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A B S T R A C T

Fitting a model to data contaminated by noise and outliers is a common task in computer vision, and it is
often solved by maximizing inlier set. Most existing methods cannot guarantee global optimality, due to the
two techniques widely utilized in inlier maximization: randomized sampling to generate candidate models and
a hard threshold on residuals to classify inliers and outliers. In this paper, we propose a deterministic globally
optimal linear model fitting method, in which we use the negative Gaussian function as a soft loss function
over the residual and formulate model fitting as minimizing the sum of the Gaussian functions. We derive
a convex quadratic function as the lower bound function of the objective function so that it can be globally
minimized by a branch-and-bound algorithm. Experiments showed that the proposed method outperformed
the state-of-the-art methods on several typical CV problems, especially when there are multiple models with
different noise levels and large number of data points.

1. Introduction

Fitting a model to a set of data is a common task in experimental
sciences, including Computer Vision. In the CV field, many algorithms
rely on the ability to recover ideal mathematical models with imperfect
data contaminated by both noise and outliers [1,2]. The data points that
do not belong to any models are called gross-outliers. When there are
multiple models in the data, the data points belonging to one model can
be regarded as outliers to the other models, and they are called pseudo-
outliers. Therefore, the proportion of outliers may be very high when
we fit a model to the data, and this is one source of difficulty in robust
model fitting. Another difficulty comes from the fact that different
models may have different levels of noise, which is very common in
practice but is seldom considered in existing model fitting methods.

There is a great body of literature on robust model fitting, and the
most popular method is the celebrated RANSAC (RANdom Sample Con-
sensus) [3]. It combines two basic ideas: random sampling and inlier
counting, and initiates a major line of research on robust model fitting.
RANSAC generates a series of hypothetical models by randomly sam-
pling the original data iteratively and selects the model with maximum
consensus (inlier maximization). In the original RANSAC algorithm, a
data point is regarded as an inlier when its residual with respect to a
model is less than a given inlier threshold. Many variants of RANSAC
have been proposed such as Lo-RANSAC [4], PROSAC [5] and so on [6].
They concentrate on sampling [5,7] and evaluation strategies [8] to
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improve the robustness, efficiency and accuracy of RANSAC. However,
the basic ideas of random sampling and inlier counting change little.
Theoretically, a model fitting method can sample all possible combi-
nations of the data points to obtain all possible models to evaluate,
but it is computationally infeasible in practice. Therefore, the random
sampling strategy has to be adopted to generate hypothetical models,
which cannot guarantee that the best model can be found. In the inlier
counting part, most methods classify inliers and outliers with a hard
threshold on the residuals to select underlying model, which makes
the result very sensitive to the choice of the threshold. Fig. 1 shows
a common scenario in real applications, where different models have
different levels of noise. For example, when we scan a room with
Kinect, the noise levels of points at different distances from the Kinect
are usually different. As shown in Fig. 1a, if the inlier threshold is
smaller than the intrinsic noise level of the model, maximizing the
consensus set may not find the true model. On the other hand, if the
threshold is larger than the intrinsic noise level of the model, the model
found may be affected by nearby outliers as in Fig. 1a. In this scenario,
it is difficult to choose a proper inlier threshold to fit different models.

Recently, solving a robust model fitting problem within the opti-
mization framework is a new trend. Deterministic methods [9,10] try to
resolve the uncertainty by iteratively performing deterministic updates
on the initial solution by relaxing the objective function of consensus
maximization. Unlike them, [11] reformulates the consensus maxi-
mization into an instance of biconvex programming, which enables
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Fig. 1. Illustration of the scenario that an improper inlier threshold leads to wrong models for methods based on consensus maximization with a hard inlier threshold. The blue
solid lines are the ground truth, and the red dashed lines are the detected ones. Some points are first generated on the ground truth lines, and then for generating noisy inliers
with different levels of noise, the 𝑦 coordinates on the upper and lower lines are perturbed by small Gaussian noise and the points on the middle line are perturbed by large
Gaussian noise. These points are the blue dots in the figure. Finally, for generating gross outliers, some points with random coordinates are added and they are the gray crosses
in the figure. A blue rectangle represents a suitable threshold for the fitted model and a red rectangle represents an inlier threshold actually used in fitting the three lines. The
small red dots falling in a red rectangle are the detected inliers of the corresponding model. (a) A small inlier threshold suitable for the upper and the lower lines leads to the
wrong model for the middle line, which has a big noise level. (b) A large inlier threshold suitable for the middle line makes the fitted models of the upper and the lower lines
be affected by nearby outliers.

the use of bisection search without an objective function relaxation.
However, these methods do not strive for the global optimality and
may fail if their initial solutions are poor. Additionally, all these meth-
ods introduce binary indicator variables in the process of relaxing or
reformulating the objective function of consensus maximization, which
leads to an extremely long processing time in the case of fitting large
number of data points.

Another line of research is the global optimization methods [12–
18], in which the Branch-and-Bound (BnB) is the most used approach
[12–14]. BnB is a general framework of optimizing non-convex func-
tions by searching the parameter space intelligently, and almost every
BnB-based method involves deriving new bounds of the optimized
objective function. BnB has been employed in many computer vision
model fitting applications: registration [19–24] and relative pose es-
timation [25] and so on. In [16,18], inlier set maximization is cast
as a tree search problem that is globally optimized by a novel A*-
search algorithm. This method only traverses a small subset of the
tree compared to exhaustive methods such as [15,17] to improve time
efficiency. Although these methods guarantee the global optimality of
the result, the intrinsic problem of consensus maximization illustrated
in Fig. 1 is still unsolved. Ask et al. [26] proposed a truncated 𝐿2 loss
function over residuals and developed a global optimization strategy
that avoids the problem of defining inliers using a hard threshold. How-
ever, this method becomes infeasible to compute the optimal estimate
for a large number of data points.

Our contributions in this paper can be summarized as follows:

• We propose a robust linear model fitting method with guaranteed
global optimality. We use a negative Gaussian function as the
loss function over the residuals and formulate the model fitting
by minimizing the sum of the negative Gaussian functions. The
objective function is highly non-convex, but we derive a convex
quadratic function as its lower bound function and globally opti-
mize it using a BnB algorithm. We also provide a solution for the
linear model problem with unit-norm constraint, which is more
difficult to optimize because of its non-convex domain.

• The loss function we use is close to the robust loss function
suggested in [26,27] and it is very robust to outliers. The soft
loss function instead of a hard inlier threshold makes the proposed
method be able to better address the situation with different levels
of noise.

• Each bound evaluation takes linear time w.r.t the input size 𝑀 . If
there are  branches that should be evaluated in BnB until con-
vergence, the runtime of the whole procedure increases at most
linearly with 𝑀 . The performance of Section 3.3.1 indicates our
advantage when the number of points is large.

The rest of this paper is organized as follows: in Section 2, we
describe a convex quadratic lower bound and the BnB framework for
the proposed method. In Section 3, we present the practical advantages
compared with several other methods on both synthetic and real data.
We draw conclusions in Section 4.

2. Method

2.1. Problem formulation and objective function with linear models

This paper addresses the problem of estimating the parameters of
a prescribed linear model with the guaranteed global optimality from
a set of data points contaminated by noise and outliers. Given a set
of data  = {𝐱𝑖}𝑀𝑖=1 and a parameterized linear model 𝜽 ∈ R𝑑 in the
𝐷-dimensional space, the algebraic residual of a data point 𝐱𝑖 is:

𝑟𝑖(𝜽) = |𝐱𝑇𝑖 𝜽| (1)

Please note that here we regard a data point 𝐱𝑖 and the model 𝜽 as
column vectors. Two kinds of constraints are usually utilized to fix the
unknown scale of 𝜽. The first constraint is the unit-norm constraint:
‖𝜽‖ = 1, which results in a non-convex domain. The second constraint
is setting the last element of 𝜽 to be minus one: 𝜽 = [𝜽′𝑇 −1]𝑇 , which
leads to a linear regression problem. Note that this constraint makes
the dimension of the parameter space decrease one. Let 𝐱𝑖 = [𝐚𝑇𝑖 𝑏𝑖]𝑇
and the algebraic residual of linear regression problem is:

𝑟𝑖(𝜽) = |𝐚𝑇𝑖 𝜽
′ − 𝑏𝑖| (2)

For a 3D plane fitting 𝜃1𝑥𝑖1 + 𝜃2𝑥𝑖2 + 𝜃3 ⋅ 1 + 𝜃4𝑥𝑖3 = 0, we have 𝜽 = [𝜽′𝑇

−1]𝑇 = [− 𝜃1
𝜃4
,− 𝜃2

𝜃4
,− 𝜃3

𝜃4
,−1]𝑇 , 𝐚𝑖 = [𝑥𝑖1, 𝑥𝑖2, 1]𝑇 and 𝑏𝑖 = 𝑥𝑖3.

The objective of linear model fitting is to find the best 𝜽 to explain
the data points contaminated by noise and outliers. The traditional
least square method consists of minimizing the sum of the squared
residuals, which has been generally applied to the scenarios with
‘‘clean’’ data [28]. Since it implies the idea of maximum likelihood esti-
mation under the assumption of independent and normally distributed
measurement noise [29], the least square method lacks the robustness
to the outliers. Indeed, one single outlier can have an arbitrarily high
impact on the estimation [28]. To resist the impact of the outliers,
we propose using the negative Gaussian function as the loss function,
which is similar to the robust loss function suggested in [27]. Then,
the problem becomes minimizing the sum of the negative Gaussian
functions defined on 𝑟𝑖(𝜽). Specifically, the objective function is:

𝑂(𝜽) = 1
𝑀

𝑀
∑

𝑖=1
𝑂𝑖(𝜽) =

1
𝑀

𝑀
∑

𝑖=1
−𝑒𝑥𝑝(−

𝑟𝑖(𝜽)2

2𝜎2
) (3)
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Compared to consensus maximization using a hard threshold, the pro-
posed loss function models the errors of inliers better and this is the key
for the proposed method to avoid the problems illustrated in Fig. 1.

The objective function in Eq. (3) is the sum of the negative Gaussian
functions, which is highly non-convex. In this paper, we find its global
minimum using the BnB optimization framework. The BnB is a pow-
erful deterministic global optimization tool for non-convex problems.
By branching the parameter space and estimating the upper and/or
lower bounds in each branch, the BnB can shrink the search range,
thus leading to an effective global optimization. The key of our BnB
optimization is to find the lower bounds of the objective function in
each branch efficiently. In Section 2.2, we will derive a tight convex
quadratic lower bound function for our objective function in Eq. (3).
The BnB based algorithm and its implementation details including how
to handle the unit-norm constraint are described in Sections 2.3 and
2.4, respectively.

2.2. Convex quadratic lower bound function

Given a function 𝑂(𝜽), in a branch  of its parameter space, a
constant 𝑂∗ is a lower bound of the minimum of 𝑂(𝜽) if 𝑂∗ ≤ 𝑂(𝜽)
for every 𝜽 in . In addition, a function 𝑂(𝜽) defined on domain  is
a lower bound of 𝑂(𝜽) if 𝑂(𝜽) ≤ 𝑂(𝜽) for every 𝜽 in . Therefore, in
each branch , 𝑂∗ can be chosen as the minimum of 𝑂(𝜽), and the
key is to find a 𝑂(𝜽) that can be globally minimized in . To avoid
confusion, we call 𝑂∗ and 𝑂(𝜽) lower bound and lower bound function,
respectively. In this section, we derive a tight lower bound 𝑂∗ of the
sum of the negative Gaussian functions 𝑂(𝜽). We start from the lower
bound function of a single Gaussian function in the following form:

𝐺(𝑟) = −𝑒𝑥𝑝(− 𝑟2

2𝜎2
) (4)

Let 𝑢(𝑟) = 𝑟2

2𝜎2 , and we have 𝐺(𝑢) = −𝑒𝑥𝑝(−𝑢(𝑟)). Given the range of the
variable 𝑟, the range of 𝑢(𝑟) can be obtained by the interval extension,
and it is designated as [𝑢, 𝑢]. As depicted in Fig. 2a, the line intercepting
−𝑒𝑥𝑝(−𝑢) at (𝑢, 𝑒−𝑢) and (𝑢, 𝑒−𝑢) is the lower bound function of −𝑒𝑥𝑝(−𝑢)
in the range of [𝑢, 𝑢]. Therefore, the lower bound function 𝐺(𝑟) of a
single Gaussian function 𝐺(𝑟) is:

𝐺(𝑟) = 𝜉 𝑟2

2𝜎2
+ 𝜂 (5a)

𝜉 =
(−𝑒−𝑢) − (−𝑒−𝑢)

𝑢 − 𝑢
, 𝜂 = −𝑒−𝑢 − 𝜉𝑢 (5b)

Obviously, 𝐺(𝑟) is a quadratic function of 𝑟, and it is convex because 𝜉
is positive.

When we substitute (1) into (5a), we can obtain a convex quadratic
lower bound function 𝑂𝑖(𝜽) of each data point 𝐱𝑖 with respect to 𝜽.
Therefore, in each branch , we can get a convex quadratic lower
bound function 𝑂(𝜽) of the objective function (3) by adding 𝑂𝑖(𝜽)
together:

𝑂(𝜽) = 1
𝑀

𝑀
∑

𝑖=1
𝑂𝑖(𝜽) =

1
𝑀

𝑀
∑

𝑖=1
(𝜉𝑖

|𝐱𝑇𝑖 𝜽|
2

2𝜎2
+ 𝜂𝑖) ≤ 𝑂(𝜽),𝜽 ∈  (6)

𝜽 ∈  is a linear constraint and minimizing equation (6) is a convex
quadratic programming in the linear regression problem formulation.
How to address the unit-norm constraint problem formulation in our
BnB based algorithm will be introduced in Section 2.4. Therefore,
by minimizing the convex quadratic lower bound function, the lower
bound 𝑂∗ in each branch  can be calculated very quickly:

𝑂∗ = 𝑚𝑖𝑛
𝜽∈

𝑂(𝜽) ≤ 𝑚𝑖𝑛
𝜽∈

𝑂(𝜽) (7)

This value will be used to indicate if there is a potential better solu-
tion in this branch. A linear lower bound function of the exponential
function and a quadratic lower bound function of the Gaussian function

are illustrated in Figs. 2a and 2b, respectively. According to [17], the
integral of the difference between the original function and its bound
function is a measure of tightness of the bound, and we show the
integral in the range of 𝑟 = [−1, 1] with respect to the number of
branches used in this interval in Fig. 2c. We can see that the integral
decreases rapidly as the number of branches increases, which means
that the lower bound will become very tight when we branch the
parameter space increasingly finer in the BnB optimization framework.
A small example is given in Fig. 3 to show the splits of the parameter
space and the changes of the lower bound functions.

2.3. BnB based algorithm

We first show how to solve the model fitting problem in the linear
regression formulation using a BnB-based algorithm in this section,
and then introduce how to incorporate the unit-norm constraint in
the BnB-based algorithm in the next section. For a typical BnB-based
framework to minimize a function, such as the objective function (3),
an upper bound and a lower bound of the global minimum of the
objective function are stored. These two bounds are updated in iteration
to narrow the gap between them and the algorithm terminates when
the gap falls below a given threshold. In our method, we use a queue to
store all branches in which the global minimum may exist and calculate
an upper bound and a lower bound for each branch in the queue. The
lower bound is calculated by the method introduced in Section 2.2
and the calculation of the upper bound is straightforward because any
functional value of the objective function can be an upper bound. In the
linear regression problem formulation, we evaluate the functional value
at the center of a branch as the upper bound. The process of evaluating
the upper and lower bounds for each branch is shown in Algorithm 1,
and the upper bound is denoted by 𝑂

∗
.

Algorithm 1: Evaluate upper and lower bounds of the minimum
of (3) in branch .

Input: Observed data  , sigma 𝜎 in Eq. (3) and branch .
Output: Upper bound 𝑂

∗
and lower bound 𝑂∗ of .

1 𝜽𝑐 ← center point of . 𝑂
∗
← 𝑂(𝜽𝑐 ) or 𝑂( 𝜽𝑐

‖𝜽𝑐‖
)

2 for each data 𝐱𝑖 do
3 [𝑢𝑖, 𝑢𝑖] ← the range of 𝑢(𝑟𝑖) w.r.t  by the interval extension.
4 𝜉𝑖 and 𝜂𝑖 ← Eq. (5b).
5 𝑂𝑖(𝜽) ← substitute 𝜉𝑖, 𝜂𝑖 and Eq. (2) to (5a).
6 end
7 𝑂 ← equation (6).
8 𝑂∗ ← minimize 𝑂 in Eq. (7) using Guribo [30] mathematical

optimization solver.

We use a Depth-First-Search BnB algorithm to minimize the objec-
tive function (3). The method is formalized in Algorithm 2. This is a
typical BnB algorithm and its goal is to guarantee the global optimality
of the current optimal 𝜽∗. The key to guaranteeing the global optimality
of the BnB based algorithm is to narrow the gap between two bounds
(𝑂𝐿 and 𝑂𝑈 ).

𝑂𝐿 ≤ 𝑂𝐵𝐸𝑆𝑇 ≤ 𝑂𝑈 (8)

𝑂𝐿 and 𝑂𝑈 are the lowest 𝑂∗ and 𝑂
∗

among all branches, respectively.
𝑂𝐵𝐸𝑆𝑇 is the current optimal objective function value.

The initial branch 0 is a (𝐷− 1)-dimension or 𝐷-dimension hyper-
cube in the linear regression problem formulation and unit-norm con-
straint problem formulation, respectively. In the linear regression prob-
lem formulation, the initial branch needs to be large enough to contain
the globally optimal solution because the range of the parameters is
unlimited. In each iteration, the branch 𝐿 with the lowest lower bound
𝑂𝐿 will be subdivided into smaller branches because it is the branch
that currently has the greatest potential to contain the globally optimal
solution. After evaluating the upper and lower bounds of new branches,

3
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Fig. 2. (a) The linear lower bound function of the exponential function 𝐺(𝑢) = −𝑒𝑥𝑝(−𝑢(𝑟)) when 𝑢 ∈ [0.25, 2.25]. (b) The quadratic lower bound function of the Gaussian function
𝐺(𝑟) = −𝑒𝑥𝑝(− 𝑟2

2𝜎2 ) when 2𝜎2 = 0.04 and the range of parameter space [−1,1] is divided into five branches. The exponential and Gaussian functions are blue, and the lower bound
functions are brown. (c) Integral of the difference between the objective function in (b) and its bounds in [−1,1] with respect to the number of branches.

Fig. 3. A 1D example showing the changes of the lower bound function (brown) of the original function (blue) as we split the parameter space finer and finer, where the original
function is a sum of three Gaussians and the lower bound functions are quadratic functions.

the lowest upper bound 𝑂𝑈 is used to update the current optimal
objective function value 𝑂𝐵𝐸𝑆𝑇 . And then the current optimal 𝜽∗ comes
from the center of the branch whose upper bound is 𝑂𝐵𝐸𝑆𝑇 . Meanwhile,
the branch 𝑖 whose lower bound 𝑂∗𝑖 is larger than 𝑂𝐵𝐸𝑆𝑇 can be
removed from the branch queue 𝑞 since the globally optimal solution
cannot exist in it. The algorithm terminates when the gap between
𝑂𝑈 and 𝑂𝐿 is below 𝜖, which is a given threshold. The algorithm
achieves the 𝜖-suboptimality because the difference between the global
minimum value and the 𝜽∗ is guaranteed to be smaller than 𝜖.

2.4. Incorporate unit-norm constraint in BnB

The unit-norm constraint influences the branching, the calculation
of the upper and lower bound of each branch and the initial search
branch of the BnB algorithm, and we will discuss these influences in
this section.

The unit-norm constraint makes the feasible domain a
hyper-hemisphere, which is a non-convex set. Actually, it is really
difficult to branch the hyper-hemisphere and provide a bounding
function for each branch. Therefore, we incorporate the constraint
in the branching process in the following way. When we split the
parameter space finer and finer, the branches that intersect with the
unit hemisphere are inserted into the queue for further processing. And
all the other branches are directly discarded because there is not any
feasible solution in these branches.

To calculate the upper bound of a branch, in the unit-norm con-
straint formulation, we normalize the centric parameter of a branch to
make its norm to be one and then evaluate its function value as the
upper bound of the branch. This normalization makes the evaluation a
feasible point of the unit-norm constraint problem. It should be noted
that normalizing the centric parameter of a branch may result in a
feasible parameter falling out of the branch, but evaluating the function
at this point can also work for our BnB algorithm, because what we

really need is a feasible solution to be used as an upper bound of
the global minimum. The calculation of the low bound needs not to
be changed, because the lower bound for the objective defined on a
squared branch can also work as a lower bound defined on a subset of
it. Regarding the initial search branch, in the unit-norm constraint, we
have the nature parameters range from ‖𝜽‖ = 1:

0 ≤ 𝜃1 ≤ 1,−1 ≤ 𝜃𝑛 ≤ 1, 𝑛 = 2, 3,… , 𝐷 (9)

In this paper, all experiments were conducted with unit-norm con-
straint problem formulation for the proposed method because of its
nature parameters range without prior.

3. Experiments

In this section, we investigate the performance of GORFLM and
compare it against Lo*-Ransac [2], IBCO [11], A* search [18], and ILP-
RansaCov [31] in four typical Computer Vision Applications: 2D line
fitting, 3D plane fitting, the estimation of affine fundamental matrix
and video motion segmentation. Lo*-Ransac, IBCO and A* search were
selected for comparison because they are the state-of-the-art algorithms
concentrated on random, deterministic and global robust model fitting,
respectively. In particular, Lo*-Ransac and the proposed GORFLM share
some common heuristics in using soft threshold so that they are more
robust to different levels of noise of the models to be fitted. In or-
der to investigate the sensitivity of the algorithms to different noise
levels of multiple models in the same scene, experiments on multiple
model fitting were conducted. In these experiments, GORFLM, Lo*-
Ransac, IBCO, and A* search ran in a sequential way in fitting multiple
models, which means that these methods are applied to find the first
structure, the inliers of that structure are removed and the methods
are then applied to the remaining data. A fixed inlier threshold is
used in removing the inliers of each structure for all these methods.

4
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Algorithm 2: Globally Optimal Robust Fitting for Linear Model.
Input: Observed data  , sigma 𝜎 in Eq. (3), gap 𝜖 between

lowest upper bound 𝑂𝑈 and lowest lower bound 𝑂𝐿, and
the dimension 𝐾 of model parameter 𝜽.(𝐾 is equal to
(𝐷 − 1) and 𝐷 for linear regression problem formulation
and unit-norm constraint problem formulation,
respectively.)

Output: Optimal 𝜽∗ with accuracy 𝜖.
1 Initialize branch 0 with possible model parameters range, and

insert branch 0 with 𝑂
∗
0 and 𝑂∗

0 into queue 𝑞. 𝜽∗ ← center of
the branch 0, best objective function value 𝑂𝐵𝐸𝑆𝑇 ← 𝑂(𝜽∗).

2 while 𝑞 is not empty do
3 Remove cube 𝐿 with lowest lower bound 𝑂𝐿 from 𝑞.
4 Subdivide 𝐿 into 2𝐾 cubes {𝑑}2

𝐾

𝑑=1.
5 Evaluate 𝑂

∗
𝑑 and 𝑂∗𝑑 for all {𝑑}2

𝐾

𝑑=1. (Algorithm 1)
6 Insert 𝑑 with 𝑂∗𝑑 and 𝑂∗𝑑 into 𝑞, and update 𝑂𝑈 and 𝑂𝐿.
7 if 𝑂𝑈 < 𝑂𝐵𝐸𝑆𝑇 then
8 𝑂𝐵𝐸𝑆𝑇 ← 𝑂𝑈 , 𝜽𝑐 ←center of ∗ corresponding to 𝑂𝐵𝐸𝑆𝑇 .

9 𝜽∗ ← 𝜽𝑐 or
𝜽𝑐

‖𝜽𝑐‖
10 end
11 for each 𝑖 of branch queue 𝑞 do
12 if 𝑂∗𝑖 > 𝑂𝐵𝐸𝑆𝑇 then
13 Eliminate 𝑖 with 𝑂

∗
𝑖 and 𝑂∗𝑖 from 𝑞.

14 end
15 end
16 if 𝑂𝐵𝐸𝑆𝑇 − 𝑂𝐿 < 𝜖 then
17 Terminate.
18 end
19 end

Additionally, we compared with ILP-RansaCov, which is a state-of-the-
art multiple model fitting method and all models are found in one
run of this method. All the algorithms, including ILP-RansaCov, were
provided the true number of models when fitting multiple models. The
code of Lo*-Ransac and IBCO were obtained from [32]. The code of
A* search is from its conference version [18]. A latter version A*-
prune [16] improved the performance of A* search slightly, while it is
still not practical when the number of data and the outlier ratio increase
to a certain extent (e.g. 500 points with 20% outliers), but the code
of A*-prune is not available. The code of ILP-RansaCov was obtained
from [33]. GORFLM was implemented in MATLAB R2018a. The specific
parameters of these algorithms were tuned as follows:

• GORFLM (G): There are three parameters: sigma 𝜎 in formulation
(3), gap 𝜖 for 𝜖-suboptimality guarantee and inlier threshold 𝜀 for
removing inliers of each structure in the multiple model fitting
experiments. Theoretically, there exists some potential connection
between 𝜎 and 𝜀, because both parameters are used to model how
far an inlier can deviate from its ideal position. This property
provides the basis for jointly setting these two parameters. After
balancing precision and efficiency, we chose to set the sigma
𝜎 and the inlier threshold 𝜀 to be equal in all experiments for
keeping consistent. Indeed, in practice, the reader can adjust the
relationship between the sigma 𝜎 and the inlier threshold 𝜀 to
obtain better performance.

• Lo*-Ransac (L): We chose the confidence 𝜌 = 0.99 for the stopping
criterion in all experiments. All of the other parameters except
inlier threshold 𝜀 are set as described in [11].

• IBCO (B): It needs one parameter: inlier threshold and we exe-
cuted this algorithm with a random initialization.

• A* search (A): It needs one parameter: inlier threshold and it
usually cannot converge within an acceptable time in our exper-
iments. We therefore set a time limit for A. It means that the

current solution without guaranteed global optimality is returned
if A cannot converge within the time limit.

• ILP-RansaCov (R): It needs one parameter: inlier threshold.

The inlier thresholds of all the methods are tuned to be the same
in all line and plane fitting experiments. In the experiments of affine
fundamental matrix and video motion segmentation, the inlier thresh-
olds of all the methods are adjusted to their best performance. All the
experiments were done on a computer with an Intel Core i7 2.8 GHz
CPU and 16 GB RAM.

3.1. Convergence and parameter choice of GORFLM

Convergence. We first show the convergence of GORFLM in a
challenging 2D line fitting experiment as shown in Fig. 4a, in which two
lines consisting of different number of inliers, different levels of noise
and biased gross outliers are to be fitted. We randomly generated 50
and 100 inliers along the yellow and pink lines, respectively. For each
inlier point, both its 𝑥 and 𝑦 coordinates were perturbed by Gaussian
noise with standard deviation of 𝛿𝑖𝑛, which was set to 0.02 and 0.01 for
the yellow and pink line, respectively. After that, additional 50 random
points were added to generate gross outliers. These 50 points were first
randomly generated on the bottom (pink) line, and then its 𝑦 coordinate
was added the absolute value of a Gaussian noise with 𝛿𝑜𝑢𝑡 = 0.2. The
sign of the Gaussian noise was forced to be positive to make the outliers
fall on one side of the line just as in [9].

The evolution of the upper and the lower bound of the minimum of
the objective function and the remaining volume of the parameter space
with respect to iteration in fitting the pink line in Fig. 4a are illustrated
in Fig. 4b. In this experiment, the sigma 𝜎 and the inlier threshold 𝜀
were set to 0.02 and the gap 𝜖 were set to 0.01. We can see that the
gap between the upper and lower bound and the remaining volume
are very small after 120 iterations. Meanwhile, Figs. 4c, 4d show the
contribution of each point to the value of the objective function on the
estimated models in fitting the pink and the yellow lines, which reveals
the capability of GORFLM in addressing models with different noise
levels and biased outliers. The dark blue points have little contribution
to the objective function and the existence of them has little influence
on the fitted parameters of the line.

Inlier threshold 𝜀 & sigma 𝜎. Then, we study the influence of inlier
threshold 𝜀 and sigma 𝜎 on its accuracy and runtime in fitting the two
lines as shown in Fig. 4a. Please note that in all experiments the sigma
𝜎 and the inlier threshold 𝜀 were set to be the same. The gap 𝜖 = 0.01
was kept unchanged. For each of the nine different choices of 𝜀, we
repeated GORFLM with 50 randomly generated data points of Fig. 4a.
The average fitting errors of each line and average runtime were plotted
in Figs. 5a and 5b, respectively. Since the slope 𝑘 and intercept 𝑏 of the
parameters have a clear meaning in 2D line fitting, we have listed their
average fitting error separately. The fitting errors are all acceptable
with different choices of 𝜀, which means that the performance of the
proposed algorithm is not sensitive to the choice of 𝜀. This property is
very useful when we need to fit multiple models with different levels
of noise. Fig. 5b shows that the runtime is fairly stable across different
choices of 𝜀 ranging from 0.025 to 0.05 and it tends to increase when
𝜀 becomes very small.

Gap 𝜖. The gap 𝜖 for 𝜖-suboptimality guarantee also has an effect
on the runtime and accuracy of GORFLM. For each of five different 𝜖,
we ran GORFLM with 50 randomly generated data points of Fig. 4a.
The inlier threshold 𝜀 = sigma 𝜎 = 0.02 were constant and unchanged.
The average runtime with different choice of 𝜖 are shown in Fig. 5c.
In fitting the pink line, the differences of the objective function value
in Eq. (3) between 𝜖 = 0.01 and 𝜖 = {0.05, 0.1, 0.15, 0.2} are 3.9e−4,
4.2e−4, 4.2e−4 and 4.2e−4. The gap 𝜖 is an upper bound of the
difference between the globally optimal functional value and estimated
functional value. Since the objective function is a continuous function
and the gap 𝜖 cannot be exactly zero, we can roughly consider the
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Fig. 4. Convergence of the GORFLM algorithm and the contribution exhibition of each point to the value of the objective function. (a) A challenging example of two parallel lines
to be fitted. The yellow and pink lines consist of 50 and 100 inliers, respectively, and they are contaminated by 50 severely biased gross outliers. The noise of the inlier points
of the yellow and the pink lines are 𝑁(0, 0.022) and 𝑁(0, 0.012). (b) The evolution of the upper and lower bound of the objective function (brown line) and the remaining volume
of the parameter space (blue dashed line) with respect to the iterations in fitting the pink line. (c), (d) The contribution of each point to the value of the objective function in
fitting the pink and the yellow line in figure (a), respectively. The contribution values are color coded according to the bar at the bottom. Yellow dashed line indicates ground
truth, and green solid line indicates fitted line. ‘‘+’’ in (d) indicates removed points after fitting a structure.

Fig. 5. The influence of GORFLM ‘‘inlier threshold 𝜀’’ and ‘‘gap 𝜖’’ parameters on its accuracy and runtime in the two lines in Fig. 4a.

solution with 𝜖 = 0.01 to be the globally optimal solution. Then,
the gap of the objective function value between the estimated result
and globally optimal solution is much smaller than the gap 𝜖 itself. It
indicates that the gap 𝜖 can be relaxed to obtain an increase in speed
without losing too much accuracy.

3.2. Synthetic data

3.2.1. Robustness to outliers
In this section, we first demonstrate the robustness of GORFLM with

increasing number of outliers under different choices of inlier threshold
𝜀. We generated inlier points on the two lines with different levels of
noise and different number of gross outliers as in Fig. 4a from 0 to
250 with an interval of 50. For each number of outliers and each of
nine different choices of 𝜀, we ran GORFLM on 50 randomly generated
data. The average fitting errors of the slope 𝑘 and intercept 𝑏 of each
line were plotted in Fig. 6. As shown in Fig. 6, 𝜀 can be selected in a
large range, which means that it has a strong tolerance for different
number of outliers. Even for the difficult situations, where there are
more than 150 outliers, the average fitting errors are still small when 𝜀
is less than 0.035. The reason why the average fitting errors in Figs. 6c,
6d are larger than that in Figs. 6a, 6b is that the yellow was perturbed
by a larger noise than the pink line in Fig. 4a. The result in Fig. 6 further
confirms that the choice of 𝜀 is not sensitive to noise level, even in the
case of big proportion of biased outliers.

Then, we compared GORFLM against Lo*-Ransac, IBCO, A* search
and ILP-RansaCov. The same inlier threshold 𝜀 = 0.02 was used for
all methods and the gap 𝜖 = 0.01 was used for GORFLM. The time
limit of A* search is 100 s for each model. In order to evaluate a
method in detecting all of the models, we calculated a comprehensive
metric ‘‘overall error’’ as in [34,35]. For a particular 2D line fitting,

𝑃 = {𝑝1,… , 𝑝𝑁} and 𝑃 = {𝑝̂𝑖,… , 𝑝̂𝑁} are the set of ground truth
and estimated lines with unknown correspondences between 𝑝𝑖 and 𝑝̂𝑗 ,
where 𝑁 is the number of estimated lines. The pairwise error between
a pair of parameters is defined as the 𝐿2 distance and the overall error
between 𝑃 and 𝑃 is:

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑒𝑟𝑟𝑜𝑟 =
𝑁
∑

𝑛=1
𝑚𝑖𝑛 𝜑𝑛 (10)

where 𝜑𝑛 represents the set of all pairwise errors at the 𝑛th summation,
and the pair with the lowest pairwise error should be removed from 𝑃
and 𝑃 before calculating the next summation.

The overall error of each method with respective to outlier numbers
are plotted in Fig. 7. The performance of our method is the best in
most cases, except a slightly inferior result of in the 100-outlier case
compared with ILP-RansaCov. To further demonstrate the advantage
of the proposed method, we listed the fitting error of slope 𝑘 and
intercept 𝑏 of each line separately in Appendix A, which exposes the
unstable performance of the compared algorithms in fitting two models
with different levels of noise. The difficulty of this experiment is that
the optimal parameters required for fitting lines with different levels
of noise are different, and it is hard for the compared algorithms
to balance the performance on the two lines. Fig. 7b is the average
runtime in fitting the two lines. A* search, a globally optimal method,
cannot converge within 100 s for each line even with 50 outliers, and
this is the reason why A* search has a poor precision as shown in
Fig. 7a.

3.2.2. Time complexity
We compared the time complexity of GORFLM and the other meth-

ods with respect to the increasing number of points: 1000, 3000, 5000,
7000 and 9000 in fitting a 3D plane in 3D point sets. These points
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Fig. 6. The average fitting error of slope 𝑘 and intercept 𝑏 with increasing number of outliers in fitting the two lines in Fig. 4a with nine different choices of 𝜀: 0.01, 0.015, 0.02,
0.025, 0.03, 0.035, 0.04, 0.045, 0.05.

Fig. 7. (a) shows the box plots of the overall error (log scale) over 50 runs of GORFLM (G), Lo*-RANSAC (L), IBCO (B), A* search (A) and ILP-RansaCov (R) under different
number of outliers. (b) Average runtime (log scale) of GORFLM (G), Lo*-RANSAC (L), IBCO (B), A* search (A) and ILP-RansaCov (R) with respect to the number of outliers.

Table 1
Average time of GORFLM (Ggap0.01, Ggap0.05), Lo*-Ransac (L), IBCO (B), A* search
(A) and ILP-RansaCov (R) w.r.t the total point number 𝑀 .

Average time (s)

Num Ggap0.01 Ggap0.05 L B A R

1000 58.67 41.66 0.62 4.57 3600.11 27.30
3000 60.97 44.45 3.88 33.65 3600.24 263.53
5000 63.86 46.86 6.92 88.91 3600.78 787.77
7000 66.86 49.07 10.56 190.49 3600.84 2319.19
9000 70.10 50.60 20.70 283.05 3600.23 4488.67

were first created on the plane passing through the point [1, 1, 1]
with a random normal, and then 50% and 50% points are perturbed by
adding Gaussian noise with a standard deviation of 0.02 and 0.5 to each
of its three coordinates to generate inliers and outliers, respectively.
The inlier thresholds of all methods are set to 0.02 and we chose two
different gap 𝜖 = 0.01, 0.05 for GORFLM. For A* search, the time limit
is 3600 s in this experiment. For each number of point set, the average
runtime of GORFLM, Lo*-Ransac, IBCO, A* search and ILP-RansaCov
for 10 randomly generated point sets was recorded in Table 1.

Globally optimal robust linear model fitting is an intractable prob-
lem, and it has been shown to be NP-hard [36–38]. Concretely, for a
𝐾-dimensional robust linear model fitting problem with 𝑀 inputs, we
cannot expect to obtain its exact solution faster than 𝑂(𝑀𝐾 ). Moreover,
it is almost impossible to remove 𝐾 from the exponent of the run
time of a globally optimal algorithm [36]. In GORFLM, we utilized
the BnB [39] framework to provide certainty of finding optimal solu-
tion. The proposed convex quadratic lower bound makes each bound
evaluation take linear time w.r.t the input size 𝑀 . However, solving
the problems with high dimensions is still difficult for our proposed
method. Therefore, GORFLM is recommended for the problems with
low dimensions and large input size. From the results of Table 1, we can
see that the relaxation of gap 𝜖 increases the speed to a certain extent

and the average runtime of GORFLM is very stable with the increasing
number of points. A* search cannot converge within 3600 s so that its
average runtime remains constant. However, the average runtime of
the other three methods increases drastically.

3.2.3. A more challenging line fitting example with different levels of noise
The estimated results of a more challenging line fitting experiment

with different levels of noise and gross outliers are shown in Fig. 8.
There are four line segments with 100 inliers on each of them and there
are 400 uniformly distributed random outliers in the data, as shown
in Fig. 8a. The intersection of lines to be fitted introduces additional
difficulties for using a sequential way to solve multi-model fitting
problems. The inlier points were perturbed by adding different levels
of Gaussian noise (𝑁(0, 0.0012), 𝑁(0, 0.012), 𝑁(0, 0.022) and 𝑁(0, 0.032))
to each of its coordinates. The inlier threshold of all these methods was
0.02 and the gap 𝜖 of GORFLM was 0.01. The time limit of A* search is
100 s for each line. Overall, GORFLM correctly fitted all four lines with
high accuracy in this challenging scenario, and there are some errors in
the line parameters or some wrongly fitted lines for the other methods.

3.3. Real data

3.3.1. Fitting planes in the point cloud of a room with large number of points
In this section, we compared GORFLM against Lo*-Ransac, IBCO,

A* search and ILP-RansaCov in fitting multiple planes in the 3D point
cloud of a room. The data was taken from the ‘‘livingRoom.mat’’ of
the MATLAB example 3D Point Cloud Registration and Stitching, which
consists of a series of 3D point sets obtained from continuously scanning
a living room. We used the first frame of this data, and it is shown in
Fig. 9a. There are two challenges in fitting planes in these data. First,
the number of points in these data set is very big (𝑀 = 235,306 points).
The second challenge of these data is that the two planes marked with
‘‘1’’ and ‘‘2’’ in Fig. 9a have different levels of noise. The specific
parameter settings are: inlier threshold = 0.14 for all methods, three
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Fig. 8. (a) Four lines with different levels of noises to be fitted in this experiment. (b–f) Examples of the worst overall error results of GORFLM (G), Lo*-Ransac (L), IBCO (B),
A* search (A) and ILP-RansaCov (R), respectively. (c)/(f): low accuracy for Line 0.03; (d): wrong fitting of Line 0.001 and Line 0.01; (e) wrong fitting of all four lines.

Fig. 9. Living room data set and its detection results colored in yellow, pink, green, dark blue and bright blue. The gray dots are the outliers of the detection results. (a) The
original data set with textures. There are five major planes in this data set and ‘‘1’’ and ‘‘2’’ mark the two planes with different noise levels. (b,c) Detection results of GORFLM on
the down-sampled data (𝑀 = 15,830 points) from two different views. The following figures are examples of errors in Lo*-Ransac (d), IBCO (e) and A* search (f). The example
of error in ILP-RansaCov is similar to (d). In addition, the blue and red arrows indicate the circumstances of missing detection and redundant detection, respectively.

different gaps 𝜖 = 0.1,0.15,0.2 were experimented for GORFLM, time
limit = 720 s for A* search. To compare the performance of all these
methods, we firstly down-sampled the data to 4,015 points and 15,830
points using a box grid filter of Matlab build-in function pcdownsample
with the specified input gridStep = 0.06 and 0.03, respectively. We ran
each method 50 times and recorded the number of planes detected
correctly. Therefore, the highest possible score of each run is 5, which
means it correctly detects all five planes and there is no missing
detection or redundant detection. Table 2 lists the average runtime and
scores of all methods with different number of points. And the examples
of the detection results in GORFLM from two views are illustrated in
Figs. 9b, 9c. Some typical mistakes that occurred in the four competing
methods are illustrated in Figs. 9d, 9e, 9f.

Generally, GORFLM achieved the highest score of 5 in all experi-
ments. The relaxation of the gap 𝜖 accelerated GORFLM obviously and
the average runtime did not increase much w.r.t the point number 𝑀 .
Especially, in the case of 𝑀 = 15,830, the average runtime of IBCO
and ILP-RansaCov is one order of magnitude larger than the average
runtime of GORFLM with the gap 𝜖 = 0.15. Lo*-Ransac, a ransac-type
method, is the most efficient, while it cannot detect all the planes
correctly because of its random property. We set the time limit to 720 s
for each run and then the total time limit of fitting the five planes is
3600 s, which is slightly longer than GORFLM. Overall, this experiment
reveals the potential ability of the proposed method in fitting planes
with different levels of noise and large number of points (𝑀 = 15,830).

3.3.2. Affine fundamental matrix
In this section, we examined the feasibility of GORFLM in estimating

the affine fundamental matrix from real images, which can be formu-
lated as a linear model fitting problem [13] and the dimension is higher
than that of the line and plane fitting in previous sections. We used
Wadham, Merton College I and Merton College III data from the website
of [40] and estimated the affine fundamental matrix between the first
two frames of each data. These three data were chosen because the
fundamental matrix can be well approximated by an affine one. Feature
points are provided on each image and the ground truth matches be-
tween some of these points are given. For every unmatched point in the
first frame we randomly chose an unmatched point in the second frame

for it to form a false-matching pair. These inliers and outliers can be
perfectly separated by a fundamental matrix. For each data set, we first
calculated an affine fundamental matrix by the least squares method
using only ground truth matching pairs. And then the inlier/outlier
label of each point set was updated by the maximum residual between
the affine fundamental matrix and ground truth matching pairs. We ran
GORFLM, Lo*-Ransac, IBCO, A* search and ILP-RansaCov 50 times and
calculated the average misclassification error [41,42]:

𝑀𝐸(𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
(11)

The inlier threshold of all the methods are adjusted to their best
performance. Concretely, for GORFLM, Lo*-Ransac and ILP-RansaCov,
the inlier thresholds of are 0.05, 0.06, and 0.04 in Merton College
III, Merton College I and Wadham data, respectively. And the inlier
thresholds of other methods are 0.08, 0.09 and 0.08 in Merton College
III, Merton College I and Wadham data. The gap 𝜖 is 0.1 for GORFLM
and the time limit is 1000 s for A* search. Examples of the misclas-
sified points by all methods are shown in Fig. 10. The box plots of
the results are illustrated in Fig. 11. We find that GORFLM achieved
stable performance owing to its global optimization. The accuracy of
GORFLM, ILP-RansaCov and Lo*-Ransac are similar in the experiment
of MertonCollegeIII, which may be because there is only one model in
this problem.

3.3.3. Video motion segmentation with different levels of noise
In this experiment, we evaluated the performance of GORFLM

on video motion segmentation with outliers. We used the traffic2
group from the Hopkins 155 data-set [43], corrected by removing
mistrackings using the method in [44]. The traffic2 group consists of
31 sequences, each containing 2 motions. The Cars2_07_g13 and the
Cars5_g12 sequences were not used in this experiment, because the
ground-truth labels of these two sequences do not correspond to the
images well in the corrected data set [44]. We used the code provided
on [45] to generate 20 outliers for these 29 sequences in the traffic2
group. Under the affine camera projection assumption, [44] has shown
that the trajectory of points belonging to a single rigid moving object
are contained in a subspace of rank 4 to 2 according to different level
of degeneration of the motion. Following [46], we projected the data
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Fig. 10. Images used in estimating the affine fundamental matrix: MertonCollegeIII, MertonCollegeI and Wadham in the top-down order. Their inlier ratios are 89.86%, 78.04%
and 51.60% respectively. (a–e) The worst misclassification result obtained by GORFLM, Lo*-Ransac, IBCO, A* search and ILP-RansaCov respectively. Yellow dot—outlier, blue
dot—inlier, and red cross—misclassified point.

Table 2
Average runtime and scores in detecting the five planes in the Living room data set with point number of 𝑀 .
Ggap0.20 Ggap0.15 Ggap0.10

M Gap Time (s) Score M Gap Time (s) Score M Gap Time (s) Score

4105 0.20 516.81 5.00 4105 0.15 848.72 5.00 4105 0.10 1470.93 5.00
15 830 0.20 591.54 5.00 15 830 0.15 997.45 5.00 15 830 0.10 1755.33 5.00

L B A R

M Time (s) Score M Time (s) Score M Time (s) Score M Time (s) Score

4105 10.14 4.90 4105 589.16 1.00 4105 3602.46 0.00 4105 658.76 4.10
15 830 87.26 4.94 15 830 11 678.91 1.00 15 830 3601.74 0.00 15 830 14 610.09 4.00

Fig. 11. The box plots of misclassification number for fitting affine fundamental matrix.
The box plot of each data set in A* search is not listed because of its visually poor
performance as illustrated in Fig. 10d.

onto an affine 4D space and the motion segmentation is translated
into a 3D plane-fitting problem. We chose the best inlier threshold
parameters for each algorithm. The gap 𝜖 of GORFLM is 0.15 and the
time limit of A* search is 200 s in detecting one motion. We ran each
of them 50 times for each sequence and the average Misclassification
Error (ME) in segmenting the total 29 sequences of each algorithm is
listed in Table 3. To further reflect the performance of all methods in
the total 29 sequences, we listed ME of each sequence in Appendix B.

Table 3
Misclassification error (ME %) on traffic2 group with outliers.

traffic2 with outliers G L B A R

ME 2.15% 2.56% 20.14% 45.49% 6.18%

Time (s) 28.88 0.05 0.82 226.12 2.89

GORFLM achieved the best performance among them. The ME of IBCO
and ILP-RansaCov is high because it misclassified many trajectories,
where the number of inliers and the noise level of the two planes in
the 3D space is quite different. From these challenging sequences, we
chose five examples of their segmentation results as shown in Fig. 12.
Fig. 12a is the trajectory projection in 3D space, where the planes with
fewer inlier points are always have larger noise level. The ME of A* is
high because it cannot converge in many sequences. Consequently, the
fitting result indicates that GORFLM is robust to the data with different
number of inliers and different noise levels.

4. Discussion and conclusion

In this paper, we propose a globally optimal and robust algorithm,
which is named GORFLM, for solving the problem of linear model
fitting. This algorithm abandoned the traditional idea of maximizing
the consensus set, and formulated the model fitting into an optimization
problem of the minimizing the sum of negative Gaussian functions. So
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Fig. 12. Examples of Hopkins 155 notion segmentation results with quite different inlier quantities and noise levels: Cars2, Cars5_g13, Cars5_g23, Kanatani1, and Truck2 in the
top-down order. (a) Trajectory projection in 3D space. (b–f) The results obtained by GORFLM, Lo*-Ransac, IBCO, A* search and ILP-RansaCov, respectively. Blue ‘‘+’’ and orange
‘‘□’’ detected inliers of the two motions, gray ‘‘+’’ detected outliers, and yellow ‘‘×’’ misclassified points.

that from the theoretical point of view, the existence of the globally
optimal solution for model fitting is guaranteed.

Through applying our algorithm to solve a variety of computer
vision problem, it is demonstrated that our method is superior than
the state-of-the-art methods of model fitting. Especially when fitting
models with different levels of noise and large proportion of outliers,
our method shows better robustness and global optimality. In the
experiments of low dimensions, the advantage of speed of the proposed
method is revealed gradually with the increase of the number of
sampling points.

In the studying of model fitting, to maximize the inliers of the
models is the final goal of the optimization in traditional methods.
The random and deterministic methods cannot guarantee the global
optimization of the fitting results. And the methods looking for the
global solution tend to catastrophically fail when the model fitting
problem is increasingly hard. In addition, most traditional methods
used the hard inlier threshold to determine whether a point is an
inlier or an outlier. Therefore, it inevitably leads to the result that
the choice of the inlier threshold has a great influence on the fitting
result. Although recently many solutions have been proposed, they
have not been able to get rid of the traditional idea of maximizing the
consensus set, so the effect in not satisfactory. The main reason, why
our method has the advantages mentioned above, is that we can use
the soft loss function to construct as an object function to transform the
problem of the model fitting into the problem of minimizing the sum
of negative Gaussian functions. Then we derived a convex quadratic
lower bound of this objective function, and the lower bound derived
is very tight. This idea ensures the existence of the globally optimal
solution on theory, and the optimal solution can be obtained by the BnB
algorithm. This fundamentally solves the problems of local optimum
and poor robustness problem brought by the two computing processes
of random sampling and inlier counting. As a result, our method has
the advantages of global optimization and strong robustness.

There is no doubt that there are still many room of improvements
in our method. For example, although the method we propose is faster
in solving the low dimensional problem, the computation cost will
increase rapidly with the increase of the dimensions, which is proved
in previous experiments in this paper. Therefore, in the future work,
we will further explore more effective strategies of the branching and
searching. In addition, using GPU to realize parallel computing is one
of the methods to improve the speed for use in high dimensions.
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Fig. A.13. The box plots of fitting errors of the slop (𝑘1, 𝑘2) and intercept (𝑏1, 𝑏2) of the two lines in the experiment in Section 3.2.1.

Table B.4
ME of each of the 29 sequences in Section 3.3.3.

traffic2 with outliers G L B A R

ME Time (s) ME Time (s) ME Time (s) ME Time (s) ME Time (s)

cars1 0.00% 15.00 0.08% 0.05 31.48% 4.19 92.13% 400.11 0.34% 3.02
cars2 1.00% 7.50 1.98% 0.09 1.20% 1.20 1.20% 200.04 11.84% 7.86
cars4 0.63% 17.31 1.68% 0.04 7.50% 0.56 86.88% 183.48 6.08% 0.82
cars2_06_g12 3.23% 64.47 2.84% 0.04 17.74% 0.32 61.29% 1.96 1.77% 0.14
cars2_06_g13 1.87% 23.34 1.91% 0.02 12.15% 0.36 87.85% 400.05 5.03% 0.43
cars2_06_g23 1.75% 23.58 1.77% 0.02 10.53% 0.45 82.46% 400.05 7.14% 0.43
cars2B_g12 12.61% 51.14 19.93% 0.04 54.95% 0.46 72.07% 400.03 6.20% 0.39
cars2B_g13 1.15% 9.08 1.33% 0.18 1.92% 0.74 0.77% 27.48 11.49% 8.39
cars2B_g23 1.01% 9.01 0.88% 0.04 4.45% 0.93 0.00% 20.65 12.61% 7.52
cars2_07_g12 10.00% 138.70 9.00% 0.03 41.67% 0.37 61.67% 18.38 4.10% 0.13
cars2_07_g23 1.42% 16.23 2.25% 0.03 3.77% 0.28 2.36% 122.29 6.49% 1.35
cars3_g12 0.79% 38.86 0.95% 0.03 38.89% 0.59 73.02% 23.10 1.27% 0.49
cars3_g13 1.03% 10.42 0.96% 0.07 1.23% 0.73 7.60% 400.06 10.30% 7.92
cars3_g23 0.19% 9.39 0.30% 0.03 0.19% 0.89 0.57% 31.89 11.14% 8.58
cars5_g13 1.96% 8.29 1.46% 0.04 2.79% 0.70 1.68% 154.98 11.73% 3.86
cars5_g23 2.40% 8.93 2.84% 0.09 3.73% 0.58 12.80% 400.06 16.35% 4.18
cars6 1.66% 11.34 1.77% 0.14 3.52% 0.66 1.45% 10.67 11.52% 7.51
cars7 0.96% 10.40 0.40% 0.04 0.96% 0.84 0.38% 29.72 10.57% 8.14
cars8 1.52% 30.07 1.10% 0.03 50.25% 0.75 82.23% 400.04 2.04% 1.16
cars9_g12 2.30% 98.88 5.89% 0.04 54.02% 0.24 77.01% 108.98 1.70% 0.25
cars9_g13 3.48% 26.08 1.31% 0.04 27.86% 1.21 38.31% 400.07 1.23% 1.23
cars9_g23 0.00% 19.81 0.00% 0.03 5.13% 0.68 0.00% 400.03 1.94% 1.21
cars10_g12 0.49% 24.87 0.96% 0.03 34.80% 0.62 93.63% 400.08 0.98% 1.23
cars10_g13 0.45% 22.39 0.51% 0.03 42.99% 0.67 91.40% 400.05 0.45% 1.51
cars10_g23 1.20% 35.83 0.48% 0.03 36.14% 0.48 39.16% 400.03 0.00% 0.82
kanatani1 5.77% 10.81 4.82% 0.06 5.77% 2.28 3.21% 17.70 6.68% 0.87
kanatani2_ 0.00% 30.74 0.88% 0.03 56.10% 0.56 75.61% 5.41 1.00% 0.22
truck1 2.15% 51.80 2.81% 0.04 24.73% 0.60 77.42% 400.04 3.22% 1.03
truck2 1.22% 13.31 3.18% 0.06 7.62% 0.93 95.12% 400.11 14.13% 3.23

Appendix B

See Table B.4.
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