/ Mar 2016

| |

CV

arXiv:1510.03608v5 [cs

Deep convolutional neural networks for pedestrian detection
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Abstract

Pedestrian detection is a popular research topic due to its paramount importance for a number of applications, especially in the
fields of automotive, surveillance and robotics. Despite the significant improvements, pedestrian detection is still an open challenge
that calls for more and more accurate algorithms. In the last few years, deep learning and in particular convolutional neural
networks emerged as the state of the art in terms of accuracy for a number of computer vision tasks such as image classification,
object detection and segmentation, often outperforming the previous gold standards by a large margin. In this paper, we propose
a pedestrian detection system based on deep learning, adapting a general-purpose convolutional network to the task at hand. By
thoroughly analyzing and optimizing each step of the detection pipeline we propose an architecture that outperforms traditional
methods, achieving a task accuracy close to that of state-of-the-art approaches, while requiring a low computational time. Finally,
we tested the system on an NVIDIA Jetson TK1, a 192-core platform that is envisioned to be a forerunner computational brain of
future self-driving cars.
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1. Introduction plied pixel-by-pixel or window-by-window. Second, the fea-
tures for any given spatial window are fed to a classifier that
assesses whether such a region depicts a human. Furthermore,
a scale-space is typically used in order to detect pedestrians at
different scales, that is, distance with respect to the sensing de-
vice. In 2003, Viola and Jones [26] propose a pedestrian de-
tection system based on box-shaped filters, that can be applied
efficiently resorting to integral images. The features, i.e. the
) . X ) < ) i result of the convolution of a window with a given box-shaped
intelligence and in particular computer vision algorithms aim  gieor 16 then fed to a classifier based on AdaBoost [10]. Dalal
at automatically interpreting the visual content of a scene, in and Triggs refine the process, proposing Histogram Of Gradi-
the form of a single frame or a sequence of frames, and react ents (HOG) [3] as local image features, to be fed to a linear Sup-
accordingly. The detection of human shapes or pedestrians is port Vector Machine aimed at identifying windows containing
one of the most challenging problems that computer vision re- pyang. Such features proved to be quite effective for the task
searchers are tackling since at least two decades ago [20]. It at hand, representing the basis for more complex algorithms.
is key to a number of high level applications ranging from car  gej,engwalb et al. [9] further improve the detection accuracy
safety to advanced surveillance systems. The last decade [[18]] by combining the Histogram Of Gradients with a Deformable
has seen significant improvements of pedestrian detection sys- Part Model. In particular, such approach aims at identifying a
tems in terms of both accuracy and efficiency, fostered by the 00 shape as a deformable combination of its parts such as
advent of more and more powerful yet compact hardware. the trunk, the head, etc. Each body part has peculiar characteris-

Most pedestrian detection algorithms share similar compu-  ioq in terms of its appearance and can be effectively recognized

tation pipelines. First, starting from the raw pixel-level image resorting to the HOG features and a properly trained classifier.
content, they extract higher-level spatial representations or fea- Such a model proved to be more robust with respect to body

tures resorting to arbitrarily complex transformation to be ap- shape and pose and to partial occlusions. Dollar et al. [6] pro-

pose to use features extracted from multiple different channels.
*Equal contribution Each channel is defined as a linear or non-linear transformation
**Corresponding author of the input pixel-level representation. Channels can capture

Email addresses: denis.tome@nail.polimi. it (D. Tome), different local properties of the image such as corner, edges,
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Bondi), marco.tagliasacchi@polimi.it (M. Tagliasacchi),
stefano.tubaro@polimi.it (S. Tubaro) Besides the improvements in terms of the quality of visual

Humans need just few glances to recognize objects and peo-
ple, identify events and detect possibly dangerous situations.
The correct interpretation of different visual stimuli is key for
human to accomplish very complex tasks such as driving a ve-
hicle or playing sports. Furthermore, a large number of tasks
require the scene to be analyzed in as few as tens of millisec-
onds, so as to promptly react to such visual stimuli. Artificial
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features, great strides have been made in reducing the com-
putational complexity of the task at hand. For instance, the
computation of HOG has been significantly accelerated resort-
ing to fast scale-space approximation algorithms, so as to effi-
ciently estimate local gradients at different scales, leading to the
Aggregated Channel Features (ACF) [5]. To further boost the
performance of pedestrian detection systems, ACF combines
HOG and channel features, so as to generate rich representa-
tions of the visual content [S]]. As a further improvement, Nam
et al. [17]] observe that ACF exploits a classifier based on boost-
ing that performs orthogonal splits, i.e., splits based on a single
feature element. Instead, they propose to linearly combine the
different feature channels so as to remove the correlation to the
data, being able to perform oblique splits. Such approach leads
to the Locally Decorrelated Channel Features (LDCF) [17], that
improve the performance of the classifier.

Deep neural network are quickly revolutionizing the world
of machine learning and artificial intelligence. They are set-
ting new benchmarks for a number of heterogeneous applica-
tions in different areas, including image understanding, speech
and audio analysis and natural language processing, filling the
gap with respect to human performance for several tasks [24].
Despite being around since the 1990s [16], they blossomed in
the past few years, in part due to the advent of powerful paral-
lel computation architectures and the development of efficient
training algorithms. In particular, Convolutional Neural Net-
works (CNN) represented a revolution for image analysis. They
are considered the state of the art for a number of tasks includ-
ing image classification [23], face recognition [24] and object
detection [[11].

In the context of pedestrian detection, there has been a surge
of interest in Convolutional Neural Network during the last few
years, motivated by the successes for similar image analysis
tasks. In particular, object detection and pedestrian detection
share a very similar pipeline. For both, some candidate regions
have to be identified by means of a sliding window approach
or more complex region proposal algorithm. Then, consider-
ing object detection, each region should be analyzed to check
whether it contains an object and, if so, identify the class of
such object. Instead, for pedestrian detection each proposal
should be analyzed in order to check whether it contains a hu-
man shape. For both tasks such last stage of detection can be
effectively accomplished resorting to a properly trained clas-
sifier. LeCun et al. [21] were the first to use convolutional
networks for detecting pedestrians, proposing an unsupervised
deep learning approach. The deformable part model proposed
by Felzenswalb et al. has been coupled with a stack of gener-
ative, stochastic neural networks and, in particular, Restricted
Boltzmann Machine [19]]. A deep stack of networks in place of
the original features improves the discriminative ability of the
system, while preserving all the advantages of the deformable
part model, i.e. robustness to pose and partial occlusions. Such
model has been further improved in [? ] where the authors con-
struct a deep network that is able to perform feature extraction,
part deformation handling, and occlusion handling. Hosang et
al. [12] propose to use a supervised deep learning approach,
adapting a network devised for image classification, in order to

detect pedestrians. Such approach yields good results in terms
of detection accuracy, improving the performance of state-of-
the-art methods based on handcrafted features such as LDCF.
In the context of deep learning, small details are often cru-
cial to obtain good results in terms of task accuracy. A small
difference in the setting of a single parameter may imply a big
difference in the overall performance of the system. In this pa-
per, we build upon the work of Hosang et al. [12]], completely
dissecting and analyzing their pipeline for pedestrian detection.
The paper proposes several novel contributions:

e we optimize most of the stages of the pedestrian detection
pipeline, proposing novel solutions that significantly im-
prove the detection accuracyﬂ;

e we approach state-of-the-art performance in terms of de-
tection accuracy, outperforming both traditional meth-
ods based on handcrafted features and deep learning ap-
proaches;

e we propose a lightweight version of our algorithm that
runs in real-time on modern hardware;

e we validate our approach by implementing it on an
NVIDIA Jetson TK1, a compact computational platform
based on a Graphics Processing Unit that is being adopted
as the computational brain of several car prototypes fea-
turing modern safety systems.

The rest of the paper is organized as follows: Section [2]
presents the pipeline that we use for detecting pedestrians, thor-
oughly illustrating each step, whereas Section [3] reports all
the proposed optimizations that improve the performance of
the system. Section [ is devoted to experimental evaluation,
whereas conclusions are drawn in Section[3

2. Background on pedestrian detection and Convolutional
Neural Networks

2.1. Pedestrian detection pipeline

During the past two decades, a number of different ap-
proaches to pedestrian detection have been proposed and suc-
cessfully implemented for both commercial and military appli-
cations. Despite being very different in the way they process
the raw data so as to obtain semantic representations and detect
human shapes, they share a similar pipeline for data processing.
The input of such pipeline is a raw, pixel-level representation of
a scene, whereas the output consists of a set of bounding boxes
with different size, each corresponding to a pedestrian that has
been identified within the analyzed frame. Such pipeline com-
prises three main stages: i) region proposal, ii) feature extrac-
tion and iii) region classification, as shown in Figure[I]

As regards the first stage, i.e. region proposal, the entire
frame is analyzed so as to extract candidate regions, i.e. por-
tions of the image that potentially contain a human. The input

I'The source code for our method can be found at https://github.com/
DenisTome/DeepPed
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Figure 1: A common pipeline for pedestrian detection.

of such stage is the entire frame, whereas the output is a set
of regions, possibly having heterogeneous dimensions and ra-
tios. The sliding window approach is the simplest instance of
region proposal algorithms, and can be adapted so as to extract
regions at multiple scales and aspect ratios. More complex ap-
proaches analyze the visual content to filter out regions that are
believed not to contain objects or salient content, so as to re-
duce the number of candidate regions to be processed at the
next stages. Objectness [1l], Selective Search [25], category-
independent object proposals [8] are instances of such class
of algorithms. Such algorithms are general-purpose and thus
not tailored to pedestrian detection. Instead, this stage can be
substituted with lightweight and efficient algorithms tailored to
pedestrian detection, that aim at discarding a high number of
negative regions, i.e. the ones not containing a pedestrian, while
preserving as many positive regions as possible [12]. In this
case, the region proposal algorithm acts as a coarse filter that
significantly reduces the number of region to be analyzed and
thus the computational burden.

As for the feature extraction stage, a number of different
methods have been proposed, as mentioned in Section[I] Such
methods process the data very differently and exploits disparate
visual characteristics, such as local intensity contrast, pooled
gradients and multiple non-linear transformations of the input
data, in the case of Viola-Jones [26], Histogram of Gradients [3]]
and Integral Channel Features [6]], respectively. The input of
such stage is a set of candidate regions, i.e. portions of the in-
put image potentially containing a pedestrian, whereas the out-
put is a feature vector, i.e. a set of real-valued or binary values,
for each input region. The feature vector is a compact represen-
tation of the visual characteristics of the candidate region.

Finally, the classification stage aims at identifying which re-
gions within the set of candidates correspond to a human shape.
The classifier is fed with a feature vector relative to a given re-
gion and typically provides a binary label indicating whether
such region is positive, i.e. it contains a pedestrian. Early meth-
ods such as the one proposed by Viola and Jones [26] exploits
AdaBoost, whereas more recent approaches use Support Vec-
tor Machines [3]. In some cases, considering methods based
on Convolutional Neural Networks, the classifier is based on
hinge or cross-entropy loss functions, resembling support vec-
tor machines or logistic regression, respectively, learning both
the classifier and the features at once.

2.2. Background on Convolutional Neural Networks

Convolutional Neural Networks recorded amazingly good
performance in several tasks, including digit recognition, im-
age classification and face recognition. The key idea behind
CNN s is to automatically learn a complex model that is able to
extract visual features from the pixel-level content, exploiting
a sequence of simple operations such as filtering, local contrast
normalization, non-linear activation, local pooling. Traditional
methods use handcrafted features, that is, the feature extraction
pipeline is the result of human intuitions and understanding of
the raw data. For instance, the Viola-Jones [20] features come
from the observation that the shape of a pedestrian is character-
ized by abrupt changes of pixel intensity in the regions corre-
sponding to the contour of the body.

Conversely, Convolutional Neural Networks do not exploit
human intuitions but only rely on large training datasets and a
training procedure based on backpropagation, coupled with an
optimization algorithm such as gradient descent. The training
procedure aims at automatically learning both the weights of
the filters, so that they are able to extract visual concepts from
the raw image content, and a suitable classifier. The first lay-
ers of the network typically identify low-level concepts such
as edges and details, whereas the final layers are able to com-
bine low-level features so as to identify complex visual con-
cepts. Convolutional Neural Networks are typically trained re-
sorting to a supervised procedure that, besides learning ad-hoc
features, defines a classifier as the last layer of the network, as
shown in Figure[2] Despite being powerful and effective, the in-
terpretability of such models is limited. Moreover, being very
complex model consisting of up to hundreds of millions of pa-
rameters, CNNs need large annotated training datasets to yield
accurate results.

In the context of pedestrian detection, the last layer typically
consists of just one neuron, and acts as a binary classifier that
determines whether an input region depicts a pedestrian. The
higher the output of such neuron, the higher the probability of
the corresponding region containing a pedestrian. Binary clas-
sification is obtained by properly thresholding the output score
of such neuron.

3. Optimizing deep convolutional networks for pedestrian
detection

The use of Convolutional Neural Networks in the context
of pedestrian detection is recent, and the potential of such ap-
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Figure 2: An example of feature maps obtained at each layer of a Convolutional Neural Network. Former layers (left) identify simple structures such as edges and

details, whereas next layers identify more complex visual concepts.

proach is still unexplored. In the following we will present our
pipeline, thoroughly illustrating all its stages. In the context
of deep learning, often small details are key to reaching good
results in terms of accuracy. By carefully analyzing and opti-
mizing each step of the pipeline, we significantly improve the
performance of traditional methods based on handcrafted fea-
tures.

3.1. Region proposals

As introduced in Section [2} the first stage of the detection
pipeline consists in identifying candidate regions that could
possibly depict pedestrian. This stage is key to both compu-
tational efficiency and task accuracy. On the one hand, by effi-
ciently discarding most of the negative regions, the number of
windows to be fed to the following stages can be reduced by
up to three order of magnitude. This is of paramount impor-
tance when feature extraction is demanded to a computational-
intensive Convolutional Neural Network. On the other hand,
the algorithm should not discard many positive regions, as this
would severely affect the overall accuracy of the system.

We tested three different strategies for this stage:

e Sliding window, the most naive algorithm for proposing
candidate regions. According to such approach, the frame
is scanned both horizontally and vertically with a window
that is shifted by a given stride. To be invariant to the size
of pedestrians, regions at different scales can be extracted.
On the one hand, such algorithm guarantees a 100 percent
recall, since it does not filter out any positive region. On
the other hand, it yields a very large number of regions to
be fed to the following stages, dramatically increasing the
computational burden.

e Selective Search [23)], a general-purpose algorithm that
propose class-independent regions that could possibly
contain objects. Such algorithm has been successfully ex-
ploited in the context of object detection [11]], in conjunc-
tion with a CNN for feature extraction and region classifi-
cation. It acts as a coarse filter, significantly reducing the
number of regions to be processed by the feature extractor
and thus reducing the computational burden.

e Locally Decorrelated Channel Features (LDCF) [I7]], an
ad-hoc pedestrian detection algorithm. Even though such
algorithm is able to detect pedestrian with a good preci-
sion, we would like to further improve the performance

of the system, operating LDCF as a region proposal al-
gorithm coupled with a neural network. In particular, the
output of LDCF consists of a possibly large set of regions,
each with a confidence value. The higher the confidence
score of a region, the more likely such region contains a
pedestrian. Setting a threshold on the confidence score al-
lows for a tradeoft between precision and recall.

3.2. Fine tuning for pedestrian detection

Learning a deep convolutional network consisting of up to
hundreds of millions of parameters requires massive annotated
training datasets. In the context of object detection, such mod-
els are usually trained resorting to the ImageNet [4] dataset,
composed of 1.2M images annotated with the bounding boxes
corresponding to the objects. In particular, the ground truth la-
bels discriminate between lk different object classes. In the
context of pedestrian detection, annotated training dataset hav-
ing that dimensions are not publicly available. Nonetheless, the
complex models trained on ImageNet proven to be a good start-
ing point for accomplishing tasks different from object classi-
fication [[14]]. In fact, the features that are extracted by the first
layers of an architecture trained on ImageNet capture simple
yet important visual concepts, that are quite general and can be
adapted to other kind of tasks. In this case, a finetuning pro-
cess is often employed: starting from the general-purpose neu-
ral network, few epochs of training on the target dataset with
a small learning step are usually performed so as to adapt the
convolutional network to the new task.

We start from different convolutional neural networks trained
on ImageNet and successfully employed for object detection.
Then, we exploit an annotated training dataset of positive and
negative regions, i.e. regions containing a pedestrian or other
kind of visual content, respectively, to finetune the weights of
the convolutional network and the classifier.

3.3. Data preprocessing and augmentation

Some data preprocessing during the training procedure can
be useful to improve both the accuracy and the robustness of
the system. In particular, such preprocessing is applied to the
regions provided by the first stage of the pipeline, i.e. the region
proposal algorithm.

Padding: in the training dataset, the bounding boxes corre-
sponding to pedestrians precisely delimit the human body. This
is often not the case for region proposals, as shown in Figure ]



In fact, the bounding boxes provided by the region proposal al-
gorithm are often imprecise and fail at correctly delimiting the
human body. To overcome this issue, we decided to pad the re-
gions provided by the region proposals algorithm. To decide the
amount of padding to be applied to each region, we employed
the following procedure:

1. run the region proposal algorithm so as to extract the can-
didate bounding boxes;

2. for each bounding box belonging to the training set and
provided by the ground truth annotations, identify the
closer candidate region provided by the proposal algo-
rithm;

3. measure the amount of padding that is necessary so that
the ground truth bounding box is fully contained by the
candidate region.

4. build the histogram of the padding quantities. Since the
histogram represents a nearly-gaussian distribution, the
mean value is used as reference padding value from now
on.

To further improve the robustness of the model, multiple ran-
dom crops of the padded region are actually fed to the convolu-
tional network for training, so as to simulate the uncertainty of
region proposals.

Negative sample decorrelation: as mentioned in Section[3.2}
the convolutional network training procedure exploits anno-
tated positive and negative image regions. As regards the posi-
tive regions, they naturally come from the ground truth bound-
ing boxes corresponding to pedestrians. As for the negative
samples, the training datasets do not usually provide them di-
rectly, but they can be sampled from the visual content follow-
ing a number of different criteria. We propose a greedy algo-
rithm based on color histograms [22]] to select a set of neg-
ative training examples that are as diverse as possible. Let
I € [0,255]"*N*P denote the image patch corresponding to
a sample region, where M, N and P denote the number of rows
and columns and the depth of the image (e.g., P = 3 for an
RGB image), respectively. Scalar quantization is performed on
the value of the pixel intensity in all the channels, with a quan-
tization step size equal to A, i.e.

I (m,n,p)=I(m,n,p)/A],
m=1,...,Mn=1,...,N,p=1,...,P. (1)

The result of such operation is a quantized color vector
I,(m,n) € R? for each pixel location (m,n). In the case of
RGB images, 7 ,(m, n) is a vector with three values, correspond-
ing to the RGB channels. A histogram of the quantized color
vectors is then computed. In particular, such histogram counts
the occurrences of any possible quantized color vector within
the quantized image. Figure [3] shows a visual representation
of an RGB color histogram. The histogram is then normalized

(b)

Figure 3: (a) an image and (b) its RGB color histogram. The radius of a sphere
indicates the number of occurrences of the corresponding quantized color.

(@ (b)

Figure 4: (a) a region proposal that precisely defines the contour of the human
body; (b) an imprecise region proposal that cuts part of the body.

resorting to L2-norm, so that the normalized histogram approx-
imates the probability distribution of quantized color vector in
a region.

Then, defining K as the target number of negative regions that
have to be extracted, the negative region selection algorithm
comprises the following steps:

1. starting from the training dataset, randomly extract N re-
gions that do not contain a pedestrian, i.e. that do not over-
lap with the ground truth bounding boxes;

2. compute the color histogram of all the negative training
regions, and normalize it so as to obtain a color probability
distribution;

3. compute the euclidean distance between the cumulative
color probability distributions of each pair of negative re-
gions;

4. select the negative region with the highest average distance
with respect to all the other regions and remove it from the
pool;

5. in to step @ until K regions are selected.



3.4. Region proposal scores

As presented in Section [3.I] a region proposal algorithm
must be employed to provide the neural network with a set of
candidate windows. Typically, the region proposal algorithm
yields a set of regions, each with a confidence value that in-
dicates the probability of the given region containing a pedes-
trian. Such scores can be used to select which regions have to
be fed to the neural network for classification. In this case, only
regions with a score higher than a given threshold are fed to
the following stages, so that in the final detection pipeline the
region proposal algorithm and the neural network are used in
series.

Alternatively, besides acting as a selector for region proposal,
the score of a region can be exploited as an additional feature
for the final classifier that assesses the presence of a pedestrian.
In a sense, the scores provided by the region proposal algorithm
and by the neural network are used in parallel to classify a given
region, improving the system accuracy.

4. Experimental evaluation and results

We perform a thorough experimental campaign to assess the
effectiveness of our pedestrian detection pipeline, highlight-
ing how the optimizations introduced in Section [3|improve the
overall performance.

4.1. Datasets

To conduct our experiments, we resort to the Caltech Pedes-
trian Dataset [[1], a widely accepted, large-scale, challenging
dataset that has become the standard to evaluate the results
of pedestrian detection algorithms [2]]. It consists of approxi-
mately 10 hours of video content, acquired from a vehicle driv-
ing through regular traffic in an urban environment under good
weather conditions. The resolution and the sampling rate of the
video content are 640 x 480 and 30fps, respectively.

Approximately 250k frames, corresponding to 137 minutes
of video content, have been manually annotated with approxi-
mately 350k bounding boxes, corresponding to 2300 different
pedestrians. The annotations include temporal correspondence
of the same pedestrian across different frames and information
about occlusions, such as the visible area and the full extent of
the pedestrian. Approximately half of the frames do not con-
tain any pedestrian, whereas 30% of the frames contain two or
more. On average, a pedestrian is visible for about 5 seconds.

Furthermore, an evaluation protocol has been released along
with the dataset, so that the performance of the different algo-
rithms can be directly compared and analyzed. For the sake
of completeness, we briefly report here the evaluation protocol.
The Caltech Pedestrian Dataset was captured over 11 sessions.
The first six sessions, i.e. Session 0 to Session 5, are assigned
to the training set, whereas the other sessions, i.e. Session 6
to Session 10, are assigned to the test set. To avoid using very
correlated frames, the test set is resampled so that 1 image ev-
ery 30 frames is considered for evaluation. As regards training,
we resampled the video sequence so that 1 frame out of 3 is
used, as suggested by Hosang et al. [12]. Table[I|reports some
statistics on both the training and the test data.

Table 1: Statistics for the Caltech Pedestrian Dataset

] set \ session \ # images \ # positive regions ‘
0 8559 7232
1 3619 2903
train 2 7410 588
3 7976 3023
4 7328 1235
5 7890 1394
6 1155 903
7 746 1297
test | 8 657 352
9 738 557
10 728 776

4.2. Evaluation Metrics

We resort to the evaluation metrics defined by the Cal-
tech Pedestrian Detection evaluation protocol, as proposed by
Dollér et al. [7]. In particular, the performance of an algorithm
is evaluated in terms of the tradeoff between the miss rate (MR)
and the number of false positives per image (FPPI). For the con-
venience of the reader, we briefly recap such metrics. First, a
detected bounding box, i.e. the one provided by a pedestrian de-
tection algorithm, and a ground truth bounding box are consid-
ered to match if the area covered by their intersection is greater
than 50% of the area of their union. A ground truth bounding
box that does not have a match is considered a False Negative
(FN), or a miss. A detected bounding box that does not have
a matching ground truth bounding box is considered as a False
Positive (FP). Then, it is straightforward to define the average
number of false positives per image (FPPI), that is, the average
number of regions of each image that are erroneously detected
as a pedestrian. The miss rate (MR) is defined as the ratio
between the number of False Negatives and the total number
P of positive examples (the number of ground truth bounding
boxes), i.e.

_FN
==

We are particularly interested in the value of the miss rate
at 0.1 FPPI, that has been identified as a reasonable working
condition for a real-world system.

MR ()

4.3. Experimental setup and results

We tested two state-of-the-art convolutional neural networks
that proved to be very effective in the context of object detec-
tion:

e AlexNet [15], in particular to its version finetuned for
general-purpose detection, as proposed by Girshick et
al. [I11];

e GoogLeNet [23]], the winner of 2014 ImageNet object de-
tection challenge.

Such neural networks are able to classify regions belonging to
200 different classes, most corresponding to different objects



Table 2: Parameters for the sliding window region proposal

Aspect ratio 2:1
Minimum size | 50 x 25
Maximum size | 200 x 100
Scale step 1.1

Stride 10 pixels

or animals. As a first experiment, we use each network as is,
and we consider the class person as the one corresponding to
pedestrians. In particular, given an input region provided by
the region proposal algorithm, we run the neural network and
we obtain the output class label. If such a label is person, we
assume that a pedestrian has been detected.

Region Proposals: we resort to three increasingly specific
methods for proposing candidate regions, as introduced in Sec-
tion 3} The most naive method is based on multi-scale sliding
windows that scan the entire image. We perform a simple test
to get some information from the Caltech Pedestrian Dataset.
First, the evaluation protocol suggested by Dollér et al. [[7] op-
erates under reasonable conditions, that is, with pedestrians
whose height in pixels is greater than 50, under no occlusions.
Hence, we fix the minimum vertical window size to 50 pixels.
Analyzing the average dimensions of the ground truth bounding
boxes for the dataset at hand, it is possible to see that most an-
notations refer to pedestrian whose height in pixels is less than
100, and that the average aspect ratio between the height and
the width of the bounding boxes is approximately 2.4:1.

The maximum height and the aspect ratio for a bounding box
are thus set to 100 pixels and 2:1, respectively. Table [2] re-
ports the main parameters that we set for the sliding window
approach.

The second method that we tested is Selective Search [25],
a general-purpose region proposal algorithm that achieve out-
standing results in conjunction with AlexNet for object detec-
tion. We use the default parameters suggested by Girshick et
al. [[1L1]).

As mentioned in Section [3] we also tested a region pro-
posal algorithm tailored to pedestrian detection, namely Lo-
cally Decorrelated Channel Features (LDCF). Such algorithm
acts as a coarse filter, discarding as many negative regions as
possible. All the regions extracted with such setting are then
fed to the neural network for feature extraction and classifica-
tion.

Convolutional Neural Networks accept input patches with
fixed dimensions. In particular, AlexNet requires the input re-
gions to be squared, with a resolution of 227 x 227 pixels. The
regions extracted by the region proposal algorithms are thus re-
sized to comply with such requirement, as commonly done for
object detection [I1]]. Table [3|compares the performance of the
different region proposal algorithms, including two traditional
algorithms such as HOG [3] and LDCEF [17]], set with the default
threshold, i.e. the one that yield best performance on the dataset
at hand, as a reference. Selective Search is not able to propose
all the regions corresponding to pedestrians. In particular, a
careful analysis reveal that it fails at proposing almost 50% of

Table 3: Comparison of different region proposal algorithms coupled with
AlexNet-Pedestrian, finetuned on the Caltech Pedestrian dataset, and the origi-
nal AlexNet, trained for general-purpose detection, in terms of miss rate at 0.1
False Positives per image.
] Region proposals

Feature extraction \ miss rateg |gppr

Selective search AlexNet-Pedestrian | 0.801
Sliding window AlexNet-Pedestrian | 0.370
LDCF AlexNet-Pedestrian | 0.197
Selective search AlexNet 0.820
Sliding window AlexNet 0.616
LDCF AlexNet 0.398
Viola-Jones 0.950
HOG 0.680
LDCF 0.248

the positive bounding boxes. That is, even if classification is
performed perfectly, the miss rate can not be lower than 0.5.
Selective Search is thus clearly not suitable for such specific
task. On the other hand, the sliding window approach signifi-
cantly improves the detection accuracy. In fact, such approach
presents the higher recall, by proposing a very large number
of regions. In this case, the neural network is to be blamed,
not being able to correctly classify that many regions. Finally,
LDCEF seems to offer good performance as a region proposal al-
gorithm. Nonetheless, the Convolutional Neural Network does
not seem to be doing a good job detecting pedestrians.

Data preprocessing and finetuning: the preliminary tests
show that the neural network is not doing a good job detect-
ing regions depicting pedestrians. This is not surprising, since
we are using a network trained for object detection, without
any modification. To improve the performance, we resort to a
finetuning procedure that aims at adapting the network to the
specific task of pedestrian detection. We perform a k-fold cross
validation procedure with k = 6 folds. In particular, the train-
ing dataset consists of 6 different sessions: for each fold, one of
them is used as a validation set, whereas the remaining five con-
stitute the training set. We use a negative to positive region ratio
equal to 5:1, as suggested by Hosang et al. [12]]. Figure[5]shows
the average loss function obtained by finetuning the neural net-
work over the 6 folds. We identify iteration 3000 as a good
candidate to stop the training procedure, being at the beginning
of the region in which the loss function stops decreasing. To
exploit the entire training dataset, we finetune the model resort-
ing to the entire training dataset and stopping at iteration 3000.
Furthermore, we substitute the classifier learned during the fine-
tuning procedure, based on the softmax function and log loss,
with a linear SVM, trained with the regularization parameter C
setto 1072,

Final model: our final system is a combination of LDCF as
region proposal algorithm and the finetuned deep convolutional
neural network—either AlexNet-Pedestrian or GoogLeNet-
Pedestrian—and comprises all the optimizations presented in
the previous paragraphs. With respect to SCF+AlextNet by
Hosang et al. [12]] we deeply evaluated how to choose positive
and negative regions for training. Moreover we made use of
the score produced by the LDCF detector in the second level
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Figure 5: The loss function on the validation subset as a function of the number
of iterations. The continuous line represents the average over the 6-folds. The
dotted line is a smoothed version of the continuous line, used to determine the
minimum loss as function of the number of iterations.

SVM, so to preserve all the information extracted from the im-
age. We label the whole pipeline DeepPed, and we evaluate its
performance on the entire test set. The two neural networks per-
form similarly in terms of task accuracy: in particular, AlexNet-
Pedestrian and GoogLeNet-Pedestrian yield a miss rate equal to
0.199 and 0.197, respectively. Due to the higher complexity of
GoogLeNet, we decided to show and consider only AlexNet-
Pedestrian as feasible CNN for our DeepPed pipeline. Figure 6]
compares the performance of our system with that of other pop-
ular algorithms. Channel Features based algorithms as LDCF
and ACF-Caltech+ [17]] - a deeper and more sophisticated ver-
sion of ACF - are easily beaten by a large margin. Our reference
starting-point architecture SCF+AlexNet by Hosang et al. [12]
and the complex Katamari [2] proposal, composed of several
previous developed handcrafted methods, are performing worse
the our approach by quite a big margin. Complex methods built
upon hundred of feature channels and resorting to optical flow
and semantic information, such as SpatialPooling+ [? ] and
TA-CNN [? ], are also beaten by a small margin by DeepPed.
Newly and sophisticated methods as Checkerboards [? ] and
CCF+CF [27], based on low-level features extracted from pre-
trained CNNs and boosted classifiers, are instead better than
DeepPed in terms of miss rate, even if their complexity is much
higher.

Analysis of computational time and optimization: we pro-
filed the execution of our system on a desktop architecture
which features a six-core 2.4GHz Intel Xeon CPU E5-2609,
a NVIDIA GTX980 GPU and 32GB of RAM. The systems re-
quires, on average, 530ms to process a frame at a resolution of
640 x 480 pixels. As a term of comparison, CCF requires more
than 3 seconds to process a single frame [27]].

In our setting, LDCF is run on the CPU resorting to the
original implementation provided by the authors [[17], without
any other optimization, whereas the convolutional neural net-
work is run on the GPU resorting to the Caffe framework [13]].
Note that LDCF, operated as region proposal algorithm, ac-
counts for most of the computational time. In particular, LDCF
and AlexNet-Pedestrian accounts for approximately 511ms and
19ms, respectively. We thus feel that a careful optimization
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Figure 6: Best viewed in colors. Comparison between DeepPed and other
popular pedestrian detection algorithms

of the Matlab-based LDCF implementation provided by au-
thors [[17] may significantly improve the computational perfor-
mance of our system.

Lightweight version: to improve the efficiency of our algo-
rithm, we resort to a more efficient algorithm for region pro-
posal, namely ACF [3]]. We carefully analyzed the original code
provided by authors [5] and rewrite an optimized version of the
algorithm in C. Such implementation yields a 0.298 miss rate -
the same as the original Matlab code - and can be operated in
real-time on the same machine, requiring as few as 46ms per
frame, corresponding to a processing rate of 21.7fps. Such so-
lution reduces the computational time by more than 10 times.
To further validate our approach, we tested such configuration
on an NVIDIA Jetson TK1, a development platform equipped
with a 192-core NVIDIA Kepler GPU, an NVIDIA quad-core
ARM Cortex-A15 CPU and 2GB or memory. Our system based
on ACF and AlexNet-Pedestrian requires 405ms per frame, cor-
responding to 2.4fps on the development board.

5. Conclusions

We proposed a pedestrian detection system based on con-
volutional neural networks. The proposed system outper-
forms alternative approaches based on both handcrafted and
learned features, at a reasonable computational complexity. Our
lightweight version is capable of detecting pedestrian in real-
time on modern hardware. As a proof of concept, we tested
our system on a development board that is envisioned to be the
computational brain of smart cars. Future work will include the
optimization of LDCF for region proposal and the implementa-
tion of our pipeline entirely on GPU, so as to avoid expensive
memory copies and improve the overall performance, with the
aim of combining state-of-the-art accuracy and real-time pro-
cessing.
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