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Abstract

The latest High Efficiency Video Coding standard (HEVC) provides a set of new coding tools to achieve a
significantly higher coding efficiency than previous standards. In this standard, the pixels are first grouped
into Coding Units (CU), then Prediction Units (PU), and finally Transform Units (TU). All these coding
levels are organized into a tree-shaped arrangement that allows highly flexible data representation; however,
they involve a very high computational complexity.
In this paper, we propose an effective early CU depth decision algorithm to reduce the encoder complexity.

Our proposal is based on a hierarchical approach, in which a hypothesis test is designed to make a decision
at every CU depth, where the algorithm either produces an early termination or decides to evaluate the
subsequent depth level. Moreover, the proposed method is able to adaptively estimate the parameters that
define each hypothesis test, so that it adapts its behavior to the variable contents of the video sequences.
The proposed method has been extensively tested, and the experimental results show that our proposal

outperforms several methods of the state-of-the-art, achieving a significant reduction of the computational
complexity (36.5% and 38.2% average reductions in coding time for two different encoder configurations) in
exchange for very slight losses in coding performance (1.7% and 0.8% average bit rate increments).

Keywords: Bayesian statistics; complexity reduction; fast coding unit decision; high efficiency video
coding; hypothesis test; on the fly estimation.

1. Introduction

1.1. The High Efficiency Video Coding standard

The High Efficiency Video Coding (HEVC) stan-
dard is the latest video coding project developed by
the ITU-T Video Coding Experts Group (VCEG)5

and the ISO/IEC Moving Picture Experts Group
(MPEG), working together in the Joint Collabo-
rative Team on Video Coding (JCT-VC). An in-
creasing interest in new video applications, higher
video resolutions (Full-HD, 4k×2k, or 8k×4k), and10

the great amount of traffic caused by video sig-
nals over the mobile or fixed communication net-
works were some of the motivations for the design of
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HEVC, which was developed to serve these new de-
mands. As its predecessors (H.264/AVC or MPEG-15

2), HEVC is a block-based hybrid video encoder
that combines motion-compensated prediction with
spatial transform coding, but, by virtue of a set of
new coding techniques [1], HEVC is able to double
the compression rates for the same objective image20

quality compared to H.264/AVC [2].
There are many new features included in HEVC.

Below, we briefly present those that become more
relevant to describe our proposal; specifically:

• The HEVC standard uses a quadtree structure25

to divide the frame into blocks called Coding
Tree blocks (CTBs). The size L×L of a lumi-
nance CTB can be chosen as L = 16, 32, or 64
pixels, where larger L values usually results in
better compression [1]. This is one of the main30

differences with respect to previous standards,
where typically a size of 16×16 pixels was used.
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• HEVC enables to divide the CTBs into smaller
coding units (CUs) using a quadtree structure.
The root of this tree is associated with the35

CTB, allowing CU sizes up to the CTB size
and down to 8×8 pixels. The higher depth in
the quadtree, the lower CU dimensions. Thus,
a CTB may consist of only one CU or multiple
CUs. Fig. 1 shows an example of a CTB of40

64×64 pixels, divided into 13 CUs with dimen-
sions ranging from 32×32 to 8×8 pixels.

• For each CU the encoder must decide whether
to use intra- or inter-coding to best represent
it. In the prediction stage, each CU can be45

divided into prediction units (PUs) of several
sizes for which either the intra- or the inter-
prediction is estimated (depending of the pre-
diction type, several partitioning modes are al-
lowed). Fig. 2 illustrates all the PU partition-50

ing possibilities for a 2N×2N CU. For inter-
coding, the PU could have either the same
dimensions as the CU, or could be divided
into two or four blocks (which could even be
of asymmetric sizes). For intra-coding only55

2N×2N and N×N sizes are allowed.

• Concerning the transformation of the predic-
tion residual, the CU can be considered as
the root of another quadtree of transformation
units (TUs). The sizes of the TUs can vary60

from 4×4 up to the CU size, depending on the
depth at which the TU is located. HEVC uses
an integer transform similar to the discrete co-
sine transform (DCT) defined for several sizes
from 4×4 up to 32×32. On the left side of the65

Fig. 3 we show an example where a 64×64
CTB is divided into the corresponding CUs
(in solid line) and TUs (dashed line). On the
right part of Fig. 3, the associated quadtree is
shown.70

From all these coding options, the encoder needs
to select the best combination to represent each
CTB. This process is explained in detail in the next
subsection.

1.2. Rate-Distortion Optimization in HEVC75

An HEVC encoder selects the best coding tree
structure (including the CUs, PUs, and TUs sizes)
through a Rate-Distortion Optimization (RDO)
process, which must evaluate every tree configura-
tion and compare all of them in terms of rate and80

Figure 1: An example of a 64×64 CTB divided into 13 CUs.
Two 32×32 CUs (e, and f), seven 16×16 CUs (a, b, c, g, l,
and m) and four 8×8 CUs (h, i, j, and k).

Figure 2: PU sizes allowed for a 2N×2N CU. In the upper
part the symmetrical partitions are shown. In the lower part
the asymmetrical ones, where L, R, U, and D stand for the
position of the smallest partition (left, right, up and down,
respectively).

distortion. This process contributes to achieve a
very high coding efficiency but at the expense of a
large increase in the encoder complexity.

Specifically, the RDO process aims to find the
coding option that minimizes a distortion measure85

subject to a given rate constraint:

min
θ

{D(θ)} subject to R(θ) ≤ Rc, (1)

where θ is a combination of different coding options
(CU, PU, and TU sizes, motion vectors (MVs), ref-
erence frames, etc.). D(θ) represents the distortion
between the original and the reconstructed block of90

pixels, R(θ) is the rate needed to encode it, and,
finally, Rc represents the rate constraint.

Using Lagrange formulation, this constrained
problem can be formulated as an unconstrained one
[3]:95

min
θ

{J}with J(θ) = D(θ) + λR(θ), (2)
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Figure 3: (a) An example of a 64×64 CTB divided into
13 CUs of several sizes in solid line. An example of a TU
structure in dashed line where the TU can be either the same
as the CU size (a, b, d, f, g, l, h, i, j, and k) or not (c, e, and
m). (b) The associated quadtree, in solid line for CUs and
dashed line for TUs.

where J represents the rate-distortion (R-D) cost
associated with the set of coding options θ, which is
calculated as a weighted sum of the Distortion and
Rate terms D(θ) and R(θ), where the Lagrange
multiplier λ balances the relative importance of100

both terms. For a given value of λ, the solution
θ∗(λ) turns out to be an optimal solution of the
original RDO problem in (1) for a particular value
of Rc = R(θ∗).

This solution involves to calculate the total bit105

rate required to encode each CTB and distortion
between original and reconstructed CTBs. Hence,
the encoder needs to carry out the prediction,
residue calculation, transformation, quantization,
entropy coding, and the inverse processes consider-110

ing each combination of coding options θ. This pro-
cess results in extremely high computational com-
plexity, being the bottleneck of the HEVC stan-
dard.

To alleviate this highly time-consuming process,115

in this paper we propose a fast method for the selec-
tion of the optimal CU depth. The aim of this work
is to design an algorithm able to reduce the compu-
tational complexity, while maintaining the quality
as close as possible to that of the baseline encoder120

process. The complexity reduction is obtained by
limiting the depth of the quadtree at CU level by
means of an adaptive Bayesian method, which de-
termines the CTBs where the lower CU depths are
likely to be optimal.125

The remainder of this paper is organized as fol-
lows. In Section 2, an overview of the state-of-the-
art methods that address the complexity reduction
problem in HEVC is presented along with the main
contributions in this paper. Section 3 provides a de-130

tailed explanation of our proposal. In Section 4, the
experimental evaluation is described and discussed.

Finally, Section 5 summarizes our conclusions and
outline future lines of research.

2. Review of the state of the art135

Several works have been developed to address the
problem of the high computational complexity of
the HEVC standard. As explained previously, the
optimal representation of a CTB is a combination
of decisions related to CU depths, PU modes, and140

TU quadtree sizes; thus, the complexity reduction
problem has been approached as an early determi-
nation of the CU, PU, or TU.

In this section, a description of some relevant
state-of-the-art proposals is provided. Specifically,145

we focus on the proposals related to the early CU
depth determination, which is the objective of this
work. Nevertheless, an outline of other methods
related to fast PU and TU size decision is also pre-
sented.150

In [4], a fast CU depth decision was described.
By analyzing the CU depths selected in the last
frame, the least used CU depths are disabled for
the current frame. This decision depends on some
thresholds experimentally determined. Then, for155

every CU, the depths of the neighbor and co-located
CUs are analyzed to avoid checking unnecessary CU
depths, depending on the number of neighbor CUs
that satisfy some requirements.

[5] explained a fast CU depth selection us-160

ing Bayesian statistics. This algorithm is based
on class-conditional probability density functions
(pdfs) estimated offline and stored in a look up
table. Then, using a Bayesian decision rule, the
thresholds (to decide whether to check the next CU165

depth) are calculated offline for different coding set-
tings and different sequence resolutions.

[6] presented a fast CU encoding scheme based on
the spatio-temporal encoding parameters of HEVC.
This method utilizes spatial encoding parameters170

such as sample adaptive offset filter data to es-
timate the texture complexity in a CU partition.
Moreover, the temporal complexity is estimated by
means of temporal encoding parameters such as
MVs or TU sizes. All these parameters were used175

to design an early CU Skip mode detection and a
fast CU split decision methods.

[7] proposed three methods to save complexity: a
Skip mode detection, an early CU termination, and
a CU skip estimation. The first one determines for180

each CU whether the Skip mode should be the only
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mode tested. The second and third methods aim to
decide if either a larger or a smaller CU size should
be evaluated, respectively. The three methods are
based on pdfs of the RD costs and use the Bayes’185

rule to make the corresponding decisions.
In [8], a pyramid motion divergence method was

proposed to early skip some CU depths. First, be-
fore coding a frame, the optical flow is estimated
for a downsampled version of that frame. Then, for190

each CU, the pyramid motion divergence is calcu-
lated as the variance of the optical flows of the cur-
rent CU and the CUs of smaller size. Finally, an
algorithm based in euclidean distances selects the
optimal CU quadtree structure, as CUs with simi-195

lar pyramid motion divergence tend to use similar
partitions.
[9] described an algorithm to decide the opti-

mal CU partitioning in every CTB based on local
statistics of the RD costs and motion activity. This200

method sets several early termination conditions to
decide if the splitting process is terminated. Specif-
ically, if the Skip mode is selected as optimal, or if
the RD cost is lower than its average value and the
MVs are zero, or if the ratio of the RD costs be-205

tween the current CU and its parent CUs is lower
than a threshold, the following CU depths are not
evaluated.
[10] explained a machine learning approach based

on Support Vector Machines (SVMs) to determine210

the optimal CU size. Several features are obtained
from the video content and the previously coded
data to generate the optimal feature subset by a
wrapper feature selection algorithm. To derive an
accurate model to predict the CU size, differences215

of RD costs are used as weights in the SVM training
procedure, carried out offline, to alleviate the losses
in coding performance due to misclassification.
[11] presented a fast CU size decision for 3-D

HEVC video encoders. The authors explain that,220

when two CUs have similar depth values, it is be-
cause there are high correlations between their cod-
ing information. In this way, they proposed two ef-
ficient CU decision methods: first, an early coding
level determination based on the spatially neighbor-225

ing CUs depth values; second, an adaptive mode
size decision based on the correlations between the
motion characteristics and the depth values.
In [12] a mechanism to adaptively select the CU

depth range was proposed. This method determines230

the optimal CU range using the distribution of CU
depths in the same sequence, avoiding to carry out
the encoding process with those depths outside the

calculated range. Moreover, the depths of neighbor
CUs are used to check if the R-D cost calculations235

at the current CU depth may be further skipped.
In [13] a fast intra mode decision was described.

This work presents a novel texture orientation de-
tection algorithm based on the local directional
variance computed along a set of co-lines. This vari-240

ance is measured using a novel Mean Directional
Variance (MDV) metric which calculates the cumu-
lative variance along digital lines. According to the
dominant gradient detected, a reduced set of direc-
tional candidate modes for each PU are selected to245

be further tested in the RDO stage.
Another technique for fast decision in intra pre-

diction was described in [14]. This method proposes
a CU depth prediction and an early CU splitting
termination. The CU depth is limited to a narrower250

predicted range. CU splitting stops when the R-D
cost of current CU is below an estimated R-D cost.
Both decisions are based on values previously found
in the collocated CTBs of the previous frame.

In [15], a method based on histograms of oriented255

gradients is described. A codebook is built offline
by clustering the histograms obtained from training
sequences for each CU depth. Then, the optimal
depth is selected by comparing the histogram of the
current CU with those of the learned codebook.260

[16] proposed to extract visual features in a CTB
to simplify the intra coding procedure by reduc-
ing the quadtree partition depth for each CTB. A
measure of the edge strength in a CTB based on
the Sobel operator is used to constrain the possible265

maximum quadtree partition depth of the CTB.
In [17], a complexity control method for HEVC

was proposed. Based on the observation that in
the same region of consecutive frames some features
(motion, texture, etc.) tend to remain unchanged,270

the maximum CU depths in previous frames are
stored to avoid the complete evaluation in the next
frames, which are called constrained frames. The
complexity control is achieved by calculating the
number of constrained frames between regularly275

coded frames. This number depends on the com-
plexity spent in the encoding process and a predic-
tion of the encoding complexity for the remaining
frames. However, this method does not work prop-
erly when encoding fast motion video sequences280

with small target complexities. To solve this draw-
back, [18] presented an extension of their previous
work. This new version of their algorithm estimates
the maximum CU depth based on both spatial and
temporal correlations observed among CU depths.285
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Thus, for every CU, the neighbor CUs are also used
along with the CUs of previous frames.

Some examples of papers related to the fast selec-
tion of PU modes can be found in [19, 20, 21, 22].
Furthermore, methods that address the early de-290

termination of the TU quadtree structure are de-
scribed in [23, 24, 25].

Some of the previous works are not able to adapt
their algorithms over time during the coding pro-
cess (there are methods that depends on fixed295

thresholds or statistics calculated offline, e.g., [4],
[5], [15], and [10]). Some methods are designed tak-
ing into account the spatial and temporal correla-
tions between blocks, e.g., [14], and [17], but the
necessary statistical analysis appears to be lacking.300

Moreover, other approaches have difficulty reach-
ing different operating points to obtain several time
savings, as [4] and [9].

The contribution of this work is to design a com-
plexity reduction method based on Bayesian statis-305

tics that is able to adapt the parameters of the al-
gorithm on the fly to fit different types of content.
Moreover, our method is designed to have negli-
gible complexity since it only requires to perform
simple mathematical calculations. Our proposal is310

focused on the fast CU depth selection problem, but
it could be extended to manage PU or TU early ter-
mination problems. Specifically, for each CU depth,
we propose to estimate the pdfs that model the two
possible hypotheses: (i) the considered CU depth is315

optimal or (ii) the CU depth is not optimal. Based
on these pdfs and using Bayes’ formulation, we ob-
tain a threshold that allows us to decide if the early
termination is in order. The pdfs and the thresh-
olds are adapted on the fly to the changing content320

of the sequence that is being encoded. Previous
work by the authors presented a complexity con-
trol method in which early terminations are based
on an R-D cost analysis [26]. In this work, we im-
prove the performance of the method proposed in325

[26] by means of a Bayesian approach, which for-
malizes the decision problem and is able to manage
the cost of wrong decisions in terms of bit rate in-
crements.

3. Proposed method330

3.1. An overview

As shown in [26], the encoder selects lower depths
with high probability for all QP values for sequences

Figure 4: Flowchart of the proposed algorithm.

with smooth movement and static regions. In con-
trast, the probability of selecting lower depths de-335

creases notably when the sequence is more complex.
Moreover, the a priori probability of lower depths
increases with an increasing QP since these lower
depths are more adequate for a coarse coding pro-
cess.340

Given that low CU depths are optimal for several
types of sequences and QP values, an appropriate
early selection of the CU depth will be effective to
reduce the encoder complexity. Furthermore, given
that the optimal depth strongly depends on both345

the particular video content and QP value, an on
the fly adaptation of the algorithm is needed.

In order to reduce the computational burden of
the HEVC standard, the proposed method sets an
early termination at each CU depth. Thus, if the350
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early termination condition is satisfied, the higher
CU depths will not be tested, saving the corre-
sponding processing time. On the other hand, if the
early termination condition is not met, the next CU
depth is evaluated and the following termination355

condition is checked. Specifically, our algorithm
tries to distinguish between two hypotheses: the
current CU depth d is the best (H0 : depth∗ = d)
or the current CU must be divided and higher CU
depths must be evaluated (H1 : depth∗ > d). This360

problem can be formulated as a binary hypothesis
testing.
Mathematically, using Bayes’ formulation, given

two possible hypotheses H0 and H1 and the two
corresponding decisions D0 and D1, the likelihood
ratio test (LRT) is defined as follows:

Pr(x|H1)

Pr(x|H0)
≷D1

D0

(C10 − C00)

(C01 − C11)

Pr(H0)

Pr(H1)
, (3)

where Pr (x|Hi) is the likelihood of the input fea-
ture x given the hypothesis i, Pr (Hi) is the a priori
probability of the hypothesis i, and Cji is the cost365

of deciding j when the correct hypothesis is i.
In our proposal, we build a LRT at every CU

depth, where the two possible decisions are: current
depth is optimal and the next depths are avoided
(D0); or current depth is not optimal and the fol-370

lowing depths need to be evaluated (D1). The com-
plete process is summarized in Fig. 4.
To correctly develop the LRT, we need to select a

suitable input feature x. The feature selection pro-
cess (that will be explained in detail in the next sub-375

section) will provide us with a proper feature x that,
as we will demonstrate, is able to produce two sep-
arable pdfs for each hypothesis, Pr (x|depth∗ = d)
and Pr (x|depth∗ > d). In fact, the more separa-
ble pdfs, the higher accuracy of the decision. Once380

these pdfs are estimated, we can decide for each new
sample, using (3), the most probable hypothesis.

3.2. R-D costs as input features

The encoder decides on the optimal CU depth
based on R-D costs in (2). In this section we show385

that R-D costs can be employed as input feature x
in (3) to make accurate early decisions on the CU
depth, as proved in [27] and [28] for a similar mode
decision problem in H.264/AVC. Let us define the
following pdfs:390

Pr (JPU=a,depth=d|depth∗ = d) and

Pr (JPU=a,depth=d|depth∗ > d) , (4)

Table 1: Means and standard deviations of the R-D costs
when depth∗ = d (H0) and when depth∗ > d (H1), i.e.,
JPU=a∗,depth=d|depth∗ = d and JPU=a∗,depth=d|depth∗ >
d, respectively, for the sequences “FourPeople” and
“Johnny”.

depth=0 depth=1 depth=2

F
o
u
rP

e
o
p
le

Q
P

2
2 µ|H0 14918 5191 1890

σ|H0 6647 2337 977
µ|H1 28508 8923 2904
σ|H1 14433 4307 1417

Q
P

2
7 µ|H0 25360 10065 3983

σ|H0 14933 5521 2518
µ|H1 58462 19845 7138
σ|H1 34746 10978 4018

Q
P

3
2 µ|H0 47594 21265 8730

σ|H0 33039 13432 6316
µ|H1 122380 43734 16756
σ|H1 76016 25384 10391

Q
P

3
7 µ|H0 100100 45879 19782

σ|H0 75318 29843 14695
µ|H1 257150 94998 36921
σ|H1 147040 50429 20395

J
o
h
n
n
y

Q
P

2
2 µ|H0 11208 5650 1788

σ|H0 5410 2848 795
µ|H1 27151 7859 2405
σ|H1 10365 2763 965

Q
P

2
7 µ|H0 19939 9725 3209

σ|H0 14921 4451 1863
µ|H1 46256 14777 5675
σ|H1 18118 6867 3085

Q
P

3
2 µ|H0 35097 17611 6828

σ|H0 30322 9367 4918
µ|H1 85499 31890 13530
σ|H1 37488 16101 6316

Q
P

3
7 µ|H0 67871 34976 14485

σ|H0 64297 23071 11140
µ|H1 165870 66632 30196
σ|H1 76736 32511 14740

where JPU=a,depth=d is the R-D cost associated
with the PU partition size a at depth d. We check
whether the R-D costs leads to pdfs in (4) that are
separable enough to apply the LRT formulation and
determine the optimal CU depth. Specifically, we395

analyze the statistics (means and standard devia-
tions) of the J cost associated with the best PU
mode a∗ at a CU depth d when that depth is opti-
mal and when it is not (JPU=a∗,depth=d|depth∗ = d
and JPU=a∗,depth=d|depth∗ > d, respectively).400

To gather the data, we used the HM13.0
software [29] with the configuration file “en-
coder lowdelay P main” (for which the CU size can
vary from 64×64 to 8×8 pixels, and all the regular
PU modes and TU sizes are available). A subset405

of the test sequences recommended in [30] were en-
coded with QP values of 22, 27, 32, and 37. In
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(a) “FourPeople” at QP 22 (b) “Johnny” at QP 37

Figure 5: An illustration of the statistical behavior of the pdfs at several CU depths for two sequences.

Table 1 we show the results for two of these se-
quences (“FourPeople” and “Johnny”) for the con-
sidered QP values and the CU depths 0, 1, and 2410

(depth 3 is the highest one and does not require
to set up an early termination). µ|Hi denotes the
mean value when the hypothesis i is fulfilled (H0

means the current depth is optimal, whileH1 means
the optimal depth is higher), and σ|Hi denotes the415

standard deviation. To gain insight into the ob-
tained pdfs, Fig. 5 represents some examples for
depths 0, 1, and 2 for the sequences “FourPeople”
at QP 22 and “Johnny” at QP 37, using the same
coding configuration mentioned before.420

Considering the results presented in Table 1 and
Fig. 5, we can conclude that the statistics of each
hypothesis exhibit a very different behavior at every
CU depth since both mean and standard deviation
clearly grow when H1 is fulfilled. Similar results425

were obtained for all the analyzed sequences.

In summary, the pdfs defined in (4), based on
the JPU=a∗,depth=d cost, are suitable to address the
CU depth decision problem. Moreover, it should be
noted that the statistics highly depend on the QP430

value and the sequence. Thus, it seems reasonable
to use an adaptive algorithm able to manage these
changes in the video content and the coding process.

3.3. Studying the Gaussianity of the data

To apply the hypothesis test it is necessary to
know the pdfs of the data. Our first intuition, from
the examples in Fig. 5 and the similar results ob-
tained for all the analyzed sequences, is that the
majority of these pdfs could be assumed as Gaus-
sian. To check the goodness of this assumption, we
have carried out a Kolmogorov-Smirnov test [31],
which is commonly used to judge whether two dis-
tributions are different at certain significance level
(p− value). This test builds the cumulative distri-
bution functions (cdfs) from the data (F (x)) and
the standard Gaussian distribution (G(x)). Then,
the test uses the maximum difference between both
cdfs to check if the data could be Gaussian. Math-
ematically, this can be written as:

Dmax = max(|F (x)−G(x)|). (5)

The low p − value is induced by the large value435

of Dmax and indicates that difference between
both distributions is significant. The Kolmogorov-
Smirnov test takes the decision between Gaussian
data (H0,KS=1, accepting the null hypothesis) or
not (H0,KS=0, rejecting the null hypothesis) based440

on the p − value. The higher p − value, the more
likely is the null hypothesis. In our case, we have
applied this test with a p− value of 5%.

7



Table 2: The Kolmogorov-Smirnov test results for the se-
quence “FourPeople” at QP 22.

depth=0 depth=1 depth=2

Q
P

2
2

d
∗
=

d H0,KS 1 0 0
Dmax 0.13 0.07 0.07

p− value 0.02 0.08 0.10

d
∗
>

d H0,KS 1 0 0
Dmax 0.14 0.09 0.09

p− value 0.03 0.20 0.07

Table 3: The Kolmogorov-Smirnov test results for the se-
quence “Johnny” at QP 37.

depth=0 depth=1 depth=2

Q
P

3
7

d
∗
=

d H0,KS 1 0 0
Dmax 0.25 0.10 0.11

p− value 8.91e− 8 0.11 0.10

d
∗
>

d H0,KS 0 0 0
Dmax 0.09 0.08 0.12

p− value 0.14 0.36 0.09

To carry out the test, we used the same procedure
and subset of sequences as in the previous section445

and, for illustrative purposes, we show the obtained
results for the same sequences as in Fig. 5. In par-
ticular, Tables 2 and 3 show several results for the
sequences “FourPeole” and “Johnny”, respectively.
For each sequence we measure the gaussianity of the450

pdfs JPU=a∗,depth=d|depth∗ = d (labeled as d∗ = d
in the tables) and JPU=a∗,depth=d|depth∗ > d (la-
beled as d∗ > d) in every depth. For both pdfs we
show H0,KS , Dmax, and p− value.
As it can be seen from the results, the majority455

of the RD cost data can be derived from Gaussian
distributions and only some specific examples re-
ject this hypothesis. To give a graphical example,
we represent several of the obtained cdfs in Fig.
6. Specifically, in each figure the Gaussian cdf is460

plotted along with the cdf associated to the data.
The figure on the left corresponds to “FourPeople”
at QP 22 with depth = 0|depth∗ = 0; as it can
be seen, there are no high similarity between both
cdfs, so the Gaussiniaty hypothesis is rejected. In465

the center and the right part of the figure (with
data coming from “FourPeople” at QP 22 with
depth = 3|depth∗ = 3 and “Johnny” at QP 37 with
depth = 2|depth∗ > 2, respectively), the Gaussiani-
aty hypothesis is accepted as the data cdfs are very470

similar to the Gaussian distribution.
It must be noted that similar results, endors-

ing the Gaussianity assumption, are obtained with

most of the sequences evaluated.

3.4. On the fly estimation of the pdfs475

Once we have defined the hypothesis H0 and H1,
selected the input feature x = JPU=a∗,depth=d, and
proved the Gaussianity of the data, this section is
devoted to explain the estimation of the statistical
parameters that define the pdfs in the LRT formu-480

lation in (3).

By virtue of the Gaussian assumption proved in
the previous section, we only need to store the
means and the standard deviations to fully describe
the pdfs. In this way, the hypothesis test in (3) can485

be written as:

− (J2N×2N,0−µ̂1)
2

2σ̂2
1

+
(J2N×2N,0−µ̂0)

2

2σ̂2
0

+

+ ln
σ̂2
0

σ̂2
1
≷D1

D0
ln( P̂ (H0)

P̂ (H1)
) + ln(C10

C01
), (6)

where µ̂i and σ̂i are the estimated mean and stan-
dard deviation of Pr (JPU=a∗,depth=d|depth∗ = d);

P̂ (Hi) is the estimated a priori probability of hy-
pothesis i; and the cost associated with correct de-490

cisions (C00 and C11) have been considered to be
zero.

We propose to estimate on the fly the parameters
µ̂0, µ̂1, σ̂0, and σ̂1, and the a priori probabilities,
P̂ (H0) and P̂ (H1) to adapt them to the content495

along the coding process. Two different procedures
to carry out the estimation were studied, specifi-
cally, an arithmetic and an exponential average.

In Fig. 7 an illustrative example of the results
achieved by the arithmetic and the exponential av-500

erages is shown. In particular, we show the µ̂0 and
µ̂1 mean values calculated over 350 samples with
both kinds of averages. Furthermore, the expected
mean values per 50-sample block are also shown as
a reference to evaluate the tracking ability of the505

compared estimation methods. As observed in Fig.
7, the exponential average produces better tracking
than the arithmetic, achieving a mean value closer
to the expected value, while the arithmetic average
gets stuck as the number of samples grows. Another510

interesting aspect that can be analyzed in Fig. 7 is
the difference between the mean values of both pdfs.
As can be observed, µ̂0 and µ̂1 are clearly different,
which helps the LRT to take more accurate deci-
sions.515

According to this analysis, we use an exponential
average for the estimation of the pdfs parameters
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(a) (b) (c)

Figure 6: Three examples of the resulting cdfs to carry out the Kolmogorov-Smirnov test (a) “FourPeople”at QP 22 with
depth = 0|depth∗ = 0; (b) “FourPeople” at QP 22 with depth = 3|depth∗ = 3; and (c) “Johnny” at QP 37 with depth =
2|depth∗ > 2.

Figure 7: Arithmetic and exponential estimations of µ̂0 and
µ̂1 in BasketballDrill at QP 32 for depth = 0.

that relies on the following updating equations:

µ̂i(ni) = αµ̂i(ni − 1) +

+(1− α) · JPU=a∗,depth=d(ni),

with i = {0, 1} (7)

σ̂2
i (ni) = ασ̂2

i (ni − 1) +

+(1− α) · (JPU=a∗,depth=d(ni)− µ̂i(ni))
2,

with i = {0, 1}, (8)

where ni is an index associated with the times520

that the hypothesis Hi is selected; µ̂i(ni − 1) and
µ̂i(ni) are the estimated means at the instants
(ni − 1) and ni, respectively (the notation is the
same for the variances σ̂2

i (ni − 1) and σ̂2
i (ni));

JPU=a∗,depth=d(ni) is the cost at the instant ni; and525

α is the parameter defining the forgetting factor of
the exponentially averaged estimation process (α
has been set to 0.95 in our experiments).

The a priori probabilities, P̂ (H0) and P̂ (H1),
are calculated by counting the number of occur-530

rences of every hypothesis. Additionally, to avoid
the winner-takes-all problem, we limit the maxi-
mum possible value of P̂ (H0) and P̂ (H1).

It should be noted that the parameter
ln (C10/C01) in (6) allows us to manage the535

trade-off between time saving and bit rate incre-
ment of our method. If ln (C10/C01) takes a high
value, the early termination (D0) is selected more
often; therefore, the time savings are higher at
the expense of higher increments in the final bit540

rate, and vice-versa. To reach a suitable operating
point, we carried out an experimental validation of
this parameter, following the same procedure as in
Section 4, with a subset of the sequences presented
in Table 4; specifically, “BasketballDrill”, “Bas-545

ketballPass”, “BlowingBubbles”, “BQTerrace”,
“FourPeople”, and “Johnny”. We obtain the
following values for the three decision levels: depth
0: ln (C10/C01) = −2; depth 1: ln (C10/C01) = −2;
and depth 2: ln (C10/C01) = −1.550

Regarding the computational complexity, we
have carefully studied the floating-point operations
involved and proposed an alternative integer-based
implementation. Specifically, our proposal is com-
prised of two changes: 1) since both the statistical555

parameters and the threshold (6) come from RD
costs that tend to take high values, the decimals
turn out to be irrelevant; thus, the calculation of
the exponential averages of the means and standard
deviations ((7) and (8)) can be carried out by scal-560

ing and rounding the values to avoid the decimals;
2) in (6), the logarithm of a ratio can be expressed
as the difference of the logarithms; thus, we avoid
computing the divisions while the logarithms can be
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implemented by means of a look up table. Finally,565

the two divisions of the left hand side of (6) are
implemented as floating-point operations; next, the
results can be scaled and rounded to complete the
calculation by means of integer-based operations.

3.5. Summary of the algorithm570

The complete method is summarized in Algo-
rithm 1.

Algorithm 1 Proposed coding process.

Require: M : number of CTBs in a frame
Require: D: number of available CU depths in a

CTB
1: for ∀m ∈ M do
2: for ∀d ∈ D do
3: Evaluate all PU partition modes in depth

d
4: Calculate the input feature to the hypoth-

esis testing JPU=a∗,depth=d

5: Apply the hypothesis testing in (6)
6: if H0 is selected then
7: Go to 10
8: end if
9: end for

10: Decide the best coding options among all CU
depths and PU partitions evaluated

11: end for

4. Experiments and results

4.1. Experimental setup

To properly test the performance of our proposal,
it was integrated into the HEVC reference soft-
ware HM13.0 [29]. The experimental setup followed
the recommendations given in [30]. Specifically, we
used the suggested QP values (22, 27, 32, and 37)
and the set of sequences listed in Table 4. More-
over, the configuration files chosen for this eval-
uation were “encoder lowdelay P main” and “en-
coder randomaccess main”. To measure the cod-
ing performance, the bit rate increment (∆BR) was
calculated following the guidelines given in [32]. To
measure the encoder complexity, the time saving
(TS) was calculated as follows:

TS =
Time(HM13.0)− Time(Proposed)

Time(HM13.0)
× 100.

(9)

4.2. Results and comparison with other state-of-575

the-art approaches

Our proposal was compared with several methods
of the state-of-the-art: [4], [7], [9], and [26]. The
first three are complexity reduction methods ad-
dressing the early CU decision problem, as our pro-580

posal. As explained before, [4] uses the information
related to the optimal CUs in previous frames and
neighboring CTBs to reduce the number of depths
to be tested. [7] defines a threshold based on statis-
tics of the pdfs of the RD costs to design a CU depth585

early termination process and a Skip mode detec-
tion algorithm. To carry out a fair comparison, our
implementation of this method has been limited to
the CU decision stage. [9] defines several decision
stages to decide the optimal CU depth based on lo-590

cal statistics of the RD costs, the optimal PU mode,
and the MVs. Last, [26] is a complexity control
method based on statistical information that aims
to select the CTBs where an early CU decision is
beneficial, given a target complexity.595

Table 4 shows the results obtained with [4], [7],
[9], [26] and the proposed method, for the Low De-
lay configuration, in terms of ∆BR and TS, aver-
aged across the four considered QP values (22, 27,
32, and 37). The last two rows in the table show600

the average and the standard deviation over all the
sequences. Moreover, to illustrate the behavior of
each compared method for some representative se-
quences, the corresponding R-D curves are plotted
in Fig. 8, where the performance of the HEVC605

reference software HM13.0 is also provided for ref-
erence.

As can be seen, our proposal achieves large com-
plexity savings at the expense of limited losses in
coding performance. Specifically, we achieve an av-610

erage TS of 36.5%, reaching a TS near to or higher
than 50% in up to six sequences. In coding effi-
ciency terms, our method incurs an average ∆BR
of only 1.69%, and only one sequence produces a
∆BR above 3%.615

Regarding the compared methods, our proposal
clearly outperforms [4], [9], and [26], and achieves
similar average results than [7]. In particular, the
average ∆BR is notably lower for our method when
compared with [4], obtaining at the same time a620

significant gain in terms of TS. As can be seen,
the TS achieved by [4] in many sequences is above
30%; however, this is at the expense of high losses in
coding efficiency, especially in sequences containing
fast motion or texture. This is due to the fact that625
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Table 4: Comparative performance evaluation vs. [4], [7], [9], and [26] with Low Delay configuration.

[4] [7] [9] [26] Proposed Method
Sequence ∆BR(%) TS(%) ∆BR(%) TS(%) ∆BR(%) TS(%) ∆BR(%) TS(%) ∆BR(%) TS(%)

BasketballPass
4.76 33.07 1.33 23.92 4.02 30.44 2.64 27.93 2.60 33.57

(416×240)
BlowingBubbles

3.08 32.88 1.42 17.83 4.30 24.88 7.33 34.72 1.28 18.85
(416×240)
BQSquare

2.52 31.40 1.82 16.14 7.15 29.81 8.06 31.36 1.82 19.14
(416×240)
RaceHorses

1.17 34.78 0.56 8.32 3.01 11.97 10.37 30.91 1.81 16.35
(416×240)
Goonies

6.70 28.50 1.50 32.74 1.80 38.37 0.39 27.26 0.01 30.77
(720×432)
Spiderman

3.18 28.38 0.82 17.90 3.58 24.52 5.69 29.31 0.36 17.54
(720×576)

BasketballDrill
6.49 33.45 0.16 10.36 7.85 39.74 3.28 34.06 3.12 38.90

(832×480)
BasketballDrillText

6.31 35.17 0.36 10.66 8.44 38.66 3.90 34.97 2.92 37.29
(832×480)
BQMall

4.64 35.76 4.56 30.79 9.83 35.92 4.88 36.35 2.20 28.88
(832×480)
PartyScene

2.01 35.05 0.57 7.31 7.24 25.18 18.81 45.92 2.22 20.96
(832×480)
ChinaSpeed

3.41 36.53 0.29 15.84 8.11 31.55 10.56 34.68 2.73 30.15
(1024×768)
FourPeople

10.16 20.53 1.86 57.54 5.32 65.70 0.46 36.68 1.02 49.89
(1280×720)

Johnny
9.59 18.59 1.31 57.73 4.66 65.71 −0.23 32.20 0.51 50.80

(1280×720)
KristenAndSara

21.39 25.43 1.06 55.72 3.78 64.30 0.35 33.99 0.49 45.47
(1280×720)
SlideEditing

11.63 7.55 0.42 39.58 10.85 77.86 0.80 36.39 2.40 55.81
(1280×720)
SlideShow

7.05 21.10 1.46 40.78 14.23 58.27 3.07 28.90 1.91 44.66
(1280×720)

Vidyo1
20.25 28.13 1.36 59.04 3.00 65.56 0.04 32.97 0.89 50.05

(1280×720)
Vidyo3

14.79 30.82 1.70 56.15 3.78 61.11 −0.13 31.34 2.40 58.98
(1280×720)

Vidyo4
6.38 21.72 0.97 45.48 4.26 58.79 0.24 34.85 1.44 47.64

(1280×720)
BasketballDrive

13.81 35.27 0.62 30.47 3.14 41.95 1.13 30.94 1.67 41.89
(1920×1080)
BQTerrace

10.09 33.16 2.77 38.81 6.68 49.51 4.01 41.33 1.72 35.22
(1920×1080)

Cactus
5.49 30.62 1.93 38.72 5.81 46.98 1.41 30.41 1.87 40.46

(1920×1080)
Kimono

3.80 22.09 0.57 27.94 2.25 45.72 0.85 33.51 1.56 29.09
(1920×1080)
ParkScene

8.00 35.04 0.31 23.25 5.29 42.63 2.50 35.36 1.75 33.49
(1920×1080)

Average 7.77 28.95 1.23 31.79 5.76 44.79 3.76 33.59 1.69 36.49
Standard

5.39 7.17 0.96 17.15 3.00 16.84 4.55 4.14 0.83 12.49
deviation

[4] makes decisions based on fixed thresholds, which
prevent the algorithm from adapting to a variety of
sequences with different properties.

[9] achieved higher TS, but in exchange for incur-
ring relevant losses in coding performance. When630

we compare some specific sequences where the
TS is similar, e.g., “BasketballDrill”, “Basketball-
Pass”, or “ChinaSpeed”, we found that our pro-
posal clearly achieves better coding performance,
generating approximately half of ∆BR.635

The results of [7] reveal a very similar perfor-
mance than that of our method. The slight incre-

ment in the TS obtained with our proposal also
generates a slight increment in ∆BR. It is also
worth mentioning that the standard deviation of640

the TS results is significantly lower for the pro-
posed method (12.49 vs. 17.15); i.e., the results
seem to be less dependent of the sequence. In par-
ticular, we found that [7] has difficulty to achieve
relevant TS in some sequences, e.g., “RaceHorses”,645

“BasketballDrill”, or “PartyScene”.

To fairly compare our method with [26], we con-
figured [26] to produce a similar average TS than
that of our proposal. Under these conditions, the
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proposed method incurs a ∆BR lower than that of650

[26] (1.69% vs. 3.76%).
The results for “Goonies” and “Spiderman” de-

serve a comment. These sequences were included in
this test because they are excerpts from real movies
that contain several shot changes and, therefore, al-655

low us to test the ability of the proposed method to
adapt to new content. Specifically, each one of the
selected excerpts show two shot changes. Any non-
adaptive method, such as [4] or [9], generates high
losses in coding performance. Averaging the results660

for these two sequences, [4] incurred a 4.9% of ∆BR
and [9] a 2.7%, while our proposal only generated
a 0.2%, for a similar average TS. When compared
to [7], the proposed method also performs signifi-
cantly better, incurring an average 0.18% ∆BR vs.665

a 1.16% ∆BR of [7] for similar values of TS. This
improvement is due to the fact that our method uses
an on the fly estimation of the statistical parame-
ters in the hypothesis test, which allows a very fast
and accurate adaptation to the new video content.670

The proposed method was also tested for the
Random Access configuration, keeping the rest of
the configuration parameters unaltered. To this
end, since the statistics of P and B frames are dif-
ferent [27], the statistical parameters of our method675

were estimated separately for each kind of frame.
In this case only [7] was taken as reference for com-
parisons since the other methods ([4], [9], and [26])
achieved notably lower performances in previous ex-
periments. The results are shown in Table 5. As it680

can be seen, they follow the same pattern as for the
Low Delay configuration, and the compared meth-
ods provide very similar performances. In particu-
lar, the proposed method obtains a slight increment
in the TS, but also in ∆BR, though the losses in685

coding efficiency are more irrelevant than that with
the Low Delay configuration. Furthermore, again,
the standard deviation of the results in terms of
TS is significantly lower for the proposed method
(11.80 vs. 17.10); in particular, [7] fails to reach690

competitive TSs for several sequences, e.g., “Race-
Horses”, “PartyScene” or “SlideEditing”.
With these results we have demonstrated that

our proposal is able to properly work with different
kinds of frames and to adapt its behavior to varying695

content.
In summary, our method obtains a superior per-

formance compared to [4] and [9] by virtue of its sta-
tistical basis and the on the fly estimation of the pdf
parameters, which allows a proper adaptation to700

the content of the sequences. The proposed method

(a)

(b)

(c)

Figure 8: R-D performance for representative sequences: (a)
“ChinaSpeed”; (b) “BQTerrace”; (c) “BasketballPass”.

also improves the performance of [26] thanks to the
Bayesian approach, which takes into account the
distribution of the two possible hypotheses. This is
also a conceptual advantage with respect to [7] that705
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(a)

(b)

(c)

Figure 9: Performance evaluation of the proposed method in
comparison to [4], [7], [9], and [26]. The graphs show bit rate
increment as a function of the computational time saving for
(a) “BasketballPass”; (b) “SlideShow”; and (c) over all the
considered sequences (average).

could explain the lower standard deviation of the
TS results with our method. Moreover, although
the results obtained with the proposed method and

Table 5: Comparative performance evaluation vs. [7] with
Random Access configuration.

[7] Proposed Method
Sequence ∆BR(%) TS(%) ∆BR(%) TS(%)

BasketballPass
0.49 33.56 0.46 37.63

(416×240)
BlowingBubbles

0.71 19.29 0.75 22.68
(416×240)
BQSquare

0.36 28.30 0.34 22.38
(416×240)
RaceHorses

0.27 9.74 0.53 15.77
(416×240)
Goonies

0.58 33.72 0.12 33.93
(720×432)
Spiderman

13.10 8.09 5.06 16.50
(720×576)

BasketballDrill
0.79 14.28 0.91 36.77

(832×480)
BasketballDrillText

0.67 16.55 1.06 36.85
(832×480)
BQMall

1.03 32.99 1.18 36.26
(832×480)
PartyScene

0.08 1.60 1.59 28.35
(832×480)
ChinaSpeed

1.16 29.61 2.02 36.56
(1024×768)
FourPeople

0.12 60.88 0.09 55.72
(1280×720)

Johnny
0.27 35.28 −0.04 37.07

(1280×720)
KristenAndSara

0.33 54.50 0.13 45.32
(1280×720)
SlideEditing

0.38 9.45 0.75 59.21
(1280×720)
SlideShow

1.75 21.08 0.38 50.31
(1280×720)

Vidyo1
0.40 59.29 0.41 51.94

(1280×720)
Vidyo3

0.30 56.11 0.62 56.35
(1280×720)

Vidyo4
0.17 47.26 0.23 43.75

(1280×720)
BasketballDrive

0.44 40.01 0.54 44.28
(1920×1080)
BQTerrace

0.68 46.76 0.48 38.01
(1920×1080)

Cactus
0.68 40.07 0.82 41.64

(1920×1080)
Kimono

0.79 38.02 0.55 29.93
(1920×1080)
ParkScene

0.83 41.05 0.80 39.89
(1920×1080)

Average 1.09 32.39 0.82 38.21
Standard

2.58 17.10 1.01 11.80
deviation

[7] are very similar, our method overcomes one of
the weaknesses of [7], which is not able to reach710

different operating points, as we show in the next
section.

4.3. Results in different operating points

[26] was developed for complexity control pur-
poses, while the complexity reduction proposals715
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are not designed to meet a given target complex-
ity. Nevertheless, our design can produce differ-
ent operating points in terms of TS by adjusting
the term ln (C10/C01) in (6). In this manner, we
can manage the trade-off between TS and ∆BR.720

For example, if we needed large computational sav-
ings, ln (C10/C01) would take a high value; or if we
needed to be careful with the increments in bit rate,
ln (C10/C01) would be lower.
To illustrate this capability, Fig. 9 shows the per-725

formance achieved by our proposal for different val-
ues of ln (C10/C01), i.e., for different trade-offs be-
tween coding complexity (TS, horizontal axis) and
increment in bit rate (∆BR, vertical axis). Parts
(a) and (b) of the figure show the results achieved730

for two representative sequences, “BasketballPass”
and “SlideShow”, respectively. Part (c) shows aver-
age results over all the considered sequences. More-
over, the performance obtained by [4], [9], [7], and
[26] are also shown for comparison purposes. Specif-735

ically, several TS values are produced with [26] to
compare its performance with that of our proposal
in several operating points. However, [4] and [9]
are only able to generate one operating point be-
cause they are not designed to obtain varying per-740

formance.
Regarding [7], there is free parameter, originally

denoted as θ, that apparently could provide differ-
ent trade-offs between TS and bit rate increment.
However, we have found that this method is actu-745

ally not able to reach different operating points by
acting upon θ, achieving very similar TSs in all our
tests.
As can be seen, our proposal clearly outperforms

[4] and [9] for the same TS operating point. Com-750

pared with [7], the main difference is that the pro-
posed method is able to reach a wide range of
TS-∆BR trade-offs, while [7] is limited to oper-
ate in a very narrow range. Compared with [26],
for low complexity reductions the performances of755

both methods are very similar, although sometimes
favorable to [26]. However, when higher complexity
reductions are required, the results of the proposed
method clearly improve those of [26].

4.4. Contribution of each decision level760

Finally, we assess the contribution of each deci-
sion level to the total performance of the proposed
algorithm. As our proposal sets an early termi-
nation at every CU depth, we evaluate the influ-
ence of each one as a function of the content of the765

video sequence. In Table 6 we present the results

for a reduced set of sequences, which exhibit dif-
ferent properties, when the algorithm is allowed to
perform early terminations at the first CU depth
(d = {0}), at the first two CU depths (d = {0, 1}),770

or at three possible decision levels (d = {0, 1, 2}).
As can be seen, the behavior heavily depend on

the sequence. Specifically, in those that either are
static or exhibit smooth and constant movement,
such as “BasketballDrill”, and “FourPeople”, all775

the CU depths contribute to the encoding process
and our algorithm achieves significant benefits at
each decision level. However, in sequences exhibit-
ing either higher level of detail or fast movement,
such as “BlowingBubbles” and “RaceHorses”, the780

first depths are not used often and our method
starts making early decisions at the highest depths.
Summarizing, our method is able to adaptively
distribute the early terminations over the possible
depth levels according to the complexity of the se-785

quence.

5. Conclusions and further work

In this work we have proposed a CU depth de-
cision algorithm for the HEVC video coding stan-
dard. The proposed method is based on the statisti-790

cal analysis of the CU depths used by the reference
encoder, according to which it performs a hypothe-
sis test to decide, at every CU depth, if the follow-
ing CU depths must be evaluated. Moreover, we
adapt each hypothesis test based on pdfs estimated795

on the fly, which allows the algorithm to adapt over
the variable content of the sequence.

The proposed method has been extensively tested
and the experimental results have shown that it
works very efficiently for a great variety of se-800

quences, outperforming the results achieved by sev-
eral methods of the state-of-the-art and achieving
either 36.5% reduction in encoding time with just
1.7% bit rate increment for the Low Delay config-
uration or 38.2% time saving in exchange for 0.8%805

bit rate increment for the Random Access config-
uration, in both cases, with respect to the HEVC
reference software HM13.0.

An interesting future line of work would be to ex-
tend our design to the fast selection of the best PU810

mode or the best TU structure, which would pro-
vide additional computational savings. Moreover,
we could also study the use of more complex clas-
sifiers to achieve a higher accuracy in the decision
process at each level.815
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Table 6: Evaluation of the contribution of each decision level.

d = {0} d = {0, 1} d = {0, 1, 2}
Sequence ∆BR(%) TS(%) ∆BR(%) TS(%) ∆BR(%) TS(%)

BlowingBubbles −0.03 0.18 0.23 1.44 1.28 18.85
(416×240)
RaceHorses

0.00 0.77 −0.05 1.94 1.81 16.35
(416×240)

BasketballDrill
1.54 19.44 2.03 29.24 3.12 38.90

(832×480)
BQMall

0.37 5.33 0.85 15.80 2.20 28.88
(832×480)
ChinaSpeed

0.32 6.56 1.29 21.58 2.73 30.15
(1024×768)
FourPeople

0.57 25.38 0.79 39.00 1.02 49.89
(1280×720)

Cactus
0.66 20.33 1.17 29.77 1.87 40.46

(1920×1080)
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