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Abstract—The robust coding of natural images and the ef- data are as compressible as unencrypted ones by considering
fective compression of encrypted images have been studiedthe problem as distributed source coding. The lossless com-

individually in recent years. However, little work has beendone
in the robust coding of encrypted images. The existing restd in
these two individual research areas cannot be combined diotly
for the robust coding of encrypted images. This is because ¢h
robust coding of natural images relies on the elimination ofpatial
correlations using sparse transforms such as discrete walet
transform (DWT), which is ineffective to encrypted images die
to the weak correlation between encrypted pixels. Moreoverthe
compression of encrypted images always generates code simes
with different significance. If one or more such streams aredst,
the quality of the reconstructed images may drop substantiy
or decoding error may exist, which violates the goal of robus
coding of encrypted images. In this work, we intend to design
a robust coder, based on compressive sensing witkiructurally
random matrix, for encrypted images over packet transmission
networks. The proposed coder can be applied in the scenaridat
Alice needs a semi-trusted channel provider Charlie to enate
and transmit the encrypted image to Bob. In particular, Alice first
encrypts an image using globally random permutation and tha
sends the encrypted image to Charlie who samples the encrygd
image using astructural matrix. Through an imperfect channel

pression of encrypted grayscale and color images has been
presented inl|2], by decomposing the image pixels into bit-
planes. By applying the approach of [3] to the prediction
error domain, a better lossless compression performance on
the encrypted grayscale and color images is achieved [4]. A
progressive compression approach for processing an erdryp
image has been suggested, in which the decoder needs to
study the local statistics of a low-resolution image anchthe
decodes the next resolution level [5]. Meanwhile, the lossy
compression of encrypted images was also studied to achieve
higher compression ratios |3,/6--10]. For example, baseti®n t
results of [3], a practical model for compressing encrypted
binary image has been developed lin [6]. Zhang proposed a
novel scheme for the lossy compression of an encrypted image
at a flexible compression ratiol [7], in which a pseudorandom
permutation is used to encrypt the plain-image. Making dse o
the process of masking the original pixel values by a modulo-

with packet loss, Bob receives the compressive measurement 256 addition with pseudorandom numbers, Zheing. further
and reconstructs the original image by joint decryption and proposed a scheme for the scalable coding of encrypted Bnage

decoding. Experimental results show that the proposed code [g]. In [9], the compression is performed on an encrypted

can be considered as an efficient multiple description codewith
a number of descriptions against packet loss.

Index Terms—Multiple description code, packet loss, robust
coding of encrypted image, structural matrix.

I. INTRODUCTION

HE traditional approach of transmitting an image v

a communication channel is to perform compressi
preceding encryption at the sender side; and to decrypt m
cipher-image followed by decompression at the receividg.si
However, consider a particular scenario in which Alice reee
to transmit an image to Bob but wants to keep the ima
confidential to an untrusted channel provider Charlie. T
implies that Alice should encrypt the image moderately an
Charlie has to compress the encrypted image without a
knowledge of the cryptographic key. At the receiving sidebB
performs both decompression and decryption to recondtract

original image.

Some works for compressing encrypted images have b(ﬁ]
reported in recent years. A scheme for compressing enatypie, ..
images using a 2-D source model and LDPC codes w,
developed inl[1]. It is based on the finding that encrypt
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image with multi-layer decomposition. Zhetial. designed an
efficient encryption-then-compression scheme for imagas v
error clustering, in which both lossless and lossy comjwass
were considered [10]. The above-mentioned approaches of
compressing encrypted images are not suitable for highghack
loss transmission in non-feedback systems, since thetaasul
coded streams have substantially unequal importance such
.that the loss of some codewords may cause severe error
'c?ropagation and results in unsatisfactory decoded result.
n Multiple description coding is a common approach to deal
fth packet loss during transmission. In general, a mudtgs-
cription coder generates two or more sub-streams refésred
(is descriptions. The packets of each description are tittedm
Ker multiple disjoint paths. After receiving each destop,
e decoder is able to perform a low-quality reconstruction
all the descriptions have been received, the reconstruct
HMaIity is the best. Such a protocol allows a channel with
network congestion or packet loss to perform the decoding
at the expense of reconstruction quality. Multiple des@ip
coding of natural images has been extensively studied in [11
where spatial correlations are often eliminated byagisi
g?)arse transforms like DWT. However, they are not suitadnle f
%‘jcrypted images since sparse transforms are nearlydtieée
& encrypted images due to the low correlation between the
pixels. A multiple description coder especially designed f
encrypted images is rarely reported so far.
Consider the scenario that Alice needs the semi-trusted

channel coder Charlie to transmit an encrypted image to
Bob. When a high packet loss is encountered in the chan-
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nel between Charlie and Bob, Charlie should first encodénere ® is a M x N (M < N) random measurement
the encrypted image for error control. This motivates us toatrix andy represents the measurement coefficient vector.
explore a multiple description coder aiming at the robust can be faithfully recovered from only/ = O (Klog N)
coding of encrypted images. In this work, we design suagheasurements throudi+minimization

a coder based on compressive sensing (CS) with a strugturall

random matrix (SRM). The proposed coder is comprised of min |[s[[; s.t.y = ®WPs, 3)
three parts: permutation-based encryption by Alice, eimgpd
using structural matrix (SM) by Charlie, and joint decrgpti . o .

and gdecoding by Bob.(ln zlar)t/icular, Alice fiJrst encrygﬂit aW'th the sp_ar5|fy|ng ba5|_§{. o .
image using globally random permutation and then sends heThe design .Of an efficient me_"?‘S‘_”eme”t matrix is stll a
encrypted image to the semi-trusted channel encoder €ha J _challenge in CS. Dat _al. [1.4] |ntr0duced a fast ar-1d.
who samples the encrypted image using a structural matrf ficient measurement matrix for prac'ucal Cs. The matrix is
Through a channel with high packet loss, Bob receives tﬁglled a structurally random T“"?‘"'X (SRM), Whlch’ N many
compressive measurements and reconstructs the origiagbimaSpeCts' outper_forms the e>$|st|ng popt_JIar Se”?'”? matrice
by joint decryption and decoding. Moreover, we discuss t ch as Gaussian, Ber_noulh _and Four_|er ”?at”"Ef’ [18_2.0]'
relationship between our approach and existing algoritanas aussian and Bernoulli matrices require high com_putanon
describe two other cryptographic applications of SRM. la thcomplexny and huge memory. buffermg due '.[O their com-
performance evaluation, we explore the relationship beitweplme'.y unstructureq natur(_a vyh|le Eoungr matr|>.( works fwel
packet loss rate and sampling rate and then introduce zbfeasPnly if the sparsifying basis is an identity matrix. & al.

guantization approach to the compressive measurementsff"l&0 pointed out that SRM possesses the following features:

encrypted images. Finally, we investigate the robustneﬁsslocpt'maI olr qfa.\r-r?pt(;mal 7ents_|ng|; _perlforma?ctg; U;'I-IVeaa“t
the proposed coder at different parameter settings. Itrifiee ow ct:.mpl eX|_ty,_ grf.wa(;e optica anten;?rr: ation tn_ee '
that the proposed coder can be regarded as an efficient haultﬂg particular, 1t 1S defined as a product of three matrices

description coder with a number of descriptions againsketac N
1/—=DFR

where the measurement matdxshould be highly incoherent

loss. P = i 4)
The rest of this paper is organized as follows. Section I

is a brief review of the theory of CS using SRM. In SectiowhereR € RY*N is either a uniform random permutation

11, the robust coding of encrypted images based on CS wifRatrix or a diagonal random matrix whose diagonal entries

SM is proposed. Further discussions can be found in Secti@i¢ Bernoulli random variable® < RY*" represents an

IV while the performance evaluation is reported in Section @rthonormal matrix that is selected among popular fast com-

Finally, we conclude the paper with some remarks in Sectigitable transforms such as Fast Fourier Transform (FFE}, Di
VI. crete Cosine Transform (DCT) and Walsh-Hadamard Trans-

form (WHT). D € RV*¥ is a subsampling operator selecting
a random subset of rows of the matidR. Interested readers
can refer tol[17] for more details on SRM.

Il. COMPRESSIVESENSING BY STRUCTURALLY RANDOM

MATRIX
The fundamental Shannon/Nyquist sampling theory is Ill. ROBUST CODING OF ENCRYPTEDIMAGE VIA
widely-accepted as the keystone in signal acquisition and STRUCTURAL MATRIX

reconstruction. It governs the sampling process from theCompressing encrypted images is a big challenge due to
perspective of signal bandwidth. Nevertheless, the numlge fact that an effective encryption algorithm must have
of required measurements can be so large that the storg@@ady removed or lowered the correlation among neighbour
becomes unbearable and the acquisition time can be Vg{y image pixels to increase the entropy. However, claksica
long. Compressive sensing [15, 16] is a new sampling theqrfage compression schemes like JPEG 2000 always make
which allows the exact recovery of a sparse signal from a feyée of the high correlation and non-uniformity of image
linear projections lower than the Nyquist rate. The undedy pixels. Some lightweight encryption techniques only pelenu
property of CS is the sparsity of interest. A sigmabf length  the pixels or mask the pixel values by a keystream. As a
N is said to beK-sparse or compressible if it can be welfesylt, the encrypted image may still be compressed toinerta
approximated using onlys” < N coefficients over some extent by leveraging some particular coding techniques@]—

sparsifying basisP as follows The lightweight encryption schemes are usually not secure
enough, but they are employed in some specific application
x = Ws, (1) scenarios. The proposed scheme does not aim at improving

the compression performance on encrypted images but fecuse
Wheres iS the transform CoefﬁCient vector that ContainS at mogh designing a robust coder for the transmission of enc(ypte
K significant nonzero entries. Compressive sensing theqmages over a channel with high packet loss rate.
indicates thatx can be acquired by the following random The proposed coder is based on SRM. The basic idea is to
measurement split the measurement matri = \/N/MDFR in (4) into
two matrices: the matriR and the matrix,/ N/MDF. R is
y = Px, (2) arandom permutation matrix which can serve as a lightweight



encryption tool while./N/MDF can be considered as aB. Encoding using Sructural Matrix by Charlie

new measurement matrix in the proposed coder. First, AliceAft h qi has b ved. Charli
encrypts an image usin@R and then sends the encrypted er the encrypted image has been received, Charlie con-

image to the channel coder Charlie who samples the encrypféWCts a special measurement matrix to sample it. Thisixnatr

image using\/N/—MDF Through a high packet loss channel’s tailored to the encrypted image and is called structural
Bob receives the compressive measurements and recosstrdt X (SM). Itis governed by
the original image by joint decryption and decoding using

/N/MDFR, as illustrated in Fig. 1. The random permuta- A NDF 6
tion R is constructed from a secret seed known to both Alice VM ’ ©6)
and Bob.

The robust coding of encrypted images by structural matithereD andF are as described in (4). Encoding using SM
ces is composed of three steps: permutation-based eramyptf expressed as
by Alice, encoding using structural matrix by Charlie, and

joint decryption and decoding by Bob. y = Axen. @)
. Obviously, SM is derived from SRM due to the fact that
Charlie y = AXen = /N/MDFx., = \/N/MDFRx = ®x.
The scenario that SM is applied for permuted or encrypted
images is the same as that SRM is employed for spatial
Measurements images. Structural matrix is expediently selected amomgeso
Secret seed popular computable matrices such as FFT, SCT, WHT or their
High packet loss block diagonal versions. Th&/ rows are extracted at random
. Bob from SM. These matrices have stable structures like SRM

and they outperform Gaussian and Bernoulli matrices inserm
of computational complexity and memory requirement. It can
be easily inferred that the performance of SM measuring the
encrypted image is the same as that of SRM sampling the
original image. It has been mathematically proved.in [13f th
entries of ARW asymptotically form a normal distribution
A. Permutation-based Encryption by Alice N (0,02), where W is an arbitrary orthonormal matrix and

5 1 . T )
The encrypted image is obtained by applying random spatfal = © (), under some mild assumptionE: is an unit-

permutation on the image. Alice converts the original imadgw matr|;< whosel entries have absolute_ m_agnltude In _the

X of size Ny x N into a vectorx with length N = N x No. order ofo* < O (N) and the sum of entries in each row is

Then she encrypts to the cipher sequence.., by applying equ_al to zeroW is an unit-norm column matrix with entries
a random permutation matri® € RV*N, governed by having maximal absolute magnltude in the ordgfb(fl) and
the average sum of entries in each column in the order of

x.,, = Rx. ) o? < O (). The entries in each row d and each column

) ) ) ) o of ¥ are not all equal. Det al. also found that SRM supports
Xcn is rearranged into a 2-D cipher imag&.,, which is then  p|ock-based models with high incoherence betw®d and
sent to Charlie who obtains the encrypted sequenceby g It should be noticed that the randomizatibncan induce

arrangingX.,. The conversion between vector and matrix ig new application scenario, which will be described later.
known to both Alice and Charlie. The random permutation

matrix R is a binary matrix in which each row or column

has exactly one 1 and the rest are a_\ll_ zero. It is generated(gyJoint decryption and decoding by Bob

a pseudo-random generator with initial random seed shared

between Alice and Bob. The reader may refer [tol [21, 22] At the receiving side, Bob obtains the compressive measure-
for more illustrations on the encryption methods based anentsy and applies joint decryption and decoding to recover
permutation matrix. It should be noticed that permutatiothe original image using the following algorithm:

based decryption is performed by multiplying the ciphergma

with the inverse permutation matrix. Interestingly, it istmec- N

essary to invert the matrix since the inverse matrix is oteti min [s||; s.t.y = ARW¥s = \/;DFR\IIS (8)

by transposing the permutation matrix itself, iR;! = R”.

The key space i&V! so that it is not likely for Charlie to launch As a result,x = ¥s. The recovery criterion has been stated
a brute force search whéwi is sufficiently large. Permutation-in [17]: with a probability of at leastl — §, the sensing
based encryption cannot hide the statistical informatiothe framework using SRM can exactly recovAt-sparse signals
original image due to its unaltered histogram. In spite @,thif A7 > O (%[ﬂog?%), whereB is the block size. Theoret-

it can still be employed in applications where high secrecy jcally, this guarantees the capability of SM in encoding the
not a must. encrypted image.

) ; ; DFR 3
Joint Decryption and Decoding Measurements|

Fig. 1. A block diagram of the proposed coder.



IV. FURTHERDISCUSSIONS whose capability in resisting against packet loss is vefifie
in the next section. There is no blocking artifact as a unified
In some references [23-26], CS was applied for natur@écoder is used to reconstruct the whole image. Compared
image coding but this is not an appropriate approach in terih random matrix, SM facilitates fast computation and dow
of compression efficiency [27]. Nevertheless, in view of theomplexity electronic or optical implementation.
robustness property of multiple description coder, CS can b It is worth mentioning that SRM also induces two other
a good candidate_[14, 28, 129]. A representative work wasplications related to coding and encryption due to the
presented by Denet al. in [14], in which the compressive randomness oR and D. The first application is illustrated
measurements can be viewed as a number of descriptignsFig. 2(a). Alice still permutes the image witR while
mainly because of theidemocracy properties. If the mea- Charlie can further encrypt the permuted image WINF.
surement matrix follows the Gaussian distribution, each Chis is because the matri® is a random selection operation
measurement possesses a similar amount of informatioreof #hich can serve as a secret key shared between Charlie and
original signall[30]. Specifically, the sampling is perfadon Bob. Another application is the direct encryption by Alice
the frequency coefficients generated by two-dimensionalDWising DFR, as shown in Fig. 2(b). Both applications can
and at the decoding side, two different recovery algoritmes be considered as joint coding and encryption schemes. The
developed for the low-frequency and high-frequency sutlbansize of the key space due I is given by the combinatorial
respectively, by fully exploiting the intra-scale and inseale M .
corlroelation{)f r)1/1ultisycalepDWT9 Although experimental riésu number N ) It seems that the current size of key space
showed that this CS-based codec is much more robust Lor raded asv! + M
lossy channels in comparison with existing CS-based codinBg ’ N
schemes|[14], it is not suitable for processing encryptd@rce attack. Unfortunately, the encryption schemes based
images. This is because the efficiency of sparse transfikes ICS with SRM is probably insecure against some potential
DWT mainly depends on strong correlation between pixelgttacks such as known-plaintext attack and chosen-piinte
which must be weakened by the encryption process, even ig#ack due to its linearity [33]. As a consequence, the sgcur
lightweight one is employed. level of CS needs to be analyzed. For example, a low-
CS-based compression of encrypted image has been g*r_nplexi?y mullticlass encryption scheme has beer_1 designed
plored in only two references [BL,132], both of which aimef? [34,135], which possesses strong resistance againstrknow
at the linear transformation encryption operations. Battlers Plaintext attacks.
adopt the block-to-block structure which possesses aghtrai
forward advantage, i.e., parallel CS encoding and decoding

is sufficiently large to resist brute-

Unfortunately, such a block encryption manner suffers from Charlie
three drawbacks. Firstly, individual block operation mekiee Joint

cipher more insecure than global image transform. In order Encryption
to enhance the security, different blocks may be endowed p and Encoding

with different keys and more keys need to be transmitted. Secret seed | Secret seed Ej
Secondly, a plain image is divided into a number of non- Measurements
overlapping blocks having different statistical featueasd
unequal significance. When these blocks are individualy-sa
pled, the measurements have unequal significance. As &,resul
both coders cannot be considered as efficient multiple de-
scription coders. Thirdly, blocking artifact cannot be igleal.

In addition, a random matrix is chosen as the measure- @
ment matrix. In practical sensing applications, this istlgos

High packet loss

44

A 4

_ _ — DFR[—~
Joint Decryption and Decoding Measurements|
Bob

as very high computational complexity and huge memory Alice

buffering are required due to the completely unstructured Joint Encryption and Encoding HMeasurements
nature of the matrix [20]. The proposed coder does not suffer x
from the above drawbacks. Global permutation is a common Secret seed High packet loss
lightweight image encryption technique which is more secur v §
than individual block permutation. The random permutaion Joint Decryption and Decoding Fﬂlﬁ{mawremems
relocates all the pixels globally. It destroys the imagaditire Bob

and converts a meaningful image into one look like white @ois

[17]. The structural matriA in sampling the permuted image (b)

supports blopk proc_essing, meaning that parallel CS e.ngod'hg. 2. Two other applications of SRM.

can be appliedR disperses the energy of the whole image

and F further spreads the energy over all the measurements.

Consequently, the sampled measurements obtained by SM V. PERFORMANCEEVALUATION

roughly have the same significance. The proposed coder i€ur simulation settings are similar to those using SRM [17].
a multiple description coder with a number of descriptionSour natural images of size 54312 includingLena, Peppers,
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Fig. 4. Histograms of the encoded images for the cases: (a) Lena).8RBDCT32, PLR=0.05; (b) Peppers, SR=0.6, BWHT32, PLR&.
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(c) Boat, SR=0.8, BDCT32, PLR=0.15; (d) Goldhill, SR=0.6VBIT32, PLR=0.20.
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Fig. 3. PSNRs of the reconstructed images with respect to (a) PLE

(b) SR.

g. 5. The values ofy versus PLR for (a) SR=0.6; (b) SR=0.8.

A. Relationship between packet loss rate and sampling rate

Boat and Goldhill are used for testing. The sparsifying basis The compressive measurementsof length M can be

¥ is Daubechies 9/7 wavelet transform. The reconstructipartitioned, at equal intervals, into a number of packets.
algorithm is GRSR in[[36].R and D are generated usingEach packet carries a similar amount of information of the
MATLAB commands and® is chosen as block diagonal DCToriginal image since all the measurements have roughlylequa
(BDCT) and block diagonal WHT (BWHT). The packet sizemportance. If a packet containa measurements, there are
is set to 100 unless specified. We first explore the relatipnsH M/ /m] packets in total. Lost packets always occur randomly
between packet loss rate and sampling rate and then descabd Bob will updateD according to the received packets.
a feasible quantization approach for the compressive mé&de denote packet loss rate as PLR which can be up to
surements of encrypted images. Finally, the robustnesseof 80% in real cases [37]. The sampling rate (SR) is defined
proposed coder at different parameter settings is inwestily asSR = M /N. For example, ifM = 157290 andm = 100,
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in Fig. 3(a) andSR=0.6 in Fig. 3(b). However, with the
increase of PLR and the reduction of SR, the PSNR value
of the former is sightly lower than that of the latter. There a
three factors causing this difference: (i) Weak correfaioxist
between adjacent measurements. The amount of information
of the whole packet containing: successive measurements
is gracefully greater than that provided by therandomly-
sampled measurements; (ii) After packing the measurements
the number of measurements in the last packet is less than

m as long asM is not divisible bym. The last packet will

not be lost with high probability1 — ) such that the actual
SR = a(m([M/m]|(1-8)—-1)4+m)/M < a(l-7).

(iii) The rounding effect of[ M /m] 8 possibly results in the
actual PLR = round ([M/m] - 8)/[M/m] > /5. Revealing
such a connection of PLR and SR helps to adjust the SR
according to the PLR in real-time transmission. Bob distin-
guishes the PLR according to the received packets and then
feeds back to Charlie who adjusts the SR to guarantee arcertai
PSNR value for the image received by Bob.
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then SR = 157290/5122 = 0.60 and the number of packets

is [157290/100] =

1573. If PLR = 0.20, the number Fig. 10. PSNR versus packet size when SR=0.6 and PLR=0.3.

of lost packets is1573 x 0.2 = 315 and the number of
received packets is 1258. In other words, Charlie serids

measurements and Bob receives about 125800 measurements
among them. This is similar to the case that the sampling

rate is changed t&' R’ = 125800/512% = 0.48. In fact, this
equivalence is reasonable due to the roughly equal impzetan
of the measurements. This example inspires us a relatjpnshi

between SR and PLR.

In general, for a giverfR = o« (0 <a < 1), PLR = §

(0 < 8 <£0.3) is basically equivalent t6 R = « (1 — ). This
can be verified in Fig. 3, where BDCT32 and BWHT32, cor-
responding to the solid line and the dashed line, respégtive
mean that each sub-matrix in the diagonalfofthas a size
of 32x32. It can be observed that the effects of BDCT and 3or
BWHT are consistent since each pair of solid and dashed lines 201
coincides with each other while other conditions are idzhti
The value of SR is set aSR=0.6 in Fig. 3(a). PLR = in
Fig. 3(a) corresponds t& R = 0.6 x (1 — ) in Fig. 3(b).

[ £ A
P A
g 33t N
oo
Z  phd *
o a2r
o

—%— Boat-BDCT
31F A - Boat-BWHT
Peppers-BDCT
Peppers—BWHT| |
—#— Lena-BDCT
A Lena-BWHT
—#— Goldhill-BDCT []
A Goldhill-BWHT
T T T T

28

i i i i i i
100 200 300 400 500 600 700 800 900 1000
Block Size

A comparison between Fig. 3(a) and Fig. 3(b) shows thal 11. PSNR versus block size of SM when SR=0.6 and PLR=0.05
the former PSNR roughly coincides with the latter one. Both

starting points have the same PSNR value, ileLR = 0
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Fig. 7. The reconstructed images and their PSNR values under SR&).#SNR=35.7965, PLR=0.2, BWHT32; (b) PSNR=33.8944,
PLR=0.3, BWHT32; (c) PSNR=35.2942, PLR=0.2, BDCT32; (dNR$:33.2762, PLR=0.3, BDCT32.
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Fig. 8. The reconstructed images and their PSNR values under SR&().3?SNR=32.6432, PLR=0.2, BWHT32; (b) PSNR=31.2287,
PLR=0.3, BWHT32; (c) PSNR=32.0629, PLR=0.2, BDCT32; (dNIR$:30.7208, PLR=0.3, BDCT32.

(a) (b) (©) (d)

Fig. 9. The reconstructed images and their PSNR values under SRE&).PSNR=26.2722, PLR=0.2, BWHT32; (b) PSNR=25.4766,
PLR=0.3, BWHT32; (c) PSNR=26.1835, PLR=0.2, BDCT32; (d)\NR$24.9015, PLR=0.3, BDCT32.

TABLE |
PSNRVERSUSROUND-OFF AND WITHOUT ROUND-OFF(LENA, SR=0.6, BDCT32).

PLR 0 0.05 0.10 0.15 0.20 0.25 0.30
Round-off 37.18 36.37 3554 3459 33.79 3316 32.15
Without round-off  37.22 36.37 35.66 34.61 34.00 3325 3234
Difference 0.04 0.00 0.12 0.02 0.21 0.09 0.19

B. Quantization of Compressive Measurements of Cipher Im- ments suitable for quantization by causing the measureshent
age distribution roughly normal. The measurements obtained by
applying SM to the encrypted image approximately yield a
When the compressive measurements are transmitted dv@ussian distribution. This is also observed in Fig. 4, Whic
a communication channel, they need to be efficiently quafi€picts the histograms of various encoded images in differe
tized and encoded. Therefore, the measurements’ stataiic CaS€s.
required and an optimal quantizer should be tailored to theA uniform scalar quantization is employed to round each
measurements for minimizing the amount of distortion duentity of y to the nearest integer. The difference in distortion
ing reconstruction. The statistical distribution of comgsive caused by the round-off is extremely subtle, as shown ine&abl
measurements obtained by SRM has been well studied [38land Il. Moreover, we can observe from Fig. 4 that the
It has been pointed out that the encryption performed bynaeasurement values roughly lie between -150 and 150. The
random permutation on the pixel indices makes the measufather the measurement value deviates from zero, the fewer



TABLE Il
PSNRVERSUSROUND-OFF AND WITHOUT ROUND-OFF (LENA, SR=0.8, BWHT32).

PLR 0 0.05 0.10 0.15 0.20 0.25 0.30
Round-off 40.96 39.27 3821 36.82 3570 34.69 33.96
Without round-off  41.01 39.54 38.34 36.82 3572 35.02 34.00
Difference 0.05 0.27 0.13 0.00 0.02 0.33 0.04

the number of measurements are required. Our quantizattbe PSNR value drops with the reduction in the number
method only reserves and rounds the values located witlih packets. However, when the packet size is larger than
the interval[—127.5,127.5). Others are discarded due to twa x 104, the PSNR virtually has no change. This is because
reasons: (i) The discarded measurements make up only a tat the number of packets is basically reduced to two and
proportion, marked as, of the whole measurements. Figureemains unchanged. If one of these two packets is lost, it
5 lists the values ofy at different parameter settings.is means that half of the successive measurements are sampled.
basically smaller than 0.0055, which implies that eithex thThis successional sampling violates the randomness of the
PLR rises slightly toPLR = g + « or the SR drops a down-sampling operataD. The analyses indicate that if the
small portionay by the reason of the approximately equalransmission channel allows a small quantity of descnhigtio
importance among the measurements; (ii) The reserved mand the PLR is too large, for instance, only two descriptions
surement values can be one-to-one mapped to the interaatl PLR > 0.3, the proposed coder cannot be regarded
[0,255] through adding 128 to every value. The integers ias an efficient multiple description coder. In order to fix
[0,255] not only can be fully represented by 8-bit numbershis problem, Charlie has to improve the SR. Consider an
but also match with the common-adopted 256 grayscales in #dreme scenario th&fR = 1, i.e., full redundancy without
images. After the encoding process is completed, an image campression, the encoding process is changed t0Fx,,,.

still be stored in 8-bit format, which leads to great coneeige Such an encoder cannot be guaranteed by the theory of
in practical usage. SRM and a great many successive measurements’ loss will

The gquantization distortion is caused by two factors: treubstantially affect the quality of the reconstructed imag
decimal round-off and the proportion of discarded measureertunately, a solution has been developed to cope with this
ments. The first factor is insignificant, as justified by théadascenario. Associating a realization of down-sampling afmer
listed in Tables | and Il while the second one is the sand@ that truncates the first od randomly-selected elements
becausey is basically smaller than 0.0055. It can also bafter arbitrarily permuting the signal, Charlie introda@new
justified by the rate-distortion curves plotted in Fig. 6wihich  random permutatio®®’ known by Bob. The present encoding
the dashed and solid lines correspond to cases with andwtithform is y = R'Fx.,,. When a packet containing many suc-
quantization, respectively. These two lines are almosttidal cessive measurements is lost, Bob receives the information
and they indicate that the proposed quantization metholisvoy =SR'Fx.,,. Let D’ = SR/, which can be considered as a
well. down-sampling operator, thej = D'Fx.,,. In other words,
the PLR is the very SR. Even iPLR = 0.8, which is
C. Robusiness equiv_alent toSR = 0.8, the reconstructed image quality is

still visually acceptable.

When the proposed coder is used in a packet network, therhe purpose of having the measurement matrix in a block
robustness is directly related to PLR and SR. Figures 7nfode is to reduce storage space and computational complexit
show some reconstructed Lena and Peppers images at diffeggithe cost of a lower quality of the recovered signal. In the
values of SR and PLR. It can be observed that most of theoposed coder, we investigate PSNR versus the block size of
visual information of the original images can be recoveregv whenSR = 0.6 and PLR = 0.05, as shown in Fig. 11.
even whenSR = 0.2 and PLR = 0.3. This demonstrates thatThe greater the block size, the higher the PSNR is. However,
the proposed coder possesses high robustness against pagkerate of increase is quite slow. Meanwhile, a larger block
loss. Besides, the coder does not result in blocking atifds  sjze of SM needs more memory and consumes more resources.

the aforementioned experiments, the packet size is set@o ¥bnsequently, a trade-off between them is required. Inrgéne
while the block size of SM is 3232. In fact, the robustnessthe block size of SM is set as 3256.

is more or less related to both values.

As analyzed previously, there are three factors causing the
PSNR difference in exploring the relationship between SR
and PLR. Yet these factors arise from the packet size A novel and robust coder for processing encrypted images
Intuitively, with an increasingn, the PSNR value descendsagainst packet loss has been designed. It is different ftmm t
to some extent. This conjecture is justified by Fig. 10, whesxisting approaches of the robust coding of natural images
the parameter settings ar®R = 0.6 and PLR = 0.3. and the compression of encrypted images. The proposed coder
The smaller the packet size, i.e., the more the number lmdised on SRM is composed of three parts: permutation-
descriptions, the better the reconstructed image quadity based encryption by Alice, encoding with structural malryx
Naturally, the best case is that each measurement form€larlie, and joint decryption and decoding by Bob. In additi
description. When the packet size is between 0 Znd10%, we have investigated the relationship between the proposed

VI. CONCLUSION



and the existing methods. Two other cryptographic applicgt3] B. Li and L. Peng, “Balanced multifilter banks for mul-
tions of SRM have also been suggested. In the performance tiple description coding,1JEEE Trans. Image Process.,
evaluation, we have explored the relationship betweengiack
loss rate and sampling rate. A feasible approach for quagtiz[14] C. Deng, W. Lin, B.-S. Lee, and C. T. Lau, “Robust
the compressive measurements of encrypted images has been image coding based upon compressive sensitgFE
introduced. Finally, we have investigated the robustness o
the proposed coder at different parameter settings. It Hd%] E. J. Candes, J. Romberg, and T. Tao, “Robust un-
been verified that our coder can be considered as an efficient certainty principles: Exact signal reconstruction from
multiple description coder with a number of descriptions to
resist packet loss.
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