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Abstract 
Due to the arbitrary scales, uncertain distributions of objects and cluttered background in natural 
scenes, uniformly detecting salient regions remains a challenge. This paper first proposes a 
Gestalt-grouping connectedness method based on path analysis to reflect the topological 
relationship between image pixels. Inspired by the Gestalt principles of feature grouping, we apply 
a smoothest path-based distance metric to capture the similarity, local proximity and global 
continuity between image pixels. The distance is small if the image pixels belong to the same 
visual region and large otherwise. To identify salient regions in natural images, we then propose a 
path-based background saliency model that integrates both the topological connectedness and 
appearance dissimilarity. Experimental results demonstrate the advantage of applying the path-
based background saliency model in uniformly highlighting salient regions in images with complex 
backgrounds. 


Keywords: Gestalt-grouping, Smoothest path-based distance, Topological connectedness, Salient 
region detection 


1. Introduction 
Salient region detection, aiming to identify important or interesting locations in natural images, has 
attracted tremendous attention in the past decades. The detected salient regions are then 
preferentially allocated with computational resources for subsequent image analysis and 
processing. Saliency detection is broadly used in various fields including image classification [1], 
object recognition [2,3], image segmentation [4], adaptive compression [5] and content-aware 
image resizing [6], among others. 


Existing psychological and biological studies have confirmed that local contrast (distinctiveness or 
rarity) is an influential factor in visual saliency [7]. Accordingly, many previous works have 
exploited the contrast between local neighbors for saliency detection [8,9]. However, recent 
studies demonstrate the role of global visual perception in the deployment of visual attention [10–
12]. Without the awareness of the global structure, local based methods tend to assign high 
saliency to the edges or textures instead of uniformly highlighting salient objects [13,14]. Several 
attempts have been made to encapsulate such global information by exploiting the topological 
structure of an image for saliency detection [13–23]. In view of the assumption that the contrast to 
nearby pixels is much more significant than that to distant ones, feature contrast is inversely 
weighted by the spatial distances between pixels in the entire image [14,16–18]. Thus, the 
prominence of frequent features is alleviated by these global methods. However, the results 
demonstrate that these methods are sensitive to clutter. It is difficult to suppress small variances 
and highlight the whole salient regions uniformly. In [20], the enclosure topological relationship be- 
tween figure and ground is introduced to model saliency. Although some successful results have 
been achieved with such surroundedness cue, locating salient regions remains difficult because 
there exist regions without closed outer contours in natural scenes. Jiang et al. formulate the 
saliency detection as a function of the time that it takes for the transient nodes to reach the 
absorbing nodes of an Absorbing Markov chain on an adjacent graph [22]. Yang et al. regard the 



saliency detection as a graph-based ranking problem by performing label propagation on a 
sparsely connected graph to characterize the overall differences between salient objects and 
background [23]. The topological information on the constructed graph represented in [22] and 
[23] is determined by the random walk theory. However, if there exist long-range smooth 
background regions near the center of the image, the random walker will be distracted, resulting 
in highlighted background regions. In [21], the saliency of image patches is defined as the 
shortest distance to the virtual background on the constructed graph. However, gradual changes 
and noise can generate non-uniform salient regions since small variances are accumulated along 
the shortest path. In [24,25], the minimum barrier distance transform is applied to estimate the 
boundary connectivity. Due to its non-continuity property and high-complexity, it is difficult to 
generate an accurate path to estimate the distance between graph nodes. 


According to the Gestalt grouping principles in human perception, characterized by the laws of 
proximity, similarity and continuity [26, 27], the human visual system tends to perceive objects 
that are similar, close or connected without abrupt directional changes as a perceptual whole. 
More importantly, the proximity and continuity attributes have been considered as two basic 
structural components of perception representation in the deployment of visual attention [11,12]. 
Inspired by Gestalt psychology, we present a path-based distance metric, which integrates 
similarity, local proximity and global continuity information, to describe the relation between image 
elements. By generating the smoothest paths between each pair of nodes on the constructed 
undirected graph, the proposed method offers a way to incorporate both local and global 
information for visual representation. In our approach, the path distance is determined by a 
Laplacian analysis on the paths. The Multi-Dimensional Scaling (MDS) projection illustrates the 
promising results achieved by the path distance in uniformly clustering similar image elements 
and segmenting different ones regardless of arbitrary scales and uncertain distributions of the 
objects. We then apply the path distance to estimate the topological connectedness in the image 
and propose a path-based background method to model the saliency. The experimental results 
on state-of-the-art datasets demonstrate the high accuracy and robustness of the proposed 
method in detecting salient regions. 


In addition, we consider two widely used saliency models including contrast-based and prior-
based ones, to further test the performance of the proposed path distance in improving salient 
region detection. Contrast-based saliency methods usually use the pairwise Euclidean distance in 
a feature space to measure the contrast between image elements [14,16,18,28], and prior-based 
ones discover various priors (such as boundary prior [21–23,29,30], center prior [22,26], convex- 
hull prior [28], etc.) to highlight salient regions and weaken non-salient ones. Instead, we apply the 
proposed path distance in the two types of saliency models. The experimental results 
demonstrate the favor- able performance when the path distance is considered in contrast 
measurements and prior estimations. 


The rest of the paper is organized as follows. Section 2 presents the basic components of our 
model: i.e. the generation of the smoothest path, and the formulation of the path distance. 
Section 3 describes its application in modeling saliency, and Section 4 shows the results ob- 
tained from the experiments conducted on several benchmark datasets. Finally, in Section 5, the 
main conclusions of our work are presented and discussed. 


2. Gestalt-grouping based path distance  
In this section, we propose a smoothest path to describe the proximity, similarity and continuity 
relationships between image elements as stated by the Gestalt principles of grouping. To this end, 
as illustrated in Fig. 1, we extract superpixels and use them as the basic image elements of our 
path-based approach to reduce the computational cost and preserve the boundaries of image 
objects. 




 
Fig. 1 (a) Example of an input image. The patches in (b) are superpixels. The construction of the weighted graph is shown in (c) where 
two adjacent superpixels are connected with a weight to specify their relationships.


2.1. Graph construction  

As shown in Fig. 1, an undirected weighted graph G = (V, E) is constructed to represent the input 
image, where V is a set of nodes and E is a set of edges. In this paper, the nodes are visually 
homogeneous superpixels generated by the SLIC algorithm [31]. 


In the graph, each superpixel i is connected with its spatially adjacent neighbors to preserve their 
spatial relations (proximity) in the image. In addition, we further add edges between any two 
superpixels on the image boundary to increase the boundary connectivity of background regions 
with little effect on object regions [23,29]. Each edge is then assigned a weight  to describe the 
feature difference between two connected superpixels [22,27,32], which is defined as follows: 


	 	 	 	 	 	 	 	 	 	 	 (1)


where  and  are the mean vectors of the color features (in the CIE- Lab color space {!, ", #}) 
as obtained from all the pixels belonging to each of the two superpixels  and , respectively. 


2.2. Path generation  

By connecting locally adjacent superpixels in the image, the Gestalt grouping laws of proximity 
and local similarity are encoded by the edges on the constructed graph. However, these edges fail 
to reflect the law of continuity between nodes that are not directly connected. In this work, to 
explore such continuity hidden in the image, and inspired by the ‘‘minimal intra-cluster path’’ 
proposed by Fischer et al. [33], we generate the smoothest path for each pair of nodes on the 
weighted graph. In data clustering, the ‘‘minimal intra-cluster path’’ emphasizes the intra-cluster 
connectedness property, based on the observation that two objects which are assigned to the 
same cluster are either similar or there exists a mediating intra-cluster path without an edge with 
large cost. If two objects belong to the same cluster, the ‘‘minimal intra- cluster path’’ is defined as 
a path minimizing the largest edge cost among all paths connecting the pair of objects in a full 
graph, where every object in the cluster is connected with every other object. If two objects 
belong to different clusters, the path is not defined. 


ωij

ωij = ∥ ⃗x i − ⃗x j∥2

⃗x i ⃗x j
i j



Although the ‘‘minimal intra-cluster path’’ in a complete graph follows the connectedness property 
within a given cluster [33], it is not suitable to describe the proximity and continuity between all 
pairs of image elements, as the local spatial information is not preserved in the complete graph. In 
this work, to circumvent this issue, we extend the ‘‘minimal intra-cluster path’’ on the weighted 
neighbor graph to generate the smoothest path by selecting a path without abrupt changes 
between each two nodes, i.e. 


	  	 	 	 	 	 	 (2)


where  denotes the set of all paths connecting nodes  and  on the graph,  denotes the 
th node on the path  from  to . The smoothest path  between  and  is thus defined as 

the path that minimizes the largest edge weight. Fig. 2 demonstrates an example of the path 
generation. It is worth noting that, due to a high computational cost, it is impossible to examine all 
paths that connect each pair of nodes by traversing the graph. However, it can be proved that the 
path between two nodes in a minimum spanning tree (MST) of a graph is one of the smoothest 
paths for that pair of nodes. In this work, we apply the Kruskal algorithm to generate the 
smoothest paths for all pairs of nodes in the constructed graph. 





	 	    (a)	 	 	 	     (b)	 	 	 	           (c)


Fig. 2 Let us assume that there exist three possible paths between nodes A and B. The weights associated with each edge are 
indicated in (a). (a) Illustration of three possible paths between node A and B, signified by blue, red and green respectively. In (b), the 
edges that have the largest weight along their paths are highlighted by bold lines. In (c), the highlighted edge on the red path is 
selected because it has the minimal weight among those highlighted edges.


2.3. Laplacian analysis of the path 

According to the definition of the smoothest path, the largest edge cost is selected to represent 
the relationship between two nodes. However, this representation is over-simplified and ignores 
some meaningful semantic image content usually indicated by sharp brightness changes, 
boundaries or discontinuities along the path. In this paper, we design a Laplacian method to 
identify significant changes of the path, which is subsequently included in the definition of the 
path-based distance. 


Let us assume that the smoothest path  of  to  has  nodes 

 and its corresponding feature vector sequence is 

, , where  denotes their values in the CIE-Lab 
color space. For each node , the discrete 1D implementation of the Laplace operator  becomes: 


	 	 	 	 	 	 	 	 	 (3)


We subsequently define  as, 
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	 , where 	 	 	 	 	 	 	 (4)


We set  and . As each node on the path links two edges, for each 
node , its corresponding edge ( ) is defined as the edge with a larger weight, i.e. 


	 	 	 	 	 	 	 (5)


First, we select  nodes with the largest  on the path (note that the complete path includes 
 nodes). These selected nodes form a sequence 


	 	 	 	 	 	 	 	 	 	 (6)


along the path and, as a result, the path  is partitioned into  sub-paths


 

	 		 	 	 	 (7)


The path-based distance is then defined as (see Fig. 3) 


	 	 	 	 	 	 	 	 (8)


In Eq. (8), the first term is the sum of the weights associated with the corresponding edges (see 
Eq. (5)) for the  selected nodes. It, thus, reflects sharp and obvious changes between image 
elements. Since  is evaluated for each node, and along a path the largest values are found in 
consecutive nodes (i.e. in pairs, which share the same corresponding edge), we set  in 
this paper. The second term is defined to account for those areas showing smooth changes. 
These areas are represented by the  sub-paths defined in Eq. (7). Algorithm I shows the 
pseudocode of the procedure used to calculate distance  on such sub-paths. 


In the experiments, the threshold  is set to 0.95. By applying (8), we are able to obtain a refined 
path-based distance matrix  for all pairs of nodes in the graph.  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Fig. 3 An illustration of the Laplacian analysis on a path. (a) shows one path passing through two different image regions, and each 
region exhibits varying illumination. In (b), the blue edge partitions the path into two sub-paths, and is chosen as the corr-edge to 
reflect the sharp change between image regions. As there exist small differences along the sub-path in the same region (taken the sub-
path with green nodes for example), we accumulate some important variations Extra-Dis to represent the pattern of slowly changing.


Algorithm I. Algorithm for calculating D’ on the sub-path 

2.4. Dimensionality reduction and visualization  

The path-based distance matrix  obtained by using (8) is obtained in a high dimensional feature 
space. To reduce the dimensionality for visualization purposes, we apply the MDS method to 
construct a low dimensional embedding of the given vectors while preserving the original vector 
distances. Thus, all the image superpixels are projected onto a three-dimensional feature space 

 and normalized into [0,255].  in this paper. The normalized coordinates  are then 
used as the RGB values (i.e., R = , G = , and B = ) to fill each superpixel in the image. As a 

D

(x, y, z) (x, y, z)
x y z



result, the pixels depicted by similar colors in the image describe close relations in the feature 
space. 


Fig. 4(b) shows the visualization of the Gestalt-grouping based path distance on three natural 
images. Compared with the other three distances (Euclidean distance, Geodesic distance, and 
Minimum Barrier distance), it is evident that the proposed path-based distance metric faithfully 
follows the similarity, local proximity, and global continuity principles of Gestalt grouping, 
demonstrating favorable performance in semantically clustering and segmenting image elements 
regardless of illumination changes, image blurring and textures. The path-based distance between 
two nodes is small if they belong to the same region and large otherwise. Let us take the image 
with two swans as an example. By applying the proposed path-based distance, the grass and 
road regions are depicted by the same color (respectively) to reflect the law of continuity. The two 
swans, however, appear with different colors to signify that they depict two different objects. 
However, the Euclidean distance is not able to distinguish the two swans as independent objects 
since they share similar visual cues. In addition, the results generated by applying the Geodesic 
distance and the Minimum Barrier distance are much noisier when compared to that obtained by 
using our proposed path-based distance since it emphasizes the distinct value of the boundaries 
between image regions but does not overly accumulate noise along the path within each distinct 
object. 


All in all, as illustrated in Fig. 5, the path-based distance presented in this work can be used with 
different purposes. On one hand, it can be used for visualization purposes to show the 
segmentation of images into different objects following the application of MDS to reduce the 
dimensionality of the data and the projection of such data onto a 3D color space. On the other 
hand, it can also be used for saliency evaluation. This is the main purpose of the path-based 
distance proposed in this paper. Moreover, such distance can be used to define new saliency 
methods – as is the case of the proposed Path-Based Background Saliency (PBS) method – but 
can also be incorporated into existing approaches such as contrast-based saliency detection 
methods or boundary priors based saliency detection methods to enhance their results. In this 
work, we explore all of these possible applications with special emphasis on the proposed PBS 
method described below. 





Fig. 5 The framework of the Gestalt-grouping based path distance and its applications


 



3. Path-based background saliency (PBS)  
In this section, the path-based distance is used to the estimate background saliency. To this end, 
two visual cues (connectedness and appearance) are defined and subsequently integrated to 
obtain such saliency. 


3.1. Measuring the gestalt-grouping connectedness  

In [21], Wei et al. reflect on the fact that most background regions can often be easily connected 
to image boundaries. This suggests an alternative view on the saliency of an image patch as the 
length of its shortest path to the image boundaries. Following this view, we define the saliency of 
an image patch by its connectedness to the background regions. When compared with the 
geodesic distance used in [21], the proposed path-based distance holds promise in representing 
the connectedness implicit in the image (shown in Fig. 4). The connectedness of a superpixel  
to the background can be computed as follows, 


	 	 	 	 	 	 	 	 	 	 (9)


where  is the set of background superpixels, and  is subsequently normalized to lie in the 
interval . In contrast to existing methods, the superpixels on the image boundary are 
used as background seeds [22,23], and an iterative background growth algorithm is designed to 
generate a background set  until all the background pixels are included. To initiate the set  with 
robust background seeds, we estimate a boundary connectivity  for every superpixel  by 
applying the method described in [29]. However, instead of using the geodesic distance, we apply 
the proposed path-based distance to estimate the connectivity of all the superpixels to the image 
boundaries. Thus, we have, 


	 	 	 	 	 	 	           (10)


	 	 	 	 	 	 	           (11)


where  is the set of superpixels on the image boundary,  is the mean value of  for all 
superpixels on the image boundary and  is the mean of  for all the 
superpixels in rest of the image. The iterative process described by Eqs. (9-11) terminates when 

 or  is stable. Algorithm II shows the pseudo-algorithm for 

calculating the Gestalt-grouping connectedness. 
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Algorithm II. Algorithm for getting the Gestalt-grouping connectedness based saliency map 

3.2. Measuring the appearance cue  

The connectedness cue alone sometimes cannot produce satisfying results when the images 
have either a cluttered and scattered back- ground, or objects heavily touching the image 
boundary [24,25,29]. This paper also uses the appearance cue to highlight regions with high 
contrast against the image background regions. 


Four image boundary regions, i.e. left-up, left-down, right-up, and right-down, are taken into 
consideration for computing the appearance cue. For each boundary region , we 
calculate its mean color in Lab space, i.e.  and the color covariance matrix

. The appearance contrast of superpixel to the boundary region  is then 
computed by applying the Mahalanobis distance to its mean color 


	 	 	 	 	 	          (12)


The results are subsequently normalized as follows: 


	 	 	 	 	 	 	 	 	 	           (13)


Finally, the appearance cue of superpixel  is defined as the weighted sum of , 


	 	 	 	 	 	 	 	 	 	          (14)


where  is the number of image pixels in boundary region . 
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3.3. Integrating the connectedness and appearance cue  

The Connectedness map  and the appearance map  are added pixelwise to form a saliency 
map  (i.e. ). This map , which is also normalized, exploits the topology information 
from the Gestalt-grouping based path distance and the global appearance contrast from the color 
dissimilarity. In addition, a series of post-processing operations are subsequently applied to 
enhance the performance of the saliency map  based on the methods presented in [24,25]. 
Firstly, the center bias that accounts for the photographers’ tendency to locate objects at or near 
the center of the image is considered [18,28]. The center bias is modeled by means of a Gaussian 
fall-off function as shown in (15). 


	  	 	 	 	         (15)


where  and  are the width and height of the image, and  and  are the mean values of 
the horizontal and vertical coordinates of superpixel . The parameters ,  are set to , 
respectively in this paper. We then pixel-wisely multiply  with the center prior map .


Secondly, we use morphological smoothing opearations including reconstruction-by-dilation and 
reconstruction-by-erosion to smooth  while keeping the details of significant edges. The size of 
the square mask of the morphological operations is set to  as stated in [25], so that 
the operations are adaptive to the size of the salient regions. 


Finally, we perform a nonlinear relaxation labeling operation [34] to increase the contrast between 
foreground and background and to improve the spatial consistency and structural coherence of 
the saliency map. Therefore, we achieve the PBS map by applying all above factors on . 


4. Experiments  
4.1. Datasets  

In order to evaluate the proposed PBS method, we apply the path- based distance metric for 
saliency detection in the following benchmark datasets: ASD, MSRA [35], SED2 [36], 
DUT_OMRON [23], ECCSD [18] and SOD. 


ASD is a subset of MSRA and contains 1000 images with accurate human labeled segmentation 
masks provided by [30]. The dataset is chosen for its wide application in testing almost all 
saliency models. Nevertheless, it has several limitations. Most images in the dataset contain only 
one single salient object that is large and near the image center, and the background is usually 
simple and clean. In addition, the contrast between objects and background is strong. The other 
five datasets are more challenging. MSRA contains 5000 images with more complex background 
and lower contrast objects than ASD. The pixel-wise labeling images are obtained from [14]. 
SED2 has 100 natural images with exactly two salient objects in each image. DUT_OMRON 
contains 5168 images with one or more salient objects and exhibits relatively complex 
backgrounds. ECCSD contains 1000 semantically meaningful and structurally complex natural 
images acquired from the BSD dataset, PASCAL VOC and the Internet. Finally, SOD consists of 
300 images with multiple objects of arbitrary scales and locations, and challenging backgrounds. 


4.2. Evaluation metrics  

The precision–recall curve (PR), area under the ROC curve (AUC), the mean absolute error (MAE) 
and the weighted F measure ( ) [37] are used to evaluate the average performance of the 
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proposed method. In a PR curve, the precision rate corresponds to the ratio of salient pixels 
which are correctly detected in the saliency map, while recall rate is the percentage of all detected 
salient pixels belonging to salient objects in ground truth. To generate a PR curve, we first 
normalize the saliency map into [0, 255], and produce a series of binary masks by segmenting the 
saliency map with a threshold changing from 0 to 255. The PR curve is obtained by comparing 
the binary masks with the ground truth. The curves obtained from all images on each dataset are 
then averaged to generate an overall PR curve. For the AUC, it is generated by calculating the 
area under the ROC curve. 


For a more comprehensive comparison, the mean absolute error (MAE), supplied as a 
complement to the PR curve, is calculated to mea- sure how close a saliency map ( ) is to the 
ground truth ( ). The MAE criterion directly estimates the average per-pixel difference between 
the binary ground truth and the saliency map, which is more meaningful for applications such as 
object segmentation or image cropping. 


	 	 	 	 	 	          (16)


where  and  are the width and height of the saliency map , respectively, and  is the binary 
ground truth. 


In addition,  is adopted to reliably evaluate the quality of a saliency map [38]. We use the code 
and default settings provided by the authors of [38], and set .


	 	 	 	 	 	 	 	          (17)


where  stands for precision and  for recall.  

4.3. Experimental results  

In order to evaluate the performance of both, the path-based metric and the proposed PBS 
method, we have selected a battery of tests, which are discussed next. In first place, the path-
based distance is incorporated into two existing saliency methods (see 4.3.1 and 4.3.2) and its 
performance is evaluated in comparison with the original methods on the ASD dataset. Then, we 
assess what is the impact of changing the distance metric on the proposed PBS method. To this 
end, the ASD is also considered. These evaluations allow us to fully assess the potential of the 
proposed path-based metric. Finally, the performance of the PBS method is assessed and 
compared to state-of-the-art methods on the complete set of benchmark datasets described in 
Section 4.1. 


4.3.1. Contrast-based saliency model on ASD dataset  

To evaluate the capability of the proposed path-based distance in estimating the contrast 
between different image elements, we consider a contrast-based saliency method. In the original 
works, image contrast is measured by pairwise Euclidean distance ( ) in the feature space [14, 
16,18,28], and the saliency of each pixel is defined as: 


	  	 	 	 	 	         (18)
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For each superpixel ,  is its color mean in the Lab color space,  is the center coordinate 
normalized to [0, 1] in the spatial domain, and  controls the strength of spatial weighting. In this 
paper, we set  


It is worth noting that, as shown in Fig. 4(c), the pairwise Euclidean distance metric can be noise 
sensitive or semantically irrelevant. The Euclidean distance uses the similarity principle to 
measure the difference between image elements but, however, neglects the local proximity and 
global continuity hidden in the image. To overcome these problems, the proposed path-based 
distance can be used to define the contrast between image superpixels. The saliency of a 
superpixel is hence estimated by the sum of its weighted path-based distance (Eq. (18)) to all 
other superpixels in the image. 


In the experiments, we set  in (Eq. (18)) to 4 and 6, respectively, to define the path-based 
distance. The obtained PR curves and AUC values are shown in Fig. 6. As can be seen, the 
results indicate that our path-based distance method has a better performance than methods 
based on the traditional Euclidean distance. 




Fig. 6. Comparisons of PR curves and AUC values by applying Euclidean distance, path-based distance with / = 4, and 
/ = 6, respectively, on the ASD dataset. 
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4.3.2. Prior-based saliency model on ASD dataset  

Prior-based saliency models usually exploit various priors to enhance the performance of saliency 
detection. Some early studies use, for instance, the center prior to highlight the image center 
region based on the observation that the images taken by a photographer often place salient 
objects near the image center [18,20]. Similarly, the convex prior applies the convex hull of 
relevant points to estimate the location of the salient objects [28]. In [29], a robust boundary 
connectivity prior, which regards an image patch as background when it is heavily connected to 
the image boundary, is proposed to suppress the background. However, the calculation of this 
boundary connectivity depends on the performance of a prior image segmentation, which is a 
challenging task for images with cluttered background in natural scenes. In [29], the geodesic 
distance defined on the shortest path is applied to approximate this prior. However, it is not an 
optimal solution since small irrelevant weights are accumulated along the path, thus leading to the 
small-weight-accumulation problem [21], as shown in Fig. 4(d). 


A general model for estimating the prior-based saliency can be derived from (Eq. (19)) by applying 
different priors as weights  for each superpixel i. In this experiment, we apply the center prior 
[18], the convex prior [28], the geodesic distance and the proposed path-based metric (based on 
the boundary connectivity prior presented in [29]) to calculate . Fig. 7 shows the experimental 
results obtained. The results demonstrate the superiority of our proposed method in estimating 
the boundary prior for salient region detection. 


	 	 	 	 	          (19)





Fig. 7. PR curves and AUC values obtained by applying no prior with 0(1) = 1, center prior, convex prior, g-BC (boundary 
connectivity prior based on geodesic distance) prior and p-BC (boundary connectivity prior based on the path-based 
distance with m = 4 and 6 respectively) on the ASD dataset. 
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4.3.3. Comparisons of different distance metric with PBS model on ASD dataset  

In this section, the proposed path-based distance metric is compared with the Geodesic distance 
[21], and the Minimum Barrier distance [24, 25] to estimate the boundary connectedness. To 
highlight the effects of the distance metrics on saliency estimation, we calculate the proposed 
path-based, the Geodesic and the Minimum Barrier distance, respectively, on MST, and then 
apply them to define the saliency in the proposed PBS framework. The comparison of the three-
distance metrics in terms of five evaluation metrics on the ASD dataset are shown in Fig. 8. The 
experimental results indicate that the proposed path-based distance achieves the best 
performance in terms of the four evaluation metrics. 




Fig. 8. PR curves, AUC, MAE values and  scores obtained by applying the GD, MBD and PBD in the PBS framework 
respectively on ASD dataset. 


4.3.4. Comparison of the PBS model with state-of-the-art methods  

In this section, the proposed path-based background saliency model is compared with other 
twenty methods on the six datasets described in Section 4.1 in order to evaluate the performance 
comprehensively. These methods include the most recent state-of-the-art approaches (GS_SP 
[21], HS [18], PCA [39], GMR [23], RBD [29], MC [22], DSR [40], SF [17], fastMBD [24] and 
mstMBD [25]) and, additionally, some other traditional ones (IT [8], LC [41], FT [35], MZ [42], SR 
[43], AC [44], GB [19], CA [9], SUN [45] and RC [14]) to reflect the diversity of the saliency models. 
For example, HS, RBD, SF, FT, CA and RC are contrast-based approaches, GS_SP, GMR, MC and 
GB are graph-based ones, PCA and DSR are transformation methods in linear or nonlinear 
domains, and SR is a spectrum-based method. In the experiments, we use the code from 
Achanta [35] for IT, FT and MZ, the code from Cheng [14] for RC, LC, SR, AC and GB, the saliency 
maps provided by the authors for GS_SP and SF on the ASD dataset, the code from Zhu [29] for 
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GS_SP and SF on the other five datasets, and the authors’ own code for HS, PCA, GMR, RBD, 
MC, DSR, CA and SUN. Fig. 9 shows the comparisons of all methods in terms of four evaluation 
metrics on the ASD dataset. The experimental results indicate that the proposed PBS method 
outperforms all other methods in PR, AUC, MAE and  tests. 




Fig. 9. Comparisons of PR curves, AUC, MAE and  for all methods on ASD dataset. 


To further validate the effectiveness of the PBS method, we have applied the proposed algorithm 
on the MSRA, SED2, DUT_ORMON, ECCSD and SOD datasets, and then compare it with the ten 
state-of- the art approaches (i.e. GS_SP, HS, PCA, GMR, RBD, MC, DSR, SF, fastMBD and 
mstMBD). These approaches indeed demonstrate higher performance than the more traditional 
methods in Figs. 10 and 11 shows the experimental results on the five most challenging datasets. 


Fig. 10. Comparisons of PR curves, from left to right: MSRA, SED2, DUT_ORMON, ECCSD, and SOD. 
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Fig. 11. Comparisons of AUC, MAE and  values on datasets, from top to bottom: MSRA, SED2, DUT_ORMON, 
ECCSD, and SOD. 


We note that the proposed PBS model performs well on all datasets in terms of PR, AUC, MAE 
and  . When compared with the other path-based saliency models (GS_SP,RBD,mstMBD),our 
method is better than GS_SP on all datasets, and achieves comparable results to the state-of-
the-art methods RBD and mstMBD, on some datasets (MSRA, SED2, SOD) and even better 
results in some other datasets (DUT_ORMON, ECCSD). 


Finally, seven images (see Fig. 12) are selected to visually illustrate the capacity of the proposed 
method to homogeneously highlight salient regions. Such images contain objects of arbitrary 
shapes, cluttered backgrounds, blurred boundaries between objects and back- ground, or 
gradual illumination. By visually evaluating the saliency maps, one can establish the promising 
performance of the proposed PBS method to highlight salient regions uniformly. In contrast, the 
PCA method focuses mainly on the edges of the salient regions, while other methods show non-
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uniform salient regions or else, do not fully inhibit background details in the resulting saliency 
maps. 




Fig. 12. Visual comparisons of different representative methods. From left to right: (a) original images and saliency maps 
obtained from (b) PCA, (c) SF, (d) GMR, (e) MC, (f) GS_SP, (g) RBD, (h)HS, (i) DSR, (j) fastMBD, (k) mstMBD and (l) PBS 
methods. 


4.3.5. Limitations  

In Fig. 13, we pinpoint three situations in which the PBS model fails to detect the salient objects in 
the images. The reason for such failure is that the contrast between the salient region and its 
surrounding background is not enough. Therefore, the smoothest path will falsely regard these 
different regions as the same one since consecutive dissimilarities between nodes along the path 
are very small. In this case, the background is incorrectly highlighted. One possible way to 
address such a problem may be to select more distinguishable features in order to better estimate 
the contrast, or alternatively, to incorporate some high-level priors such as object priors. 


Fig. 13. Some failure cases where the contrast between salient objects and background are small. 




5. Conclusions  
Facing the challenge of unknown distributions, arbitrary shapes and cluttered background in 
natural images, this paper proposes a path distance metric to measure the relationship between 
image pixels and to model the saliency. The smoothest path, which follows the perceptual 
properties of similarity, proximity and continuity of Gestalt grouping, is generated on an undirected 
graph. The defined path distance metric, calculated by applying Laplacian analysis on the 
generated smoothest paths between each pair of nodes, shows promising results in segmenting 
different image elements and clustering similar ones. In addition, the proposed path-based 
distance metric can effectively solve the small- weight-accumulation problem in existing saliency 
methods modeled through geodesic distance or shortest distance. In the experiments, we first 
apply the path-based distance metric to existing saliency models, and the results demonstrate 
the improvement in performance. Then, we conduct a series of experiments by applying the 
proposed path-based background model on a series of challenging datasets. The experimental 
results demonstrate its capacity of accurately and uniformly highlighting salient regions regardless 
of arbitrary structures and uncertain distributions of image objects. 


Compared with the Euclidean distance, geodesic distance and mini- mum barrier distance, the 
proposed distance defined on the smoothest path shows good performance in minimizing the 
intra-cluster differences and maximizing the inter-cluster ones. In our future work, we will further 
study its applications in the field of background modeling and non-local filtering related with 
detailed scene analysis and representation. 


Acknowledgments  
This research was supported by ‘‘National Natural Science Foun- dation of China’’ (No. 61272523, 
No. 61572103), ‘‘the National Key Project of Science and Technology of China’’ (No. 
2011ZX05039-003- 4), and the Spanish national project LDM (TIN2013-40630-R). 


References  
[1]  G. Sharma, F. Jurie, C. Schmid, Discriminative spatial saliency for image classification, in: 
CVPR, 2012.  

[2]  L. Wang, J. Xue, N. Zheng, G. Hua, Automatic salient object extraction with contextual cue, in: 
Computer Vision, 2011, pp. 105–112.  

[3]   U. Rutishauser, D. Walther, C. Koch, P. Perona, Is bottom-up attention useful for object 
recognition?, in: CVPR, 2004.  

[4]  V. Lempitsky, P. Kohli, C. Rother, T. Sharp, Image segmentation with a bounding box prior, in: 
Computer Vision, 2009, pp. 277–284.  

[5]  C. Guo, L. Zhang, A novel multi-resolution spatiotemporal saliency detection model and its 
applications in image and video compression, IEEE Trans. Image Process. 19 (2010) 185–198.  

[6]  G. Zhang, M. Cheng, S. Hu, R. Martin, A shape preserving approach to image resizing, in: 
Computer Graphics Forum, 2009, pp. 1897–1906.  

[7]  P. Derrick, L. Klinton, N. Ernst, Modeling the role of salience in the allocation of overt visual 
attention, Vis. Res. 42 (1) (2002) 107–123.  

[8]  L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene analysis, 
IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 1254–1259.  



[9]  S. Goferman. L. Zelnik-Manor, A. Tal, Context-aware saliency detection, IEEE Trans. Pattern 
Anal. Mach. Intell. 34 (2012) 1915–1926.  

[10]  J. Wolfe, T. Horowitz, What attributes guide the deployment of visual attention and how do 
they do it?, Nat. Rev. Neurosci. 5 (6) (2004) 495–501.  

[11]  L. Chen, Topological structure in visual perception, Science 218 (4573) (1982) 699–700.  

[12]  L. Chen, The topological approach to perceptual organization, Vis. Cognit. 12 (4) (2005) 553–
637.  

[13]  A. Borji, M. Cheng, H. Jiang, et al., Salient object de tection: A benchmark, IEEE Trans. 
Image Process. 24 (12) (2015) 5706–5722. 

[14]   M. Cheng, G. Zhang, N. Mitra, X. Huang, S. Hu, Global contrast based salient region 
detection, in: CVPR, 2011, pp. 409–416.  

[15]  Y. Qin, H. Lu, Y. Xu, et al., Saliency detection via cellular automata, in: CVPR, 2015, pp. 110–
119.  

[16]   L. Duan, C. Wu, J. Miao, L. Qing, Y. Fu, Visual saliency detection by spatially weighted 
dissimilarity, in: CVPR, 2011, pp. 473–480.  

[17]  F. Perazzi, P. Krahenbuhl, Y. Pritch, A. Hornung, Saliency filters: Contrast based filtering for 
salient region detection, in: CVPR, 2012, pp. 33–740.  

[18]  Q. Yan, L. Xu, J. Shi, J. Jia, Hierarchical saliency detection, in: CVPR, 2013, pp. 1155–1162.  

[19]  J. Harel, C. Koch, P. Perona, Graph-based visual saliency, in: Advances in Neural Information 
Processing Systems, 2006, pp. 545–552.  

[20]  J. Zhang, S. Sclaroff, Saliency detection: A boolean map approach, in: ICCV, 2013.  

[21]  Y. Wei, F. Wen, W. Zhu, J. Sun, Geodesic saliency using background priors, in: ECCV, 2012.  

[22]  B. Jiang, L. Zhang, H. Lu, et al., Saliency detection via absorbing Markova chain, in: CVPR, 
2013, pp. 1665–1672.  

[23]  C. Yang, L. Zhang, H. Lu, X. Ruan, M. Yang, Saliency detection via graph-based manifold 
ranking, in: CVPR, 2013, pp. 3166–3173.  

[24]  W. Tu, S. He, Q. Yang, et al., Real-time salient object detection with a minimum spanning 
tree, in: CVPR, 2016, pp. 2334–2342.  

[25]  J. Zhang, S. Sclaroff, Z. Lin, et al., Minimum barrier salient object detection at 80 fps, in: 
ICCV, 2015, pp. 1404–1412.  

[26]  W. Köhler, Gestalt Psychology: An Introduction to New Concepts in Modern Psychology, WW 
Norton & Company, 1970.  

[27]  A. Wolters, K. Koffka, Principles of Gestalt Psychology, 1936.  

[28]   C. Yang, L. Zhang, H. Lu, Graph-regularized saliency detection with convex-hull-based 
center prior, IEEE Signal Process. Lett. 20 (2013) 637–640.  

[29]  W. Zhu, S. Liang, Y. Wei, J. Sun, Saliency optimization from robust background detection, in: 
CVPR, 2014, pp. 2814–2821.  

[30]  H. Jiang, J. Wang, Z. Yuan, et al., Salient object detection: A discriminative regional feature 
integration approach, in: CVPR, 2013, pp. 2083–2090.  



[31]  R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, SLIC Superpixels compared 
to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach.  
Intell. 34 (2012) 2274–2282.  

[32]  K. Chang, T. Liu, H. Chen, et al., Fusing generic objectness and visual saliency for salient 
object detection, in: ICCV, 2011.  

[33]  B. Fischer, T. Zöller, J.M. Buhmann, Path based pairwise data clustering with application to 
texture segmentation, in: Proceedings of the Third International Workshop on Energy Minimization 
Methods in Computer Vision and Pattern Recognition, 2001, pp. 235–250.  

[34]  M. Pelillo, The dynamics of nonlinear relaxation labeling processes, J. Math. Imaging Vision 7 
(4) (1997) 309–323.  

[35]  R. Achanta, S. Hemami, F. Estrada, S. Susstrunk, Frequency-tuned salient region detection, 
in: CVPR, 2009.  

[36]  T. T. Liu, Z. Yuan, J. Sun, et al., Learning to detect a salient object, IEEE Trans. Pattern Anal. 
Mach. Intell. 33 (2) (2011) 353–367.  

[37]  A. Borji, L. Itti, State-of-the-art in visual attention modeling, IEEE Trans. Pattern Anal. Mach. 
Intell. 35 (1) (2013) 185–207.  

[38]  R. Margolin, L. Zelnik-Manor, A. Tal, How to evaluate foreground maps?, in: CVPR, 2014, pp. 
248–255.  

[39]  R. Margolin, A. Tal, L. Zelnik-Manor, What makes a patch distinct?, in: Computer Vision and 
Pattern Recognition, 2013, pp. 1139–1146.  

[40]  X. Li, H. Lu, L. Zhang, et al., Saliency detection via dense and sparse reconstruction, in: 
CVPR, 2013, pp. 2976–2983.


[41]  Y. Zhai, M. Shah, Visual attention detection in video sequences using spatiotem- poral cues, 
in: Proceedings of the 14th Annual ACM International Conference on Multimedia, 2006, pp. 815–
824.  

[42]   Y. Ma, H. Zhang, Contrast-based image attention analysis by using fuzzy growing, in: 
Proceedings of the Eleventh ACM International Conference on Multimedia, 2003, pp. 374–381.  

[43]  X. Hou, L. Zhang, Saliency detection: A spectral residual approach, in: Computer Vision and 
Pattern Recognition, 2007, pp. 1–8.  

[44]  R. Achanta, F. Estrada, P. Wils, S. Süsstrunk, Salient region detection and segmentation, in: 
International Conference on Computer Vision Systems, Springer Berlin Heidelberg, 2008, pp. 66–
75.  

[45]  L. Zhang, M. Tong, T. Marks, et al., SUN: A Bayesian framework for saliency using natural 
statistics, J. Vis. 8 (7) (2008) 32.  


	Gestalt-grouping based on path analysis for saliency detection

