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Abstract

Multi-Focus Image Fusion (MFIF) is a promising image enhancement technique

to obtain all-in-focus images meeting visual needs and it is a precondition for

other computer vision tasks. One of the research trends of MFIF is to avoid

the defocus spread effect (DSE) around the focus/defocus boundary (FDB). In

this paper, we propose a network termed MFIF-GAN to attenuate the DSE

by generating focus maps in which the foreground region are correctly larger

than the corresponding objects. The Squeeze and Excitation Residual module

is employed in the network. By combining the prior knowledge of training

condition, this network is trained on a synthetic dataset based on an α-matte

model. In addition, the reconstruction and gradient regularization terms are

combined in the loss functions to enhance the boundary details and improve the

quality of fused images. Extensive experiments demonstrate that the MFIF-

GAN outperforms several state-of-the-art (SOTA) methods in visual perception,

quantitative analysis as well as efficiency. Moreover, the edge diffusion and

contraction module is firstly proposed to verify that focus maps generated by

our method are accurate at the pixel level.

Keywords: multi-focus image fusion, defocus spread effect, generative

adversarial network, deep learning.
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1. Introduction

In the field of digital photography, the limited depth-of-field (DOF) leads to

multiple images focused at different regions in the same scene and the defocus

spread effect (DSE) [1]. As an image enhancement technique, Multi-Focus Image

Fusion (MFIF) has been studied to fuse multi-focus images, as shown in Fig.1(a)

and 1(b), so that the fusion result shown in Fig.1(c) retains the clear information

of the sources. It is a pre-condition for various kinds of computer vision (CV)

tasks, such as localization, object detection, recognition and segmentation [2, 3].

(a) (b) (c)

Figure 1: The source of MFIF images and desired fusion result

The past few decades have witnessed the rapid development of abundant

MFIF algorithms. Generally, the classic MFIF algorithms can be categorized

into two groups: transform domain and spatial domain methods[4]. The idea

of the former is to transform the images from the original image space into

an abstract feature space so that the active level of source images can be de-

tected and measured easily. Then a desired image is reconstructed from the

feature space into the image space after merging the active feature according to

a certain fusion strategy[5]. The typical transform domain methods include the

non-subsampled contourlet transform (NSCT) [6, 7] , the sparse representation

(SR) [8, 9] and the combined NSCT-SR [10]. The drawback is that these al-

gorithms often produce unrealistic results, even in the areas far away from the

focus/defocus boundary (FDB) [1].

Based on the assumption that each pixel, block or region is either focused

or defocused [11], the spatial domain methods can be classified into three cate-
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gories: pixel-based, block-based and region-based algorithms which discriminate

the focused condition at the pixel, block or region level respectively. However,

the pixel-based methods such as [12] suffer from misregistration [13]. The block-

based techniques such as [14] [15] generally are sensitive to the block-size [16].

And the efficiency and performance of the region-based algorithms such as [17]

[18] are usually influenced by the region segmentation procedures.

In the past few years, Deep Learning (DL) has aroused researchers widespread

interests for its surprising effectiveness in CV applications. Liu et al. [19] made

the first attempt to apply convolutional neural networks (CNNs) to MFIF. In

their work, the siamese architecture was used to extract the feature of the fo-

cused and defocused regions. Guo et al. [20] proposed a fully convolutional

network for focus detection. And a cascaded boundary aware convolutional

network [1] was introduced to achieve clear results around the FDB. Inspired

by the DL tools and region based methods, deep semantic segmentation and

edge detection algorithms are employed in MFIF to capture clear focus maps

[21, 22].

(a) IA (b) IB

Figure 2: IA without DSE and IB suffering from DSE

However, apart from [1, 5], few of previous works take the DSE into account.

So at present, in order to get fusion images with higher quality, one of the

important research trends of MFIF is to aviod this spread effect. Actually, the

DSE describes a common phenomenon that the FDB sometimes is a ribbon

region with the uncertain width instead of a clear curve. More precisely, when

the foreground is in focus, the blurred background object will not influence
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the clear foreground region, that is, the FDB is clear as displayed in Fig.2(a)

IA. However, when the foreground is defocused, the blurred foreground will

permeate the background. Obviously, the FDB is not a clear line and blurred

foreground objects are mildly bigger than itself as shown in Fig.2(b) IB .

In this paper, we present a new DL-based MFIF algorithm termed MFIF-

GAN to attenuate the DSE by generating focus maps in which the foreground

regions are appropriately larger than the corresponding objects. Specifically, the

SE-ResNet [23] is exploited as attention machanism and the reconstruction loss

along with gradient penalty are utilized to enhance the boundary details and

improve the quality of fused results. In addition, a large-scale training dataset

suffering from the DSE is synthesized by applying an α-matte boundary defocus

model [1] to the VOC 2012 dataset [24]. At last, initial focus maps generated

by the network are refined by a post-processing algorithm in a computational

efficient manner.

A series of experiments are carried out to demonstrate the superiority of our

method over the state-of-the-art (SOTA) algorithms qualitively and quantita-

tively. In order to verify the rationality of the generated focus maps, we proposed

a diffusion and contraction module to expand or shrink the foreground region

at the pixel level. In addition, ablation experiments are conducted to study the

role of each element in our network.

The contributions of this paper are as follows:

1. A new multi-focus image fusion algorithm named MFIF-GAN with a new

structure and well-designed loss functions is proposed.

2. A more realistic dataset with DSE is constructed using an α-matte model

which can be a new benchmark training set for other supervised MFIF

algorithms.

3. Training on this new dataset makes the proposed network a better per-

formance qualitively and quantitatively than several SOTAs. With the

computationally lightweight post-processing, the fusion procedure of this

algorithm is fastest with respect to the above methods.
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4. Generating focus maps with larger foregrounds could be a simple and inge-

nious solution for further researches to alleviating the DSE. And a diffusion

and contraction module is firstly introduced to verify this statement.

The rest of this paper is arranged as follows. In section 2, a briefly review

of related works is provided in which the α-matte model, attention mechanisms

and FuseGAN are introduced. Section 3 describes the details of the proposed

network. Then, contrast experiments are conducted in section 4 to evaluate all

methods qualitatively and quantitatively. The effectiveness of the new solution

for attenuating the DSE is also proved by diffusion and contraction experiments.

And ablation experiments are conducted in this section. At last, conclusions

are drawn in section 5.

2. Related Works

2.1. α-matte Model for MFIF Datasets

Due to the lack of large scale datasets of multi-focus images, several data

generation methods based on public natural image datasets were adopted in

many DL-based algorithms [11, 19, 25, 26, 27]. For example, in FuseGAN

[11], a multi-focus image dataset was synthesized based on PASCAL VOC 2012

dataset [24]. Fidel et al.[20] and Guo et al.[28] used MS COCO and CIFAR-10

respectively to constructed MFIF training datasets.

However, the DSE is neglected in all datasets above. The unrealistic training

data may limit the performance of theses algorithms [1]. Therefore, Ma et al.

[1] proposed a novel α-matte model which provides a insightful point of view to

understand the DSE and real world multi-focus images. More details about the

generation of training data is discussed in section 4.1.1.

2.2. Attention Mechanisms and Squeeze-Excitation Block

Apart from traditional CNNs, some researchers attend to strengthen the

representation of networks to focus on salient objects in images for particular

5



tasks. That is, in MFIF issue, consistent with the procedure of generating a

rational focus map characterizing the objects which are in or out of focus.

As an attention mechanism, Hu et al. proposed the SE block [23] comsist-

ing of a squeeze and a excitation operation, which model the interdependen-

cies between the channels of feature maps to recalibrate them. The squeeze

module outputs a global distribution of features by aggregating feature maps

across spatial dimensions. And using a gating mechanism, the excitation op-

eration produces a collection of weights representing the relationships between

the channels. Meanwhile, the SE block could be directly intergrated into other

networks such as residual [29] and inception [30] networks as an atomic building

block. In our work, the combined SE-ResNet module is exploited to extract the

implicit features with multi-channels.

2.3. FuseGAN for Multi-Focus Images to Focus Map Translation

Inspired by the conditional generative adversarial network [31] for image-to-

image translation and the siamese network for extracting features of multi-focus

images[19], FuseGAN [11] was proposed for MFIF task, which employed the

objective function of LSGAN [32] and exploited the convolutional conditional

random fields (ConvCRFs) based technique [33] as a post-processing algorithm.

Compared with other spatial domain methods (CNN [19], BF [18] and DSIFT

[15]), the focused regions detected by FuseGAN are closer to the ground truth.

In our experiments, FuseGAN is regarded as a baseline network.

The disadvantages of FuseGAN are summarized as follows. (1) As it is de-

signed for gray images, the important color information may get lost, that could

limit the performance of the method. (2) It should be noted that the distinc-

tion between images will be excessively magnified by `2-norm based adversarial

loss used in FuseGAN, which could make the training unstable. (3) As for the

additional reconstruction loss function, the coefficient λrec of the binary cross

entropy (BCE) loss is set very large which has no interpretability. And Aritra

Ghosh et al. [34] argued that the cross entropy is commmonly sensitive to label

noise in classification tasks. (4) Last but not least, the ConvCRFs does not work
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if all-in-focus images as ground truth are not available, leading to unsatisfactory

results in the real application.

3. The Proposed Method

Lots of previous MFIF algorithms have achieved good fusion performances,

but few works concentrate on the DSE. For example, the unsupervised MFF-

GAN [35] which has a well-designed desision block and adaptive content loss

function does not analyse the essence of the defocus spreading. In this section,

we propose a supervised GAN-based network for the MFIF task, especially for

alleviating the DSE. To begin with, we introduce the symbols used in this paper.

The source image IA corresponds to the image which has a clear foreground

with a blurred background. While another source IB suffering from the DSE has

a blurred foreground with a clear background. The all-in-focus image denotes as

I. In the synthetic training set, it is regarded as the ground truth. The binary

segmentation map F represents a focus map, where Fij = 1 if (i, j) pixel is in

focus and 0 otherwise. The focus map generated by the network and the one

refined by post-processing are denoted by F̂ and F̂final respectively.

3.1. Architecture of the Network

As a variant of GAN [36], MFIF-GAN also consists of two fundamental

modules: a generator and a discriminator. The architecture of our network is

shown in Fig.3. The generator in MFIF-GAN is fed with the source color images

IA and IB aiming to generate focus map F̂ . The inputs of the discriminator are

the concatenation of IA, IB and the (real or generated) focus map. The aim of

the generator is to reconstruct focus maps as accurately as possible, while the

purpose of the discriminator is to distinguish the generated focus maps from

the real ones.

Generator G: The G includes an encoder, a tensor concatenation module

and a decoder. In order to effectively process color images, the encoder is

designed as six branches of parallel sub-networks sharing parameters for each

channel of source images.
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Each sub-network in encoder is composed of three convolutional modules and

nine residual blocks. In order to reduce computation burden, the 2nd and 3rd

convolutional modules with a stride of 2 down-sample feature maps. Further-

more, inspired by SE-Net [23] as an attention mechanism, each residual block is

equipped with a SE block as SE-ResNet to find the interdependencies between

the channels of feature maps and extract the most informative components of

the images. In every SE-ResNet module, the SE block is attached to the non-

identity branch which is a defaulted residual module with two convolutional

layers and batch normalization (BatchNorm) [37] to guarantee the squeeze and

excitation operations work before addition with the identity branch.
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Figure 3: The work flow of the training and the detail architecture of MFIF-GAN. The

convolutional layer, transposed convolutional layer, BatchNorm layer, Rectified Linear Unit

and fully connected layer are denoted as Conv, Deconv, BN, ReLU and FC respectively. The

number under every block represents the channel number of Conv or Deconv. The array

in bracket in every block indicates the kernel, stride and padding size of Conv or Deconv

respectively.

In the tensor concatenation part, six feature maps extracted by the en-
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coder from each channel are averaged to obtain the global features FeatureA,

FeatureB of IA and IB , respectively. Then, FeatureA and FeatureB are con-

catenated on the third channel.

In the decoder, the joint feature is upsampled and deconvolved through two

transposed convolutional layers for size recovery and reconstruction. Finally,

the single-channel focus map is output by a convolutional and activating layer.

Discriminator D: In the discriminator, eight convolutional layers are used

to compress the input data continuously until the final sigmoid activation func-

tion is used to judge whether the input focus map is real or generated. Specif-

ically, the input is a 7-channel tensor, i.e., the concatenation of source images

and a focus map which is generated by G or be the real one from the training

dataset. The kernal, padding and stride size of convolutional layers for down-

sampling are set to guarantee the final output is a single element for judgment.

3.2. Loss Function

The objective function plays a crucial role in deep learning. Some works

indicated that the original GAN suffers from training instability because during

the D and G are trained to optimality alternately, the Jensen-Shannon diver-

gence between the real data distribution Pdata and the noise distribution Pz is

minimized [36], which often leads to vanishing gradients. As a improved version,

WGAN [38] is still subjected to either vanishing or exploding gradients without

rational tuning of the clipping threshold c [39].

So in our work, we adopted the improved training of WGAN [39], the ad-

versarial loss function of D and G are listed as equations (1) and (2):

Ladv(D) = EIA,B∼PIA,B
[D(IA,B , G(IA,B))]− EIA,B ,F∼PIA,B,F

[D(IA,B , F )] (1)

Ladv(G) = −EIA,B∼PIA,B
[D(IA,B , G(IA,B))] (2)

where IA,B , F ∼ PIA,B ,F in (1) denotes the inputs of D follow the joint distri-

bution of the couple of images and focus maps from the real data.

As the main contribution in [39], the gradient penalty Lgp is added into the

loss of D to stabilize the training process and further improve the quality of
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generated focus maps. That is:

Lgp = EIA,B ,F̃∼PIA,B,F̃
[(‖ 5F̃ D(IA,B , F̃ )‖2 − 1)2] (3)

where F̃ is sampled uniformly along a straight line between F and F̂ .

According to [34], compared with cross entropy loss used in FuseGAN, the

loss function based on mean absolute value of error is more robust to the noise.

Therefore, the `1-norm is utilized as reconstruction loss Lrec to measure the

difference between the generated focus maps and the real ones, as shown in

equation (4):

Lrec = EIA,B ,F∼PIA,B,F
[|F −G(IA,B)|] (4)

So the total loss functions of MFIF-GAN can be defined by (5) and (6):

min
D
L(D) = Ladv(D) + λgpLgp (5)

min
G
L(G) = Ladv(G) + λrecLrec (6)

We use λgp = 10 defaulted in [39] for all experiments. In order that λgp and

λrec are used to adjust these two additional loss terms to the same level of

importance, the value of λrec is set as same as λgp.

3.3. Post-processing in MFIF-GAN

The focus maps generated by G often suffer from misregistration or noise

resulting in unsatisfactory fusion images. Therefore, we employ the small region

removal (SRR) strategy for refinement. The SRR works on the binary matrix

and it removes the region whose number of pixels is smaller than a threshold N .

In this paper, we set N = 0.001WH, where W and H are the width and height

of an image, respectively. The final focus maps F̂final can be obtained after

this post-processing which is so simple and effective that it does not increase

computational burden.

4. Experiments

In this section, the preparations of experiments including datasets, assess-

ment metrics along with setting of training and testing are firstly introduced.
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Based on three public test datasets, we compare our MFIF-GAN with eight

representative SOTA methods, including spetial domain methods Quadtree [40]

1 and DSIFT [15] 2, transform domain methods NSCT [6] 3, CSR [41] 4 and

MWGF [42] 5, deep learning based methods MMF-Net [1] 6, CNN [19] 7 and

FuseGAN [11] 8. Qualitative and quantitative results of all methods are pro-

vided in detail. In addition, the difficulty of avioding the DSE is analysed and a

simple and effective solution is put forward. Subsequently, the edge diffusion and

contraction experiments are proposed to verify the rationality of this solution.

Finally, the ablation experiments are conducted to validate the contributions of

several modules in our method.

4.1. Experiments Setting

4.1.1. Dataset

The MFIF training datasets which take the DSE into account are not avail-

able publicly. Therefore, we apply the α-matte model [1] to the PASCAL VOC

2012 [24] to construct a synthetic training dataset with DSE which will be

termed α-matte dataset.

Each picture in this image segmentation database PASCAL VOC 2012 is

accompanied by a segmentation map. We regard the binary segmentation map

as a focus map F (matte αC in [1]). Using F , the clear foreground FGC and

background BGC can be got as follows:

FGC = F ∗ I (7)

BGC = (1− F ) ∗ I (8)

1https://github.com/uzeful/Quadtree-Based-Multi-focus-Image-Fusion
2http://www.escience.cn/people/liuyu1/Codes.html
3https://github.com/yuliu316316/MST-SR-Fusion-Toolbox
4http://www.escience.cn/people/liuyu1/Codes.html
5https://www.researchgate.net/publication/307415978_MATLAB_Code_of_Our_

Multi-focus_Image_Fusion_Algorithm_MWGF
6https://github.com/xytmhy/MMF-Net-Multi-Focus-Image-Fusion
7http://home.ustc.edu.cn/~liuyu1
8The official codes of FuseGAN are unavailable, so we re-implement and re-train FuseGAN.
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where ∗ means pixel-wise production.

The blurred focus map FB (matte αB in [1]) can be obtained by applying a

gaussian filter G(x, y;σ) to corresponding F . That is:

FB = G(x, y;σ)⊗ F (9)

where ⊗ represents the convolutional operator. The blurred foreground FGB

and background BGB can be acquired in the same way.

Finally, according to the α-matte model, a pair of training images IA and

IB with only two valid surface (foreground surface SFG and background surface

SBG) can be obtained by equations (10) and (11) respectively.

IA = Sclear
FG + Sblurry

BG

= FGC + (1− αC) ∗BGB

= F ∗ I + (1− F ) ∗ {G(x, y;σ)⊗ [(1− F ) ∗ I]}

(10)

IB = Sblurry
FG + Sclear

BG

= FGB + (1− αB) ∗BGC

= G(x, y;σ)⊗ (F ∗ I) + (1−G(x, y;σ)⊗ F ) ∗ [(1− F ) ∗ I]

(11)

In order to verify the contribution of the α-matte model, based on the gener-

ation method raised in [28], an another dataset without DSE is synthesized for

the ablation experiment. In what follows, we call it conventional MFIF training

dataset. In formula, the source images are obtained by (12) (13).

IA = F ∗ I + (1− F ) ∗ (G(x, y;σ)⊗ I) (12)

IB = F ∗ (G(x, y;σ)⊗ I) + (1− F ) ∗ I (13)

As for testing data, the famous Lytro [43] dataset is utilized. In addition,

a new dataset called MFFW [5] which significantly suffers from the DSE is

employed in the test. In order to verify the performance of our algorithm com-

prehensively, 10 pairs of gray images termed grayscale [13] is also used.
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4.1.2. Training and Testing Setup

In the training stage, we optimize G and D alternately. In order to better

optimize the objective function and simplify the updating strategy of learning

rate, we use the adam with two parameters β1 and β2 which are initialized to

0.5 and 0.999, respectively. And the linear declining strategy is used to update

the learning rates of G and D both initialized to 0.0001. Besides, the update

rate ratio between G and D is 1 : 5, which means that G is updated once after

updating D for five times.

In the testing phase, we only retain G followed by a SRR to generate the

focus maps F̂ and refine them. The processed focus maps F̂final are used to

extract the clear regions and reconstruct the all-in-focus images as follows:

Ifused = IA ∗ F̂final + IB ∗ (1− F̂final) (14)

For the grayscale dataset, samples are tripled to form images with 3 channels

as inputs of G.

4.1.3. Quantitative Assessment Metrics

In order to evaluate the performance of different algorithms comprehensively,

twelve objective metrics are utilized 9, which are (1) information theory-based

metrics including mutual information MI [44], Tsallis entropy based metric

TE [45] and nonlinear correlation information entropy NCIE [46]; (2) image

structure similarity-based metric: structure similarity index measure (SSIM)

based metric proposedal by Cui Yang et al. (also named Yang’s metric QY ) [47];

(3) human perception inspired fusion metric: Chen-blum metric QCB [48] (4)

image feature-based metrics including gradient-based metric QG [49], multiscale

scheme based QM [50], spatial frequency based SF [51], linear index of fuzziness

LIF [52], average gradient AG[53], mean square deviation MSD [26] and gray

level difference GLD [26]. Detailed mathematical expressions of these metrics

could be found in original papers or overview work [54].

9The implementation of these metrics are available at https://github.com/zhengliu6699/

imageFusionMetrics
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It is worth to note that the fused images are better if all metrics are larger

except for LIF . These metrics have different emphases, so none of them is

better than all others. The first eight traditional metrics (i.e. MI, TE, NCIE,

QY , QCB , QG, QM and SF ) are widely used in assessment of images quality for

their characteristics of computing agreements of fused images with the sources.

Instead, the last four metrics (i.e. LIF , AG, MSD and GLD) are used to

evaluate the performance of edge detail and contrast enhancement of the fused

results in spite of the sources [26].

4.2. Comparison with SOTA Methods

4.2.1. Quantitative Comparison

Based on the above test datasets and evaluation metrics, the quantitative

results with respect to the proposed MFIF-GAN and SOTAs are listed in Tab.1.

On the Lytro dataset, it can be clearly seen that on the first eight traditional

metrics, our proposed MFIF-GAN trained on the α-matte dataset is generally

superior to other methods. Moreover, on the last four metrics which evaluate

the edge quality, MFIF-GAN can still take the lead in addition to the MMF-

Net which is specially designed and optimized for the DSE. On the MFFW, the

absolute advantage of our MFIF-GAN compared with other SOTAs is obvious.

As for the grayscale dataset, our method achieves comparable results to the

Quadtree generally.

4.2.2. Visual Comparison of Details

More attention could be paid to the details on the basis that the overall

fusion results are good. So based on the 20th image in Lytro and the 11th in

MFFW, the fusion results with detailed magnified of all methods, as shown in

Fig.4, are compared visually to show the superior fusion performance of MFIF-

GAN, especially in the region around the FDB.

Furthermore, by comparing the Fig.4(h) and 4(i), 4(q) and 4(r) respectively,

it can be seen that if IA, as the input of ConvCRFs in the FuseGAN, is replaced

with IB suffers from the DSE, the edge of the foreground will be much clearer.
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Table 1: Average scores of fusion result based on Lytro, MFFW and grayscale datasets by all

algorithms on 12 metrics. The best, the second best, and the third best results are highlighted

in bold, double underlining, and underlining, respectively.

(a) Lytro

CNN MMF-net MWGF Quadtree DSIFT CSR NSCT FuseGAN MFIF-GAN

MI 1.07075 0.92506 1.01685 1.05303 1.08438 0.99020 0.90903 1.05501 1.09446

TE 0.37853 0.36443 0.37221 0.37658 0.37925 0.37288 0.36594 0.37610 0.38034

NCIE 0.83933 0.83067 0.83603 0.83806 0.84021 0.83400 0.82957 0.83896 0.84097

QG 0.70763 0.64492 0.71059 0.69854 0.70118 0.69508 0.68305 0.70814 0.71786

QM 1.91707 1.42079 1.73044 1.87318 2.03527 1.63746 1.40236 1.77586 2.07952

SF -0.03422 -0.00845 -0.03875 -0.02546 -0.02442 -0.03371 -0.03258 -0.03629 -0.02324

QY 0.97583 0.94947 0.97004 0.973990 0.97615 0.95141 0.9533 0.97419 0.97696

QCB 0.79612 0.74312 0.77483 0.78761 0.79886 0.76064 0.74455 0.784 0.79764

LIF 0.38740 0.38670 0.387790 0.38714 0.38694 0.38737 0.38959 0.38823 0.38698

AG 2.99603 3.09201 2.97081 3.02048 3.02212 2.97995 3.00927 3.00098 3.0266

MSD 0.07007 0.07059 0.07000 0.070130 0.07017 0.07001 0.07003 0.06999 0.07019

GLD 14.75660 15.23405 14.62293 14.87703 14.88406 14.67629 14.82605 14.77889 14.90642

(b) MFFW

CNN MWGF Quadtree DSIFT CSR NSCT FuseGAN MFIF-GAN

MI 0.99738 0.96529 1.02036 0.98671 0.8907 0.78236 1.01877 1.06806

TE 0.364 0.35761 0.36466 0.35911 0.3475 0.34291 0.36908 0.37169

NCIE 0.83288 0.83086 0.83451 0.83298 0.8271 0.82123 0.83531 0.83716

QG 0.56866 0.60566 0.49265 0.63777 0.53382 0.56998 0.62866 0.56345

QM 1.94031 1.8218 2.08961 2.03046 1.88064 1.14658 1.83548 2.21075

SF -0.05251 -0.05472 -0.04142 -0.03498 -0.03717 -0.04652 -0.04685 -0.03111

QY 0.96754 0.97207 0.96834 0.93459 0.86835 0.91066 0.97554 0.97939

QCB 0.74025 0.74085 0.75113 0.72927 0.69403 0.67343 0.74159 0.75624

LIF 0.38654 0.38852 0.38617 0.38884 0.38709 0.38626 0.38522 0.38361

AG 3.53508 3.51182 3.60422 3.62413 3.63075 3.59994 3.55498 3.62057

MSD 0.07931 0.07833 0.07857 0.07846 0.07843 0.07922 0.07879 0.07902

GLD 17.49452 17.36662 17.83513 17.92287 17.95869 17.80467 17.59685 17.91793

(c) grayscale

CNN MWGF Quadtree DSIFT CSR NSCT FuseGAN MFIF-GAN

MI 1.1222 1.10868 1.15406 1.14503 1.04652 0.85708 1.07939 1.13731

TE 0.41359 0.41237 0.41746 0.41653 0.41127 0.38899 0.41031 0.41859

NCIE 0.8376 0.83731 0.83957 0.83889 0.83307 0.82378 0.83649 0.83899

QG 0.67711 0.67974 0.63484 0.68076 0.67628 0.63163 0.61953 0.68343

QM 2.33876 2.32259 2.46421 2.44523 2.22342 1.55645 1.73248 2.3914

SF -0.0414 -0.04321 -0.03422 -0.0353 -0.03964 -0.03928 0.02467 -0.03342

QY 0.97724 0.97809 0.97873 0.97517 0.93837 0.93601 0.95378 0.97348

QCB 0.76327 0.76461 0.76313 0.76427 0.72702 0.7029 0.74415 0.7558

LIF 0.47571 0.47552 0.47551 0.47556 0.47578 0.47465 0.49394 0.47458

AG 3.53597 3.53821 3.56883 3.5687 3.52606 3.58797 3.54217 3.56084

MSD 0.13997 0.13984 0.14002 0.14009 0.13987 0.14014 0.15071 0.14064

GLD 17.15701 17.1702 17.31683 17.31368 17.10948 17.42544 17.1133 17.27329
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(a) CNN (b) MMF-net (c) MWGF (d) Quadtree (e) BF

(f) DSIFT (g) CSR (h) FuseGAN (i) FuseGAN Ib (j) MFIF-GAN

(k) CNN (l) MWGF (m) Quadtree (n) BF (o) DSIFT

(p) CSR (q) FuseGAN (r) FuseGAN Ib (s) MFIF-GAN (t) Ground truth

Figure 4: The fusion results on Lytro (20th) and MFFW (11th) with detail magnified of all

algorithms. The FuseGAN Ib exhibits the fusion result by FuseGAN with ConvCRF which

feed with IB as ground truth.
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4.2.3. Solution to mitigating the DSE

As we discussed in the drawbacks of FuseGAN, when the all-in-focus image

do not exist, the IA has to be used as ground truth for the ConvCRFs. However,

the DSE vanishes when it comes to IA, which means the FDB in IA is definitely

clear. Thus the outputs of FuseGAN are focus maps which represent the real

foreground objects with sharp edges. According to the α-matte model theory

and the experience in daily observation, using these focus maps could result in

two completely different situations in the procedure of extracting clear regions

from source images:

When IA is processed, the extracted foreground region is ideal. In contrast,

when it comes to IB , because of the existence of the DSE, there must be a part

of the foreground information diffuses into the background. So the diffussion

laying outside the foreground objects remain in the clear background (as shown

obviously in the Fig.4(h) and 4(q)). Consequently, the fuzzy FDB appears in

the fusion images, which is the diffusion of the foreground in IB essentially.

That also partially explains why the undesirable results can be alleviated to

some extend in FuseGAN when IA is substituted with IB , as shown in Fig.4(i)

and 4(r).

Actually, a part of the information about clear backgrounds is indeed missed

as it is covered by the diffusion of foregrounds in IB . Moreover, these regions are

irregular, as the width is affected by the shape of foregrounds and the distance

from different positions to the sensor. So it is extremely complex and nontrivial

to ideally handle FDB regions and eliminate the DSE.

One of the solutions is to generate focus maps in which the foregrounds are

mildly larger than real objects. Using these focus maps can remain the back-

grounds information around foregrounds in IA. Actually, focus maps obtained

by MFIF-GAN is exactly what we expected.

To illustrate this statement, we make the difference between two sets of focus

maps generated by baseline FuseGAN and MFIF-GAN respectively. As shown

in Fig.5(c), the appearance of white edges indicates this statement obviously.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i)

Figure 5: (a) and (b) exhibits the F̂final generated by MFIF-GAN and FuseGAN respectively;

(c) is the difference between two focus maps; (d) and (e) shows the background and foreground

extracted respectively by F̂final in (a); (f) and (g) are the counterparts processed by F̂final

in (b); (h) and (i) are fusion results of MFIF-GAN and FuseGAN with detail magnified.

To show the improvement brought by this charactoristic more clearly and

intuitively, we used these two focus maps respectively to extract the foreground

and background of source images. As shown in Fig.5(d) and 5(e), the back-

ground extracted by the focus map generated by MFIF-GAN partially elimi-

nates the edge diffsuion, that is DSE. Meanwhile the extracted foreground con-
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tains part of the blurred background which can smooth the FDB. In contrast, as

shown clearly in Fig.5(f) and 5(g), even though the foreground extracted by the

focus map generated by FuseGAN seems to be ideal, the extracted background

in Fig.5(f) retains foreground diffusion around the edge.

4.2.4. Diffusion and Contraction Experiments
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Figure 6: (a)-(e) are focus maps with different degree of edge diffusion or contraction in which

(c) is the original focus map generated by our method. And (f) is the average performance

on Lytro using these focus maps. All values of each metrics are normalized to [0-1].

The scale of the foreground in focus maps is crucial when we employ pro-

posed solution to attenuate the DSE. In order to explore the rational size of

the foreground regions and confirm the effectiveness of MFIF-GAN, we design

a diffusion and contraction module to enlarge or shrink the foreground area in

focus maps generated by our method at the pixel level. As shown in Fig.6 (a)-

(e), the negative value of the degree of diffusion indicates foreground regions
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are contracted by certain pixels. According to equation (14), a series of focus

maps with differnet degree of edge diffusion or contraction are used as guidance

to fuse source images.

As reported in Fig.6(f), the results assessed by MI and NCIE indicate

that apart from using original focus maps, the performances decrease with the

expansion of the foreground regions. And the line of QCB shows that the fore-

ground regions which are two pixels larger than the original ones could bring

best performance. Except for these three metrics, experimental results gener-

ally illustrate that using the focus maps without any operations achieves the

largest values. That demonstrates MFIF-GAN can produce focus maps which

have accurate size of foreground regions and attenuate the DSE exactly at the

pixel level.

4.2.5. Execution Time

This section is about the comparison of computational efficiency. Tab.2 lists

the mean execution time of each method on testing datasets10. The experiments

are carried out on a computer with Intel Core i7-10700K CPU @ 3.8GHz and

RTX 2080ti GPU. The results indicate that compared with SOTAs, the fusion

efficiency of our algorithm is the highest.

Table 2: Average used time of all methods for pre-pair images fusion (unit: seconds)

CNN MWGF Quadtree DSIFT CSR NSCT FuseGAN MFIF-GAN

Lytro 25.6188 1.9677 0.5416 0.9095 120.9291 1.7989 0.4976 0.2229

MFFW 28.6874 2.2521 0.4922 1.6303 139.3664 2.2881 0.5019 0.2236

grayscale 18.0621 0.4808 0.3029 0.7909 28.9021 0.4929 0.2883 0.1344

FuseGAN needs extra post-processing, so we record the time with respect to

the generation of initial focus maps, post-processing and final fusion. The aver-

age time used are (Lytro) 0.2135s, 0.2355s, 0.0486s; (MFFW) 0.2156s, 0.2393s,

10Because the fusion results of MMF-net on Lytro are used directly, this method is not

involved in the comparison.
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0.047s; (grayscale) 0.078s, 0.1969s, 0.0133s respectively.

4.3. Ablation Experiments

The innovations of our MFIF-GAN include a new encoder with six parallel

branches as well as attention modules, the well-designed loss function with gradi-

ent regularization and `1-norm based reconstruction, and a simple but effective

post-processing strategy. In addition, the network is trained on an α-matte

dataset. To validate the role of each element in our work, a series of ablation

experiments are conducted here. The results are shown in Fig.7.
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Figure 7: Score lines of ablation experiments based on Lytro with regard to each metric. The

lines named “SOTAs” are average scores in terms of all SOTAs on every image.

(1) In order to verify the capability of our MFIF-GAN to extract features

of color images, the structure of encoder in generator are redesigned with two

parallel sub-networks which input images with single channel. (2) To show

the effectiveness of the α-matte model, our network is also trained on the con-

ventional MFIF dataset generated in section 4.1.1. From score lines named

“two branches” and “no alpha” as shown in every sub-figure, we can see that

apart from the SOTAs, the network with two branches and MFIF-GAN trained
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on conventional MFIF dataset are generally inferior to all other counterparts

in ablation experiments, which indicates that the structure of the network and

training data play significant roles and more implicit features could be extracted

in color images suffering from the DSE.

(3) The `1-norm based reconstruction loss Lrec (equation (4)) is substituted

by the BCE used in baseline work to testify the validity of this loss. Compared

with other sub-figures, the worse performances of line “BCE” on edge detail

assessment metrics (LIF , AG, MSD and GLD) indicate that the `1-norm based

loss Lrec could force the generator to pay more attention to the information

around the FDB and enhance the edge details.

(4) The gradient penalty Lgp (equation (3)), and post-processing procedure

are removed respectively in MFIF-GAN. Also, the SE-ResNet block is replaced

by general ResNet to prove the improvement brought by this attention mecha-

nism. In addition, to show the role of adversarial loss Ladv (equations (1) and

(2)) rised in [39], they are replaced by the least squares loss [32] used in the

FuseGAN. The lines named “no gp”, “no pp”, “no SE” and “LS” show that

each of these factors improves the performance of fusion results to some extent,

but generally none of them is more important than others.

Last but not least, as shown in score lines “SOTAs”, it is worthy to note

that without any one of factors, our algorithm still has a big advantage over

other SOTAs generally, which indicates that proposed MFIF-GAN with a new

architecture and well-designed loss function has strong robustness for gradient

regularization, post-processing, attention mechanism and training dataset.

5. Conclusions

In this paper, we propose a generative adversarial network termed MFIF-

GAN for the MFIF task and put forward a new solution to attenuate the DSE

which is rampant in this field. The motivation of our work is to guarantee the

foreground regions in generated focus maps are mildly larger than the corre-

sponding objects, which can simulate the DSE and further exactly alleviate this
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annoying effect. The innovation is that attention machanism is exploited in

the network which has a new architecture with six branches to extract features.

And the `1-norm reconstruction loss and gradient penalty is creatively added to

the optimization function to enhance the edge details and improve the quality

of the outputs. Moreover, the SRR algorithm for post-processing is used to re-

fine the initial focus maps in a computational effective way. Last but not least,

based on a synthetic α-matte training dataset, this novel end-to-end color multi-

focus image fusion algorithm can fuse more realistic images especially around

the FDB.

As a new fusion algorithm, experiments demonstrate that our MFIF-GAN

is superior to other representative SOTA methods on visual perception, quanti-

tative analysis and efficiency. The edge diffusion and contraction module proves

that following the proposed solution, MFIF-GAN can generate accurate focus

maps and alleviate the DSE at the pixel level, which can bring more satisfactory

pretreatment to other computer vision tasks.
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