flexible compression ratio [7], in which a pseudorandom
permutation is used to encrypt the plain-image. Making use of
the process of masking the original pixel values by a modulo-
256 addition with pseudorandom numbers, Zhanget al. further
proposed a scheme for the scalable coding of encrypted images
[8]. In [9], the compression is performed on an encrypted
image with multi-layer decomposition. Zhouet al. designed an
efficient encryption-then-compression scheme for images via
error clustering, in which both lossless and lossy compressions
were considered [10]. The above-mentioned approaches of
compressing encrypted images are not suitable for high packet
loss transmission in non-feedback systems, since the resultant
coded streams have substantially unequal importance such
that the loss of some codewords may cause severe error
propagation and results in unsatisfactory decoded result.

Multiple description coding is a common approach to deal
with packet loss during transmission. In general, a multiple de-
scription coder generates two or more sub-streams referredto
as descriptions. The packets of each description are transmitted
over multiple disjoint paths. After receiving each description,
the decoder is able to perform a low-quality reconstruction.
If all the descriptions have been received, the reconstruction
quality is the best. Such a protocol allows a channel with
network congestion or packet loss to perform the decoding
at the expense of reconstruction quality. Multiple description
coding of natural images has been extensively studied in [11–
14], where spatial correlations are often eliminated by using
sparse transforms like DWT. However, they are not suitable for
encrypted images since sparse transforms are nearly ineffective
on encrypted images due to the low correlation between the
pixels. A multiple description coder especially designed for
encrypted images is rarely reported so far.

Consider the scenario that Alice needs the semi-trusted
channel coder Charlie to transmit an encrypted image to
Bob. When a high packet loss is encountered in the chan-
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nel between Charlie and Bob, Charlie should first encode
the encrypted image for error control. This motivates us to
explore a multiple description coder aiming at the robust
coding of encrypted images. In this work, we design such
a coder based on compressive sensing (CS) with a structurally
random matrix (SRM). The proposed coder is comprised of
three parts: permutation-based encryption by Alice, encoding
using structural matrix (SM) by Charlie, and joint decryption
and decoding by Bob. In particular, Alice first encrypts an
image using globally random permutation and then sends the
encrypted image to the semi-trusted channel encoder Charlie
who samples the encrypted image using a structural matrix.
Through a channel with high packet loss, Bob receives the
compressive measurements and reconstructs the original image
by joint decryption and decoding. Moreover, we discuss the
relationship between our approach and existing algorithmsand
describe two other cryptographic applications of SRM. In the
performance evaluation, we explore the relationship between
packet loss rate and sampling rate and then introduce a feasible
quantization approach to the compressive measurements of
encrypted images. Finally, we investigate the robustness of
the proposed coder at different parameter settings. It is verified
that the proposed coder can be regarded as an efficient multiple
description coder with a number of descriptions against packet
loss.

The rest of this paper is organized as follows. Section II
is a brief review of the theory of CS using SRM. In Section
III, the robust coding of encrypted images based on CS with
SM is proposed. Further discussions can be found in Section
IV while the performance evaluation is reported in Section V.
Finally, we conclude the paper with some remarks in Section
VI.

II. COMPRESSIVESENSING BY STRUCTURALLY RANDOM

MATRIX

The fundamental Shannon/Nyquist sampling theory is
widely-accepted as the keystone in signal acquisition and
reconstruction. It governs the sampling process from the
perspective of signal bandwidth. Nevertheless, the number
of required measurements can be so large that the storage
becomes unbearable and the acquisition time can be very
long. Compressive sensing [15, 16] is a new sampling theory
which allows the exact recovery of a sparse signal from a few
linear projections lower than the Nyquist rate. The underlying
property of CS is the sparsity of interest. A signalx of length
N is said to beK-sparse or compressible if it can be well
approximated using onlyK ≪ N coefficients over some
sparsifying basisΨ as follows

x = Ψs, (1)

wheres is the transform coefficient vector that contains at most
K significant nonzero entries. Compressive sensing theory
indicates thatx can be acquired by the following random
measurement

y = Φx, (2)

where Φ is a M × N (M < N ) random measurement
matrix andy represents the measurement coefficient vector.
x can be faithfully recovered from onlyM = O (K logN)
measurements throughl1-minimization

min ‖s‖
1

s.t.y = ΦΨs, (3)

where the measurement matrixΦ should be highly incoherent
with the sparsifying basisΨ.

The design of an efficient measurement matrix is still a
big challenge in CS. Doet al. [17] introduced a fast and
efficient measurement matrix for practical CS. The matrix is
called a structurally random matrix (SRM), which, in many
aspects, outperforms the existing popular sensing matrices
such as Gaussian, Bernoulli and Fourier matrices [18–20].
Gaussian and Bernoulli matrices require high computation
complexity and huge memory buffering due to their com-
pletely unstructured nature while Fourier matrix works well
only if the sparsifying basis is an identity matrix. Doet al.
also pointed out that SRM possesses the following features:
optimal or near-optimal sensing performance; universality;
low complexity; hardware/optical implementation friendless.
In particular, it is defined as a product of three matrices

Φ =

√

N

M
DFR (4)

whereR ∈ R
N×N is either a uniform random permutation

matrix or a diagonal random matrix whose diagonal entries
are Bernoulli random variables.F ∈ R

N×N represents an
orthonormal matrix that is selected among popular fast com-
putable transforms such as Fast Fourier Transform (FFT), Dis-
crete Cosine Transform (DCT) and Walsh-Hadamard Trans-
form (WHT). D ∈ R

N×N is a subsampling operator selecting
a random subset of rows of the matrixFR. Interested readers
can refer to [17] for more details on SRM.

III. ROBUST CODING OF ENCRYPTED IMAGE VIA

STRUCTURAL MATRIX

Compressing encrypted images is a big challenge due to
the fact that an effective encryption algorithm must have
already removed or lowered the correlation among neighbour-
ing image pixels to increase the entropy. However, classical
image compression schemes like JPEG 2000 always make
use of the high correlation and non-uniformity of image
pixels. Some lightweight encryption techniques only permute
the pixels or mask the pixel values by a keystream. As a
result, the encrypted image may still be compressed to certain
extent by leveraging some particular coding techniques [1–10].
The lightweight encryption schemes are usually not secure
enough, but they are employed in some specific application
scenarios. The proposed scheme does not aim at improving
the compression performance on encrypted images but focuses
on designing a robust coder for the transmission of encrypted
images over a channel with high packet loss rate.

The proposed coder is based on SRM. The basic idea is to
split the measurement matrixΦ =

√

N/MDFR in (4) into
two matrices: the matrixR and the matrix

√

N/MDF. R is
a random permutation matrix which can serve as a lightweight
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encryption tool while
√

N/MDF can be considered as a
new measurement matrix in the proposed coder. First, Alice
encrypts an image usingR and then sends the encrypted
image to the channel coder Charlie who samples the encrypted
image using

√

N/MDF. Through a high packet loss channel,
Bob receives the compressive measurements and reconstructs
the original image by joint decryption and decoding using
√

N/MDFR, as illustrated in Fig. 1. The random permuta-
tion R is constructed from a secret seed known to both Alice
and Bob.

The robust coding of encrypted images by structural matri-
ces is composed of three steps: permutation-based encryption
by Alice, encoding using structural matrix by Charlie, and
joint decryption and decoding by Bob.

Fig. 1. A block diagram of the proposed coder.

A. Permutation-based Encryption by Alice

The encrypted image is obtained by applying random spatial
permutation on the image. Alice converts the original image
X of sizeN1×N2 into a vectorx with lengthN = N1×N2.
Then she encryptsx to the cipher sequencexen by applying
a random permutation matrixR ∈ R

N×N , governed by

xen = Rx. (5)

xen is rearranged into a 2-D cipher imageXen, which is then
sent to Charlie who obtains the encrypted sequencexen by
arrangingXen. The conversion between vector and matrix is
known to both Alice and Charlie. The random permutation
matrix R is a binary matrix in which each row or column
has exactly one 1 and the rest are all zero. It is generated by
a pseudo-random generator with initial random seed shared
between Alice and Bob. The reader may refer to [21, 22]
for more illustrations on the encryption methods based on
permutation matrix. It should be noticed that permutation-
based decryption is performed by multiplying the cipher image
with the inverse permutation matrix. Interestingly, it is not nec-
essary to invert the matrix since the inverse matrix is obtained
by transposing the permutation matrix itself, i.e.,R−1 = RT .
The key space isN ! so that it is not likely for Charlie to launch
a brute force search whenN is sufficiently large. Permutation-
based encryption cannot hide the statistical information of the
original image due to its unaltered histogram. In spite of this,
it can still be employed in applications where high secrecy is
not a must.

B. Encoding using Structural Matrix by Charlie

After the encrypted image has been received, Charlie con-
structs a special measurement matrix to sample it. This matrix
is tailored to the encrypted image and is called structural
matrix (SM). It is governed by

A =

√

N

M
DF, (6)

whereD andF are as described in (4). Encoding using SM
is expressed as

y = Axen. (7)

Obviously, SM is derived from SRM due to the fact that
y = Axen =

√

N/MDFxen =
√

N/MDFRx = Φx.
The scenario that SM is applied for permuted or encrypted
images is the same as that SRM is employed for spatial
images. Structural matrix is expediently selected among some
popular computable matrices such as FFT, SCT, WHT or their
block diagonal versions. TheM rows are extracted at random
from SM. These matrices have stable structures like SRM
and they outperform Gaussian and Bernoulli matrices in terms
of computational complexity and memory requirement. It can
be easily inferred that the performance of SM measuring the
encrypted image is the same as that of SRM sampling the
original image. It has been mathematically proved in [17] that
entries ofARΨ asymptotically form a normal distribution
N

(

0, σ2
)

, whereΨ is an arbitrary orthonormal matrix and
σ2 ≤ O

(

1

N

)

, under some mild assumptions:F is an unit-
row matrix whose entries have absolute magnitude in the
order ofσ2 ≤ O

(

1

N

)

and the sum of entries in each row is
equal to zero;Ψ is an unit-norm column matrix with entries
having maximal absolute magnitude in the order ofO (1) and
the average sum of entries in each column in the order of
σ2 ≤ O

(

1

N

)

. The entries in each row ofF and each column
of Ψ are not all equal. Doet al. also found that SRM supports
block-based models with high incoherence betweenFR and
Ψ. It should be noticed that the randomizationD can induce
a new application scenario, which will be described later.

C. Joint decryption and decoding by Bob

At the receiving side, Bob obtains the compressive measure-
mentsy and applies joint decryption and decoding to recover
the original image using the following algorithm:

min ‖s‖
1

s.t.y = ARΨs =

√

N

M
DFRΨs (8)

As a result,x = Ψs. The recovery criterion has been stated
in [17]: with a probability of at least1 − δ, the sensing
framework using SRM can exactly recoverK-sparse signals
if M ≥ O

(

N

B
Klog2N

δ

)

, whereB is the block size. Theoret-
ically, this guarantees the capability of SM in encoding the
encrypted image.
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IV. FURTHER DISCUSSIONS

In some references [23–26], CS was applied for natural
image coding but this is not an appropriate approach in terms
of compression efficiency [27]. Nevertheless, in view of the
robustness property of multiple description coder, CS can be
a good candidate [14, 28, 29]. A representative work was
presented by Denget al. in [14], in which the compressive
measurements can be viewed as a number of descriptions
mainly because of theirdemocracy properties. If the mea-
surement matrix follows the Gaussian distribution, each CS
measurement possesses a similar amount of information of the
original signal [30]. Specifically, the sampling is performed on
the frequency coefficients generated by two-dimensional DWT
and at the decoding side, two different recovery algorithmsare
developed for the low-frequency and high-frequency subbands,
respectively, by fully exploiting the intra-scale and inter-scale
correlation of multiscale DWT. Although experimental results
showed that this CS-based codec is much more robust for
lossy channels in comparison with existing CS-based coding
schemes [14], it is not suitable for processing encrypted
images. This is because the efficiency of sparse transforms like
DWT mainly depends on strong correlation between pixels,
which must be weakened by the encryption process, even if a
lightweight one is employed.

CS-based compression of encrypted image has been ex-
plored in only two references [31, 32], both of which aimed
at the linear transformation encryption operations. Both coders
adopt the block-to-block structure which possesses a straight-
forward advantage, i.e., parallel CS encoding and decoding.
Unfortunately, such a block encryption manner suffers from
three drawbacks. Firstly, individual block operation makes the
cipher more insecure than global image transform. In order
to enhance the security, different blocks may be endowed
with different keys and more keys need to be transmitted.
Secondly, a plain image is divided into a number of non-
overlapping blocks having different statistical featuresand
unequal significance. When these blocks are individually sam-
pled, the measurements have unequal significance. As a result,
both coders cannot be considered as efficient multiple de-
scription coders. Thirdly, blocking artifact cannot be avoided.
In addition, a random matrix is chosen as the measure-
ment matrix. In practical sensing applications, this is costly
as very high computational complexity and huge memory
buffering are required due to the completely unstructured
nature of the matrix [20]. The proposed coder does not suffer
from the above drawbacks. Global permutation is a common
lightweight image encryption technique which is more secure
than individual block permutation. The random permutationR

relocates all the pixels globally. It destroys the image structure
and converts a meaningful image into one look like white noise
[17]. The structural matrixA in sampling the permuted image
supports block processing, meaning that parallel CS encoding
can be applied.R disperses the energy of the whole image
andF further spreads the energy over all the measurements.
Consequently, the sampled measurements obtained by SM
roughly have the same significance. The proposed coder is
a multiple description coder with a number of descriptions

whose capability in resisting against packet loss is verified
in the next section. There is no blocking artifact as a unified
decoder is used to reconstruct the whole image. Compared
with random matrix, SM facilitates fast computation and low-
complexity electronic or optical implementation.

It is worth mentioning that SRM also induces two other
applications related to coding and encryption due to the
randomness ofR and D. The first application is illustrated
in Fig. 2(a). Alice still permutes the image withR while
Charlie can further encrypt the permuted image withDF.
This is because the matrixD is a random selection operation
which can serve as a secret key shared between Charlie and
Bob. Another application is the direct encryption by Alice
using DFR, as shown in Fig. 2(b). Both applications can
be considered as joint coding and encryption schemes. The
size of the key space due toD is given by the combinatorial

number

(

M

N

)

. It seems that the current size of key space

upgraded asN !+

(

M

N

)

is sufficiently large to resist brute-

force attack. Unfortunately, the encryption schemes basedon
CS with SRM is probably insecure against some potential
attacks such as known-plaintext attack and chosen-plaintext
attack due to its linearity [33]. As a consequence, the security
level of CS needs to be analyzed. For example, a low-
complexity multiclass encryption scheme has been designed
in [34, 35], which possesses strong resistance against known-
plaintext attacks.

(a)

(b)

Fig. 2. Two other applications of SRM.

V. PERFORMANCEEVALUATION

Our simulation settings are similar to those using SRM [17].
Four natural images of size 512×512 includingLena, Peppers,
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Fig. 4. Histograms of the encoded images for the cases: (a) Lena, SR=0.8, BDCT32, PLR=0.05; (b) Peppers, SR=0.6, BWHT32, PLR=0.10;
(c) Boat, SR=0.8, BDCT32, PLR=0.15; (d) Goldhill, SR=0.6, BWHT32, PLR=0.20.
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Fig. 3. PSNRs of the reconstructed images with respect to (a) PLR;
(b) SR.

Boat and Goldhill are used for testing. The sparsifying basis
Ψ is Daubechies 9/7 wavelet transform. The reconstruction
algorithm is GRSR in [36].R and D are generated using
MATLAB commands andF is chosen as block diagonal DCT
(BDCT) and block diagonal WHT (BWHT). The packet size
is set to 100 unless specified. We first explore the relationship
between packet loss rate and sampling rate and then describe
a feasible quantization approach for the compressive mea-
surements of encrypted images. Finally, the robustness of the
proposed coder at different parameter settings is investigated.
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Fig. 5. The values ofγ versus PLR for (a) SR=0.6; (b) SR=0.8.

A. Relationship between packet loss rate and sampling rate

The compressive measurementsy of length M can be
partitioned, at equal intervals, into a number of packets.
Each packet carries a similar amount of information of the
original image since all the measurements have roughly equal
importance. If a packet containsm measurements, there are
⌈M/m⌉ packets in total. Lost packets always occur randomly
and Bob will updateD according to the received packets.
We denote packet loss rate as PLR which can be up to
30% in real cases [37]. The sampling rate (SR) is defined
asSR = M/N . For example, ifM = 157290 andm = 100,
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Fig. 6. Rate-Distortion performance of the quantization for (a)
SR=0.6, BDCT32; (b) SR=0.6, BWHT32.

thenSR = 157290
/

5122 = 0.60 and the number of packets
is ⌈157290/100⌉ = 1573. If PLR = 0.20, the number
of lost packets is1573 × 0.2

.
= 315 and the number of

received packets is 1258. In other words, Charlie sends5122

measurements and Bob receives about 125800 measurements
among them. This is similar to the case that the sampling
rate is changed toSR′ = 125800

/

5122
.
= 0.48. In fact, this

equivalence is reasonable due to the roughly equal importance
of the measurements. This example inspires us a relationship
between SR and PLR.

In general, for a givenSR = α (0 < α < 1), PLR = β

(0 ≤ β ≤ 0.3) is basically equivalent toSR = α (1− β). This
can be verified in Fig. 3, where BDCT32 and BWHT32, cor-
responding to the solid line and the dashed line, respectively,
mean that each sub-matrix in the diagonal ofF has a size
of 32×32. It can be observed that the effects of BDCT and
BWHT are consistent since each pair of solid and dashed lines
coincides with each other while other conditions are identical.
The value of SR is set asSR=0.6 in Fig. 3(a).PLR = β in
Fig. 3(a) corresponds toSR = 0.6 × (1− β) in Fig. 3(b).
A comparison between Fig. 3(a) and Fig. 3(b) shows that
the former PSNR roughly coincides with the latter one. Both
starting points have the same PSNR value, i.e.,PLR = 0

in Fig. 3(a) andSR=0.6 in Fig. 3(b). However, with the
increase of PLR and the reduction of SR, the PSNR value
of the former is sightly lower than that of the latter. There are
three factors causing this difference: (i) Weak correlations exist
between adjacent measurements. The amount of information
of the whole packet containingm successive measurements
is gracefully greater than that provided by them randomly-
sampled measurements; (ii) After packing the measurements,
the number of measurementsm′ in the last packet is less than
m as long asM is not divisible bym. The last packet will
not be lost with high probability(1− β) such that the actual
SR = α(m (⌈M/m⌉ (1− β)− 1) +m′)/M < α (1− β).
(iii) The rounding effect of⌈M/m⌉β possibly results in the
actualPLR = round (⌈M/m⌉ · β)/⌈M/m⌉ > β. Revealing
such a connection of PLR and SR helps to adjust the SR
according to the PLR in real-time transmission. Bob distin-
guishes the PLR according to the received packets and then
feeds back to Charlie who adjusts the SR to guarantee a certain
PSNR value for the image received by Bob.
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Fig. 10. PSNR versus packet size when SR=0.6 and PLR=0.3.
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Fig. 11. PSNR versus block size of SM when SR=0.6 and PLR=0.05.
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(a) (b) (c) (d)

Fig. 7. The reconstructed images and their PSNR values under SR=0.8: (a) PSNR=35.7965, PLR=0.2, BWHT32; (b) PSNR=33.8944,
PLR=0.3, BWHT32; (c) PSNR=35.2942, PLR=0.2, BDCT32; (d) PSNR=33.2762, PLR=0.3, BDCT32.

(a) (b) (c) (d)

Fig. 8. The reconstructed images and their PSNR values under SR=0.5: (a) PSNR=32.6432, PLR=0.2, BWHT32; (b) PSNR=31.2287,
PLR=0.3, BWHT32; (c) PSNR=32.0629, PLR=0.2, BDCT32; (d) PSNR=30.7208, PLR=0.3, BDCT32.

(a) (b) (c) (d)

Fig. 9. The reconstructed images and their PSNR values under SR=0.2: (a) PSNR=26.2722, PLR=0.2, BWHT32; (b) PSNR=25.4766,
PLR=0.3, BWHT32; (c) PSNR=26.1835, PLR=0.2, BDCT32; (d) PSNR=24.9015, PLR=0.3, BDCT32.

TABLE I
PSNRVERSUSROUND-OFF AND WITHOUT ROUND-OFF (LENA, SR=0.6, BDCT32).

PLR 0 0.05 0.10 0.15 0.20 0.25 0.30
Round-off 37.18 36.37 35.54 34.59 33.79 33.16 32.15
Without round-off 37.22 36.37 35.66 34.61 34.00 33.25 32.34
Difference 0.04 0.00 0.12 0.02 0.21 0.09 0.19

B. Quantization of Compressive Measurements of Cipher Im-
age

When the compressive measurements are transmitted over
a communication channel, they need to be efficiently quan-
tized and encoded. Therefore, the measurements’ statistics are
required and an optimal quantizer should be tailored to the
measurements for minimizing the amount of distortion dur-
ing reconstruction. The statistical distribution of compressive
measurements obtained by SRM has been well studied [38].
It has been pointed out that the encryption performed by a
random permutation on the pixel indices makes the measure-

ments suitable for quantization by causing the measurements’
distribution roughly normal. The measurements obtained by
applying SM to the encrypted image approximately yield a
Gaussian distribution. This is also observed in Fig. 4, which
depicts the histograms of various encoded images in different
cases.

A uniform scalar quantization is employed to round each
entity of y to the nearest integer. The difference in distortion
caused by the round-off is extremely subtle, as shown in Tables
I and II. Moreover, we can observe from Fig. 4 that the
measurement values roughly lie between -150 and 150. The
farther the measurement value deviates from zero, the fewer



8

TABLE II
PSNRVERSUSROUND-OFF AND WITHOUT ROUND-OFF (LENA, SR=0.8, BWHT32).

PLR 0 0.05 0.10 0.15 0.20 0.25 0.30
Round-off 40.96 39.27 38.21 36.82 35.70 34.69 33.96
Without round-off 41.01 39.54 38.34 36.82 35.72 35.02 34.00
Difference 0.05 0.27 0.13 0.00 0.02 0.33 0.04

the number of measurements are required. Our quantization
method only reserves and rounds the values located within
the interval[−127.5, 127.5). Others are discarded due to two
reasons: (i) The discarded measurements make up only a low
proportion, marked asγ, of the whole measurements. Figure
5 lists the values ofγ at different parameter settings.γ is
basically smaller than 0.0055, which implies that either the
PLR rises slightly toPLR = β + γ or the SR drops a
small portionαγ by the reason of the approximately equal
importance among the measurements; (ii) The reserved mea-
surement values can be one-to-one mapped to the interval
[0, 255] through adding 128 to every value. The integers in
[0, 255] not only can be fully represented by 8-bit numbers,
but also match with the common-adopted 256 grayscales in the
images. After the encoding process is completed, an image can
still be stored in 8-bit format, which leads to great convenience
in practical usage.

The quantization distortion is caused by two factors: the
decimal round-off and the proportion of discarded measure-
ments. The first factor is insignificant, as justified by the data
listed in Tables I and II while the second one is the same
becauseγ is basically smaller than 0.0055. It can also be
justified by the rate-distortion curves plotted in Fig. 6, inwhich
the dashed and solid lines correspond to cases with and without
quantization, respectively. These two lines are almost identical
and they indicate that the proposed quantization method works
well.

C. Robustness

When the proposed coder is used in a packet network, the
robustness is directly related to PLR and SR. Figures 7-9
show some reconstructed Lena and Peppers images at different
values of SR and PLR. It can be observed that most of the
visual information of the original images can be recovered
even whenSR = 0.2 andPLR = 0.3. This demonstrates that
the proposed coder possesses high robustness against packet
loss. Besides, the coder does not result in blocking artifacts. In
the aforementioned experiments, the packet size is set to 100
while the block size of SM is 32×32. In fact, the robustness
is more or less related to both values.

As analyzed previously, there are three factors causing the
PSNR difference in exploring the relationship between SR
and PLR. Yet these factors arise from the packet sizem.
Intuitively, with an increasingm, the PSNR value descends
to some extent. This conjecture is justified by Fig. 10, where
the parameter settings areSR = 0.6 and PLR = 0.3.
The smaller the packet size, i.e., the more the number of
descriptions, the better the reconstructed image quality is.
Naturally, the best case is that each measurement forms a
description. When the packet size is between 0 and3 × 104,

the PSNR value drops with the reduction in the number
of packets. However, when the packet size is larger than
3 × 104, the PSNR virtually has no change. This is because
that the number of packets is basically reduced to two and
remains unchanged. If one of these two packets is lost, it
means that half of the successive measurements are sampled.
This successional sampling violates the randomness of the
down-sampling operatorD. The analyses indicate that if the
transmission channel allows a small quantity of descriptions
and the PLR is too large, for instance, only two descriptions
and PLR ≥ 0.3, the proposed coder cannot be regarded
as an efficient multiple description coder. In order to fix
this problem, Charlie has to improve the SR. Consider an
extreme scenario thatSR = 1, i.e., full redundancy without
compression, the encoding process is changed toy = Fxen.
Such an encoder cannot be guaranteed by the theory of
SRM and a great many successive measurements’ loss will
substantially affect the quality of the reconstructed image.
Fortunately, a solution has been developed to cope with this
scenario. Associating a realization of down-sampling operator
D that truncates the first orM randomly-selected elements
after arbitrarily permuting the signal, Charlie introduces a new
random permutationR′ known by Bob. The present encoding
form is y = R′Fxen. When a packet containing many suc-
cessive measurements is lost, Bob receives the information
ŷ =βR′Fxen. Let D′ = βR′, which can be considered as a
down-sampling operator, then̂y = D′Fxen. In other words,
the PLR is the very SR. Even ifPLR = 0.8, which is
equivalent toSR = 0.8, the reconstructed image quality is
still visually acceptable.

The purpose of having the measurement matrix in a block
mode is to reduce storage space and computational complexity
at the cost of a lower quality of the recovered signal. In the
proposed coder, we investigate PSNR versus the block size of
SM whenSR = 0.6 andPLR = 0.05, as shown in Fig. 11.
The greater the block size, the higher the PSNR is. However,
the rate of increase is quite slow. Meanwhile, a larger block
size of SM needs more memory and consumes more resources.
Consequently, a trade-off between them is required. In general,
the block size of SM is set as 32∼256.

VI. CONCLUSION

A novel and robust coder for processing encrypted images
against packet loss has been designed. It is different from the
existing approaches of the robust coding of natural images
and the compression of encrypted images. The proposed coder
based on SRM is composed of three parts: permutation-
based encryption by Alice, encoding with structural matrixby
Charlie, and joint decryption and decoding by Bob. In addition,
we have investigated the relationship between the proposed
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and the existing methods. Two other cryptographic applica-
tions of SRM have also been suggested. In the performance
evaluation, we have explored the relationship between packet
loss rate and sampling rate. A feasible approach for quantizing
the compressive measurements of encrypted images has been
introduced. Finally, we have investigated the robustness of
the proposed coder at different parameter settings. It has
been verified that our coder can be considered as an efficient
multiple description coder with a number of descriptions to
resist packet loss.
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