
Suitability of recent hardware accelerators (DSPs,
FPGAs, and GPUs) for computer vision and image

processing algorithms

Amir HajiRassouliha, Andrew J. Taberner, Martyn P. Nash, and
Poul M. F. Nielsen

The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New
Zealand

Abstract

Computer vision and image processing algorithms form essential components of
many industrial, medical, commercial, and research-related applications. Modern
imaging systems provide high resolution images at high frame rates, and are often
required to perform complex computations to process image data. However, in
many applications rapid processing is required, or it is important to minimise de-
lays for analysis results. In these applications, central processing units (CPUs) are
inadequate, as they cannot perform the calculations with sufficient speed. To re-
duce the computation time, algorithms can be implemented in hardware accelera-
tors such as digital signal processors (DSPs), field-programmable gate arrays (FP-
GAs), and graphics processing units (GPUs). However, the selection of a suitable
hardware accelerator for a specific application is challenging. Numerous families
of DSPs, FPGAs, and GPUs are available, and the technical differences between
various hardware accelerators make comparisons difficult. It is also important
to know what speed can be achieved using a specific hardware accelerator for a
particular algorithm, as the choice of hardware accelerator may depend on both
the algorithm and the application. The technical details of hardware accelerators
and their performance have been discussed in previous publications. However,
there are limitations in many of these presentations, including: inadequate techni-
cal details to enable selection of a suitable hardware accelerator; comparisons of
hardware accelerators at two different technological levels; and discussion of old
technologies.
To address these issues, we introduce and discuss important considerations when
selecting suitable hardware accelerators for computer vision and image processing

Preprint submitted to SignalProcessing: Image Communication June 5, 2018



tasks, and present a comprehensive review of hardware accelerators. We discuss
the practical details of chip architectures, available tools and utilities, development
time, and the relative advantages and disadvantages of using DSPs, FPGAs, and
GPUs. We provide practical information about state-of-the-art DSPs, FPGAs, and
GPUs as well as examples from the literature. Our goal is to enable developers to
make a comprehensive comparison between various hardware accelerators, and to
select a hardware accelerator that is most suitable for their specific application.

Keywords:
Review, Computer vision, Image processing, Digital signal processor (DSP),
Field programmable gate array (FPGA), Graphics processing unit (GPU)

1. Introduction

Computer vision and image processing algorithms are used in a variety of ap-
plications in experimental mechanics [1], medical technologies [2], and human
action recognition [3]. Many of the algorithms that have been used in these ap-
plications are computationally demanding, and in practical applications it is nec-
essary to rapidly analyse the data. One of the main techniques for decreasing
computation time is to use hardware with high computational power. Although
the processing power of the central processing units (CPUs) in personal comput-
ers (PCs) is increasing, it remains insufficient for many applications. In addition,
PCs cannot be used for computer vision tasks in mobile or portable devices. Hard-
ware accelerators (e.g. digital signal processors (DSPs), field programmable gate
arrays (FPGAs), and graphics processing units (GPUs)) are designed to address
the increasing need for performing fast calculations in complicated algorithms.
Furthermore, some hardware accelerators can be used in portable systems where
it is not feasible to use PC-based systems.
Although DSPs, FPGAs, and GPUs have markedly different chip architectures,
requiring different software development techniques, each can be used as a hard-
ware accelerator to speed up computations. Microarchitecture and fabrication
technologies are rapidly evolving, and commercial competition has motivated ma-
jor hardware accelerator vendors to update and increase the capabilities of their
products using the latest technological advances. However, different hardware ac-
celerators are designed in ways that make them efficient for some algorithms but
not others. Furthermore, the choice of a hardware accelerator is typically a trade-
off between computational power, speed, development time, power consumption,

2



and price. Identifying a suitable hardware accelerator for a specific algorithm or
application can be thus very challenging.
Previously published reviews have investigated different aspects of using hard-
ware accelerators in computer vision and image processing tasks. These review
papers can be divided into four main groups, which are discussed here.
In the first group of review papers, a specific algorithm or application is chosen
and various hardware accelerators for that task are compared. An example is
stereo vision algorithms for real-time systems, as in [4]. These review papers may
help with the choice of a suitable hardware accelerator for specific applications.
However, the system requirements can vary considerably for other applications or
algorithms. For example, in some applications real-time execution is important
(see [4]), while for other applications it may be adequate to simply increase the
processing speed. The choice of a suitable hardware accelerator depends signifi-
cantly on the application and the algorithm.
In the second group of reviews, specific hardware accelerators are chosen to test
the performance of algorithms and their implementation. For instance, algorithm
implementations for a single FPGA and a single GPU for sliding-window appli-
cations are discussed in [5]. In these hardware-oriented reviews, the fact that new
technologies have many advantages over their older versions, was not considered,
which does not help developers to find suitable modern hardware accelerators for
their own applications. Furthermore, a specific FPGA or a specific GPU does
not necessarily represent the capability of that type of hardware accelerator in
general. Therefore, these review papers may not help researchers to obtain an ac-
curate comparison between hardware accelerators, unless they decide to choose a
hardware accelerator specifically from those that have been reviewed.
In the third group of reviews, a broader application is chosen and different hard-
ware accelerators are discussed for that purpose. Some examples are: parallel
computing with multicore CPUs, FPGAs, and GPUs in experimental mechanics
[6]; medical image processing on GPUs [7], [8]; and medical image registration
on GPUs [9] or multicore CPUs and GPUs [10]. There are also some technical
details about the chip architectures in these papers. Even though these papers can
provide useful information, some of them (such as [7, 8, 9, 10]) only discuss GPUs
and do not cover FPGAs or DSPs. In addition, the hardware details are usually
limited to a specific hardware and are of limited use for comparing different hard-
ware accelerators.
In the fourth group of reviews, the chip architecture and software tools of hard-
ware accelerators are discussed in detail. An example is heterogeneous computing
(i.e. the combination of CPUs with FPGAs or GPUs) for general applications [11].

3



Even though such reviews provide useful information, there is a need to update
and simplify the technical details to provide practical advice for researchers on
the choice of suitable hardware accelerators for computer vision and image pro-
cessing applications.
This review combines the approach of the third and fourth groups of review pa-
pers described above. Our goal was to provide sufficient information and practical
examples to enable researchers to choose the most suitable hardware accelerator
for computer vision and image processing applications. To this end, DSPs, FP-
GAs, and GPUs are discussed in separate sections, followed by examples that
demonstrate the performance of the various devices in different computer vision
and image processing applications.
One of the main challenges in reviewing different hardware accelerators is to pro-
vide a fair comparison. Since the model names of DSPs, FPGAs, and GPUs are
not indicative of their performance, a speed normalisation factor was proposed
[4] in an effort to improve the accuracy of comparison in the same chip archi-
tecture family. However, hardware accelerators are too complicated to limit the
performance comparison only to the processing speed, which cannot indicate the
advantage of one hardware accelerator over another, especially when they do not
belong to the same family. Moreover, the processing speed of an algorithm is not
only dependent on the hardware accelerator, but also on the programmers skill.
In order to provide a practical comparison between hardware accelerators in this
review, the most important features of DSPs, FPGAs, and GPUs for computer vi-
sion and image processing algorithms are introduced and discussed. Then, based
on the technical specifications, hardware accelerators are divided into groups with
similar levels of performance.
Another limitation of some review papers (such as [6]) is the discussion of out-
dated hardware technologies, which offer little help in assessing the performance
and capabilities of modern hardware accelerators. This review addresses this is-
sue by reporting on the latest improvements, and covers recent papers (published
since 2009) with a focus on the latest hardware technologies.
This review is organised as follows. DSPs, FPGAs, and GPUs are discussed in
sections 2, 3, and 4, respectively. In each section, and for each hardware accel-
erator, different families, available development tools and utilities, development
time, and the advantages and disadvantages of using the type of hardware accel-
erator are discussed. Each section concludes with a separate literature review and
summary, and each literature review section presents separate tables with a sum-
mary of the application, algorithms being implemented, hardware type used, and
performance (or data throughput) of the algorithm. In addition, the papers be-

4



ing reviewed are sorted chronologically and the year of introduction of FPGAs
and GPUs (as an indicator of their hardware technology level) is reported. Since
FPGAs and GPUs have both been widely used in computer vision and image pro-
cessing tasks, section 5 is devoted to the comparison of GPUs and FPGAs. Finally,
section 6 summarises this review.

2. Digital signal processors (DSPs)

DSPs are microprocessors with an architecture that is specifically designed for
performing signal processing tasks. Texas Instruments (TI) and Analog Devices
(AD) are the two major companies in the DSP production market. TI-DSPs are
more common in the computer vision and image processing research community
than AD-DSPs, so this review focuses on TI-DSPs.
TI has designed various DSPs with different processing power ranges and capa-
bilities for different purposes. TI-DSPs can be divided into 4 major groups [12]:

• Ultra-low power DSPs (C5000, and C55x)[13].

• Power optimised DSPs (C6000, C64x, C671x, C672x, C674x, and Open
Multimedia Applications Platforms (OMAPs) [14].

• DaVinci digital media processors (DaVinci-DMPs)(DM64x, DM37x, and
DM81x)[15].

• Multicore DSPs (C66x, C667x, C665x, and C647x)[16, 17].

The ultra-low power DSPs are cost-effective, but have low computational power,
so are limited to simple computer vision and image processing algorithms.
Power optimised DSPs are mainly designed for portable or mobile devices where
the power consumption is the most important feature. These DSPs can process
algorithms with a moderate level of complexity. The main difference between the
OMAP series and other members of this family is the addition of an ARM proces-
sor, which makes them a system on a chip (SoC). This ARM processor can handle
interfacing with standard ports (e.g. USB and I2C), external memory modules
(e.g. secure digital (SD), and multi-media cards (MMC)). As an example of their
application, OMAPs are used in some mobile phones to handle digital camera,
screen, and external memory interfaces.
DaVinci-DMPs are designed for multimedia applications such as video and image
processing, and video capture. These DMPs include video and image hardware

5



codecs (e.g. MPEG, H.264, and JPEG) and hardware accelerators for video pro-
cessing. Apart from a few DMPs in the DM64x series, the DaVinci-DMPs are
a more advanced SoC (i.e. DSP + ARM) version of OMAPs. In comparison to
power optimised DSPs and OMAPs, DaVinci-DMPs can perform more complex
tasks at the expense of higher power consumption. DaVinci-DMPs also include
peripherals needed for camera interfacing; hence video frame grabbers are a typi-
cal example of an application for these DSPs.
Multicore DSPs are optimised for computationally complex tasks and high per-
formance computing (HPC). They consist of multiple DSP cores (up to 8 cores),
which enable them to perform tasks in parallel. In this sense, the parallelism in
multicore DSPs is similar to multicore CPUs in PCs. Multicore DSPs are de-
signed based on two main architectures: Keystone architecture1 and Keystone
architecture2 [18]. The principal difference between these two architectures is the
addition of an ARM processor in the Keystone architecture2 to divide tasks be-
tween the DSP and the ARM processor. It should be considered that the reported
maximum computational performance of multicore DSPs is based on the assump-
tion that the task can be fully parallelised so that threads are executed in different
cores simultaneously. However, this is often not feasible in practice, and advanced
parallel programming techniques are required to optimise the computation speed
of these DSPs.
The type of arithmetic computation support (i.e. fixed-point or floating-point oper-
ation) is another factor which needs to be considered in the selection of a suitable
DSP. Floating-point operational support in DSPs facilitates the algorithm imple-
mentation, and increases the precision compared with fixed-point. In contrast,
fixed-point operations can perform operations with fewer bits, but the program-
mer needs to carefully reposition the decimal point after each mathematical oper-
ation. However, fixed-point DSPs are usually cheaper than floating-point DSPs.
In DSPs, arithmetic computations are performed in multiplieraccumulator (MAC)
units. Table 1 summarises the fixed-/floating-point capabilities of the MAC units
in various DSP series.

For the series with both fixed- and floating-point capabilities, MAC units can
perform both types of calculations, but with fewer bits for floating-point oper-
ations. For instance, in a single clock cycle, the MAC units in the C66x can
multiply either two 32-bit fixed-point or two 16-bit floating-point numbers.

6



Table 1: TI-DSP families and the fixed-/floating-point properties of their MAC units

DSP family Fixed-/floating-point

C5000 , C55x Fixed-point
C64x Fixed-point
C671x, C672x Floating-point
C674x, OMAP Fixed- and floating-point
DM37x, DM64x Fixed-point
DM81x Fixed- and floating-point
C66x, C667x, C665x Fixed- and floating-point
C647x Fixed-point

2.1. Available development tools and utilities for DSPs
Code Composer Studio (CCS) [19] is an integrated development environment

(IDE) for developing, debugging, and compiling codes in TI-DSPs. The most
widely used programming language for DSPs is C/C++. Although DSPs can also
be programmed in assembly language, because of its complexity, it is only used
by professional programmers in developing highly optimised codes. Free libraries
have been developed to assist programmers in different tasks with optimised basic
functions. Some of these libraries are:

• DSP Library (DSPLIB) [20]: originally developed for single core C6000
DSPs. However, it can also be used in multicore DSPs, since the architec-
ture of multicore DSPs is based on the C6000, and is backwardly compati-
ble. This library includes functions for some digital signal processing tasks,
such as fast Fourier transform (FFT) and convolution algorithms.

• Image Library (IMGLIB) [21]: an optimised library for image processing
on C64x or C55x DSPs. IMGLIB can also be used in multicore DSPs, since
the C66x family support the C64x libraries [22]. This library contains some
of the basic image processing functions, such as digital image filters.

• Math Library for Floating Point Devices (MATHLIB) [23]: an optimised
floating-point library that includes functions for performing basic mathe-
matical operations, and basic vector calculations.

2.2. Embedded operating systems
SYS/BIOS (formerly DSP/BIOS) is a real-time operating system (OS) devel-

oped by TI for programming its DSPs, microcontrollers, and ARMs [24]. SYS/BIOS

7



is specifically designed for embedded systems where synchronisation of tasks and
input/output data management are important. Alternatively, DSP families that in-
clude an ARM processor can support Linux. The OS in multicore DSPs is respon-
sible for managing the interaction between the different cores, allocating tasks to a
particular core, and deciding when to pass data across cores. The SYS/BIOS mul-
ticore software development kit (MCSDK) [25] helps programmers to manage
these responsibilities in multicore DSPs by providing optimised platform-specific
drivers, run-time libraries (OpenMP and OpenEM), and basic network protocols
[26].
To analyse and profile the code while the application is running in multi-core
DSPs, a real-time tool called a multicore system analyser (MCSA) [27] is added
to the MCSDK. The MCSA provides real-time performance evaluation and mon-
itors parameters such as the computation and task loads of each core, the compu-
tation time of various parts of the code, and concurrency of tasks in different cores.

2.3. Development time
Many useful tools are available for developing and debugging codes in C/C++

for DSPs (sections 2.1 and 2.2), and available libraries include most of the gen-
eral purpose algorithms for computer vision and image processing applications.
In general, the development time for a simple task in single core DSPs is relatively
short. In contrast, developing an optimised code using parallel programming tech-
niques for a multicore DSP is challenging, and complex tasks require advanced
programing skills. This can lead to long development times when creating op-
timised codes for complex computer vision and image processing algorithms in
multi-core DSPs.

2.4. Advantages of using DSPs
Important advantages of using DSPs for computer vision and image process-

ing applications include:

• The costs for developing a DSP-based portable system are typically low.
DSP chips are generally cheaper than most of the other hardware accelera-
tors for portable devices. In addition, TI provides free licenses for some ver-
sions of CCS and MCSDK with its hardware evaluation modules (EVMs),
and all of the libraries introduced in sections 2.1 and 2.2 are available free
of charge.

8



• Many computer vision and image processing applications involve sequen-
tial algorithms, and the chip architecture of DSPs is designed for the imple-
mentation of sequential tasks. Multi-core DSPs have added the capability
of implementing coarse-grained parallelism for algorithms with a low-to-
medium level of complexity.

• The development time for simple computer vision and image processing
algorithms in single core DSPs is, in general, relatively short.

• Power consumption in DSPs is low. TI-OMAPs are specially designed for
mobile applications making them a suitable option for portable devices that
have limitations on their power consumption.

• DSPs are suitable for handling peripherals, standard ports (e.g. USB, and
SATA), and communication protocols (e.g. TCP/IP) in portable devices.

• DaVinci-DMPs have video codec support, hence are suitable for video pro-
cessing applications in portable devices.

2.5. Disadvantages of using DSPs
Disadvantages of using DSPs for computer vision and image processing ap-

plications include:

• Multicore DSPs are designed for HPC applications with a low-to-medium
level of complexity. They are not suitable for high data throughput or high
speed applications.

• DSPs are more suitable for sequential processing. Even though multicore
DSPs are capable of performing coarse-grained parallelism, they are not
a suitable choice for increasing the processing speed in massively parallel
algorithms.

• It is not usually efficient to use DSPs along with CPUs in PCs for increasing
the processing speed of an algorithm. DSPs and CPUs both have a similar
sequential processing nature, whereas programming with CPUs is easier
and more efficient than using DSPs.

• Although DSP chips are cheaper than FPGA and GPU chips for the same
level of performance, TI-DSP boards are not usually cheap. A typical DSP
board costs between 500 USD to 2000 USD [28], a similar price range to
GPU boards. For PC-based systems that do not require external interfaces,
DSP boards thus offer few advantages over GPU boards [29].

9



2.6. Review of applications that use DSPs
Table 2 provides a summary of some selected computer vision and image pro-

cessing algorithms that have been implemented on TI-DSPs in recent literature.
As two examples of portable systems, an OMAP3530 was used for robotic

applications in [30] and [31]. The DSP core of this OMAP is C64x, which is a
fixed-point DSP (Table 1 ). The DSP core and the ARM processor (Cortex8) of
C64x work at 520 MHz and 720 MHz, respectively. The energy efficiency of the
system implemented in [30] was better than all previously published DSP imple-
mentations. Even though this implementation was power efficient, the maximum
possible frame rate of the real-time application with this system was only 8 fps for
an image size of 640 pixel × 480 pixel (Table 2 ).
DaVinci-DMPs have been used in [32], [33], and [34] for the implementation of
an image processing system with a low level of complexity (details are in Table
2 ). DM642 ([32, 33]) and DM648 ([34]) are both fixed-point DSPs (Table 1 )
without an ARM processor. The maximum processing clock rates for the DSP
cores of the DM642 and DM648 are 720 MHz and 1.1 GHz, respectively. In [32]
and [33], the DM642 was used in a video processing application, for which the
DaVinci-DMPs were specifically designed.
The C6416, which is a power optimised fixed-point DSP (Table 2 ), was used in
[35] to implement a simple stereo vision tracking algorithm based on the sum of
absolute differences (SAD). This system included a CMOS camera, and was de-
signed to be used in stand-alone portable devices or robots.
The C6678, which is a multicore DSP with 8 cores (each core operates at 1 GHz),
is able to perform both fixed-point and floating-point operations, and was used for
rather complicated tasks in [36] and [37]. In [36], a motion estimation algorithm
was implemented and, even though the C6678 is among the highest-performing
DSPs available, the authors could not achieve high frame rates for large image
sizes [36]. For an image size of 128 pixel × 128 pixel the maximum frame rate
they could achieve was 9.79 fps, which outperformed the Intel Xeon CPU when
one core was used (3.99 fps), but not when all 4 cores (8 threads) were used (20.91
fps). Nevertheless, the C6678 showed considerably lower power consumption
compared with the CPU (single core and multiple core implementations). An im-
age registration implementation for embedded systems was proposed in [37]. The
authors combined four C6678 DSP boards to increase the processing power of
their system, and achieved 10.75 fps for an image size of 4096 pixel × 4096 pixel
(a processing time of 93 ms for each image). Advantages of this system include
being cost-effective, energy-efficient, and suitable for embedded systems. Never-
theless, the algorithm they implemented was a rigid image registration algorithm

10



Table 2: A summary of some selected computer vision and image processing algorithms imple-
mented on TI-DSPs in the recent literature

Application(s) Algorithm(s) Implemented Hardware
(DSP)

Performance/
Data throughput

Stereo vision system
for small robots (2011)
[30]

• Sum of absolute differ-
ences (SAD) over a 7 pixel
× 7 pixel window

OMAP3530
(Power optimised)

8 fps for 640 pixel × 480 pixel
images and 60 levels of dispar-
ity (i.e. 147 M disparities/s)

Night-time vehicle de-
tection (2011) [32]

• Bright object segmentation
based on the image his-
togram

• Spatial clustering
• Feature-based identifica-

tion and tracking

DM642
(DaVinci-DMPs)

The implementation was tested
with real highway images, but
no performance was reported

Stereo vision system
for tracking of moving
objects (2011) [35]

• Image feature extraction
(Colour interpolation,
brightness compensation,
conversion to the grey
scale)

• SAD algorithm for finding
the disparity map

• Edge stereo matching

C6416
(Power optimised)

8.92 fps for 356 pixel × 292
pixel images of a stereo pair
camera (the processing time
was approximately 112 ms for
each image)

Guidance, navigation
and control for UAV
landing (2012) [33]

• Image feature extraction
• Image matching and identi-

fication

DM642
(DaVinci-DMPs)

No performance or data
throughput was reported

Motion estimation
(2013) [36] • Multi-channel gradient

model
C6678
(Multicore)

9.75 fps for a video with 128
pixel × 128 pixel resolution

2D to 3D conversion
based on disparity
map estimation (2014)
[34]

• Discrete wavelet transform
(DWT)

• Edge detection
• Disparity map estimation
• Colour segmentation using

K-means clustering
• Adaptive filtering

DM648
(DaVinci-DMPs)

8.83 fps for 1390 pixel × 1110
pixel images of a stereo pair
(The average processing time
was 113.25 s for each image)

Image registration
(2014) [37]

• Multilevel Gauss-Newton
minimisation for the rigid
alignment of two images
based on the SSD of the
image intensities

4 × C6678
(Multicore)

The algorithm could register
two 4096 pixel × 4096 pixel
images at maximum 10.75 fps
(93 ms for each pair)

Real-time image pro-
cessing for robots
(2014) [31]

• Finding landmarks and po-
sition estimation

OMAP3530
(Power optimised)

The algorithm could estimate
the position from 576 pixel ×
720 pixel images

11



with moderate complexity, consisting of an optimisation process for minimising
the sum of square differences (SSD) of the image intensity values (Table 2).

2.7. Summary and conclusion for DSPs
In this section, DSPs and their capabilities have been introduced and their pros

and cons have been presented. Examples of their application in the literature in-
dicate that they are not particularly suitable for high-performance applications.
Despite recent advances in TI-multicore DSPs [38], it still is not feasible to im-
plement complex computer vision and image processing algorithms on DSPs, es-
pecially when the data throughput requirement is high. Furthermore, DSPs are
not particularly suitable for PC-based systems since, apart from external inter-
faces, they do not provide significant advantages over GPUs. In contrast, DSPs
are an energy-efficient and cost-effective solution for embedded systems, and for
mobile or portable devices in which the computational demands are not high, and
the power consumption level is critical.

3. Field-programmable gate arrays (FPGAs)

The FPGA chip incorporates arrays of reprogrammable logic gates. As op-
posed to CPUs, DSPs, and GPUs, FPGA fabrics do not have a pre-structured chip
architecture or a central processing unit. Thus, prior to programming the recon-
figurable FPGAs, the programmer should design a hardware architecture for their
specific application using the logic gates inside the FPGA.
The FPGA hardware architecture is configured by interconnecting FPGA logic
gates to perform a specific task, and requires reconfiguration for each new algo-
rithm. FPGAs are thus often referred to as reconfigurable devices. The program-
ming languages for FPGAs are quite different from those for CPUs, DSPs, and
GPUs. Hardware description languages (HDLs), such as VHDL [39], and Verilog
[40] are the most common programming languages for configuring FPGAs. How-
ever, HDLs are low-level and complicated programming languages, particularly
for beginners. To simplify the programming of FPGAs, some high-level pro-
gramming languages, such as C-like languages (e.g. SystemC [41]), and domain-
specific languages (DSLs) [42, 43, 44, 45] have been developed for FPGAs. Nev-
ertheless, C-like languages are not particularly suitable for non-sequential algo-
rithms, and DSLs are only suitable for a limited range of tasks. In general, devel-
oping efficient algorithms in FPGAs requires a good understanding of hardware-

12



Table 3: Xilinx FPGA families, their process technology, and their year of introduction

FPGA Family
Process Technology
(Year of Introduction)

Spartan-2 180 nm (2000)
Virtex-2 150 nm (2001)
Virtex-2 pro 130 nm (2002)
Virtex-2 pro x 130nm (2003)
Virtex-4, Spartan-3E 90 nm (2005)
Virtex-5 65 nm (2006)
Spartan-3A 90 nm (2007)
Virtex-5 FXT 65 nm (2008)
Virtex-6, Spartan-6 40 nm (2009)
Virtex-7, Kintex, Artix, Zynq 28 nm (2010)
UltraScale
(Virtex, Kintex, Zynq)

20 nm (2013)

UltraScale+
(Virtex, Kintex, Zynq)

16 nm (2013)

level details.
Xilinx and Altera are the two main vendors of FPGAs currently being used by the
computer vision and image processing research community. These FPGA fami-
lies are covered in the following two sections.

3.1. Xilinx FPGA families
Table 3 provides a summary of Xilinx FPGA families, their fabrication process

technology, and their year of introduction. The Spartan series are low-cost FPGAs
which are designed for relatively simple applications. The Virtex series are specif-
ically designed for performing signal processing tasks, and are relatively expen-
sive compared with other FPGA families. The Kintex and Artix series are low-
performance and inexpensive versions of the Virtex-7. Zynq series are medium to
high performance SoCs, which include an FPGA (Artix or Kintex) and an ARM
processor to handle sequential tasks, memory interface, and standard input/output
ports [46].

The UltraScale and UltraScale+ families are the latest Xilinx technologies.

13



UltraScale and UltraScale+ are manufactured using 20 nm and 16 nm planar fab-
rication processes, respectively. The Virtex UltraScale+ FPGA is Xilinxs highest
performance FPGA, and is designed for high-performance and high-speed appli-
cations. In general, the Spartan and Artix families have low to medium perfor-
mance, whereas the Virtex and Kintex families can be used for algorithms with
medium to high levels of computational complexity. The detailed specifications
of Xilinx FPGAs for the Virtex-5, Virtex-6, 7-series (including Virtex-7, Kintex
7, and Artix 7), and UltraScale series are available in [47], [48], [49], and [50],
respectively.
Important features for the selection of a suitable FPGA for computer vision and
image processing tasks are summarised below:

• Configurable logic blocks (CLBs) are hardware resources and logic gates
for algorithm implementation in Xilinx FPGAs. The logic cells of CLBs
can be connected to each other to form large shift registers (SRs), multi-
plexers (MUXs), look-up tables (LUTs), and distributed memories. The
interconnection of CLBs forms a unified logic circuit, which is the hard-
ware representation of the algorithm. FPGAs that have large numbers of
CLBs are a suitable choice for complex algorithms. However, the type of
logic gates, and the number of input bits vary across the different FPGA
families. Because of this, the number of CLBs in an FPGA is not a useful
comparison metric.

• DSP slices are designed for robust implementation of basic mathematical
operations and signal processing tasks. These blocks are called DSP48 [51]
in Xilinx FPGAs, and can have different numbers of bits across the various
Xilinx families. DSP48 blocks were first introduced in Virtex-2 families,
and have been further developed in later Virtex families.

• DSP performance is quantified by the maximum number of mathematical
operations that a single DSP slice of Xilinx FPGAs (DSP48) can perform
per second. DSP performance can be the main bottleneck when dealing
with high throughput data in real-time applications.

• Block RAMs are designed with SRAM architecture for the storage or buffer-
ing of data, and are especially important for storing image data inside the
FPGA chip. The storage demands of image processing or computer vision
algorithms, and the available block RAMs in an FPGA, should be consid-
ered when choosing an appropriate option.

14



3.1.1. Tools and utilities for Xilinx FPGAs
There are several tools to facilitate the development of code in Xilinx FPGAs.

These tools, introduced by Xilinx or third parties, are discussed in this section.
The Vivado design suite [52] is the main tool for configuring Xilinx FPGAs. Even
though Vivado was introduced for 7-series FPGAs (i.e. Virtex-7, Kintex, Artix,
and Zynq) and UltraScale families, it can be used to configure other Xilinx FP-
GAs. Vivado has replaced the Xilinx integrated synthesis environment (ISE) de-
sign suite [53], which was the tool formerly provided by Xilinx for configuring
their FPGAs. Vivado is able to synthesise codes faster than Xilinx ISE using a
new algorithm for configuring the FPGAs [54]. Vivado also includes a high-level
synthesis (HLS) tool for C-based IP generations in a high-level language (C, C++,
or SystemC). The Xilinx HLS tool was demonstrated to be faster than HDLs (i.e.
VHDL, Verilog) for developing optimised codes for sequential algorithms [55].
Vivado is not a free tool, but Xilinx offers a free limited edition of Vivado called
WebPack edition, and provides a free licence with its own FPGA boards. The
Vivado WebPack does not support some of the Xilinx FPGA families, and does
not have some of the features of the full version Vivado (such as Xilinx SysGen).
Xilinx intellectual property cores (IP-cores) [56] are optimised hardware-implemented
algorithms for performing various tasks for a wide range of applications. Most of
the Xilinx IP-cores are not available free of charge, but the basic algorithms are
included in the Xilinx ISE licence. Third party IP-cores are also available for spe-
cialised algorithms, which can be purchased separately. IP-cores cover most of
the fundamental functions, and can help to significantly reduce the development
time of computer vision and image processing algorithms in FPGAs. The draw-
back is that purchasing IP-cores increases the cost of the project.
The Xilinx embedded development kit (EDK) [57] is a tool developed for design-
ing and programming embedded processors inside the FPGA chip. Embedded
processors have two main categories in Xilinx FPGAs, named Microblaze and
PowerPC. Microblaze can be designed and added to an FPGA using the available
logic cells of the FPGA (i.e. it is a soft processor), while PowerPC is a pre-built
processor designed by Xilinx (i.e. it is a hard processor). PowerPCs are based
on reduced instruction set computer (RISC) technology, and are only available in
some of the Xilinx FPGA families. Xilinx embedded processors are programmed
using the C/C++ language, and are suitable for sequential tasks or handling ex-
ternal interfaces (such as DDR SDRAMs). Xilinx embedded processor cores are
inside the FPGA chip. It is thus simple to develop a data transfer interface between
them and the rest of the code, and it is possible to achieve higher speeds compared

15



with external interfaces. In fact, Xilinx embedded processor cores were developed
to add the sequential processing power of these processors to the parallel process-
ing of the FPGA. However, the clock rate of Xilinx embedded processors is only
in the order of hundreds of MHz, hence are unsuitable for computationally expen-
sive algorithms. The ARM processors in Zynq and Zynq UltraScale+ have a con-
siderably higher performance compared to Microblaze and PowerPC. However,
neither Xilinx embedded processors nor ARMs can cope well with complicated
algorithms, and FPGAs are still not particularly suitable for heavily sequential
tasks.
Xilinx system generator (SysGen) [58] is a tool designed to simplify the imple-
mentation of digital signal and image processing algorithms. It is a high-level tool
for designing high-performance systems using FPGAs in MATLABs Simulink
environment. Xilinx SysGen can be used to develop efficient codes for Xilinx FP-
GAs, and can help to significantly reduce the development time for complicated
modular-based signal processing algorithms. FPGA basic logic cells and Xilinx
IP-cores are accessible within Xilinx SysGen in a modular and block-based for-
mat. One of the advantages of Xilinx SysGen is its ability to use the software
blocks of MATLABs Simulink to test and debug the code implemented in hard-
ware blocks of the FPGA (i.e. software and hardware co-simulation). This feature
of Xilinx SysGen can significantly reduce the test and debug time compared with
only using HDLs for developing codes.
Xilinx Integrated Logic Analyzer (ILA) IP core [59] is a software/hardware pack-
age for online and real-time debugging of FPGA codes. Xilinx ILA requires its
special hardware to directly capture real-time data from the FPGA. The captured
data is stored in a buffer inside the FPGA during runtime, and is transferred to the
PC via a USB port for debugging with the Xilinx ILA software. Even though this
tool assists with the debugging process, the drawback is the need to have suffi-
cient free memory space inside the FPGA for buffering the data. SDAccel [60] is
the Xilinx development environment for OpenCL. OpenCL is an open standard,
which is maintained by a technology consortium called the Khronos Group [61].
The OpenCL development environment facilitates the development of C-based
high-level codes for FPGAs. This tool can be used to develop and emulate kernels
in the host PC, debug them and generate an implementation report for the FPGA,
and then convert that kernel to an FPGA code. This tool helps programmers to
decrease the development time for parallelisable algorithms by writing the code
and debugging it in a high-level language. For instance, the PCIe interface can be
configured with OpenCL to transfer data to an FPGA from the host PC.
In addition to official Xilinx tools, some third party graphical language tools are

16



Table 4: Altera FPGA families, their process technology, and their year of introduction

FPGA Family
Process Technology
(Year of Introduction)

Stratix, Cylone 130 nm (2002)
Stratix-GX 130 nm (2003)
Stratix-2, Cylone-2 90 nm (2004)
Stratix-2 GX 90 nm (2005)
Stratix-3 65 nm (2006)
Cylone-3, Arria-GX 65 nm (2007)
Stratix-4 40-nm (2008)
Cylone-4, Arria-2 60 nm (2009)
Stratix-5, Arria-2-GZ 28 nm (2010)
Cylone-5, Arria-5 28 nm (2011)
Arria-10 20 nm (2013)
Stratix-10 14 nm (2016)

also available for programming Xilinx FPGAs. The National Instruments (NI)
LabView FPGA module [62] is one of the most popular. These graphical lan-
guages may generate inefficient codes if the programmer is inexperienced in the
use of high-level modules. To help develop efficient FPGA codes in NI LabView,
Xilinx IP-cores were added to the versions since 2014. The main disadvantage
of the NI LabView FPGA module is its limitation to NI FPGA boards. NI FPGA
boards usually require special hardware accessories, such as the NI chassis (fur-
ther details are described in [63]), and are considerably more expensive than sim-
ilar Xilinx FPGA boards.

3.2. Altera FPGA families
Altera FPGAs comprise three main families: Stratix [64]; Arria [65]; and Cy-

clone [66]. Table 4 shows the Altera FPGAs, their process technology, and their
year of introduction. Among them, the Stratix series is designed for medium to
high performance algorithms, and is similar to the Virtex series in Xilinx FPGAs.
The Altera Stratix-10 is a high-performance FPGA that has twice the performance
and 70% lower power consumption compared to Stratix-5 [67]. Comparing Ta-
ble 3 and Table 4 shows that the Xilinx and Altera FPGAs of the same class of
performance usually use the same fabrication process technology.

17



Table 5: Corresponding tools for developing codes in Altera and Xilinx FPGAs
Altera FPGAs Xilinx FPGAs

Altera Quartus II Xilinx Vivado, Xilinx ISE
Altera Nios II EDS Xilinx EDK
Altera DSP builder Xilinx System Generator
Altera OpenCL SDK Xilinx SDAccel

Altera Stratix FPGAs have dedicated hardware blocks for performing robust
mathematical and logical operations [68]. These blocks have similar functionality
to DSP slices (DSP48) in Xilinx Virtex FPGAs, and can increase the speed and
performance of signal processing algorithms.

3.2.1. Tools and utilities for Altera FPGAs
Altera has introduced some tools to facilitate the development of code in its

FPGAs, similar to those previously discussed in section 3.1.1 for Xilinx FPGAs.
These software tools are Quartus II for developing and compiling FPGA codes
[69], the Nios II embedded design suite (EDS) for embedded software devel-
opment [70], DSP builder for developing FPGA signal processing algorithms in
MATLABs Simulink environment [71], and an SDK for OpenCL programming
[72]. Table 5 lists Alteras tools for developing FPGA codes, and the correspond-
ing tools for Xilinx FPGAs.

Altera and third parties have developed IP-cores for performing various tasks
in Altera FPGAs. These IP-cores can simplify the implementation of computer
vision and image processing algorithms. In addition, some open-source libraries
are available in OpenCL for Altera FPGAs.

3.3. Development time
The development time for FPGAs is longer than for other hardware acceler-

ators. Even though recent offerings in software tools were intended to reduce
the long development time in FPGAs, developing robust codes in FPGAs is still
challenging. Parallel programming in FPGAs requires skilled programmers with
sufficient technical knowledge of the FPGA hardware details. High-level func-
tions are not available for FPGAs without payment. Hence algorithms must often
be developed using basic functions, which is a time-consuming process. For in-
stance, in a study in 2012, it took 12 months for two postdoctoral employees to

18



implement the algorithms for extracting dense optical flow, and image features in
a Virtex-5 FPGA [73].
Nevertheless, it is expected that the development time of FPGAs will reduce with
the emergence of the new generation of HDLs, such as Bluespec System Verilog
(BSV) [74] and Chisel [75].

3.4. Advantages of using FPGAs
Important advantages of using FPGAs for computer vision and image process-

ing algorithms include:

• The processing speed of FPGAs is higher than other hardware accelera-
tors. Recent FPGAs from both Xilinx and Altera can process billions of
operations per second in parallel with their DSP blocks ([76] and [77], re-
spectively). Such speeds have not been matched by any other hardware
accelerator.

• FPGAs can have high data throughput, hence are good choices for data
capture cards (e.g. video capture cards).

• The parallel and reconfigurable nature of the FPGAs is a useful feature, en-
abling FPGA hardware to be designed and configured for high performance
applications.

• FPGAs are relatively energy efficient. In many studies, such as [73], it
has been shown that FPGAs have the highest processing power when nor-
malised for power consumption.

• Because of their low power demands, FPGAs are good candidates for use
in portable devices.

• FPGAs have industrial and military grades for use in harsh working condi-
tions.

• Programmers can implement flexible and efficient algorithms in FPGAs by
reconfiguring the FPGA hardware optimised for the algorithm.

• FPGA codes can be adapted for use in application-specific integrated cir-
cuits (ASICs). ASICs reduce mass production costs.

19



• Using the PCIe interface for data communication between FPGA boards
and the host PC has been significantly simplified by open source packages,
such as RIFFA [78], ThreadPoolComposer [79], and JetStream [80], [81].

3.5. Disadvantages of using FPGAs
Important disadvantages of using FPGAs for computer vision and image pro-

cessing algorithms include:

• The long development time of FPGAs is their main drawback.

• It is challenging to develop efficient codes in FPGAs. Even though new
tools have been developed for FPGAs to make this process simpler and
faster, the programmer still needs sufficient technical skills to develop ro-
bust codes in FPGAs.

3.6. Review of applications that use FPGAs
In the first part of this section, the use of FPGAs in stereo vision systems is

discussed. In the second part, the use of FPGAs in other image processing and
computer vision applications is reviewed.

3.6.1. FPGAs in stereo vision systems
The most common application of FPGAs in stereo vision systems is the im-

plementation and optimisation of stereo-correspondence algorithms. In 2013, Tip-
petts et al. published a comprehensive review of various stereo vision algorithms,
and their suitability for resource-limited systems (including FPGAs) [4]. In their
review, the algorithms were evaluated based on accuracy and speed. Despite this
being a common way of comparing algorithms, the accuracy and speed of an al-
gorithm is dependent on the programming language, programmer skills, and the
type of hardware being used. Therefore, such comparisons are not precise enough
to show the suitability of the hardware accelerator itself. To compare different
algorithms in FPGAs, Tippetts et al. [4] reviewed 12 papers, of which the highest
rate of disparities for stereo reconstruction was reported for the implementation
of Ambrosch et al. [82]. However, they reported Quartus II as the FPGA of the
implementation of Ambrosch et al., whereas in fact Quartus II is not an FPGA, but
Alteras software tool for developing codes (Table 5). Ambrosch et al. simulated
their algorithm for an Altera Stratix-2 FPGA, and could achieve 10,108 M dis-
parities/s [82] (reported to be 6,062.9 disparities/s in Tippetts et al.s review paper
[4]).

20



Stereo correspondence algorithms and their implementation for FPGAs were eval-
uated by Colodro-Conde et al. [83] in 2014. The algorithms involved a trade-
off between the hardware resources they used, and the speed they could reach.
Colodro-Conde et al. [83] concluded that SAD can be easily implemented in
FPGAs due to its highly parallelised nature and relatively straightforward imple-
mentation. However, SAD is not an accurate method for measuring depth data.
Among the stereo correspondence algorithms, global matching algorithms achieve
good accuracy scores in standard benchmarks, such as KITTI [84] and Middlebury
[85].
Table 6 provides a summary of some of the high performance FPGA implementa-
tions for stereo vision algorithms in recent literature. The most common algorithm
for stereo vision systems in these papers was SAD, which is in accordance with
its simple implementation in FPGAs [83]. However, details of the implemented
stereo matching algorithms differ between these papers, hindering direct compar-
ison of the performance of these FPGAs. Semi-global matching algorithms were
implemented by Banz et al. [86] on a Virtex-5, Hofmann et al. [87] on a Zynq-
7000 and a Virtex-7, and Zha et al. [88] on a Kintex 7. The performance of each
implementation is illustrated in Table 6.

3.6.2. FPGA in non-stereo computer vision and image processing applications
Table 7 provides a summary of some selected FPGA implementations for

some non-stereo computer vision and image processing algorithms in the recent
literature. Not all of these papers reported a speedup ratio. However, for those
in which it was reported, the algorithms implemented in Virtex-6, or Virtex-7
FPGAs could achieve considerably higher speedup ratios, compared to those in
Virtex-2, or Virtex-4 FPGAs. Among the algorithms in Table 7, the complexity
was substantially greater for the algorithms implemented in a Virtex-6 [89], [90],
a Virtex-7 [91], [92], or a Stratix-5 [93]. Even though Xilinx Virtex and Altera
Stratix are high-performance FPGA series, they are not the only options suitable
for computer vision and image processing algorithms. For instance, Table 6 il-
lustrates some examples of the use of lower performance FPGAs, such as Xilinx
Zynq-7000 for relatively complicated algorithms [87], [94].
As an example of using embedded processor cores, Microblaze was used in [95]
to handle the external interfaces and manage the partial reconfiguration capability
of the code (i.e. the reconfiguration of some parts of the code while the code is
running). To shorten the development time, Xilinx SysGen was used in [96] and
[97] to implement modular-based signal or image processing algorithms.

21



Table 6: A summary of some selected FPGA implementation of stereo vision algorithms in the
recent literature

Application(s) Algorithm(s) Implemented Hardware
(FPGA) Performance/Data throughput

Real-time stereo vision (2010) [86]

• Noise reduction
• Rectification
• Semi-global matching dis-

parity estimation
• Rendering for visual inspec-

tion

Xilinx
(Virtex-5)

4050M disparities/s (i.e. 103 fps for
640 pixel × 480 pixel images and 128
disparity level)

Real-time stereo vision system (2010)
[99]

• Image rectification
• Stereo matching (based on

census transform, and corre-
lation)

• Post-processing of the dis-
parity map

Xilinx
(Virtex-4)

4522 M disparities/s (i.e. 230 fps for
640 pixel × 480 pixel images and 64
disparity level)

Disparity map computation (2010) [100] • SAD
• Pyramid-based zero-

mean normalised crossed-
correlation (ZNCC)

Altera
(Stratix-4)

7864 M disparities/s (i.e. 320 fps for
640 pixel × 480 pixel images and 80
disparity level)

Low-cost FPGA stereo vision system
(2012) [101]

• Lens distortion removal (for
radial and tangential distor-
tion)

• Image rectification
• Minimum SAD for stereo

matching
• Removal of the unreliable

matches

Xilinx
(Virtex-4)

8986 M disparities/s (i.e. 325 fps for
640 pixel × 480 pixel images and 90
disparity level)

Stereo-vision system (2013) [102]
• Image rectification of stereo

images using a lookup table;
• Stereo matching using sym-

metric dynamic program-
ming

Altera
(Stratix-3)

3020M disparities/s (i.e. 30 fps for
1024 pixel × 768 pixel images and
128 disparity level)

Edge-directed real-time disparity map
computation (2013) [103]

• Sobel edge detection (con-
sisted of a convolution unit
with the Sobel horizontal
and vertical kernels);

• SAD computation over an
11 pixel × 11 pixel window

Xilinx
(Virtex-5)

7864 M disparities/s (i.e. 50 fps for
1280 pixel × 1024 pixel images and
120 disparity level)

Stereo Matching (2014) [104] • Guided Image Filtering
(GIF)

Xilinx
(Kintex-7)

3538 M disparities/s (i.e. 60 fps for
1280 pixel × 720 pixel images and 60
disparity level)

Semi-global matching for real-time
stereo vision (2016) [87]

• Semi-global matching dis-
parity estimation

• 3 pixel × 3 pixel median fil-
ter

1) Xilinx
(Zynq-7000)
2) Xilinx
(Virtex-7)

1) 3775 M disparities/s (i.e. 32 fps
for 1280 pixel × 720 pixel images and
128 disparity level)
2) 5308 M disparities/s (i.e. 45 fps
for 1280 pixel × 720 pixel images and
128 disparity level)

Global stereo-matching (2016) [88] • global stereo matching
• block-based cross tree

Xilinx
(Kintex 7 )

5806 M disparities/s (i.e. 30 fps for
1920 pixel × 1680 pixel images and
60 disparity level)

Real-Time stereo vision (2016) [94]
• DNA sequence alignment

Xilinx
(Zynq-7000 )

1769 M disparities/s (i.e. 30 fps for
1280 pixel × 720 pixel images and 64
disparity level)

22



3.7. Summary and conclusion for FPGAs
FPGAs are the most flexible hardware accelerators for the implementation of

customised computer vision and image processing algorithms. However, good
knowledge in digital logic design, hardware architecture, HDLs, and program-
ming tools are essential for implementing efficient complex algorithms in FP-
GAs. Most of the computer vision and image processing algorithms are designed
for sequential processors. Hence, achieving an acceptable performance in FPGAs
is only possible when the algorithm is modified and optimised for parallel pro-
cessing. For instance, the standard sequential algorithms for corner detection and
frontal face detection were modified to be optimised for FPGA implementation
by Lim et al. [98]. As a result, the optimised code could be implemented in an Al-
tera Cylone-4 FPGA (a relatively inexpensive, low-end FPGA with few hardware
resources). Lim et al. in [98] showed that even though they had used a low-end
FPGA, their optimised algorithm could achieve a similar or higher speed com-
pared with similar non-optimised algorithms implemented in high-end FPGAs.
In summary, some applications for which FPGAs are suitable options include:

• FPGAs are the best option for algorithms with high computational demands
in a portable PC-independent device. FPGAs are low-power, can be used in
embedded systems, and are designed for high performance tasks.

• For designs that will be mass produced, FPGAs are suitable options, since
an ASIC can easily be designed and produced based on an FPGA design.
ASICs substantially reduce the costs for mass production.

• Because of their high data throughput, FPGAs are the most suitable option
for capturing and processing high-frame-rate data from high-speed cameras.
The image data can be processed in the FPGA at a high speed.

FPGAs chosen from the latest technologies (i.e. Virtex-6, and Virtex-7 in
Table 7) showed a good performance. For example, an impressive speedup of
11507-fold was achieved with a Virtex-7 in [91]. However, FPGAs are expensive,
and development times using traditional methods are usually extensive.

23



Table 7: A summary of some selected FPGA implementation of non-stereo computer vision and
image processing algorithms in the recent literature

Application(s) Algorithm(s) Implemented Hardware
(FPGA) Performance/Data throughput

Real-time 3D surface model re-
construction from Integral Im-
ages (2010) [115]

• Estimation of the pixel distances, and finding
their minimum using SAD

Xilinx
(Virtex-5)

The proposed architecture was able to process 3D
data at 34 images/s for image size of 2048 pixel ×
2048 pixel

Roadway path extraction and
tracking (2010) [96]

• Pre-processing (including Gaussian noise re-
duction, histogram stretching, and morpholog-
ical operations);

• Model fitting (modified version of RANSAC
algorithm);

• Model tracking

Xilinx
(Spartan-3)

The implemented algorithm was able to process
video sequences at 30 frames/s

Digital hologram generator
(2010) [116] • Modified computer-generated hologram

(CGH) algorithm with CGH kernels and cells

Xilinx
(Virtex-2)

The implemented algorithm could generate one
frame of the CGH with a size of 1408 pixel × 1050
pixel and 10,000 light sources in 0.0093 s

Atomistic magnetic spin simula-
tions (2011) [117]

• Ising Model with a Monte Carlo update (The
algorithm includes parallel convolutions units,
delays and LUTs).

Xilinx
(Spartan-3)

The FPGA implementation was faster than an Intel
Xeon X5560 CPU at a clock rate of 2.80 GHz

Run-time self-reconfigurable 2D
convolver (2011) [95] • 2D convolution

Xilinx
(Virtex-4)

The implementation was able to achieve speedup of
4× to 20× in comparison to an Intel Core2Duo CPU
for the application of 2D convolution in edge detec-
tion, noise filtering, binarization, and smoothing of
the images

High-speed face detection (2012)
[118]

• Symmetric image downscaling;
• Classifier sharing;
• Cascade merging

Xilinx
(Virtex-5) 307 frames/s for image size of 640 pixel × 480 pixel

Image rectification for stereo vi-
sion (2013) [119]

• Mapping between the distorted and undis-
torted image;

• Pixel reconstruction (i.e. using the mapping
function and interpolation to find the new pixel
positions)

Xilinx
(Virtex-4)

367 fps for the image size of 640 pixel × 480 pixel,
and 120 fps for the image size of 1280 pixel × 720
pixel

2D cross-correlation for real-
time surface tracking (2013) [97] • Hierarchical 2D cross-correlation

Xilinx
(Virtex-6)

Simulations showed approximately speedup of 200-
fold in the processing time in comparison to an Intel
Xeon CPU, and an ordinary laptops GPU

Geometric Algebra in colour
Edge Detection (2013) [120] • Edge detection in 3D using rotors in geometric

algebra

Xilinx
(Virtex-7)

The implementation was able to achieve speedup of
11.8× against an Intel Core i7 CPU clocked at 3.20
GHz.

Real-time background gener-
ation and foreground object
segmentation for high-definition
colour video stream (2014) [89]

• Image acquisition;
• Background generation;
• Segmentation;
• Presentation of the results

Xilinx
(Virtex-6)

60 fps for colour images with a resolution of 1920
pixel × 1080 pixel. As a comparison, it took 1.7 s
to process a single frame with a C++ code in an Intel
Core i-7 CPU (speedup of 102-fold)

Image boundary detection (2014)
[91]

• Accelerating the probability boundary (Pb) de-
tector algorithm (Pb is a gradient-based algo-
rithm);

Xilinx
(Virtex-7)

The execution time was 0.0063 s in the FPGA as
oppose to 72.494 s in a 2.1 GHz CPU (speedup of
11507-fold)

Partial Image matching (2016)
[93] • Measurement of the Hamming distance

Altera
(Stratix-5)

The execution time was 1.17 s in the FPGA as op-
pose to 38.4 s in a 2.6 GHz Intel CPU (speedup of
32.8 fold)

Real-time image denoising
(2017) [90] • Discrete Kalman filter (DKF)

Xilinx
(Virtex-6) The implementation was able to denoise 512 pixel ×

512 pixel images at 33 fps.

Real-time image processing
(2017) [92]

• KMGA (Kubelka-Munk (KM) function, with
a function optimiser of genetic algorithm
(GA)).

Xilinx
(Virtex-7)

The FPGA implementation was 6 times faster than
the Matlab implementation and 3 times faster than
the C implementation.

24



4. Graphics processing units (GPUs)

The first graphics accelerators were built for professional graphics worksta-
tions, such as the Infinite Reality for the Onyx series [105]. GPUs consist of many
processing cores, and are accelerators that are optimised for performing fast ma-
trix calculations in parallel (images are in the form of 2D matrices). These devices
are typically very affordable, since their development is motivated by the gaming
industry. GPUs are thus cost-effective hardware accelerators for massively paral-
lel algorithms. GPUs have been used in a wide range of applications, other than
games, over the last ten years.
NVidia is the most widely known vendor of GPUs. AMD and Intel are other ma-
jor producers of GPUs. In this review, we only evaluate NVidia GPUs, since they
are widely used by the research community.

4.1. NVidia GPU series
NVidia GPU series have a range of core microarchitectures, and can be used

for various image processing applications [106] [107]. Some of the main features
to consider when selecting a suitable GPU for a specific application include (more
details about the GPU hardware architecture can be found in [11]):

• GPU microarchitecture technology. The most recent NVidia microar-
chitectures were named Tesla [108], Fermi [109], Kepler [110], Maxwell
[111], Pascal [112], and Volta [113]. They were introduced in 2008, 2010,
2012, 2014, 2016, and 2017, respectively. Successive microarchitecture
technologies typically add features and provide improvements over previous
generations. For example, the Kepler microarchitecture improved computa-
tional power, the Maxwell microarchitecture provided a power-efficient de-
sign and an improved scheduler [114], the Pascal microarchitecture featured
faster clocks [112], while the Volta microarchitecture had higher memory
bandwidth compared to previous microarchitectures.

• Memory. GPUs have varying levels of memory. The internal memory of
GPUs is typically used for storing image data. This memory is of DRAM
type, but is based on different technologies in different GPUs. The main
DRAM technologies are DDR2, DDR3, GDDR3, and GDDR5, and each
has a different speed and bandwidth. Even though an adequate amount of
DRAM memory is necessary for storing the image data for the algorithm,

25



DRAM memory is costly, and GPUs of the same generation that have more
memory are more expensive. Therefore, a suitable GPU should be chosen
by considering the memory demands of the algorithm.

• Compute unified device architecture (CUDA) cores. CUDA cores or
stream processors are the smallest processing units of NVidia GPUs, and
each task can be assigned to one of them. NVidia microarchitectures have
different numbers of CUDA cores. A group of CUDA cores forms a stream-
ing multiprocessor (SM). An SM has 32 cores in the Fermi architecture, 192
cores in the Kepler architecture, 128 cores in the Maxwell architecture, and
64 cores in the Pascal architecture. Massively parallel computer vision and
image processing algorithms are suitable to be implemented in GPUs with
large numbers of CUDA cores.

• CUDA compute capability. CUDA compute capability version indicates
some of the main features for programming in GPUs, including the max-
imum shared memory and the maximum 2D and 3D array size in CUDA
cores. NVidia has released six major versions of CUDA compute capability
up to 2017 (1.x, 2.x, 3.x, 5.x, 6.x, and 7.x).

• Processing power. The maximum number of floating point operations (sin-
gle or double precision) per second that a GPU can perform is defined as
the processing power of that GPU in FLOPs (an acronym for floating-point
operations per second). The performance of a GPU in high-performance
computing is often measured based on its capability in performing multipli-
cation and addition or fused multiply-add (FMA), which is two FLOPs per
instruction.

• Bus interface. All modern GPUs use a PCIe interface for data communi-
cation with PCs. However, the generation of the PCIe interface, and the
number of data lanes that the GPU can use, will determine the maximum
data transfer rate.

Among NVidia GPUs, the Tesla series with Kepler microarchitecture was par-
ticularly designed for performing technical and scientific computing [121], hence

26



they have been used in high performance applications. GPUs are inherently suit-
able for performing computer vision and image processing tasks, and many dif-
ferent GPU series can be used for this purpose. NVidia has introduced some
examples of computer vision and image processing tasks in [122].

4.2. Tools and utilities for NVidia GPUs
CUDA and OpenCL are the two main programming languages for GPUs.

Fang et al. [123] published a detailed performance comparison of CUDA and
OpenCL, in 2011.
CUDA was created by NVidia, and is a parallel computing platform and program-
ming model [124]. Not all NVidia GPUs support CUDA, but all the GPUs that
are released after 2007 have CUDA support (the list of NVidia GPUs with CUDA
support is available in [125]). OpenCL is a programming language which can be
used in many different platforms, such as GPUs, CPUs, DSPs, and recently some
FPGAs and ARMs (an example is Alteras OpenCL SDK, which was introduced
in section 3.2.1). One of the main advantages of OpenCL is its portability across
different platforms. OpenCL has the potential to have the same performance as
CUDA under a fair comparison, but it requires a higher level of programming skill
[123]. CUDA is the preferred programming language for NVidia GPUs. CUDA
has a wide range of support from NVidia, it does not require advanced program-
ming skills, and has many libraries and development tools.
The list and description of the libraries and tools available for CUDA can be found
in [126]. Some of the basic CUDA libraries for image processing algorithms in-
clude:

• CUBLAS was developed for linear algebra calculations. According to NVidia
CUBLAS was 6 to 17 times faster than Intels math kernel library (MKL)
BLAS for CPUs [127].

• CUFFT is a library for performing FFT. According to NVidia CUFFT was
also faster than Intels MKL FFT function for CPUs [128].

• NVidia performance primitives (NPP) is a library of basic image, video, and
signal processing functions [129].

CUDA supports different programming languages, of which C/C++ is one of
the most widely used. NVidia has introduced some tools to help programmers de-
velop GPU codes in C/C++ language, such as Nvidia Nsight for debugging, build-
ing, profiling, and tracing NVidia GPU codes with CUDA and C/C++. NVidia

27



Nsight is available under both Windows (in the Microsoft visual studio edition
[130]) and Linux (the Eclipse edition [131]).
In addition to the C/C++ programming language, NVidia GPUs can be programmed
in MATLAB using the MATLAB parallel computing toolbox [132, 133] (NVidia
has suggested using the Tesla family for this purpose [134]). ArrayFire is an-
other software library available for GPU programming [135]. ArrayFire acts as
an application program interface (API) and simplifies programming with CUDA-
capable NVidia GPUs and some other OpenCL devices. ArrayFire functions (the
list and details are available in [136]) are designed to perform calculations on
arrays to speed up the process, while maintaining a simple interface for program-
ming. There are some other tools for accelerating MATLAB codes using GPUs
(refer to [137] for a brief review and comparison).
Some computer vision libraries such as OpenCV [166] and Point Cloud Library
(PCL) [167] have added CUDA-capable functions to their recent versions (the
PCL CUDA-enabled functions are under development [170]). The OpenCV CUDA
module includes low-level primitives (e.g. image filters, corner detection, and
edge detection) and high-level functions (e.g. stereo correspondence and face and
people detectors) of the OpenCV library. OpenCV CUDA functions could show
speedup compared to their CPU-based equivalents. For example, the implemen-
tations of primitive image processing functions and stereo vision functions on an
NVidia Tesla C2050 were respectively up to 30 and 7 times faster than their CPU-
based functions on an Intel Core i5-760 2.8 Ghz [168]. The OpenCV library also
offers the OpenCL implementation of some of its functions ([169]) that can be
used for non-NVidia GPUs or other hardware platforms such as ARMs or FP-
GAs.
CUDA-capable NVidia GPUs can also be programmed in NI LabView using
the NI-GPU analysis toolkit [138]. In addition to the basic CUDA functions,
CUBLAS and CUFFT functions can be wrapped for use in NI LabView with the
NI-GPU analysis toolkit [139].

4.3. Tools and utilities for NVidia GPUs
The development time for GPUs is shorter than for FPGAs and DSPs. CUDA

and NVidia Nsight facilitate the process of developing and debugging complex
GPU codes. It was estimated in a 2012 study that developing algorithms in a
GPU for extracting dense optical flow, stereo and local image features will take 2
months for one post-doctoral employee, while developing the same algorithms in
an FPGA will take 12 months for two post-doctoral employees [73]. Thus, in this

28



specific application, the development time for GPUs may be 12 times faster than
for FPGAs. This shorter development time results from both easier programming,
and the simpler architecture of GPUs compared to FPGAs. The development time
in GPUs can be made even shorter using the Matlab parallel computing toolbox
or ArrayFire. However, writing optimised codes in GPUs for high-throughput al-
gorithms in high-speed applications requires understanding of the GPU hardware
architecture and optimisation techniques. Often, algorithms should be modified
in a way to suit the particular GPU hardware which is chosen for implementa-
tions. Furthermore, careful memory management and data transfer between the
host (PC) and the GPU card is necessary.

4.4. Advantages of using GPUs
Important advantages of using GPUs over other hardware accelerators include:

• GPUs are mass produced (primarily for the entertainment industry). Hence
they are relatively inexpensive compared to FPGAs, and have the best pro-
cessing power to price ratio among hardware accelerators [9].

• GPUs are specially designed for performing image and video processing.

• GPUs are programmed with high-level programming languages. Develop-
ing and debugging code in GPUs is faster and easier than in FPGAs.

• The PCIe interface between the GPU cards and the host PC can be easily
used by programmers.

• NVidia GPUs can be programmed using NI LabView, which is an advantage
for using GPUs in instrumentation projects.

• GPU technologies are rapidly advancing and, despite new technologies hav-
ing higher capabilities, they are often not much more expensive.

4.5. Disadvantages of using GPUs
Important disadvantages of using GPUs over other hardware accelerators in-

clude:

• GPUs consume significantly more power compared to FPGAs in the same
class of performance, and are thus generally unsuitable for power-sensitive
systems that include complicated image processing algorithms.

29



• GPUs are designed for problems that have massive data parallelism. The
performance of GPUs will decrease considerably if they have to wait for
data, or if the processing of data is time-consuming and slow.

• The main speed bottleneck in using GPUs in PC-based systems is the data
transfer time between the host PC and the GPU. A non-optimised GPU code
might not help to increase the processing speed. Thus, it is very important
to minimise the GPU data access to the host PC.

• Even though some tools are available for managing the memory in NVidia
GPUs (e.g. MATOG [140]), the management of memory and the choice
between shared memory, local memory, global memory, constant memory,
and texture memory are not straightforward for high performance applica-
tions.

• Double precision calculations are theoretically around two times slower
than single precision calculations inside GPUs [141]. Although the actual
speed reduction of double precision calculations is less than two times in
practice (since they require less data throughput), it is important to consider
this limitation before deciding about the type of calculation in GPUs.

• The development of many low-level functions in GPUs often requires using
the assembly language custom codes. The GPUs hardware is pre-structured
and has a lower flexibility compared to that of FPGAs.

4.6. Review of applications that use GPUs
A survey of the use of GPUs in medical image registration was published by

Shams et al. [10], in 2010. They investigated a number of different registration
criteria algorithms in GPUs. Some of these algorithms include (details are in
[10]):

• Sum of square differences (SSD);

• Sum of absolute differences (SAD);

• Normalized cross correlation (NCC);

• Correlation coefficient;

• Gradient correlation;

30



• Mutual information (MI);

• Normalized mutual information;

• Correlation ratio.

Among these algorithms, SSD was the fastest in GPUs. They also investigated
different optimisation methods. Some of these methods include (details are in
[10]):

• Powell;

• Simplex;

• Soblex;

• Gradient descent;

• Quasi-Newton;

• Levenberg-Marquardt;

• Simulated annealing;

• Genetic.

To compare the performance of GPUs with FPGAs, Shams et al. [10] de-
fined a normalised performance value, which was the average execution time in
milliseconds for a single iteration of the optimisation algorithm and for process-
ing 1 million voxel pairs. The average normalised performance value reported by
Shams et al. [10] was higher for GPUs than FPGAs.
In 2011, Fluck et al. [9] published a related survey for 3D and 2D medical image
registration on GPUs. They divided the registration transformations into rigid and
non-rigid, and they investigated SSD, SAD, NCC, and MI as image registration
similarity metrics for the registration criteria. Fluck et al. [9] did not carry out any
performance analysis between the registration algorithms, but they summarised
the strengths and weaknesses of each. They also investigated programming mod-
els and interfaces. For the programming language, they concluded that CUDA has
established itself as a popular platform for image registration and other image pro-
cessing tasks, while OpenCL is an emerging standard for parallel programming.
In another review paper, Eklund et al. [7] published a survey of GPU accelerated

31



medical image processing. The algorithms were divided into basic image process-
ing operations (filtering, interpolation, histogram estimation, and distance trans-
forms), and commonly used algorithms (image registration, image segmentation,
and image denoising). The majority of the image registration methods investi-
gated in their review paper was based on image intensity rather than phase-based
optical flow techniques. Phase-based optical flow approaches are computation-
ally complex, since they require using a filter bank to decompose the image into
components, and for every component the temporal phase gradient needs to be
calculated. For this reason, it is difficult to implement such algorithms in GPUs.
Castao-Dez et al. [142] evaluated the performance of some image processing al-
gorithms such as FFT, matrix algebra, geometrical operations, image reconstruc-
tion, and principal component analysis (PCA), in GPUs. They implemented these
algorithms in GPUs to enable a comparison with an ordinary CPU. The typical
speedup ratio of their GPU implementation compared to the CPU implementation
of the same algorithm was between 10 times and 20 times. However, the speedup
ratio was very dependent on the type of algorithm, and the image size. For ex-
ample, the speedup ratio of the FFT algorithm using the NVidia CUFFT library
was on average 15 for various image sizes, whereas it was 33 at its maximum for
image sizes of approximately 1000 pixel × 1000 pixel.
Tables 9 and 10 provide a summary of some selected GPU implementations of
computer vision and image processing algorithms in recent literature. The most
commonly used GPUs were the NVidia GeForce series. Table 8 lists the microar-
chitecture of the NVidia GeForce series, and other GPUs which were used in the
literature of Tables 9 and 10 for implementation of the algorithms.
In Tables 9 and 10, neither the speedup ratio, nor the data throughput, was re-
markable for implementation of algorithms in GPUs with Tesla or Fermi microar-
chitectures (Table 8). However, the GPUs with Kepler, Maxwell, and Pascal mi-
croarchitectures (Table 8) showed superior performance. For example, 11475 M
disparities/s were achieved using a GTX 680 [149], and speedup ratios of up to
76 and up to 28, compared to the CPU implementation, were achieved using a
GTX 760 [153] and GTX-750 Ti, respectively [155]. However, the speedup ratio
of the fingerprint identification algorithm in Tables 9 and 10 was not much higher
in a Tesla K20 with Kepler microarchitecture than in a Tesla M2090 with Fermi
microarchitecture in [154].

4.7. Summary and conclusion for GPUs
In recent years, there has been increasing interest in using GPUs to perform

scientific computations. GPUs are relatively inexpensive, have high processing

32



Table 8: The microarchitecture of some of NVidia GPUs used in the literature
NVidia GPUs Microarchitecture

GeForce 200 series (GTX 260,
GTX 280, GTX 285 , GTX 295)

Tesla

GeForce 300 series Tesla
Quadro FX 5000 series (FX 5800) Tesla
GeForce 9 series (GeForce 9400M) Tesla
Tesla C1060 Tesla
Tesla C2050 Fermi
GeForce 400 series (GTX 480) Fermi
GeForce 500 series (GTX 570,
GTX 580)

Fermi

Tesla M2090 Fermi
GeForce 600 series (GTX 650,
GTX 660, GTX 680 )

Kepler

GeForce 700 series (GTX 760) Kepler
Tesla K20 Kepler
GTX 970 Maxwell
GTX-750 Ti Maxwell
Quadro M6000 Maxwell
GeForce 10 series (GTX 1080) Pascal

33



Table 9: A summary of some selected implemented computer vision and image processing algo-
rithms on GPUs in the recent literature

Application(s) Algorithm(s) Implemented Hardware
(GPU) Performance/Data throughput

Stereoscopic scene
flow computation for
3D motion analysis
(2011) [143]

• Image rectification
• Residual processing
• Stereo matching
• Disparity map calculation

GTX 480
(2010)

20 fps for an image size of 320 pixel × 240
pixel

Stereo matching with
slanted surface mod-
elling (2011) [144]

• Coarse stereo matching
• Disparity plane fitting
• Subpixel stereo matching
• Disparity map calculation

GTX 480
(2010)

8 M disparities/s with subpixel accuracy (i.e. 5
fps for an image size of 384 pixel × 288 pixel
and 16 levels of disparity)

Real-Time Surface
Curvature Estimation
(2012) [145]

• Computation of principal curva-
tures, principal directions of curva-
tures, and the derivative of curva-
ture

GTX 480
(2010) and
Quadro FX 5800
(2008)

Speedup of 6 to 8-fold in a Quadro FX 5800
(only), and speedup of 18 to 20-fold in a GTX
480 (only) compared to the multithreaded CPU
algorithm

Tomographic re-
construction (2012)
[146]

• WBP and SIRT methods (the two
most common methods for electron
tomography reconstruction)

Two hybrid system of CPUs
and GPUs:

2 × Tesla C2050 (2010)
1 × GTX 285 (2009)

The hybrid system could achieve speedup of 2-
fold with a Tesla C2050 GPUs, and speedup of
1.5-fold with a GTX 285

Real-time 3D range
video encoding and
decoding (2012) [147]

• The Holovideo technique, which is
devised from the digital fringe pro-
jection technique

GeForce 9400M
(2008)

18 fps for an image size of 512 pixel × 512
pixel

Colour Stereo Match-
ing (2013) [148] • Calculation of SAD, and the arm-

length-differences (ALD)

GTX 570
(2010)

The implementation could generate matching
results for each pair of images in less than 100
milliseconds for an image size of 450 pixel ×
375 pixel

A stereo vision system
for real-time tracking
(2014) [149]

• Stereo matching with symmet-
ric dynamic programming stereo
(SDPS)

• Image rectification
• SDPS disparity generation
• Joint colour disparity filter
• Foreground 3D reprojection
• Post-processing (speckle filtering)

GTX 680
(2012)

11475 M disparities/s (i.e. 114 fps for 1024
pixel × 768 pixel images and 128 levels of dis-
parity)

Large-size VHR
images registration
(2014) [150]

• Coarse registration (using SIFT
and RANSAC algorithms)

• Fine registration
• Image rectification based on the tri-

angulated Images

GTX 650
(2012)

The image rectification speed was increased by
16 times compared to CPU implementation

Digital volume corre-
lation (2014) [151]

• Coarse search and registration us-
ing FFT and IFFT

• Subpixel registration based on
an optimisation process with
Broyden-Fletcher-Goldfarb-
Shanno algorithm

3 × Tesla M2090
(2012)

Speedup of 8-fold by using three Tesla M2090
GPUs in comparison to the CPU alone

Training of image
convolution filter
weights using genetic
algorithms (2015)
[152]

• Sub-images-based method for
training of the genetic algorithm

GTX 660
(2012)

Speedup of 55 to 90-fold using a GeForce
GTX 660 over sequential implementation in a
3.5GHz CPU

Digital image correla-
tion (2015) [153]

• FFT and IFFT for finding the inte-
ger shift

• Inverse compositional GaussNew-
ton (IC-GN) algorithm for finding
the sub-pixel shift

GTX 760
(2013)

Speedup of 57 to 76-fold over sequential imple-
mentation on a CPU, with the same accuracy

34



Table 10: A summary of some selected implemented computer vision and image processing algo-
rithms on GPUs in the recent literature

Application(s) Algorithm(s) Implemented Hardware
(GPU) Performance/Data throughput

Fingerprint identifica-
tion (2015) [154] • Feature matching (global and local)

for fingerprint images

2 × Tesla K20 (2012)
2 × Tesla M2090 (2012)

Speedups compared to the multi-threaded CPU
implementations are:

• 15.69 for 1 × Tesla K20
• 14.79 for 1 × Tesla M2090
• 30.49 for 2 × Tesla K20
• 28.71 for 2 × Tesla M2090
• 54.20 for all 4 GPUs

Volume image regis-
tration (2015) [155]

• Sorting the data
• Estimating a cost function
• Calculating the correlation ratio

GTX-750 Ti
(2014)

Speedup of 28-fold in comparison to the CPU
alone

A ParaView library
for image compres-
sion (2016) [156]

• H.264 (a block-oriented motion-
compensation-based video com-
pression standard)

GTX 1080
(2016)

Compression rate of 150 fps compared to 30 fps
for a CPU implementation (Speedup of 5-fold)

Flow-Guided Image
Warping (2016) [157]

• Structure tensor
• Flow calculation
• Image warping

Quadro M6000
(2015)

10.3 s to warp a 1600 pixel × 1200 pixel image
for a neighbourhood size of 100 pixel × 100
pixel

A 3D detection radar
in the THz band
(2017) [158]

• Spatial domain windowing
• FFT
• Peak detection
• Finding surface coordinates

GTX 970
(2014)

Image refresh at 8 fps for images composed of
6000 pixels, corresponding to a scanned area of
50 cm x 90 cm.

speeds in their latest generations, and it is relatively simple to develop compli-
cated codes for them. The development time for computer vision and image pro-
cessing applications for GPUs is less than for FPGAs, and GPUs can provide a
good performance in applications where no data acquisition is required.
The speedup that one can obtain by implementing the algorithms in a GPU varies
depending on the algorithm type, the GPU microarchitecture, and programming
techniques. However, Brodtkorb el al [159] suggested that considering the latest
technologies in GPUs and CPUs, when the algorithms are not being adapted for
GPUs, the performance speedup in the GPU can be approximately seven times
compared to the CPU implementation [159].
Even though recent NVidia GPUs for laptops show higher performance, they are
mainly designed for gaming not scientific computing. Because of this, desktop
GPUs are still a more suitable option for scientific computing. There are some
cost-efficient GPUs available on single board computers (SBC) for relatively sim-
ple image processing tasks. The most commonly used example is the Raspberry
Pi [171] which includes an on-board Broadcom VideoCore IV GPU at 250 MHz
[172]. The Raspberry Pi has been used for implementation of several image

35



processing and computer vision algorithms, such as face detection [173], model-
based detection and tracking [174], and some deep learning methods for computer
vision applications[175].

In summary, there are some applications in which GPUs are a more suitable
option compared to other hardware accelerators. Some examples include:

• The programming language of GPUs is high-level, and their development
time is shorter than FPGAs, hence they are more suitable for fast prototyp-
ing.

• GPUs are suitable hardware-accelerators in PC-based systems in which cap-
turing of high throughput data is not required.

• GPUs are less expensive than FPGAs, hence GPUs are more suitable for
cost-sensitive applications.

• It is usually easier to transfer codes to new hardware in GPUs than in FP-
GAs. GPUs are thus more suitable hardware accelerators for algorithms
which need to be frequently updated.

The GPUs being used in the literature are typically selected from recent tech-
nologies at the time of publication. The codes could even be developed before the
release date of the GPUs, and then quickly modified for that specific GPU.
Occasionally, even the latest GPUs do not have sufficient computational power
and/or memory units for complex algorithms. The number of CUDA cores that
can be included into a single GPU is limited by the manufacturing constraints.
One solution is to use multiple GPUs either in a single system or across a net-
work. In comparison, multiple GPUs in a single PC have better performance per
watt compared than single GPUs in a network. Scalable Link Interface (SLI) is a
brand name for the multi-GPU technology from NVidia for a single PC. SLI can
support up to four individual GPUs in one motherboard (note that some of NVidia
GPUs, such as GeForce GTX Titan Z, have two GPUs on one card).
Multiple GPUs have been used for image processing and computer vision al-
gorithms. For instance, two Tesla K20s and two Tesla M-2090s were used in
two separate implementations for fingerprint identification in [154], and 2 Tesla
C2050s were used for tomographic reconstruction in [145].
There are some limitations associated with using multiple GPUs. For example, it
is challenging to manage data communication and computations between multi-
ple GPUs. Hence, the computation speed of multiple GPUs compared to a single

36



GPU is not typically proportional to the number of GPUs used, or even in some
cases, it may be lower than that for a single GPU. Furthermore, in an SLI config-
uration all of the GPUs must be from the same GPU series.
GPUs and FPGAs are more commonly used compared to DSPs for implementing
image processing and computer vision algorithms. It is thus interesting to com-
pare implementations in an FPGA and a GPU. However, an accurate performance
comparison between FPGAs, and GPUs is not practical since each application
has different demands, and the performance depends on the level of programmer
proficiency and the hardware being used. In most of the published papers, the
comparison between FPGAs and GPUs is not performed for comparable technol-
ogy levels, with GPUs usually belonging to a more recent generation compared
to FPGAs. This may be a consequence of cheaper costs of GPUs over FPGAs,
or their relative ease of programming. However, comparing some examples of
implementation of the same algorithm in both FPGAs and GPUs can help devel-
opers to achieve an approximate performance comparison. Section 7 provides a
brief comparison between FPGAs and GPUs that are being used as hardware ac-
celerators for computer vision and image processing applications.

5. Portability of software over different hardware

It is sometimes required to transfer codes from one hardware accelerator to
another of the same type, such as when upgrading to a new generation hardware,
or when testing the code in another device. The transfer process may be challeng-
ing if the available code is crafted to take advantage of the specific architecture
of the original hardware. In this section, we discuss how it could be possible to
transfer the code and potential challenges for DSPs, FPGAs, and GPUs.

5.1. Transferring codes among DSPs
C/C++ is the most widely used programming language for all of the DSP

families (section 2.1). Hence, transferring codes among DSPs does not require
re-writing them. However, the transfer can be difficult if the code uses specific
functions, hardware codecs, or memory units of the DSP.
The simplest code transfer happens from a lower-performance DSP to a higher-
performance DSP of the same family. For instance, C6000 series codes can be
easily transferred to another DSP from the C64x series. Transferring DSP codes
from a low-performance DSP to a high-performance DSP of another family is

37

poul
Cross-Out

poul
Inserted Text
. In



also relatively simple. For instance, power optimised DSP codes (from the C6000
family) can be easily transferred to a multi-core DSP (from the C66x family).
However, the transferred code will not use the parallel processing capabilities that
the multi-core DSP offers in this example.
Transferring codes from two high-performance DSPs can become challenging if
the code uses particular hardware capabilities of the source DSP. For instance,
DaVinci-DMPs (section 2) have hardware codecs for video and audio processing
which are not available in multi-core DSPs. Moreover, multi-core DSPs can per-
form parallel computations, which are not available in DaVinci-DMPs. In this
example, the transferring of code should be decided based on which DSP is a bet-
ter choice for the particular algorithm.

5.2. Transferring codes among FPGAs
Transferring codes among Xilinx FPGAs and Altera FPGAs is not straightfor-

ward. Even though the FPGA code may be written in the VHDL language (which
is the basic language for both), Xilinx Vivado and Altera Quartus II use differ-
ent approaches. Furthermore, Xilinx and Altera have different IP-cores that are
specifically designed for their own FPGAs.
It is relatively simple to transfer codes from a lower-performance FPGA to a
higher-performance FPGA of the same series in both Xilinx and Altera FPGAs. It
is only required to re-synthesise the code for the new hardware. The re-synthesised
code can take advantage of the new hardware capabilities of the target FPGA. Nev-
ertheless, the code needs to be re-written to use sequential processing if the target
FPGA has an embedded processor.
Transferring code from a higher-performance FPGA to a lower performance FPGA
is not difficult if the lower performance FPGA has sufficient logic units for the
code, and the code is not using specific hardware units of the higher-performance
FPGA (such as the embedded processor). The only required step is to re-synthesise
the code for the new FPGA.

5.3. Transferring codes among GPUs
Transferring GPU codes among NVidia GPUs of the same generation is not

usually challenging. The memory size and the processing power of the target GPU
are the two major considerations that should be taken into account.
The transfer of code from a lower-performance GPU to a higher-performance
GPU only requires re-compilation of the code. Nevertheless, the code needs to

38

poul
Cross-Out

poul
Inserted Text
recompilation



be re-written to use any of the new capabilities of the target GPU.
Transferring code from a higher-performance GPU to a lower performance GPU
only requires re-compilation of the code if the lower performance GPU has suffi-
cient memory blocks and uses the same CUDA compute compatibility.

6. Heterogeneous hardware accelerators

Heterogeneous hardware accelerators are designed to use the advantages of a
hardware accelerator while offsetting its disadvantages by fusing its functionality
with another hardware accelerator. For instance, as discussed in section 4.5, one
of the disadvantages of GPUs is the data transfer time between the host PC and
the GPU. This time is decreased in heterogeneous CPU-GPU computing architec-
tures, such as accelerated processing units (APUs) designed by AMD (formerly
known as Fusion). An AMD APU is the fusion of an AMD 64-bit microprocessor
and an AMD GPU on a single chip. AMD APUs have shown an improved perfor-
mance in data transfer compared to discrete GPUs. For example, in a benchmark
study, an AMD Fusion had 3.5 times faster data transfer rate when compared to a
discrete AMD Radeon HD 5870 GPU [176].
NVidia has also a plan for producing a new generation of GPUs with integrated
CPU and GPU cores based on the ARM architecture [159]. This technology will
make GPUs a more suitable option for mobile applications, and will help to de-
crease the need for transferring data between the GPU and the CPU, which is
currently one of the main performance bottlenecks for GPUs. However, those
GPUs are not designed for high-performance applications.
Manycore processors can also operate similarly to a CPU-GPU hardware and het-
erogeneous computers. For instance, the Intel Xeon Phi is an example of a many-
core x86 processor that was designed based on an earlier GPU design by Intel.
The early versions of Intel manycore processors were known by the codename of
Knights (e.g. Knights Ferry).
Hybrid CPU-FPGA architectures have also been designed and developed. The ac-
quisition of Altera by Intel in 2015 [177] has accelerated this process. Although
Intel CPU-FPGA processors have some overlapping applications with the Intel
Xeon Phi, they are more suitable for the applications for which FPGAs have ad-
vantages over GPUs. Intel has introduced the Acceleration Stack technology for
Intel Xeon CPUs combined with FPGAs [178]. This technology was the basis of
a recently released CPU(Xeon)-FPGA(Arria 10 GX) board by Intel-Altera [179].
The software development for CPU-GPU architectures is also an active area. The

39

poul
Cross-Out

poul
Inserted Text
rewritten

poul
Cross-Out

poul
Inserted Text
recompilation

poul
Cross-Out

poul
Inserted Text
also has

poul
Comment on Text
I think that "manycore processors" needs an introduction.



Open Programmable Acceleration Engine (OPAE) [180] is an example that has
been developed to simplify the programming of Intel CPU-FPGA SoC devices.

7. Comparison of FPGAs and GPU for implementing image processing, and
computer vision algorithms

NVidia GPUs have been used more than FPGAs for high performance applica-
tions in recent years. For instance, the second fastest supercomputer in the world,
named Titan, includes 18,688 NVidia Tesla GPUs, and has a processing power of
more than 2 × 1016 calculations per second [160].
Among computer vision and image processing algorithms, stereo vision algo-
rithms are the most common application implemented in hardware accelerators.
Tippetts et al. [4] reviewed the implementation of various stereo vision algorithms
in CPUs, GPUs, and FPGAs. Among the reported publications in their review,
the maximum disparities/s for algorithms were 6 million in CPUs, 7,247 million
in GPUs, and 6,062 million in FPGAs. Among the papers reviewed by Tippetts
et al. [4], the fastest GPU and FPGA implementations were approximately 1000
times faster than the fastest CPU implementation. However, the CPU implemen-
tation was in a single core Pentium 4 CPU (introduced in 2000), while the latest
FPGAs being used were Xilinx Virtex-5 and Altera Stratix-3 (both introduced in
2006), and the latest GPU was NVidia Geforce GTX 280 (GeForce 200 series,
introduced in 2008 (Table 8)). Thus, all of these hardware technologies reviewed
by Tippetts et al. [4] were far from state-of-the-art, being outdated even at the
publication time of Tippetts et al.s review [4] in 2013.
Brodtkorb et al. [11] published a comprehensive review paper, and described hard-
ware and software tools in heterogeneous computing. They summarised the differ-
ences between FPGAs and GPUs in architecture, performance, power consump-
tion, cost, programming languages, and debugging tools. In addition, they investi-
gated the implementation of some basic algorithms. For example, Brodtkorb et al.
[11] reviewed the implementation of FFT with NVidia CUFFT library in a GTX
280 GPU (Table 8), which they reported to be 8 times to 40 times faster than Intels
MKL on a 3 GHz Intel Core2 Quad [11]. Unlike the review of Tippetts et al. [4],
in the review by Brodtkorb et al. [11] the hardware technologies were relatively
recent in 2010 when the paper was published. However, for implementation of
FFT in FPGAs, even though Brodtkorb et al. [11] had introduced Xilinx and Al-
tera IP-cores, there was no performance comparison in the FPGA section of that
paper.

40



Gao et al. [6] reviewed the applications of parallel computing in experimental
mechanics and optical measurements using hardware accelerators (DSPs, FPGAs
and GPUs). They mentioned that it is difficult to increase the speed of such algo-
rithms in CPU-based systems, whereas using data parallelism techniques makes
them suitable choices for parallel hardware, such as FPGAs and GPUs. As an
example, they reported a 47 times speedup using an NVidia GeForce 6600 GPU
in comparison to a Pentium 4 CPU. However, both of these were old technologies
even at the publication date of the review paper in 2012 (GeForce 6600 was in-
troduced in 2004). In total, Gao et al. [6] reviewed 38 papers from 2008 to 2012,
of which 42% used GPUs, 29% used FPGAs, and 29% used others. Based on
their survey, GPUs were the most popular hardware accelerators in experimental
mechanics and optical measurements.
Asano et al. [161] reviewed the performance of FPGAs, GPUs, and CPUs in
three different applications in image processing. The algorithms they investigated
included two-dimensional filters, stereo-vision (feature matching, and 3D projec-
tion), and k-means clustering [161]. The GPU used in their study was an NVidia
GTX 280 (Table 8), and the FPGA they used was a Xilinx Virtex-4 (introduced in
2005 (Table 3)). In their comparisons, the GPU performed better for 2D filter sizes
less than 11, and the FPGA performed better for stereo vision (feature matching,
and 3D projection), and k-means clustering. Asano et al. [161] concluded that the
GPU is preferable for simple tasks where pixels can be processed independently,
whereas for more sophisticated algorithms FPGAs perform better.
Fowers et al. [5] compared the performance and power consumption of FPGAs,
GPUs, and multicore processors for sliding-window applications. The GPU and
FPGA used for the sliding-window applications in [5] were a GTX 295 (intro-
duced in 2008 (Table 8)), and an Altera Stratix-3 (introduced in 2006 (Table 4)).
They investigated SAD, 2D convolution, and correntropy [162] (i.e. a measure
of similarity based on information theoretic learning) as sliding-window appli-
cations [5]. In their implementations, the FPGA implementation gave the best
performance for SAD, and was the only device which was able to do real-time
computations up to 50 × 50 kernel size. The FPGA implementation could also
reach approximately 80 fps for a 720p image size, while the frame rate was ap-
proximately 10 fps for the GPU implementation, and less than 1 fps for the CPU
sequential C++ implementation.
Fowers et al. [5] also analysed the 2D convolution performance for the FPGA and
GPU implementations in the time domain, as well as the GPU implementation
in the frequency domain using FFT [5]. For the 2D convolution, the frequency
domain GPU code (GPU-FFT) showed the best performance where, for an image

41



size of 1280 pixel × 720 pixel and a kernel size of 25, a frame rate of approxi-
mately 120 fps was achieved in the GPU, whereas the FPGA implementation in
the time domain could achieve 80 fps, and the GPU implementation in the time
domain could achieve 60 fps. However, their comparison of the frequency do-
main implementation in GPU and the time domain implementations in FPGA is
unfair, since implementation of 2D convolution in frequency domain for large ker-
nel sizes is faster than time domain. As can be seen, the FPGA implementation
of Fowers et al. for 2D convolution in the time domain could achieve 20 fps more
than the one implemented in the GPU in the time domain.
Fowers et al. [5] improved their methodology for comparing FPGA and GPU im-
plementations in their next paper [163] by adding the FPGA frequency domain
implementation of 1D convolution to their comparisons. The FPGA in their study
was a Gidel ProcSTAR III board, which contains four Altera Stratix-3 FPGAs,
and the GPU was an NVidia GeForce 295 GTX (Table 8). They considered two
scenarios in the FPGA performance analysis: first where the data is sent to the
FPGA board via PCIe; and the second was a standalone FPGA, where the data
source was directly connected to the FPGA (similar to the embedded systems).
From these two scenarios, the standalone FPGA showed better performance for
the implementation of 1D convolution in the frequency domain compared to the
PCIe FPGA board. For instance, when performance was compared to the fre-
quency domain implementation in the CPU, the speedup ratios of the standalone
FPGA and the PCIe FPGA were approximately 10 and 5, respectively. The stan-
dalone FPGA could perform better than the GPU for large signal sizes with small
convolution kernel sizes. However, in other cases (such as small or large signal
sizes with large convolution kernel sizes) the GPU had better performance.
Pauwels et al. [73] compared the performance of FPGAs and GPUs for real-time
phase-based optical flow, stereo, and local image feature matching [73]. The FP-
GAs they used were Xilinx Virtex-4 and Virtex-5, and the GPUs were GeForce
GTX 280 (Table 8) and GTX 580 (introduced in 2010 (Table 8)). A comparison
was performed for accuracy, speed, power consumption, cost, and design time.
They found that GPUs and FPGAs were suitable for different applications. For ex-
ample, FPGAs were more suitable than GPUs for local feature matching, median
filtering, and embedded platforms. FPGAs also had advantages over GPUs for
their low power consumption, and level of flexibility. On the other hand, Pauwels
et al. [73] concluded that GPUs were more suitable for image warping and ap-
plying spatial filters on image pyramids. In their study they suggested that the
advantages of GPUs over FPGAs are their low cost and short design time.
In another comparison between FPGAs and GPUs, Cortie et al. [117] compared

42



an FPGA implementation in Xilinx Spartan-3 for parallel convolutions to an Intel
Xeon CPU, and an NVidia Tesla C1060 GPU (introduced in 2008 (Table 8)) [117]
(refer to Table 7 for more details about FPGA implementation). They showed that,
although they could reach higher speeds with both the FPGA and GPU in compar-
ison to the CPU, the FPGA was faster in smaller systems and the GPU performed
better in larger systems.
Choi et al. [164] compared the speed of their implementation of stereo matching
using Markov random field in four Xilinx Virtex-5 FPGAs to its GPU implemen-
tation on a GTX 260. The GTX 260 was introduced in 2008 and has the Tesla
microarchitecture (Table 8). The speed of the FPGA implementation of the Choi
et al. [164] was 26.10 ms, as opposed to 61.41 ms for the GPU implementation.
However, despite the FPGA implementation being faster than the GPU implemen-
tation, it required the use of four FPGAs. Hence, it is likely that the implementa-
tion of the algorithm in a single Virtex-5 FPGA would not be faster than its GPU
implementation in a GTX 260.
Very few papers have evaluated the performance of the same technology level for
FPGAs and GPUs. In one recent paper, Birk et al. [165] performed an efficiency
comparison for algorithms in 3D ultrasound computer tomography in 40 nm and
28 nm fabrication technology generations of FPGAs and GPUs. The hardware
accelerators from the 40 nm fabrication technology were Xilinx Virtex-6 (Table
3) for the FPGA and NVidia GTX 580 (Table 8) for the GPU. The hardware accel-
erators from the 28 nm fabrication technology were Xilinx Virtex-7 (Table 3) for
the FPGA and NVidia Tesla K20 (Table 8) for the GPU. This selection of hard-
ware accelerators from the same fabrication technology enabled a rigorous and
fair comparison between FPGAs and GPUs. Birk et al. concluded that the GPU
and the FPGA using the 40 nm fabrication technology can provide similar per-
formance and efficiency, if the power consumption is not considered. In contrast,
for the 28 nm fabrication technology, the FPGA implementation had a speedup
of 1.86 compared to its GPU counterpart. This implies that FPGAs have substan-
tially improved in their latest generation. The comparisons between the GPU and
FPGA implementations discussed in this section are summarised in Table 11.
One of the differences between FPGAs and GPUs in the literature is in using mul-
tiple hardware accelerators at the same time to implement complex algorithms.
NVidia GPUs use PCIe as their interface to PCs, and the interface is fully devel-
oped by NVidia. It is thus simple to use multiple GPU cards at the same time
in one PC. In contrast, developing PCIe interfaces for multiple FPGA cards is
difficult. Using multiple GPU cards is thus more common compared to multiple
FPGA boards when implementing complex algorithms (some examples of using

43



Table 11: A summary of comparisons between GPU and FPGA implementation of some of the
image processing algorithms in the recent literature

Algorithm(s) Implemented Hardware
(GPU)

Hardware
(FPGA)

Disparity measurement [4] NVidia GTX 280:
7.2M Disparities/s

Xilix Virtex-5:
6M Disparities/s

FFT computation [11]
NVidia GTX 280:
8× to 40× faster than its CPU
implementation

Not available

2D filters, stereo vision, and
k-mean clustering [161]

NVidia GTX 280:
Performed better than the
FPGA for 2D filter sizes
smaller than 11.

Xilinx Virtex-4:
Performed better than the GPU
for stereo vision, and k-mean
clustering.

SAD algorithm [5] NVidia GTX 295:
80 fps for a 720p image.

Altera Stratix-3:
10 fps for a 720p image.

2D convolution [5]
NVidia GTX 295:
120 fps for an image size of
1280 pixel × 720 pixel and a
kernel size of 25.

Altera Stratix-3:
80 fps for an image size of
1280 pixel × 720 pixel and a
kernel size of 25.

1D convolution [5]

NVidia GTX 295:
Performed better than the FP-
GAs for small or large signal
sizes with large convolutional
kernel sizes.

4 × Altera Stratix-3:
Performed better than the GPU
for large signal sizes with small
convolutional kernel sizes.

Phase-based optical flow
[73]

NVidia GTX 580:
Performed better than the
FPGA for image warping
and applying spatial filters on
image pyramids.

Xilinx Viretex-5:
Performed better than the GPU
for local feature matching and
median filtering.

Parallel convolution [117]
NVidia Tesla C1060:
Performed better than the
FPGA in larger kernels.

Xilinx Spartan-3:
Performed better than the GPU
in smaller kernels.

Stereo matching using
Markov random field [164]

NVidia GTX 260:
Processing time of 61.41 ms.

4 × Xilinx Virtex-5:
Processing time of 26.10 ms.

3D ultrasound computer to-
mography image process-
ing [164]

NVidia Tesla K20:
The implementation was 1.86
slower than the FPGA.

Xilinx Virtex-7:
The implementation was 1.86
faster than the GPU.

44



multiple GPUs were introduced in Tables 9 and 10).

8. Hardware accelerators designed for machine learning

In recent years, the application of machine learning techniques has been grow-
ing very rapidly. In particular, deep neural networks (i.e. deep learning) and
convolutional neural networks have been used extensively in various applications.
Image processing and computer vision applications have also taken advantage of
machine learning [181] and deep learning [182, 184] techniques. GPUs are natu-
rally suitable for the implementation of neural networks because of the similarity
between the mathematical basis of neural networks and image manipulation tasks
of GPUs. In particular, GPUs are very suitable for training convolutional neural
networks because they consist of many matrix multiplications. Given their ad-
vantages, GPUs have been the most common choice of hardware implementation.
ImageNet [183], which is one the most famous image classification algorithms
based on deep learning, has been trained on two GTX 580 3GB GPUs [183] (the
training took between 5 and 6 days). In another example, an image enhancement
algorithm based on deep learning was implemented on a Titan X GPU [187].
FPGAs have also been used for the implementation of neural networks [185] and
deep learning algorithms [184]. The efficient integer arithmetic of FPGAs is an
advantage to speedup the training and using of neural networks. In addition, FP-
GAs offer more flexibility compared to GPUs for the implementation of neural
networks. However, the use of FPGAs for nonlinear operations and feedback
loops in neural networks is challenging. One way to address this challenge is
to use the FPGA in combination with a sequential processor (i.e. in the form of
heterogeneous computing or SoC). For instance, Microsoft has designed a new
cloud-scale, FPGA-based acceleration architecture for data centres that uses both
FPGAs (Altera Stratix V) and CPUs [186]. The acquisition of Altera by Intel
(as discussed in Section 6) is another indication of the future trends to develop
FPGA-CPU SoCs.
Due to the high demands for using hardware accelerators to implement machine
learning techniques, some new SoCs are designed specifically for machine learn-
ing tasks. NeuFlow is an SoC (FPGA-CPU) designed to accelerate neural net-
works and computer vision algorithms based on convolutions operations [188].
This SoC could achieve 320 Giga operations per second (GOP/s) with an average
power consumption of 0.6 W [188]. DianNao is another SoC designed for con-
volutional neural network and computer vision algorithms based on convolution

45

poul
Cross-Out

poul
Inserted Text
suited to

poul
Cross-Out

poul
Inserted Text
speed up

poul
Cross-Out

poul
Inserted Text
high demand

poul
Cross-Out

poul
Inserted Text
giga

poul
Comment on Text
Isn't this more usually expressed as "GOPS"? There are several subsequent examples of this...



operations [189]. DianNao has an efficient memory architecture and was capa-
ble of 452 GOP/s [189]. ShiDianNao is a newer version of DianNao designed
for neural networks and visual recognition algorithms [190]. ShiDianNao was
approximately 2 times faster than DianNao for the implementation of neural net-
works and consumed 60 times less energy [190]. The Tensor Processing Unit
(TPU) is a SoC designed by Google for deep neural networks [191]. TPU per-
formed 15 times faster than an NVidia k80 GPU while using two times less power
[191].
The significant interest around the application of machine learning techniques has
generated a new area in the design of hardware accelerators. This has affected the
conventional ways of using hardware accelerators for image processing and com-
puter vision tasks. The future trend for algorithms based on neural networks is to
use hardware accelerators specifically designed for the computation requirements
of neural networks.

9. Summary and conclusions

In this review, we have provided practical information for selecting suitable
hardware accelerators for computer vision and image processing algorithms. We
discussed the hardware architectures of the most recent DSPs, FPGAs, and GPUs,
and the important features of these hardware accelerators for computer vision and
image processing algorithms. For each hardware accelerator, available tools and
utilities, development time, advantages, and disadvantages were discussed in an
attempt to help developers to choose the most appropriate hardware for their ap-
plication. Examples from the literature were reviewed in separate sections for ap-
plications of DSPs, FPGAs, and GPUs in accelerating computer vision and image
processing algorithms. Details of the implemented algorithm, the hardware type,
and the hardware introduction year were included. Among hardware accelerators,
FPGAs and GPUs are widely used in computer vision and image processing ap-
plications. Thus a specific comparison of the performances of FPGAs and GPUs
was provided. The most suitable applications for each hardware are summarised
in Table 12.

Among the hardware accelerators, DSPs are the least commonly used for com-
puter vision and image processing tasks, and GPUs are the most commonly used.
GPUs are suitable hardware accelerators for applications that need short develop-
ment times or fast prototyping, require good processing speed, or need significant
on-board memory. In comparison, FPGAs are the most suitable hardware accel-

46

poul
Comment on Text
Wouldn't this make more sense if it was expressed as "...1/60th of the..."



Table 12: A summary of the most suitable applications for each hardware
Hardware Most suitable applications

DSP

• Low-power.

• Low-cost.

• Portable.

• Computationally simple algorithms.

FPGA

• Low-power.

• Portable.

• Computationally simple or complex algorithms.

• Algorithms that can take advantage of a flexible and/or custom-
designed hardware.

GPU

• Relatively low-cost.

• Require a fast development time.

• Computationally simple or complex algorithms.

• Algorithms that can become massively data-parallel.

erators for algorithms that require significant processing speed, need to process
complicated algorithms in low-power applications, or include customised algo-
rithms. DSPs are suitable hardware accelerators for very low-power applications,
or cheap portable devices.
Even though GPUs are frequently used for computer vision and image processing
algorithms, and it is often believed that they are the most suitable choice, recent
developments have made FPGAs an attractive option for many applications. The
tools and utilities from Xilinx and Altera have simplified the code development
process, and shortened the development time when using FPGAs. Furthermore,
the latest FPGA technologies provide a good level of performance.
Processing speed is an important factor in most computer vision and image pro-
cessing applications, and hardware technologies are rapidly growing to address
this demand. Selection of a suitable hardware accelerator could thus have a great
impact on the performance of the system. In this review, we have attempted to
provide practical information about the state-of-the-art hardware accelerators to
assist researchers and developers in selecting suitable hardware accelerators for
their specific applications.

47



References

[1] M. A. Sutton, Computer vision-based, noncontacting deformation measure-
ments in mechanics: a generational transformation, Appl. Mech. Rev., vol.
65, no. 5, p. 50802, Aug. 2013.

[2] P. Markelj, D. Tomaevi, B. Likar, and F. Pernu, A review of 3D/2D regis-
tration methods for image-guided interventions., Med. Image Anal., vol. 16,
no. 3, pp. 64261, Apr. 2012.

[3] R. Poppe, A survey on vision-based human action recognition, Image Vis.
Comput., vol. 28, no. 6, pp. 976990, 2010.

[4] B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald, Review of stereo
vision algorithms and their suitability for resource-limited systems, J. Real-
Time Image Process., pp. 121, 2013.

[5] J. Fowers, G. Brown, P. Cooke, and G. Stitt, A performance and energy com-
parison of FPGAs, GPUs, and multicores for sliding-window applications,
Proc. ACM/SIGDA Int. Symp. F. Program. Gate Arrays - FPGA 12, p. 47,
2012.

[6] W. Gao and Q. Kemao, Parallel computing in experimental mechanics and
optical measurement: a review, Opt. Lasers Eng., vol. 50, no. 4, pp. 608617,
2012.

[7] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, Medical image pro-
cessing on the GPUPast, present and future, Med. Image Anal., vol. 17, no.
8, pp. 10731094, 2013.

[8] L. Shi, W. Liu, H. Zhang, Y. Xie, and D. Wang, A survey of GPU-based
medical image computing techniques., Quant. Imaging Med. Surg., vol. 2,
no. 3, pp. 188206, Sep. 2012.

[9] O. Fluck, C. Vetter, W. Wein, a Kamen, B. Preim, and R. Westermann, A sur-
vey of medical image registration on graphics hardware., Comput. Methods
Programs Biomed., vol. 104, no. 3, pp. e45-57, Dec. 2011.

[10] R. Shams, P. Sadeghi, R. A. Kennedy, and R. I. Hartley, A survey of medical
image registration on multicore and the GPU, Signal Process. Mag. IEEE,
vol. 27, no. 2, pp. 5060, 2010.

48



[11] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.
Storaasli, State-of-the-art in heterogeneous computing, Sci. Program., vol.
18, no. 1, pp. 133, 2010.

[12] http://www.ti.com/lsds/ti/dsp/overview.page.

[13] http://www.ti.com/lsds/ti/dsp/c5000_dsp/overview.
page.

[14] http://www.ti.com/lsds/ti/dsp/c6000_dsp/overview.
page.

[15] http://www.ti.com/lsds/ti/dsp/video_processors/
overview.page.

[16] http://processors.wiki.ti.com/index.php/Keystone_
Device_Architecture.

[17] http://www.ti.com/lsds/ti/dsp/keystone_arm/
overview.page.

[18] http://processors.wiki.ti.com/index.php/Multicore.

[19] http://www.ti.com/tool/ccstudio.

[20] DSPLIB:http://www.ti.com/tool/sprc265.

[21] http://processors.wiki.ti.com/index.php/IMGLIB.

[22] http://www.ti.com/tool/sprc264.

[23] MathLIB:http://www.ti.com/tool/mathlib.

[24] http://processors.wiki.ti.com/index.php/Category:
SYSBIOS.

[25] MCSDK:http://www.ti.com/tool/bioslinuxmcsdk.

[26] http://processors.wiki.ti.com/index.php/BIOS_
MCSDK_2.0_User_Guide.

[27] http://processors.wiki.ti.com/index.php/Multicore_
System_Analyzer.

49

http://www.ti.com/lsds/ti/dsp/overview.page
http://www.ti.com/lsds/ti/dsp/c5000_dsp/overview.page
http://www.ti.com/lsds/ti/dsp/c5000_dsp/overview.page
http://www.ti.com/lsds/ti/dsp/c6000_dsp/overview.page
http://www.ti.com/lsds/ti/dsp/c6000_dsp/overview.page
http://www.ti.com/lsds/ti/dsp/video_processors/overview.page
http://www.ti.com/lsds/ti/dsp/video_processors/overview.page
http://processors.wiki.ti.com/index.php/Keystone_Device_Architecture
http://processors.wiki.ti.com/index.php/Keystone_Device_Architecture
http://www.ti.com/lsds/ti/dsp/keystone_arm/overview.page
http://www.ti.com/lsds/ti/dsp/keystone_arm/overview.page
http://processors.wiki.ti.com/index.php/Multicore
http://www.ti.com/tool/ccstudio
DSPLIB: http://www.ti.com/tool/sprc265
http://processors.wiki.ti.com/index.php/IMGLIB
http://www.ti.com/tool/sprc264
MathLIB: http://www.ti.com/tool/mathlib
http://processors.wiki.ti.com/ index.php/Category:SYSBIOS
http://processors.wiki.ti.com/ index.php/Category:SYSBIOS
MCSDK: http://www.ti.com/tool/bioslinuxmcsdk
http://processors.wiki.ti.com/ index.php/BIOS_MCSDK_2.0_User_Guide
http://processors.wiki.ti.com/ index.php/BIOS_MCSDK_2.0_User_Guide
http://processors.wiki.ti.com/index.php/ Multicore_System_Analyzer
http://processors.wiki.ti.com/index.php/ Multicore_System_Analyzer


[28] DSPboards:http://www.ti.com/lit/sg/sprt285f/
sprt285f.pdf.

[29] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze, A fast
stereo matching algorithm suitable for embedded real-time systems, Com-
put. Vis. Image Underst., vol. 114, no. 11, pp. 11801202, Nov. 2010.

[30] S. B. Goldberg and L. Matthies, Stereo and IMU assisted visual odometry
on an OMAP3530 for small robots, in Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2011 IEEE Computer Society Conference on,
2011, pp. 169176.

[31] Z. Jun and G.-O. Liu, Design and Implementation of Networked Real-time
Control System with Image Processing Capability, UKACC Int. Conf. Con-
trol, pp. 15, 2014.

[32] Y. Chen, B. Wu, S. Member, H. Huang, and C. Fan, A Real-Time Vision
System for Nighttime Vehicle Detection and Traffic Surveillance, vol. 58,
no. 5, pp. 20302044, 2011.

[33] Y. F. Cao, M. Ding, L. K. Zhuang, and Y. K. Cao, Vision-based Guid-
ance, Navigation and Control for Unmanned Aerial Vehicle Landing, 9th
Int. Bhurban Conf. Appl. Sci. Technol., pp. 8791, 2012.

[34] V. Gonzalez-Huitron, E. Ramos-Diaz, V. Kravchenko, and V. Ponomaryov,
2D to 3D Conversion Based on Disparity Map Estimation, CIARP 2014, pp.
982989, 2014.

[35] S.-J. Huang and F.-R. Ying, Stereo vision system for moving object detecting
and locating based on CMOS image sensor and DSP chip, Pattern Anal.
Appl., vol. 15, no. 2, pp. 189202, Jan. 2011.

[36] F. D. Igual, G. Botella, C. Garca, M. Prieto, and F. Tirado, Robust motion es-
timation on a low-power multi-core DSP, EURASIP J. Adv. Signal Process.,
vol. 2013, no. 1, pp. 115, 2013.

[37] R. Berg, L. Knig, J. Rhaak, R. Lausen, and B. Fischer, Highly efficient im-
age registration for embedded systems using a distributed multicore DSP
architecture, J. Real-Time Image Process., Nov. 2014.

50

DSP boards: http://www.ti.com/lit/sg/sprt285f/sprt285f.pdf
DSP boards: http://www.ti.com/lit/sg/sprt285f/sprt285f.pdf


[38] J. Karam, I. Alkamal, A. Gatherer, G. A. Frantz, D. V Anderson, and B. L.
Evans, Trends in Multicore DSP Platforms, IEEE Signal Process. Mag., vol.
26, pp. 3849, 2009.

[39] http://www.vhdl.org/.

[40] http://verilog.org/.

[41] http://www.accellera.org/community/systemc/.

[42] J. Agron, Domain-specific language for HW/SW Co-design for FPGAs,
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 5658 LNCS, pp. 262284, 2009.

[43] A. T. and J. T. Moritz Schmid, Frank Hannig, High-Level Synthesis Revised:
Generation of FPGA Accelerators from a Domain-Specific Language using
the Polyhedron Model, Parallel Comput. Accel. Comput. Sci. Eng., vol. 25,
pp. 497506, 2014.

[44] N. George, H. Lee, D. Novo, T. Rompf, K. J. Brown, A. K. Sujeeth, M. Oder-
sky, K. Olukotun, and P. Ienne, Hardware system synthesis from Domain-
Specific Languages, in 2014 24th International Conference on Field Pro-
grammable Logic and Applications (FPL), 2014, pp. 18.

[45] F. Stock, A. Koch, and D. Hildenbrand, FPGA-Accelerated Color Edge De-
tection Using a Geometric-Algebra-To-Verilog Compiler.

[46] P. specification Xilinx, Zynq-7000 All Programmable SoC Overview Zynq-
7000, vol. 190, pp. 123, 2016.

[47] Virtex-5:http://www.xilinx.com/support/
documentation/data_sheets/ds100.pdf.

[48] (DS150), Virtex 6 Family, Xilinx, 2012.

[49] http://www.xilinx.com/support/documentation/data_
sheets/ds180_7Series_Overview.pdf.

[50] Xilinx, UltraScale Architecture and Product Overview, pp. 129, 2015.

[51] (UG369),Virtex-6 FPGA DSP48E1 Slice, 2012.

51

http://www.vhdl.org/
http://verilog.org/
http://www.accellera.org/community/systemc/
Virtex-5: http://www.xilinx.com/ support/documentation/data_sheets/ds100.pdf
Virtex-5: http://www.xilinx.com/ support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/ documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/ documentation/data_sheets/ds180_7Series_Overview.pdf


[52] Xilinx,Bringing Ultra High Productivity to Mainstream Systems and Plat-
form Designers Vivado Design Suite HLx Editions.

[53] (UG631),ISE Design Suite 14: Release Notes , Installation , and Licensing,
2013.

[54] http://www.xilinx.com/products/design-tools/vivado.

[55] http://www.xilinx.com/products/design-tools/
vivado/verification-and-debug.html.

[56] http://www.xilinx.com/products/
intellectual-property/.

[57] (UG683), EDK Concepts, Tools, and Techniques A Hands-On Guide to Ef-
fective Emedded System Design, 2013.

[58] (UG897), Model-Based DSP Design Using System Generator, pp. 1173,
2015.

[59] https://www.xilinx.com/products/
intellectual-property/ila.html.

[60] (UG1023), SDAccel Development Environment - User Guide, vol. 1023,
2015.

[61] http://www.khronos.org/opencl/.

[62] http://sine.ni.com/nips/cds/view/p/lang/en/nid/
11834.

[63] http://www.ni.com/compactrio/.

[64] https://www.altera.com/products/fpga/
stratix-series.html.

[65] https://www.altera.com/products/fpga/arria-series.
html.

[66] https://www.altera.com/products/fpga/
cyclone-series.html.

52

http://www.xilinx.com/products/design-tools/vivado
http://www.xilinx.com/products/design-tools/vivado/verification-and-debug.html
http://www.xilinx.com/products/design-tools/vivado/verification-and-debug.html
http://www.xilinx.com/products/intellectual-property/
http://www.xilinx.com/products/intellectual-property/
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/products/intellectual-property/ila.html
http://www.khronos.org/opencl/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11834
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11834
http://www.ni.com/compactrio/
https://www.altera.com/products/fpga/stratix-series.html
https://www.altera.com/products/fpga/stratix-series.html
https://www.altera.com/products/fpga/arria-series.html
https://www.altera.com/products/fpga/arria-series.html
https://www.altera.com/products/fpga/cyclone-series.html
https://www.altera.com/products/fpga/cyclone-series.html


[67] A. Davidson, A New FPGA Architecture and Leading-Edge FinFET Pro-
cess Technology Promise to Meet Next-Generation System Requirements,
no. June, pp. 110, 2015.

[68] https://www.altera.com/products/fpga/features/dsp/
stratix-v-dsp-block.html.

[69] https://www.altera.com/products/design-software/
fpga-design/quartus-prime/overview.html.

[70] https://www.altera.com/products/design-software/
embedded-software-developers/nios-ii-eds.html.

[71] https://www.altera.com/products/design-software/
model---simulation/dsp-builder.html.

[72] https://www.altera.com/products/design-software/
embedded-software-developers/opencl/overview.html.

[73] K. Pauwels, M. Tomasi, J. Diaz Alonso, E. Ros, and M. M. Van Hulle,
A comparison of FPGA and GPU for real-time phase-based optical flow,
stereo, and local image features, Comput. IEEE Trans., vol. 61, no. 7, pp.
9991012, 2012.

[74] http://bluespec.com/.

[75] J. Bachrach, H. Vo, and K. Asanovic, Chisel Manual, pp. 112, 2012.

[76] http://www.xilinx.com/products/technology/dsp.
html/.

[77] https://www.altera.com/products/fpga/
stratix-series/stratix-10/overview.html.

[78] https://github.com/drichmond/riffa-development.

[79] J. Korinth, D. de la Chevallerie, and A. Koch, An Open-Source Tool Flow for
the Composition of Reconfigurable Hardware Thread Pool Architectures, in
2015 IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, 2015, pp. 195198.

[80] https://maltevesper.github.io/JetStream/.

53

https://www.altera.com/products/fpga/features/dsp/stratix-v-dsp-block.html
https://www.altera.com/products/fpga/features/dsp/stratix-v-dsp-block.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/nios-ii-eds.html
https://www.altera.com/products/design-software/embedded-software-developers/nios-ii-eds.html
https://www.altera.com/products/design-software/model---simulation/dsp-builder.html
https://www.altera.com/products/design-software/model---simulation/dsp-builder.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
http://bluespec.com/
http://www.xilinx.com/products/technology/dsp.html/
http://www.xilinx.com/products/technology/dsp.html/
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html
https://github.com/drichmond/riffa-development
https://maltevesper.github.io/JetStream/


[81] M. Vesper, D. Koch, K. Vipin, and S. A. Fahmy, JetStream: An open-source
high-performance PCI Express 3 streaming library for FPGA-to-Host and
FPGA-to-FPGA communication, in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), 2016, pp. 19.

[82] K. Ambrosch, M. Humenberger, W. Kubinger, and A. Steininger, SAD-
based stereo matching using FPGAs, in Embedded Computer Vision,
Springer, 2009, pp. 121138.

[83] C. Colodro-Conde, F. J. Toledo-Moreo, R. Toledo-Moreo, J. J. Martnez-
lvarez, J. Garrigs Guerrero, and J. M. Ferrndez-Vicente, Evaluation of stereo
correspondence algorithms and their implementation on FPGA, J. Syst. Ar-
chit., vol. 60, no. 1, pp. 2231, 2014.

[84] http://www.cvlibs.net/datasets/kitti/.

[85] http://vision.middlebury.edu/stereo/eval3/.

[86] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, Real-time stereo
vision system using semi-global matching disparity estimation: Architec-
ture and FPGA-implementation, in 2010 International Conference on Em-
bedded Computer Systems: Architectures, Modeling and Simulation, 2010,
pp. 93101.

[87] J. Hofmann, J. Korinth, and A. Koch, A Scalable High-Performance Hard-
ware Architecture for Real-Time Stereo Vision by Semi-Global Matching, in
2016 IEEE Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2016, pp. 845853.

[88] D. Zha, X. Jin, and T. Xiang, A real-time global stereo-matching on FPGA,
Microprocess. Microsyst., vol. 47, pp. 419428, 2016.

[89] T. Kryjak, M. Komorkiewicz, and M. Gorgon, Real-time background gen-
eration and foreground object segmentation for high-definition colour video
stream in FPGA device, J. Real-Time Image Process., vol. 9, no. 1, pp. 6177,
Nov. 2012.

[90] B. Johnson, N. Thomas, and J. S. Rani, An FPGA Based High throughput
Discrete Kalman Filter Architecture for Real-Time Image Denoising, 2017
30th Int. Conf. VLSI Des. 2017 16th Int. Conf. Embed. Syst., pp. 5560,
2017.

54

http://www.cvlibs.net/datasets/kitti/
http://vision.middlebury.edu/stereo/eval3/


[91] Z. Chai, X. Shao, Y. Zhang, W. Yang, and Q. Wu, Accelerating image bound-
ary detection by hardware parallelism, Microprocess. Microsyst., vol. 38, no.
5, pp. 458469, Jul. 2014.

[92] C. Li, Y. Bi, F. Marzani, and F. Yang, Fast FPGA prototyping for real-time
image processing with very high-level synthesis, J. Real-Time Image Pro-
cess., pp. 118, 2017.

[93] T. Shimizu, Y. Tomita, H. Matsumura, M. Sugimura, H. Yamasaki, D. Thach,
T. Miyoshi, T. Baba, Y. Watanabe, and A. Ike, An FPGA-accelerated partial
image matching engine for massive media data searching systems, in 2016
IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016, vol. 2016Septe,
pp. 12.

[94] L. Puglia, M. Vigliar, and G. Raiconi, Real-Time Low-Power FPGA Archi-
tecture for Stereo Vision, IEEE Trans. Circuits Syst. II Express Briefs, vol.
7747, no. c, pp. 11, 2017.

[95] F. Fons, M. Fons, and E. Cant, Run-time self-reconfigurable 2D convolver
for adaptive image processing, Microelectronics J., vol. 42, no. 1, pp.
204217, Jan. 2011.

[96] R. Marzotto, P. Zoratti, D. Bagni, A. Colombari, and V. Murino, A real-
time versatile roadway path extraction and tracking on an FPGA platform,
Comput. Vis. Image Underst., vol. 114, no. 11, pp. 11641179, 2010.

[97] A. Hajirassouliha, T. P. B. Gamage, M. D. Parker, M. P. Nash, A. J. Taberner,
and P. M. F. Nielsen, FPGA Implementation of 2D Cross-Correlation for
Real-Time 3D Tracking of Deformable Surfaces, Int. Conf. Image Vis. Com-
put. New Zeal. (IVCNZ 2013), pp. 352357, 2013.

[98] Y. K. Lim, L. Kleeman, and T. Drummond, Algorithmic methodologies for
FPGA-based vision, Mach. Vis. Appl., vol. 24, no. 6, pp. 11971211, Dec.
2012.

[99] S. Jin, J. Cho, X. Dai Pham, K. M. Lee, S.-K. Park, M. Kim, and J. W.
Jeon, FPGA design and implementation of a real-time stereo vision system,
Circuits Syst. Video Technol. IEEE Trans., vol. 20, no. 1, pp. 1526, 2010.

55



[100] C. Georgoulas and I. Andreadis, FPGA based disparity map computation
with vergence control, Microprocess. Microsyst., vol. 34, no. 7, pp. 259273,
2010.

[101] P. Zicari, S. Perri, P. Corsonello, and G. Cocorullo, Low-cost FPGA stereo
vision system for real time disparity maps calculation, Microprocess. Mi-
crosyst., vol. 36, no. 4, pp. 281288, 2012.

[102] M. K. Jawed, Intelligent vision processor (PhD Thesis), The University of
Auckland, 2013.

[103] C. Ttofis, S. Hadjitheophanous, A. S. Georghiades, and T. Theocharides,
Edge-Directed Hardware Architecture for Real-Time Disparity Map Com-
putation, IEEE Trans. Comput., vol. 62, no. 4, pp. 690704, 2013.

[104] C. Ttofis and T. Theocharides, High-quality real-time hardware stereo
matching based on guided image filtering, in Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2014, 2014, pp. 16.

[105] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal, InfiniteReal-
ity: A Real-Time Graphics System, Proc. 24th Annu. Conf. Comput. Graph.
Interact. Tech., pp. 293302, 1997.

[106] http://www.nvidia.com/object/gpu-applications.
html.

[107] NVidia, GPU Application Catalog, gpu-apps-catalog-mar14-digital-fnl-hr,
2014.

[108] E. Lindholm, J. Montrym, S. Oberman, and J. Montrym, NVidia Tesla: a
unified graphics and computing architecture computing architecture., IEEE
micro, pp. 3955, 2008.

[109] NVidia, Fermi Architecture, NVIDIA Fermi Compute Architecture
Whitepaper, 2015.

[110] NVidia, Kepler Architecture, NVIDIA Kepler GK110 Architecture
Whitepaper, 2015.

[111] http://devblogs.nvidia.com/parallelforall/
maxwell-most-advanced-cuda-gpu-ever-made/.

56

http://www.nvidia.com/object/gpu-applications.html
http://www.nvidia.com/object/gpu-applications.html
http://devblogs.nvidia.com/parallelforall/
maxwell-most-advanced-cuda-gpu-ever-made/


[112] NVIDIA Tesla P100 (Whitepaper).

[113] https://www.nvidia.com/en-us/data-center/
volta-gpu-architecture/.

[114] NVIDIA, Whitepaper: NVIDIA GeForce GTX 980, pp. 132, 2014.

[115] D. Chaikalis, N. P. Sgouros, and D. Maroulis, A real-time FPGA archi-
tecture for 3D reconstruction from integral images, J. Vis. Commun. Image
Represent., vol. 21, no. 1, pp. 916, 2010.

[116] Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, An architecture of a high-
speed digital hologram generator based on FPGA, J. Syst. Archit., vol. 56,
no. 1, pp. 2737, 2010.

[117] D. Cortie and J. Pillans, Using a custom-FPGA architecture to extend the
scale of atomistic magnetic spin simulations, J. Comput. Sci., vol. 2, no. 3,
pp. 279285, 2011.

[118] S. Jin, D. Kim, T. T. Nguyen, D. Kim, M. Kim, and J. W. Jeon, Design
and Implementation of a Pipelined Datapath for High-Speed Face Detection
Using FPGA, IEEE Trans. Ind. Informatics, vol. 8, no. 1, pp. 158167, Feb.
2012.

[119] P. Zicari, Efficient and high performance FPGA-based rectification ar-
chitecture for stereo vision, Microprocess. Microsyst., vol. 37, no. 8, pp.
11441154, Nov. 2013.

[120] F. Stock, A. Koch, and D. Hildenbrand, FPGA-accelerated color edge
detection using a Geometric-Algebra-to-Verilog compiler, in 2013 Interna-
tional Symposium on System on Chip (SoC), 2013, pp. 16.

[121] http://www.nvidia.com/object/tesla-servers.html.

[122] http://www.nvidia.com/object/imaging_comp_vision.
html.

[123] J. Fang, A. L. Varbanescu, and H. Sips, A comprehensive performance
comparison of CUDA and OpenCL, in Parallel Processing (ICPP), 2011 In-
ternational Conference on, 2011, pp. 216225.

[124] http://www.nvidia.com/object/cuda_home_new.html.

57

https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/object/ imaging_comp_vision.html
http://www.nvidia.com/object/ imaging_comp_vision.html
http://www.nvidia.com/object/ cuda_home_new.html


[125] https://developer.nvidia.com/cuda-gpus.

[126] https://developer.nvidia.com/cuda-tools-ecosystem.

[127] https://developer.nvidia.com/cuBLAS.

[128] https://developer.nvidia.com/cuFFT.

[129] https://developer.nvidia.com/NPP.

[130] https://developer.nvidia.com/
nvidia-nsight-visual-studio-edition.

[131] https://developer.nvidia.com/
nsight-eclipse-edition.

[132] http://www.mathworks.com.au/discovery/matlab-gpu.
html.

[133] http://www.mathworks.com.au/products/
parallel-computing/.

[134] http://www.nvidia.com/object/
tesla-matlab-accelerations.html.

[135] http://arrayfire.com.

[136] http://www.arrayfire.com/docs/modules.htm.

[137] B. Zhang, S. Xu, F. Zhang, Y. Bi, and L. Huang, Accelerating Matlab code
using GPU: A review of tools and strategies, in Artificial Intelligence, Man-
agement Science and Electronic Commerce (AIMSEC), 2011 2nd Interna-
tional Conference on, 2011, pp. 18751878.

[138] Introduction to GPU Computing with LabVIEW:
http://www.ni.com/white-paper/14077/en/.

[139] GPU Analysis Toolkit:
http://sine.ni.com/nips/cds/view/p/lang/en/nid/210829.

[140] N. Weber and M. Goesele, Adaptive GPU Array Layout Auto-Tuning,
in Proceedings of the ACM Workshop on Software Engineering Methods
for Parallel and High Performance Applications - SEM4HPC 16, 2016, pp.
2128.

58

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-tools-ecosystem
https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuFFT
https://developer.nvidia.com/NPP
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
http://www.mathworks.com.au/discovery/matlab-gpu.html
http://www.mathworks.com.au/discovery/matlab-gpu.html
http://www.mathworks.com.au/products/parallel-computing/
http://www.mathworks.com.au/products/parallel-computing/
http://www.nvidia.com/object/tesla-matlab-accelerations.html
http://www.nvidia.com/object/tesla-matlab-accelerations.html
http://arrayfire.com
http://www.arrayfire.com/docs/modules.htm


[141] NVIDIA, Cuda C Programming Guide Programming Guides.

[142] D. Castao-Dez, D. Moser, A. Schoenegger, S. Pruggnaller, and A. S. Fran-
gakis, Performance evaluation of image processing algorithms on the GPU,
J. Struct. Biol., vol. 164, no. 1, pp. 153160, 2008.

[143] A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, and D. Cremers, Stereo-
scopic scene flow computation for 3D motion understanding, Int. J. Comput.
Vis., vol. 95, no. 1, pp. 2951, Oct. 2011.

[144] M. Gong, Y. Zhang, and Y.-H. Yang, Near-real-time stereo matching with
slanted surface modeling and sub-pixel accuracy, Pattern Recognit., vol. 44,
no. 1011, pp. 27012710, Oct. 2011.

[145] W. Griffin, Y. Wang, D. Berrios, and M. Olano, Real-Time GPU Surface
Curvature Estimation on Deforming Meshes and Volumetric Data Sets, IEEE
Trans. Vis. Comput. Graph., vol. 18, no. 10, pp. 16031613, 2012.

[146] J. I. Agulleiro, F. Vzquez, E. M. Garzn, and J. J. Fernndez, Hybrid com-
puting: CPU+GPU co-processing and its application to tomographic recon-
struction., Ultramicroscopy, vol. 115, pp. 10914, Apr. 2012.

[147] N. Karpinsky and S. Zhang, Holovideo: Real-time 3D range video encod-
ing and decoding on GPU, Opt. Lasers Eng., vol. 50, no. 2, pp. 280286, Feb.
2012.

[148] N. Zhang, H. Wang, and J. Cr, A Near Real-Time Color Stereo Matching
Method for GPU, Third Int. Conf. Adv. Commun. Comput. (INFOCOMP
2013), pp. 2732, 2013.

[149] R. Kalarot, Real time stereo on GPU with application to precision 3D track-
ing, The University of Auckland, 2014.

[150] Y. Zhang, P. Zhou, Y. Ren, and Z. Zou, GPU-accelerated large-size VHR
images registration via coarse-to-fine matching, Comput. Geosci., vol. 66,
pp. 5465, May 2014.

[151] M. Gates, M. T. Heath, and J. Lambros, High-performance hybrid CPU and
GPU parallel algorithm for digital volume correlation, Int. J. High Perform.
Comput. Appl., vol. 29, no. 1, pp. 92106, Feb. 2015.

59



[152] D. Akgn and P. Erdomu, GPU accelerated training of image convolution
filter weights using genetic algorithms, Appl. Soft Comput., vol. 30, pp.
585594, 2015.

[153] L. Zhang, T. Wang, Z. Jiang, Q. Kemao, Y. Liu, Z. Liu, L. Tang, and S.
Dong, High accuracy digital image correlation powered by GPU-based par-
allel computing, Opt. Lasers Eng., vol. 69, pp. 712, 2015.

[154] M. Lastra, J. Carabao, P. D. Gutirrez, J. M. Bentez, and F. Herrera, Fast
fingerprint identification using GPUs, Inf. Sci. (Ny)., vol. 301, pp. 195214,
2015.

[155] A. Li, A. Kumar, Y. Ha, and H. Corporaal, Correlation ratio based volume
image registration on GPUs, Microprocess. Microsyst., vol. 39, no. 8, pp.
9981011, Nov. 2015.

[156] J. Jiang and T. Fogal, A Lightweight H.264-based Hardware Accelerated
Image Compression Library, pp. 99100, 2016.

[157] R. Vergne, P. Barla, G. Bonneau, R. W. Fleming, and J. L. Universit, Flow-
Guided Warping for Image-Based Shape Manipulation, vol. 35, no. 4, pp.
112, 2016.

[158] F. Garcia, L. Ubeda-Medina, and J. Grajal, Real-time GPU-based image
processing for a 3-D THz radar, IEEE Trans. Parallel Distrib. Syst., vol.
9219, no. c, pp. 113, 2017.

[159] A. R. Brodtkorb, T. R. Hagen, and M. L. Stra, Graphics processing unit
(GPU) programming strategies and trends in GPU computing, J. Parallel
Distrib. Comput., vol. 73, no. 1, pp. 413, 2013.

[160] Titan: https://www.olcf.ornl.gov/titan/.

[161] S. Asano, T. Maruyama, and Y. Yamaguchi, Performance Comparison of
FPGA, GPU and CPU in Image Processing, 19th Int. Conf. F. Program. Log.
Appl. (FPL 2009), pp. 126131, 2009.

[162] W. Liu, P. P. Pokharel, and J. C. Principe, Correntropy: Properties and Ap-
plications in Non-Gaussian Signal Processing, vol. 55, no. 11, pp. 52865298,
2007.

60



[163] J. Fowers, G. Brown, J. Wernsing, and G. Stitt, A performance and en-
ergy comparison of convolution on GPUs, FPGAs, and multicore processors,
ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp. 121, Jan. 2013.

[164] J. Choi and R. A. Rutenbar, Video-Rate Stereo Matching Using Markov
Random Field TRW-S Inference on a Hybrid CPU+FPGA Computing Plat-
form, IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 2, pp. 385398,
2016.

[165] M. Birk, M. Balzer, N. V. Ruiter, and J. Becker, Evaluation of performance
and architectural efficiency of FPGAs and GPUs in the 40 and 28nm genera-
tions for algorithms in 3D ultrasound computer tomography, Comput. Electr.
Eng., vol. 40, no. 4, pp. 11711185, May 2014.

[166] https://opencv.org/

[167] http://pointclouds.org/

[168] https://opencv.org/platforms/cuda.html

[169] https://docs.opencv.org/2.4/modules/ocl/doc/ocl.
html

[170] http://pointclouds.org/documentation/tutorials/
gpu_install.php

[171] https://www.raspberrypi.org/products/

[172] https://en.wikipedia.org/wiki/Raspberry_Pi

[173] https://www.raspberrypi.org/blog/
facial-recognition-opencv-on-the-camera-board/

[174] https://link.springer.com/article/10.1007/
s11265-017-1267-1

[175] https://github.com/DT42/BerryNet

[176] M. Daga, A. M. Aji, and W. C. Feng, On the efficacy of a fused CPU+GPU
processor (or APU) for parallel computing, Proc. - 2011 Symp. Appl. Accel.
High-Performance Comput. SAAHPC 2011, pp. 141149, 2011.

61

https://opencv.org/
http://pointclouds.org/
https://opencv.org/platforms/cuda.html
https://docs.opencv.org/2.4/modules/ocl/doc/ocl.html
https://docs.opencv.org/2.4/modules/ocl/doc/ocl.html
http://pointclouds.org/documentation/tutorials/gpu_install.php
http://pointclouds.org/documentation/tutorials/gpu_install.php
https://www.raspberrypi.org/products/
https://en.wikipedia.org/wiki/Raspberry_Pi
https://www.raspberrypi.org/blog/facial-recognition-opencv-on-the-camera-board/
https://www.raspberrypi.org/blog/facial-recognition-opencv-on-the-camera-board/
https://link.springer.com/article/10.1007/s11265-017-1267-1
https://link.springer.com/article/10.1007/s11265-017-1267-1
https://github.com/DT42/BerryNet


[177] https://newsroom.intel.com/news-releases/
intel-completes-acquisition-of-altera/

[178] https://www.altera.com/solutions/
acceleration-hub/acceleration-stack.html

[179] https://www.altera.com/products/boards_and_kits/
dev-kits/altera/acceleration-card-arria-10-gx.html

[180] https://01.org/OPAE

[181] Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks and
applications in vision, ISCAS 2010 - 2010 IEEE Int. Symp. Circuits Syst.
Nano-Bio Circuit Fabr. Syst., pp. 253256, 2010.

[182] Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol. 521, no.
7553, pp. 436444, 2015.

[183] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, Adv. Neural Inf. Process. Syst., pp.
19, 2012.

[184] A. Esteva et al., Dermatologist-level classification of skin cancer with deep
neural networks, Nature, vol. 542, no. 7639, pp. 115118, 2017.

[185] T. Orlowska-Kowalska and M. Kaminski, FPGA implementation of the
multilayer neural network for the speed estimation of the two-mass drive
system, IEEE Trans. Ind. Informatics, vol. 7, no. 3, pp. 436445, 2011.

[186] A. Caulfield et al., A Cloud-Scale Acceleration Architecture, 2016 49th
Annu. IEEE/ACM Int. Symp. Microarchitecture, pp. 11, 2017.

[187] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand, Deep
Bilateral Learning for Real-Time Image Enhancement, vol. 36, no. 4, 2017.

[188] P. H. Pham, D. Jelaca, C. Farabet, B. Martini, Y. LeCun, and E. Culurciello,
NeuFlow: Dataflow vision processing system-on-a-chip, Midwest Symp.
Circuits Syst., pp. 10441047, 2012.

[189] T. Chen et al., DianNao: A Small-Footprint High-Throughput Accelera-
tor for Ubiquitous Machine-Learning, Proc. 19th Int. Conf. Archit. Support
Program. Lang. Oper. Syst. - ASPLOS 14, pp. 269284, 2014.

62

https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://www.altera.com/solutions/acceleration-hub/acceleration-stack.html
https://www.altera.com/solutions/acceleration-hub/acceleration-stack.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-10-gx.html
https://01.org/OPAE


[190] Z. Du et al., ShiDianNao: Shifting Vision Processing Closer to the Sensor,
Isca, pp. 92104, 2015.

[191] N. P. Jouppi et al., In-Datacenter Performance Analysis of a Tensor Pro-
cessing Unit, ACM SIGARCH Comput. Archit. News, vol. 45, no. 2, pp.
112, 2017.

63


	Introduction
	Digital signal processors (DSPs)
	Available development tools and utilities for DSPs
	Embedded operating systems
	Development time
	Advantages of using DSPs
	Disadvantages of using DSPs
	Review of applications that use DSPs
	Summary and conclusion for DSPs

	Field-programmable gate arrays (FPGAs)
	Xilinx FPGA families
	Tools and utilities for Xilinx FPGAs

	Altera FPGA families
	Tools and utilities for Altera FPGAs

	Development time
	Advantages of using FPGAs
	Disadvantages of using FPGAs
	Review of applications that use FPGAs
	FPGAs in stereo vision systems
	FPGA in non-stereo computer vision and image processing applications 

	Summary and conclusion for FPGAs

	Graphics processing units (GPUs)
	NVidia GPU series
	Tools and utilities for NVidia GPUs
	Tools and utilities for NVidia GPUs
	Advantages of using GPUs
	Disadvantages of using GPUs
	Review of applications that use GPUs
	Summary and conclusion for GPUs

	Portability of software over different hardware
	Transferring codes among DSPs
	Transferring codes among FPGAs
	Transferring codes among GPUs

	Heterogeneous hardware accelerators
	Comparison of FPGAs and GPU for implementing image processing, and computer vision algorithms
	Hardware accelerators designed for machine learning
	Summary and conclusions



