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Abstract

Person search aims to search for a target person among multiple images recorded

by multiple surveillance cameras, which faces various challenges from both

pedestrian detection and person re-identification. Besides the large intra-class

variations owing to various illumination conditions, occlusions and varying poses,

background clutters in the detected pedestrian bounding boxes further deterio-

rate the extracted features for each person, making them less discriminative. To

tackle these problems, we develop a novel approach which guides the network

with segmentation masks so that discriminative features can be learned invariant

to the background clutters. We demonstrate that joint optimization of pedes-

trian detection, person re-identification and pedestrian segmentation enables to

produce more discriminative features for pedestrian, and consequently leads to

better person search performance. Extensive experiments on benchmark dataset

CUHK-SYSU, show that our proposed model achieves the state-of-the-art per-

formance with 86.3% mAP and 86.5% top-1 accuracy respectively.
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1. Introduction

Person re-identification has been widely applied in video surveillance systems

with increasing demands in urban safety. It has attracted great attention in the

computer vision community during the last decade. Person re-identification is

generally solved as a retrieval problem [1, 2]. Given a probe image, person

re-identification aims to find all the images in the gallery set with the same

identity. However, person re-identification has not be fully addressed, since the

images captured by cameras are usually with the characteristics of illumination

variations, occlusions and low resolution owing to the shooting environment.

These challenges potentially increase the intra-class variations and raise the

recognition difficulty.

To this end, a great deal of research works on person re-identification devote

to extract more discriminative features to represent human individuals, either

by hand-crafted features [3, 4] or by CNN features [5, 6]. Most of the existing

person re-identification methods engage on cropped pedestrian bounding boxes

without considering background clutters. Specifically, human individuals are

represented by the features extracted from the regions constrained with the

detected pedestrian bounding boxes, and Euclidean distance is computed to

evaluate the similarity level among those probe-gallery pairs. It may result in a

situation that different persons with similar background are close in the learned

feature space. For example, in Fig. 1, the person in the bounding box in the

third figure is different from the probe image. However, it is ranked before the

person in the bonding box of the fourth figure who has the same identification

as the probe image; this is simply because its background is more similar with

the probe image.

One straightforward yet effective solution to tackle the problem is to make

the foreground part such as human body as the dominant region for feature

extraction. In [7], it adopts pose estimation approach to locate the key body

points, and then aggregates the local features extracted from the pre-defined

body regions with the global features extracted from the whole image. Based
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Figure 1: One example to show the negative effect of background clutters which deteriorate

the person re-identification performance. Blue box in the first column is the probe image.

Other columns are the searching results from rank-1 to rank-3. Green boxes indicate the

correct searching result, while the red box indicates the incorrect searching result.

on the similar ideas, Tian et al. propose a person-region guided pooling network

with the assist of human parsing maps to solve the background bias problem [8].

Recently, researchers also attempt to introduce the attention mechanism into

the person re-identification task for pedestrian feature extraction [9, 10, 11].

Person search aims to search for the targeting person among multiple images

recorded with different surveillance cameras, where the pedestrian bounding

boxes are not available. Person search, different from person re-identification

which assumes most of the pedestrian bounding boxes are manually cropped or

perfectly detected by the state-of-the-art detectors, i.e. Faster R-CNN [12], han-

dles the challenges from both pedestrian detection and re-identification. Specif-

ically, considering the step of pedestrian detection, the misalignment and false

alarm caused by detectors further decrease the recognition rate [13, 14]. Mean-

while person search also has the aforementioned problem resulting from the

background clutters in the generated pedestrian bounding boxes.

In a recent work, Chen et al. adopt segmentation mask to solve the back-

ground clutter problem in the person search task [15]. Specifically, a two-stream

model is established to extract the pedestrian features with one stream to em-

phasize the foreground information for the regions covered by the segmentation

mask, and second stream to retain the global information for the original im-

age. However, in [15] the foreground regions are heuristically fixed annotation,

in other words, to what extent the background should be removed is decided
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by the pedestrian segmentation mask. Besides, this work separates the steps

of pedestrian masking, pedestrian detection and person re-identification, which

ignores the fact that jointly optimizing these steps can further bring in perfor-

mance gain.

Inspired by the previous works [16, 17, 18] that solve the person search

task in an end-to-end manner, we propose an novel end-to-end person search

framework that uses the segmentation mask to mitigate the negative effect of

background clutters. Different from the previous work [15] that designates the

foreground regions by the segmentation masks explicitly, we utilize the seg-

mentation mask to guide the feature extraction network to learn the enriched

foreground features through a parallel mask branch. To do this, segmentation

masks are precisely labeled in our new created dataset. Our proposed person

search approach jointly optimizes pedestrian detection, person re-identification

and pedestrian segmentation, which obtains more discriminative features for

pedestrians benefiting from end-to-end learning.

We summarize our contributions are as follows.

• We propose a segmentation masks guided person search framework so as

to mitigate the negative effect of the background clutters in the detected

pedestrian bounding boxes. Our proposed person search framework is

trained end-to-end which considers the inherent relations among pedes-

trian detection, person re-identification and pedestrian segmentation, and

hence more discrimitive features for pedestrians can be learned, which

effectively enhance the person search performance.

• We create a new dataset which contains precise pedestrian segmenta-

tion mask annotations for 1,833 images from the existing CUHK-SYSU

dataset. The dataset will be released for the future segmentation mask

based person search research, which can be downloaded from the link:

https://github.com/Dingyuan-Zheng/maskPS. Meanwhile, it is found that

our approach only requires partial annotations for the segmentation masks

rather than that for the whole dataset.
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• Extensive experiments on benchmark dataset CUHK-SYSU show that our

proposed segmentation masks guided end-to-end person search framework

outperforms a wide range of state-of-the-art person search methods, ob-

taining 86.3% mAP and 86.5% top-1 accuracy, respectively.

2. Related Work

In this section, we first review the existing works for the two sub-tasks in

person search, pedestrian detection and person re-identification respectively. We

then review the recent achievements on person search.

2.1. Pedestrian Detection

Pedestrian detection has witnessed significant improvement in the past few

decades. The first landmark work achieved by Dalal et al.[19] adopts the ar-

chitecture of HOG+SVM, and then DPM [20] is developed to better address

the occlusion issue. After that, ICF [21] and its variants [22, 23] outperform

the previous hand-crafted feature based pedestrian detection methods. More

recently, great progress has been made on the realm of general object detec-

tion benefiting from the convolutional neural networks [24, 25, 26, 27, 28, 12].

Further, [29] discussed the feasibility of Faster R-CNN on pedestrian detection

task. In this paper, we also adopt Faster R-CNN as our pedestrian detector.

2.2. Person Re-identification

With the great success of convolutional neural networks, researchers have

proposed numerous deep learning based person re-identification solutions [30,

31, 32, 33, 34]. The re-identification system is typically composed of two cat-

egories, feature extraction and similarity metrics learning. Some researchers

attempt to improve the person re-identification performance by taking the ad-

vantage of enhanced feature representation. For instance, in [35, 36], the orig-

inal image is horizontally split into patches, and part matching is then applied

among these generated local patches. In [7], local features of the body sub-

regions defined by the pose estimation results are merged with the whole body
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features to improve the robustness of the final feature representation. Other re-

searchers propose better person re-identification solutions by using well-designed

similarity metrics learning. Generally, one category adopts verification loss, for

example, contrastive loss [32], triplet loss [37] or quadruplet loss [38], while an-

other category utilizes identification loss [30, 39] or both [40]. In this paper, our

person search framework is built upon the identification model.

2.3. Person Search

As an extension of the conventional person re-identification, person search

retrieves the target person from the raw scene images, where pedestrian bound-

ing boxes are not available [41]. In the pioneer work [17], Xiao et al. show that

pedestrian detection and person identification could be solved in an end-to-end

framework. Following this work, Xiao et al. [18] enhance the discriminability

of the pedestrian features by introducing center loss. Liu et al. [42] recursively

shrink the attentive regions till the target person is retrieved. In [43], global

context of query-gallery pairs are emphasized by establishing a query-guided re-

gion proposal network and similarity sub-network in a siamese structure. Yan et

al. further improve the person search performance by exploiting co-travelers as

global context. A recent person search approach [15] uses segmentation mask to

filter the foreground person from the original input and aggregates the features

of both foreground and whole image which are extracted from a two-stream

model. Besides, the authors also state that better person search performance

can be achieved by solving pedestrian detection and identification separately

with off-line pedestrian masks. Different from [15], we optimize jointly these

three tasks in an end-to-end framework. In particular, we use the segmentation

mask to guide the network to learn the discriminative regions automatically

rather than explicitly specifying these regions.

3. Proposed Method

In this section, we propose a novel partially labeled segmentation masks

guided person search framework, as shown in Fig. 3. We first introduce our
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new dataset which contains partially labeled segmentation masks, and then

elaborate our end-to-end person search framework.

(a) (b) (c) (d)

Figure 2: Two examples in our created dataset. We only provide the segmentation masks for

the labeled persons (the persons labeled with [1-5532] in CUHK-SYSU dataset). The shadow

regions in first and third columns indicate the labeled persons. The second and fourth columns

are their segmentation masks.

3.1. A New Dataset with Partially Labeled Segmentation Masks

To the best of our knowledge, all current segmentation masks based person

search/re-ID approaches are based on off-line pedestrian masks generated from

Fully Convolutional Networks (FCN) [44] or Fully Convolutional Instance-aware

Semantic Segmentation (FCIS) [45] without considering the benefit from joint

optimization of pedestrian segmentation and person re-identification tasks. To

extract more discriminative features and mitigate the negative effect of back-

ground clutters as well as to build an end-to-end framework that jointly opti-

mize pedestrian detection, person identification and pedestrian segmentation,

we created a new person search dataset to provide the precise annotations of

pedestrian segmentation masks. We labeled the pedestrian segmentation masks

for a portion of images in CUHK-SYSU dataset [16].

CUHK-SYSU dataset [16] is a large-scale dataset for person search, and the

data is collected from diverse scenes. Specifically, it contains 18,184 images,

6,057 query persons in 12,490 images are captured from the street, while the

rest 2,375 query persons in 5,694 images are collected from the movies and
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dramas. The dataset is split into the training set and test set, and guarantees

no overlap occurs on images and query persons between the training split and

test split. Training split contains 11,206 images with 5,532 query persons, while

test split contains 6,978 images with 2,900 query persons. Each query person

appears in at least two images. The dataset also contains two subsets to evaluate

the person search performance under low resolution and occlusion. The person

identities of training split are in the range of [-1, 5532], where -1 indicates the

unlabeled persons and 0 indicates the background (non-person).

In our dataset, to guarantee the uniformity of data distribution, we divide

the training set into N portions (N =2,241 in our case), with 5 images in each

portion (except the last portion, which contains 6 images), and we randomly

select one image from each portion, and filter out the images with only unlabeled

persons (the persons labeled with -1). Finally 1,833 images in the training set

are selected for the segmentation mask labeling.

To the best of our knowledge, accessories, i.e, handbags, luggage cases and

baby carriage, might act as suggestive context in person re-identification. In a

consequence, we treat these objects as foreground during the mask annotating

process. It should be noticed that we provide the mask annotations for only the

labeled persons (the persons labeled with [1∼5532]) in a raw scene image. The

samples of the image with segmentation masks are shown in Fig. 2.

We utilize Labelme [46] as the annotation tool. All our segmentation masks

follow the unified annotation rules. When a person is occluded by non-person

objects, we only keep the visible part of the occluded person, and the acces-

sories are kept as well. We also give the statistics for our created dataset, as

shown in Table 1. The selected 1,833 images from the CHUK-SYSU training

set contain 9,084 pedestrians in total, with 2,815 labeled persons and 6,269 un-

labeled persons. In particular, we only annotated the segmentation masks for

the labeled persons. The rest 9,373 images in the training set contains 12,270

labeled persons and 33,918 unlabeled persons.
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Dataset Number of images Number of pedestrians

Images with masks 1,833
LP 2,815

UP 6,269

Images without masks 9,373
LP 12,270

UP 33,918

Table 1: Statistics of our created dataset. LP: Labeled persons, UP: Unlabeled persons. The

labeled persons (2,815) in the selected 1,833 images are annotated with pedestrian segmenta-

tion masks.

3.2. Our Proposed Person Search Framework

Person search aims to retrieve the target person across raw scene images

without pedestrian bounding boxes. Our proposed approach jointly optimizes

three sub-tasks including pedestrian detection, person identification and pedes-

trian segmentation in an end-to-end person search framework. Apart from the

pedestrian detection module to produce online pedestrian bounding boxes and

person identification module to categorize person identities, we further establish

a parallel pedestrian segmentation branch to predict pedestrian masks. Ben-

efiting from the end-to-end optimization of three tasks, more discriminative

pedestrian features can be extracted. The overall schematic of the proposed

segmentation masks guided end-to-end person search framework is shown in

Fig. 3. The network is elaborated as follows.

Arbitrary size images are resized such that the shorter side has 600 pixels.

An image is then fed into the first part of the residual backbone network [47].

Specifically, we divide the residual network into two parts, i.e, for ResNet-50,

the first part contains the layers from Conv1 to Res4, and the rest Res5 forms

the second part.

To address pedestrian detection, we adopt the region proposal network [12]

(RPN) to produce online pedestrian proposals. RPN is trained with cross en-
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tropy loss to distinguish pedestrians and background, we express it as Lcls:

Lcls = −
N∑
i=1

yilog(si), (1)

where N is the number of the generated proposals, si is the prediction score and

yi is the related ground truth which indicates person or non-person. We use the

Smoothed-L1 loss [28], Lreg, to regress the precise location for each pedestrian,

as defined as follows:

Lreg =

 0.5D2 |D| < 1

|D| − 0.5 otherwise,
(2)

where D denotes the coordinate differences between the predicted box and its

related ground truth location, and these two losses together are denoted as

LRPN . The generated candidate boxes are either associated with background

or a foreground part (the ground truth bounding boxes). Since we only provide

the mask annotation for the labeled persons (persons labeled with [1∼5532]) in

a raw scene image, those generated candidate boxes associated with foreground

parts are consequently divided into two types. The first is the candidate boxes

associated with labeled persons, and it is denoted as proposals with mask, while

the second is the candidate boxes associated with unlabeled persons, which we

denote as proposals without mask, as shown in Fig. 3.

All the proposals generated from RPN and the feature maps generated from

the first part of the residual network are input into the ROIAlign layer [48] to

produce the fixed size feature map for each ROI.

Targeting for person identification, once the fixed size feature maps are ob-

tained, these feature maps are further convolved into the second part of the

residual network and the output, Fp ∈ Rc×m×m, are summarized into 2,048

dimensional feature vectors fp ∈ Rc through an average pooling layer. Here

c is the channel width and m denotes the size of the feature maps. To fur-

ther reduce the false alarm caused by RPN and refine the predicted locations

of the candidate pedestrians, fp are then fed into two fully connected layers
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respectively and again supervised by Lreg and Lcls losses. Following [17], we

denoted these two losses together as LRCNN . Besides, fp is projected into a

256 dimensional feature vector fid ∈ Rd through the third fully connected layer

followed by L2-normalization, which is used as the final feature representation

for each retrieved pedestrian. In the training phase, we adopt OIM loss [17] to

supervise the person identification module, where pid indicates the probability

of the identification features, fid, belonging to id-th class,

pid =
exp(vTidfid)/τ∑L

j=1 exp(v
T
j fid/τ) +

∑Q
k=1 exp(u

T
k fid/τ)

. (3)

Here τ is a parameter to control the softness of the probability function. The

features of the labeled identities are stored in a lookup table with dimension L,

with vid denoting the current feature for class id among 5,532 categories, and

it is continuously updated during the training phase as follows:

vid = βvid + (1− β)fid, (4)

where β is a momentum parameter used to adjust the update rate. While the

features of the unlabeled persons are stored in a circular queue with dimension

Q, and uk indicates the features for the k-th unlabeled person. The objective of

OIM loss is to maximize the expected log-likelihood, and the identification loss

is then defined as:

Lidentification = Ex[logpid]. (5)

Most importantly, in order to improve the discriminability of fid, we establish

a parallel mask branch on top of the shared features Fp. Specifically, we pick out

the feature maps associated with labeled persons from Fp, and use these feature

maps Fpm ∈ Rc×m×m to predict segmentation masks with the size of 2m× 2m

for each proposal with mask (m equals 7 in our case), and the predicted masks
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are then computed into binary cross entropy loss [48], which can be written as:

Lmask =

S∑
s=1

T∑
t=1

(−Ytlog(xt)− (1− Yt)log(1− xt)), (6)

where xt denotes the probability of t-th pixel in the predicted mask being recog-

nized as foreground, Yt is its related ground truth, T is the number of pixels in

the predicted pedestrian mask (T = 2m×2m), and S is the number of proposals

with mask.

Finally, we adopt a multi-task loss to train our person search framework in

an end-to-end manner. The total loss is defined as:

Ltotal = LRPN + LRCNN + Lidentification + λLmask, (7)

specifically, λ = 1 when input image contains labeled segmentation masks, oth-

erwise, λ = 0.

With the assist of the partially labeled segmentation masks, our proposed

person search framework can generate more discriminative features invariant

to background clutters, compared with the previous segmentation mask based

state-of-the-art approach [15].

4. Experimental Results

In this section, the dataset and evaluation metrics we used are first in-

troduced, followed by implementation details. We also compare our proposed

method with previous state-of-the-art results. At last, our proposed person

search framework is verified in the ablation study.

4.1. Dataset and Evaluation Metrics

We use our newly labeled CHUK-SYSU dataset, as introduced in Sec. 3.1,

in our experiments. We adopt both mean average precision (mAP) and top-

1 matching rate to evaluate all our experiment performance, similar to [17].

A matching is accepted only if the overlap between the detected pedestrian
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Conv1 – Res4

RPN

proposals without mask proposals with mask

Mask branch

Res5

fc1

fc2

fc3

mask loss

re-id loss

reg loss

cls loss

ROI align

fixed size feature maps

Figure 3: The schematic of our proposed segmentation masks guided person search framework.

The model is trained end-to-end with multi-task loss. We adopt RPN to generate candidate

boxes, and we denote the proposals associated with labeled person as proposals with mask,

while the proposals associated with unlabeled person as proposals without mask since we

only partially label the segmentation masks for the labeled persons in a raw image. Feature

vectors of all candidate boxes go into the regression loss, classification loss and identification

loss, whereas only the feature maps of the proposals with mask are fed into the mask branch.

bounding boxes and the ground truth bounding boxes is larger than pre-defined

intersection over union (IOU) threshold, which equals to 0.5.

4.2. Implementation Details

Training Phase. During training, we initialize our residual backbone with

the ImageNet pretrained ResNet-50 model and adopt SGD as optimizer. The

initial learning rate sets to 0.0004 and decayed by a factor of 0.1 at every 4

epochs. Because of the large memory consumption of the Faster R-CNN frame-

work [12], we set the batch size to 1 during the 12 training epochs. All our

experiments are implemented by Pytorch on Titan X Pascal GPU.

It should be noticed that, the shorter side of the input images is resized to

600 pixels, and we also augment the training data by horizontal flipping the

training images and their related ground truth bounding boxes as well as the

ground truth masks. In paticular, the ground truth masks are resized to 14×14

to match the masks generated from the mask branch. For the implementation

of the mask branch, we adopt a similar architecture as in the Mask R-CNN [48].
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6 losses are used jointly to supervise the training process.

Inference Phase. At test time, the shorter side for both query and gallery

images is resized to 600 pixels as in the training process. We use the features

generated from the last residual block (Res5) to represent each pedestrian, either

probe person or the persons detected from the gallery set. Euclidean distance

is then computed for each probe and gallery pair to assess the similarity level.

4.3. Comparison with State-of-the-Art Approaches

In this subsection, we report the person search performance of our model on

our newly labeled person search dataset CUHK-SYSU, and we also give the com-

parison to several state-of-the-art approaches, including methods that optimize

pedestrian detection and identification jointly (OIM [17], IAN [18], NPSM [42],

QEEPS [43] and GCNPS [49]), as well as the methods solving pedestrian detec-

tion and person identification separately (DSIFT+Euclidean[50], DSIFT+KISS-

ME[51], BoW[52]+Cosine similarity, LO-MO+XQDA, and MGTS [15]).

4.3.1. Overall Person Search Performance on CUHK-SYSU

The comparative results with gallery size 100 are summarized in Table 2.

We follow the annotations defined in [15] and [49], where “CNN” denotes the

Faster R-CNN detector with ResNet-50 backbone, and “CNNv” denotes the

VGG-based detector.

The methods above the dash line handle pedestrian detection and person

identification separately. It can be observed that the deep CNN based pedestrian

features [15] achieved better performance than hand-crafted features [50][51][52].

CNNv+MGTS [15] also utilizes segmentation mask to produce more discrimina-

tive features by filtering out the background, and achieves the best performance

among those methods addressing pedestrian detection and person identification

separately. Our proposed method uses segmentation mask to guide the network

to extract discriminative pedestrian features by specifying the foreground re-

gions. Meanwhile, pedestrian detection and person identification are optimized
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jointly. Our framework achieved 3% gain compared with [15] on both mAP and

top-1 matching rate.

All the joint methods (below the dash line) are built upon the Faster R-

CNN [12] framework where OIM [17] can be regarded as the benchmark. The

major distinction between our method and OIM [17] is that a new pedestrian

segmentation mask branch is added. We achieve a significant performance im-

provement, with 10.8% mAP and 7.8% top-1 higher compared with [17]. It

demonstrates the importance of the pedestrian segmentation mask and the

newly labeled dataset. Other methods [18][42][43][49] are state-of-the-art per-

son search approaches with good performance. IAN [18] improves the person

search performance by introducing center loss to reduce the intra-class varia-

tions. NPSM [42] designs a person search approach by recursively shrinking the

search area. QEEPS [43] proposes a strong person search framework by learning

query-guided global context. [49] utilizes GCN to explore the impact of context

persons on the person search task. Nevertheless, we still achieve 2% gain on

both mAP and top-1 accuracy compared with [43], and 2% improvement on

mAP compared with [49], all of which prove the effectiveness of our method.

The visualization of person search results on the CUHK-SYSU dataset are

shown in Fig. 5. The upper images in each group are the searching results

of OIM [17], and the lower images in each group are that of our model. It is

observed that the persons in the bounding boxes of the third and the fourth

images in the upper rows of group (a) and (b), as well as the person in the

bounding box of the third image in the upper row of group (c), are different

from their probe images. However, these persons are ranked before the persons

who have the same identities as the probe images, simply because their back-

ground is more similar to the probe images. Nevertheless, with the assist of

partially labeled segmentation masks, our model focus on the foreground and

can distinguish persons based on the detailed textural information rather than

the background-noise.
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Method mAP(%) top-1(%)

CNN + DSIFT + Euclidean [50] 34.5 39.4

CNN + DSIFT + KISSME [50][51] 47.8 53.6

CNN + BoW + Cosine [52] 56.9 62.3

CNN + LOMO + XQDA [3] 68.9 74.1

CNNv + MGTS [15] 83.0 83.7

OIM [17] 75.5 78.7

IAN(ResNet-50) [18] 76.3 80.1

NPSM [42] 77.9 81.2

QEEPS [43] 84.4 84.4

GCNPS [49] 84.1 86.5

Ours 86.3 86.5

Table 2: Comparison with the state-of-the-art on CUHK-SYSU dataset with gallery size equals

to 100.

4.3.2. Impact of Gallery Size

Each gallery image in CUHK-SYSU dataset contains around 6 pedestrians

on average. With gallery size 100, person search aims to retrieve each target

person from about 600 pedestrians. The person search is more challenging

with the increasing number of gallery size. We also report the performance

of our model with various gallery size, including [50, 100, 500, 1, 000, 2, 000,

4, 000]. The results are demonstrated in Fig. 4. As expected, the person search

performance of all methods drops with the increasing gallery size. While our

person search framework remains superior than other approaches with various

gallery sizes.

4.3.3. Impact of Occlusion and Low Resolution

Person search becomes even harder when pedestrians are occluded or the

resolution of the captured images is low. Therefore, to prove the robustness of

our method, we further evaluate our model on two subsets. One subset contains

187 target persons with occlusion, and the other subset contains 290 target
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Figure 4: Person search performance comparison on CUHK-SYSU dataset with different

gallery size, [50, 100, 500, 1,000, 2,000, 4,000]. (a) Model with ResNet-50 backbone. (b)

Model with ResNet-101 backbone.

persons with low resolution. The results are demonstrated in Table 3. We follow

the notations defined in [18], where “whole” denote the full set which contains

2,900 probe images. We observe that the performance degenerate under these

two extreme conditions compared with full set. However, our person search

17



Method
Low-Res Occulusion Whole

mAP(%) top-1(%) mAP(%) top-1(%) mAP(%) top-1(%)

E2E-PS(VGGNet) 46.1 51.0 44.3 45.4 69.6 72.9

E2E-PS(Res-101) 47.9 52.0 47.7 48.1 74.2 78.1

IAN(Res-101) 52.6 54.4 53.0 54.5 77.2 80.4

Ours(Res-50) 66.7 66.8 70.8 71.3 86.3 86.5

Table 3: Person search performance on low resolution and occlusion subsets.

framework still outperforms the other approaches [16][18].

4.4. Ablation Study

With the assist of the newly labeled dataset, our proposed person search

framework produces more discriminative features by utilizing partially labeled

segmentation mask. To evaluate the effectiveness of our approach, we report

the person search performance when we progressively increase the number of

images with segmentation mask. The results are shown in Table 4, where we

denote the proportion of the images with segmentation mask as α. In total,

1,833 images are labeled with segmentation mask, which accounts for around

16% of the 11,206 training images. When all those 1,833 images are used for

training, we denote as “Full”. It can be observed that there is an obvious gain

when 12% images with segmentation mask are used for training, and tend to

be stable until 15% images are used. That is why we only label 16% of all the

images.

Value of α 3% 6% 9% 12% 15% Full

mAP(%) 85.1 85.3 85.3 86.1 86.3 86.3

top-1(%) 85.2 85.4 85.7 86.1 86.5 86.5

Table 4: Person search performance on CUHK-SYSU dataset with various proportion of

images with segmentation masks
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(a)

(b)

(c)

Figure 5: Three groups of top-3 comparison results for person search on CHUK-SYSU dataset.

The upper row in each group are the searching results of OIM [17], and the lower row in each

group are the searching results of our model (both models adopt ResNet-50 as backbone).

The blue boxes in the first column indicate the probe images, and the green boxes in other

columns indicate their top-3 searching results. Best viewed in color.
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5. Conclusion

Person search handles the challenges from both pedestrian detection and

person identification, and inevitably introduces background clutters into the

detected candidate boxes. To address this problem, with the assist of our new

created dataset which contains the labeled segmentation masks for a portion of

images in the existing CUHK-SYSU dataset, we propose a novel segmentation

mask guided person search framework to extract more discriminative and robust

features invariant to background clutters for each human individual. Moreover,

our person search framework is trained end-to-end, which proves that joint

optimization of pedestrian detection, person re-identification, and pedestrian

segmentation is an effective solution for person search. Finally, extensive exper-

iments show that our proposed method achieves state-of-the-art performance on

CUHK-SYSU dataset.
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