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ABSTRACT 

Most of the standard image and video codecs are block-based and depending upon the compression ratio the 

compressed images/videos suffer from different distortions. At low ratios, blurriness is observed and as compression 

increases blocking artifacts occur. Generally, in order to reduce blockiness, images are low-pass filtered which leads 

to more blurriness. Also, in bokeh mode images they are commonly seen: blurriness as a result of intentional blurred 

background while blocking artifact and global blurriness arising due to compression. Therefore, such visual media 

suffer from both blockiness and blurriness distortions. Along with this, noise is also commonly encountered distortion. 

Most of the existing works on quality assessment quantify these distortions individually. This paper proposes a 

methodology to blindly measure overall quality of an image suffering from these distortions, individually as well as 

jointly. This is achieved by considering the sum of absolute values of low and high-frequency Discrete Frequency 

Transform (DFT) coefficients defined as sum magnitudes. The number of blocks lying in specific ranges of sum 

magnitudes including zero-valued AC coefficients and mean of 100 maximum and 100 minimum values of these sum 

magnitudes are used as feature vectors. These features are then fed to the Machine Learning (ML) based Gaussian 

Process Regression (GPR) model, which quantifies the image quality. The simulation results show that the proposed 

method can estimate the quality of images distorted with the blockiness, blurriness, noise and their combinations.  It 

is relatively fast compared to many state-of-art methods, and therefore is suitable for real-time quality monitoring 

applications. 
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1. INTRODUCTION 

Many techniques inspired by biological systems of living beings are employed in tasks of developing artificially 

intelligent systems, data processing, computation methods, optimization algorithms, etc. As human beings are the end-

users in a wide range of applications, hence many-a-times techniques are required that closely replicate the human 

biological systems. One such application is Image Quality Assessment (IQA) where the methods are designed in a 

way to perceive the quality of visual media according to the Human Visual System (HVS).  Major functionalities of 

neurons in the visual cortex such as frequency decomposition and divisive normalization transform of visual signals 

are replicated by such quality assessment methods [1].  

1.1 MOTIVATION: 

Today, images and videos are popular means of information sharing through social media platforms like Instagram, 

Facebook, YouTube, etc. Furthermore, there is an exponential increase in mobile/Internet data traffic worldwide and 

it is estimated that by the year 2022, the visual contents will consume about 80% of total Internet traffic [2]. Despite 

being the main source of information sharing in modern digital era, the most prevalent images and videos are likely 

to get contaminated with multiple distortions as they undergo through different stages like acquisition, transmission, 

compression, processing, etc. These operations introduce noises during acquisition and transmissions, blocking 

artifacts and blurriness during JPEG/MPEG compression, blurriness during filtering or processing, etc. The joint effect 
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of the multiple distortions on image quality is perceptually different from the effect caused by single distortion in 

images. Therefore, it becomes important to develop IQA method for multiple distortions which have recently gained 

significant attention. 

The image quality can be assessed either subjectively or objectively. Despite being highly consistent, the subjective 

quality evaluation requires a large number of human observers and therefore it is an expensive and time-consuming 

process and therefore not suitable for real-time applications. Alternatively, objective image quality assessment 

techniques do not require any human intervention and are faster. The objective quality evaluation techniques can be 

classified into three categories: full-reference (FR) which requires the original image to estimate the quality of the 

target image; reduced reference (RR), which does not require the reference image as a whole, rather uses some of its 

features; and no-reference (NR) methods, where the quality is being estimated without the reference (or original) 

image. For most real time applications, the NR (also known as blind) image quality assessment technique is the most 

suitable approach.  

To facilitate the fast exchange of visual information under unprecedented traffic growth, the use of efficient 

image/video compression techniques becomes unavoidable. Most of the efficient compression techniques are lossy 

and introduce some degree of distortions as evident from Fig. 1. The highly compressed images/videos are likely to 

be more distorted, so a tradeoff between compression efficiency and image/video quality needs to be properly 

managed.  It requires a fast and accurate blind quality assessment technique so that the trade-off between quality and 

degree of compression can be managed on a real-time basis. In coded images/videos, two commonly encountered 

distortions are the blockiness and blurriness artefacts. The blocking artefacts are observed in block-based JPEG (Joint 

Photographic Experts Group) and H.26x/MPEG (Moving Picture Experts Group) coded images/videos when a 

significant difference in quantized DC coefficients of adjacent blocks occurs. On the other hand, coded images appear 

to be blurred when either the image is coded at low compression ratios causing the removal of the high frequency 

components, or when the processing like low pass filtering (or loop filtering in standard video coders) are employed 

Fig.1 (a) original image CSIQ database [5], JPEG compressed images at various compression ratios (CR):-(b) CR=20, (c) 

CR=40, (d) CR=65 and (e)CR=120 
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to remove the blocking artefacts (specifically in video coding). These two compression related distortions i.e. 

blockiness and blurriness go hand in hand in images/videos. It has been observed that initially at very low compression 

rate, first blurriness appears and as the rate is further stepped up, blocking artefact becomes visible [3]. Some authors 

have exploited such relation between blockiness and blurriness, for designing more efficient image/video quality 

assessment (IQA) tool. For example, if reference image or its partial information is available, then by measuring the 

gain and loss at block boundaries, one can design a very efficient IQA [4].  To verify this observation, an image from 

CSIQ database [5] is compressed at different compression ratios (CR) and corresponding decoded images are shown 

in Fig. 1. For better visualization a portion of image shown in Yellow Square is cropped and enlarged. The pristine 

image of Fig. 1(a) is compressed at CR= 20, 40, 65 and 120 which are shown in Figs. 1(b)-(e) respectively. Initially 

at low compression ratio (CR=20) the image of Fig. 1(b) tends to lose the sharpness, as fine lines of corn skin are 

disappearing when compared with the original image.  As the CR is increased to 65, more blurriness is introduced.  

When the compression ratio becomes very high (CR=120), blocking artefacts becomes prominent as apparent from 

Fig. 1(e). From this example, it is visually evident that block-based compression techniques introduce both blurriness 

as well as blockiness. Thus, any compressed image/video has a mixture of both distortions.  Another scenario where 

a combination of these two distortions appear in coexistence is when loop-filtering is employed, especially in the video 

encoder loop. Moreover, Additive White Gaussian noise (AWGN) is also commonly experienced distortion which 

generally affects the perceptual quality of images by introducing a high-frequency random component. The motivation 

of the proposed work is to develop an IQA method that can accurately estimate the quality of images distorted with 

blockiness, blurriness and/or noise (individually or jointly). 

1.2 RELATED WORK: 

 The existing blind or NR-IQA (no-reference IQA) methods can be categorized into two broad groups, namely: 

distortion specific methods and generic methods. Sometimes, the nature of distortion may be known e.g., quantization, 

distortions due to camera motion, inherent noise sources inside camera, low-pass filtering, etc. However, in many 

cases the source and nature of distortions are anonymous. The distortion specific methods, as the name suggests, are 

designed to measure image quality under a specific type of single distortion. They can be employed when the image 

is exposed to a single known type of distortion. In contrast, generic methods are designed to assess different kinds of 

individual distortions.  

In the distortion specific IQA methods, we consider here the methods specifically designed for blurriness, blocking 

artefacts or noise. The quality of blurred images can be assessed by measuring the spread of edges [6]- [8], by 

measuring the just noticeable blur (JNB) [9]- [11], or by computing kurtosis on the Discrete Cosine Transform (DCT) 

blocks [12].  In [13], authors use Maximum Local Variation (MLV) for each pixel to estimate the sharpness of an 

image. The MLV’s are assigned weights and their standard deviation is used to measure the degree of sharpness, 

which is then used to quantify the blurriness. The concept of Structural Similarity Index Measure (SSIM) was 

exploited by Zhang et al. in [14] to detect blurriness in images while re-blurring it. It is a two-step framework in which 

first the image is filtered by a Gaussian low pass filter (GLPF) and then the corresponding changes in histogram are 

analyzed to determine extent of blurriness. In [15], authors have used the Exact Zernike Moments & Gradient 

Magnitude (EZMGM) for establishing a blurriness metric. H. Liu et al. have proposed a blur metric in [16] which 

utilizes edge blur and neural network and works well on images having intentionally blurred background. 

Similarly, numerous techniques have been developed to measure the distortion due to blocking artefacts [17]-[24]. 

Most of these techniques exploit the frequency-domain characteristics, mainly the Discrete Fourier Transform (DFT) 

[17], [21], and Discrete Cosine Transform (DCT) [18], [20]. The combination of DFT and DCT has also been exploited 

to assess the quality of JPEG compressed images [22], where authors use the number of zero-valued coefficients in 

DCT transformed blocks, weighted by DFT-generated quality maps as features to assess the degree of blockiness. 

Though the concept is simple and effective, but it has poor accuracy for most of the standard databases. A gradient-

based technique is proposed in [23], in which for each 8×8 pixels non-overlapping block, two parameters namely 

luminance change (across adjacent blocks) and degree of blockiness (evaluated by adding the horizontal and vertical 
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derivatives) are determined to measure the image quality. In general, this method has a better accuracy, but it fails to 

accurately estimate the quality if blocks are surrounded with flat regions. Zhu et al. [24] proposed a technique based 

on quality factor (QF) and recompression of already compressed JPEG images.  The methods proposed in [25]- [28] 

were developed for quality assessment of noisy images. 

Most of the methods mentioned above though have good performance on either of distortions individually but they 

become very inefficient for images distorted with more than one type of distortions. As in the present era, the images 

are likely to be exposed to commingled distortions, diverse kind of generic IQA methods are required which can 

estimate image quality in presence of multiple known/unknown distortions with high accuracy. Some of the relevant 

generic methods are reviewed next.  

A full reference method capable of assessing image quality distorted by both blurriness and blockiness using frequency 

domain approach is proposed in [3].  A number of generic blind image quality assessment methods exists like [29] - 

[39]. The majority of these methods are based on Natural Scene Statistics (NSS) of the image [29] - [34], [37], [39], 

etc. which rely on the fact that when an image is exposed to distortions, its statistical parameters get changed, which 

can be utilized to estimate the degree of distortion in the image. The NSS features may be extracted either in spatial 

domain or in transform domain or in a combination of both. Moorthy and Bovik proposed a technique named DIIVINE 

(Distortion Identification-based Image Verity and INtegrity Evaluation) [31] which assess the image quality in two 

steps. Identification of distortion in the first step is followed by the quantification of degree of distortion in the second 

step. It uses wavelet transform to obtain statistical features and Gaussian Scale Mixture for modelling the features. 

This method uses a large feature size (a total of 88 features), which obviously makes it too complex. BLIINDS2 

(BLind Image Integrity Notator using DCT Statistics) [32] is a method that uses fewer number of DCT-based NSS 

features.  Here the DCT coefficients of each block are modelled using Generalized Gaussian density (GGD) model 

and the parameters of GGD model are fed to Bayesian regression model to quantify the image quality.  Though 

BLINDS2 [32] method has better efficiency as compared to DIIVINE [31] method, the large processing time due to 

the use of non-linear sorting of block-based features in BLIINDS2 [32] makes it slow and imposes restriction for its 

use in many applications [29]. The BRISQUE (Blind / Referenceless Image Spatial Quality Evaluator) [29] method 

is a spatial domain NSS based method, which uses Mean Subtracted Contrast Normalized (MSCN) coefficients of 

image to develop a quality assessment metric. Though BRISQUE is one of the fastest (in terms of computational time) 

IQA method, but it performs poorly for specific type of images as in TID2013 database [40]. Xue et al. [33] have 

utilized Gradient magnitude (GM) and Laplacian of Gaussian (LoG) jointly to study the effect of local luminance 

changes and intensity variations respectively on the image quality, as they are closely related to the HVS. This method 

measures the quality of images exposed to blocking artefacts accurately but has relatively lower accuracy for blurred 

images. A combination of both spatial and transform domain features have been utilized in FRIQUEE (Feature Maps–

Based Referenceless Image Quality Evaluation Engine) method [37]. A large number of features across different color 

spaces makes it complex and time-consuming. Li et al. in [39] proposed a blind method based on log-contract 

distribution to exploit spatial and directional correlations in images. This method suffers from data dependency and 

its accuracy for cross-database validations is not satisfactory.  The methods discussed here are ML based, whereas 

learning free generic methods like NIQE [41] and IL-NIQE [42] also exit. The work of M H Pinson [43] draws 

attention towards assessment of visual media from the perspective of consumer applications.  The methods like 

BRISQUE [29], NIQE [41], IL-NIQE [42], etc. have been tested for multiple distortions, but found to have poor 

performance for these distortions as well as for unseen data.  Additionally, few multiple distortion methods [44]-[47] 

have also been proposed to assess the image quality in presence of two or more commingled type of distortions. GWH-

GLBP [44] was proposed by Li et al. to assess multiple distortions in images. It is based on structural information 

wherein local binary pattern (LBP) from the gradient map of the test image is used to form the weighted histograms. 

Miao et. al [45] have proposed another method based on LBP in Phase Congruency domain to take into account low 

level features. It also employs gradient magnitude as a weighing factor. Six-step blind metric (SISBLIM) [46] is a 

training free metric based on joint effect’s prediction, and HVS based fusion model. A significant effort has been 

made by VQEG (Video Quality Experts Group) [48] for quality assessment of visual media under projects like 
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MOAVI (Monitoring of Audio-Visual quality by key Indicators) [49], [50] and NORM (No Reference Metric). A set 

of key indicators to define the service quality of audio-visual signals were proposed in the MOAVI project. The 

NORM project is concerned with research and development and sharing of resources of NR metrics.  

Most of generic IQA methods developed to measure image quality in presence of multiple distortions either suffer 

with large time-complexity or with poor accuracy. In context of multiple distorted images, many state-of-art methods 

give poor performance when tested on images exposed to multiple distortions, due to the joint effect of various 

distortions.  Furthermore, multiple distortions IQA area could not receive much attention possibly due to the lack of 

benchmark databases as well as its challenging nature. Hence, there is a need of an IQA method which can assess 

quality of images having multiple distortions with higher accuracy and lower complexity.   

To overcome the drawbacks of IQA methods that measure image quality under multiple distortion conditions, we 

propose a DFT-based technique to estimate the quality of images distorted with blocking artefact, blurriness, noise 

individually or in combination of two or more of these distortions. Though DFT and MSCN coefficients individually 

have been widely utilized in many IQA methods, less efforts have been made to combine the benefits of both these 

methods. We believe that the novelty of our proposed method lies in developing an IQA method by utilizing the DFT 

of MSCN coefficients. Most of the existing MSCN methods use the univariate probabilistic models for fitting 

distributions which are insufficient in apprehending correlation properties. Another limitation arises when only 

neighbouring pixels are considered, as distortion generally corrupts multiple pairs simultaneously and hence are 

inappropriate for complex types of distortions. To overcome these limitations, a unique method based on MSCN and 

DFT is proposed. To be specific, the novelty of this work lies in: (i) utilization of the combination of the MSCN with 

DFT which helps in obtaining a highly decorrelated low-dimensional space (ii) considering the effect of distortion on 

multiple pixels (rather than only neighbouring pixels) from a suitable sized block of coefficients. The proposed 

technique first computes the MSCN coefficients of input image. The original image as well as MSCN coefficients are 

then transformed into frequency domain using 88 block-based DFT. The DFT coefficients of each block are then 

divided into low, medium and high frequency bands. The high and low frequency band coefficients are summed into 

a sum parameter, obtained from DFT of original image and DFT of MSCN coefficients to extract features. For 

normalized sum parameters, number of blocks lying in the specific ranges are counted including the zero-valued 

coefficients along with the mean of 100 largest and 100 smallest values of these sum parameters are computed to form 

the feature vectors. All these features are then fed to Gaussian Process Regression (GPR) model [51] with exponential 

kernel for quality estimation. The proposed method has much better accuracy over the methods developed to measure 

these distortions separately. 

The organization of paper is as follows: Section 2 briefly reviews the DFT and MSCN, which are being used in the 

proposed method. Section 3 gives the details of the proposed methodology.  Section 4 includes the simulation results 

and discussions on these results.  Finally, the paper is concluded in Section 5. 

2. BACKGROUND 

Since proposed IQA method exploits DFT- domain features of image combined with DFT of MSCN coefficients of 

input image, hence, in this section DFT and MSCN coefficient computations and their characteristics are briefly 

reviewed.  

2.1 Discrete Fourier Transform (DFT): 

It is a well observed fact that distortions in images affect their frequency distribution characteristics. Therefore, the 

relative changes in strengths of high and low frequency components of images can be used to determine if an image 

is distorted with blocking artefact, noise and blurriness. These variations can easily be captured by DFT, making it an 

obvious choice in this work. Fig. 2 shows a set of eight images taken from LIVE [52] database where Figs. 2(a) and  
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Fig.3 (a) Block level representing of DFT coefficients followed by frequency shifting (b) block level representation of DFT 

components indexed in terms of increasing frequency using Manhattan distance (c) Segregation of high and low frequency sub-

bands by separating into indexed rows using Manhattan distance  

Fig.2 (a)-(d) JPEG and (i)-(l) GBLUR (Gaussian Blur) type of images from LIVE [52] database with corresponding plots for 

DFT Coefficients(e)-(h) and (m)-(p) respectively. 
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2(i) are the original images while Figs. 2(b)-(d) are JPEG compressed placed in order of decreasing quality (increasing 

DMOS) values. Similarly, Figs. 2(j)-(l) are images exposed to Gaussian blurriness, arranged in order of increasing 

DMOS. Block-based 8×8 DFT is applied to each block, and magnitude of DFT coefficients of a block at 

correspondingly same location (shown with yellow square) in each image are also shown in Figs. 2(e)-(h) and Figs. 

2(m)-(p) corresponding to images shown in Figs. 2(a)-(d) and Figs. 2(j)-(l) respectively.  From these figures it can be 

observed that distribution of DFT coefficients vary with the nature and degree of degradation (artefact) present in 

images. These fluctuations in magnitude of DFT coefficients can be utilized for quality assessment of images. The 2-

D DFT F(u,v) can be computed as in Eqn. (1), where I(m,n) is the gray-scale image (or image block), having N×M 

pixels. 

𝐹(𝑢, 𝑣) =   ∑ ∑ 𝐼(𝑚, 𝑛)𝑒−𝑗2𝜋(
𝑢

𝑀
𝑚+

𝑣

𝑁
𝑛)𝑁−1

𝑛=0
𝑀−1
𝑚=0                                                                                                                (1)             

In order to visualize spectrum symmetry of DFT, generally the spectrum is circularly shifted to bring the zero 

frequency (u=0, v=0) at the center, which is also treated as origin of spectral plane, as depicted in Fig. 3(a). The 

frequency shifting can be represented mathematically as in Eqn. (2): 

𝐹1(𝑢, 𝑣) = 𝐹 (𝑢 −
𝑀

2
, 𝑣 −

𝑁

2
)                                                                                                                                                      (2) 

Fig.4 (a) Row one contains JPEG compressed images and Row 3 blurred images from CSIQ Database [5]. Corresponding 

MSCN images of row1 are shown in row 2 and that for blur images of row 3 are shown in row 4.  
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where F1(u, v) is the frequency shifted (shifted by M/2 horizontally and N/2 vertically) version of F(u, v) defined in 

Eqn. (1). After frequency shifting, coefficients of each block are indexed using Manhattan Distance between DC 

coefficient and other coefficients of the block. Accordingly, the index ‘i’ of frequency coefficient located at (u, v) is 

computed as: 

𝑖 = |𝑢0 − 𝑢| + |𝑣0 − 𝑣|                                                                                                                                                                  (3)    

where (𝑢0, 𝑣0) represents co-ordinates of the DC coefficient at center (0,0). According to Eqn. (3), the frequency 

coefficients are numerically indexed in terms of increasing frequency using Manhattan distance, irrespective of 

direction they occur.  The DFT coefficients of an 8×8 block can then be divided into low, medium and high frequencies 

depending upon their frequency index ‘i’, as shown in Fig.3 (b). Here DFT coefficients of an 8×8 block is indexed 

from 0-8 depending upon their Manhattan   distance. The DC component lying at the center is indexed as ‘0’. As one 

moves away from the center, the frequency index ‘i’ increases. In the proposed scheme, we will use this indexing to 

segregate low and high frequency DFT coefficients.   

2.2 Mean Subtracted Contrast Normalized Coefficients (MSCN):  

Human Visual System (HVS) is habituated to its natural surroundings. This feature is embodied in Natural Scene 

Statistics (NSS) Model [53]. Over past decades, researchers have employed NSS for establishing several IQA metrics 

[29] - [34], [37], [39], [41], [42], etc. showing the relevance of NSS to human perceptions. An important parameter 

derived from NSS model is MSCN [29]. Mathematically, it can be represented as: 

𝐼(𝑚, 𝑛) =
𝐼(𝑚, 𝑛) − 𝜇(𝑚, 𝑛)   

𝜎(𝑚, 𝑛) + 1
                                                                                                                                                    (4) 

In Eqn.(4) gray-scale image is denoted as 𝐼(𝑚, 𝑛), m ϵ {1,2,…..M} (M denotes  image height), n ϵ {1,2,…..N} (N 

denotes image width) are spatial indices.  

𝜇(𝑚, 𝑛) = ∑ ∑ 𝑤𝑘,𝑙𝐼𝑘,𝑙(𝑚, 𝑛)

𝐿

𝑙=−𝐿

𝐾

𝑘=−𝐾

                                                                                                                                             (5) 

𝜎(𝑚, 𝑛) = √ ∑ ∑ 𝑤𝑘,𝑙(𝐼𝑘,𝑙(𝑚, 𝑛) − 𝜇(𝑚, 𝑛))2

𝐿

𝑙=−𝐿

𝐾

𝑘=−𝐾

                                                                                                                (6) 

Eqn.5 and Eqn.6 calculate the local mean and contrast respectively. Here, w={𝑤𝑘,𝑙|𝑘 =  −𝐾, … . . , 𝐾, 𝑙 = −𝐿, … 𝐿} is 

a Gaussian weighting function. It is sampled out to 3 standard deviations where K=L=3 and rescaled to unity volume. 

In terms of symmetry, it has 2D circular symmetry. This kind of normalization performs almost similar operation as 

Fig.5 Block diagram of the proposed IQA method 
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performed in the visual brain wherein each neuronal response is normalized by the energy of its adjacent neuronal 

responses [1]. Cells of visual cortex give non-linear response especially in cases of high contrast where linearity-based 

models fail [54].  Subtraction of mean from the image helps in eliminating the effect of uneven illumination. The 

variance field itself is capable of showing local edges and high contrast details. The combined normalization process 

brings the intensity values in a normalized range; leaving behind a highly decorrelated homogenous image with low 

energy edges having important structural information [29]. This normalization helps in removing of spatial 

redundancies, giving a homogenous appearance. It works on similar pattern like the non-linear response of visual 

neurons. Fig.4 shows two sets of images chosen from CSIQ Database [5] where Row 1 shows a set of JPEG 

compressed images while Row 3 consists of images distorted by blurriness arranged in increasing order of distortion. 

Rows 2 and 4 show the corresponding images after MSCN operation for JPEG and blurred images of Rows 1 and 3 

respectively. The presence of residual boundaries having low energy can be visualized in second and fourth rows.  

3. PROPOSED IQA METHODOLOGY 

The block diagram of the proposed IQA algorithm to estimate the quality of images separately/jointly corrupted with 

blockiness, blurriness and noise is shown in Fig. 5. It works as follows.  First a gray-level input image is normalized 

to get corresponding MSCN image. The pristine image as well as MSCN coefficients are then transformed into 

frequency domain using 8×8 DFT. The frequency coefficients of every block in each image are divided into low and 

high frequency bands. After frequency domain transformation, four sum parameters are obtained by adding the high 

and low frequency coefficients for DFT blocks obtained from gray and MSCN images. For these sum parameters, we 

determine the Normalization Factor (NF) using the variance of block count for sum-parameters. After normalizing the 

sum-parameters with NF, the number of blocks having values of these parameters in specific ranges are counted. 

These block-counts are used as features. Generally, frequency domain distribution of undistorted natural images is 

peaky with heavy tails while for noisy images it is otherwise. As noise affects the high frequency components, the 

mean of hundred largest and hundred smallest values of high frequency sum parameters are also computed as features. 

For mapping the features on quality scale, Gaussian Process Regression model [51] with exponential kernel is used. 

Various components of the proposed method are described below. 

3.1 Motivation for combining DFT with MSCN: 

The motivation to use DFT along with MSCN in the proposed work can be justified in terms of the number of zero-

valued coefficients in a DFT block.  The zero-valued DFT coefficients was first proposed by Golestaneh et al. [22] 

for estimating the degradation in a block of pixels in an image, which is also used in this work to access the quality of 

images. For this purpose, we have considered three (an original and two distorted) versions of the same image as 

shown in Figs. 6(a), 6(d) and 6(g) respectively. These images are taken from LIVE database [52], and their 

corresponding DMOS values are 0, 47.28 and 83.55 respectively. That is image of Fig. 6(g) has more distortions (poor 

quality) than the image of Fig. 6(d). Each image is then 8×8 DFT transformed (either directly or after MSCN 

normalization). Then zero-valued coefficients are mapped with black pixel and non-zero valued coefficients with 

white pixels. The directly DFT transformed and mapped images are shown in Figs. 6(b), 6(e) and 6(h) corresponding 

to the images of Figs. 6(a), 6(d) and 6(g) respectively. Similarly, Figs. 6(c), 6(f) and 6(i) show the black & white 

mapped DFT coefficients of MSCN normalized versions of images of Figs. 6(a), 6(d) and 6(g) respectively. It can be 

observed from these figures that as distortion increases, the number of zero-valued DFT coefficients (black pixels) 

increases. Furthermore, it can be observed by comparing Figs. 6(e) with 6(f) and Figs. 6(h) with 6(i), that DFT with 

MSCN can differentiate the local distortions much better than DFT only coefficients.   

Further to justify why DFT coefficients with and without MSCN are considered in the proposed work, we have 

considered six sets of JPEG images (original and distorted versions) from the LIVE database [52] where original six 

images (Image 1, Image2, …, Image 6) are shown in Fig. 7.  Each set of images (original as well as distorted) are 

transformed using 8×8 DFT and the number of zero-valued coefficients in transformed image are computed. In order 

to get the idea of correlation between zero-valued DFT coefficients and corresponding image quality (in terms of 

DMOS value), the number of zero-valued DFT coefficients for each set of images are plotted against DMOS value  
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Fig.6 Three JPEG images from LIVE [52] database with DMOS (a) 0, (d) 47.28 and (g) 83.55, DFT on gray scale images is shown by 

(b), (e) and (h) respectively, DFT applied on MSCN coefficients is shown by (c), (f) and (i). 

Fig.7 Image 1,2,3,4,5 and 6: pristine images from LIVE [52] database. (a) Plot for Zero-valued coefficients for DFT on gray scale 

images (b) Plot for Zero-valued coefficients for DFT on MSCN image (set of 1,2,3,4,5 and 6 containing pristine and all distorted versions 

from JPEG LIVE [52] Database). 
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(taken from the database) of the corresponding image, as shown in Fig. 7(a). It can be observed from this figure that 

for first 4 images (Image 1-4), the number of zero-valued coefficients are highly correlated with DMOS, but there 

exists a poor correlation between these parameters for Image 5 and Image 6. It may be noted that these two images 

(Image 5 and Image 6) have locally blurred regions. Thus, the number of zero-valued ac coefficients in DFT 

transformed images fail to correlate with image quality of locally distorted images. However, when the same set of 

images are DFT transformed after MSCN normalization, then the number of zero-valued coefficients have good 

correlation with DMOS of corresponding images for locally distorted image, as shown with red-color in Fig. 7 (b), 

but it has poor correlations for globally distorted images (Image 1-4). It should be noted for these images (Image 1-

4), number of zero-valued DFT coefficients (for gray image) has good correlation as evident from Fig. 7 (a).  Hence, 

in order to have better quality estimate for every distorted image, features from DFT transformed images, both with 

and without MSCN should be computed.  These features are then passed to a Machine Learning algorithm for further 

processing. 

3.2 Frequency segregation: 

As discussed earlier, DFT is applied to the input image on a block-by-block basis (size 8×8 pixels). Parallel to this, 

MSCN coefficients are extracted from the image to take into account the characteristics of NSS model inspired by 

HVS. The computed MSCN coefficients are also transformed to frequency domain by employing the block-based 

DFT.  In this way, two (with and without MSCN) frequency domain representations of the image are obtained. Let 

the DFT transform of gray-scale input image (𝐼(𝑚, 𝑛)) and its MSCN normalized version (𝐼(𝑚, 𝑛)) be  𝐹𝑔(u, v) and 

𝐹𝑚(u, v) respectively.  It is observed that the energy distribution in low and high frequency components of image is 

likely to be different for different types of distortions in image. Furthermore, since the energy contained in a DFT 

coefficient is equal to the square of its absolute value, therefore we consider only the magnitude of DFT coefficients. 

Let the absolute values of 𝐹𝑔(u, v) and  𝐹𝑚(u, v)  be denoted as |𝐹𝑔(𝑢, 𝑣)| and |𝐹𝑚(𝑢, 𝑣)| respectively.   

Further, as discussed previously in Section 2.1 that in order to segregate the low and high frequencies, the DFT 

coefficients of a block are indexed on the basis of Manhattan distance from the DC coefficient of the block, as defined 

in Eqn. (3). The coefficients with the same frequency index are grouped together as shown in Fig. 3(c), and all AC 

coefficients having frequency indices 1-3 are labelled as low-frequency (LF) coefficients, index 4 as middle frequency 

coefficient (MF) and indices 5-8 as high-frequency (HF) coefficients. In the proposed work, only coefficients 

belonging to LF and HF bands will be used for feature extraction. If 𝐹𝑘,𝑔 = {𝐹𝑔(𝑢, 𝑣)}𝑘 and 𝐹𝑘,𝑚 = {𝐹𝑚(𝑢, 𝑣)}𝑘  

represent the set of all DFT coefficients of a DFT block (without and with MSCN respectively) having k th frequency 

index, then LF and HF band of image in DFT domain (without and with MSCN) are the set of all DFT coefficients 

with frequency indices 1-3 and 5-8, and can be represented according to Eqns. (7)-(10) for each block: 

 𝐿𝐹𝑔 = ⋃ {𝐹𝑘,𝑔}3
𝑘=1                                                                                                                                                         (7) 

𝐻𝐹𝑔 = ⋃ {𝐹𝑘,𝑔}8
𝑘=5                                                                                                                                 (8)                  

𝐿𝐹𝑚 = ⋃ {𝐹𝑘,𝑚}3
𝑘=1                                                (9) 

𝐻𝐹𝑚 = ⋃ {𝐹𝑘,𝑚}8
𝑘=5                                                (10) 

3.3 Four Sum-parameters: 

In order to determine the feature vectors, we propose to sum the magnitudes of all DFT coefficients belonging to sets 

𝐿𝐹𝑔, 𝐻𝐹𝑔, 𝐿𝐹𝑚,  𝑎𝑛𝑑 𝐻𝐹𝑚, as defined in Eqns. (11)-(14) respectively, to be considered as feature to quantify the quality 

of distorted images.   
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𝑆𝑔
𝐿𝐹 =∪𝑎𝑙𝑙 𝑏𝑙𝑜𝑐𝑘𝑠 ∑ |𝐹𝑘,𝑔|3

𝑘=1                 (11) 

𝑆𝑔
𝐻𝐹 =∪𝑎𝑙𝑙 𝑏𝑙𝑜𝑐𝑘𝑠 ∑ |𝐹𝑘,𝑔|8

𝑘=5                 (12) 

𝑆𝑚
𝐿𝐹 =∪𝑎𝑙𝑙 𝑏𝑙𝑜𝑐𝑘𝑠 ∑ |𝐹𝑘,𝑚|3

𝑘=1                               (13) 

𝑆𝑚
𝐻𝐹 =∪𝑎𝑙𝑙 𝑏𝑙𝑜𝑐𝑘𝑠 ∑ |𝐹𝑘,𝑚|8

𝑘=5                 (14) 

Since the range in which the values in set of sum parameters 𝑆𝑔
𝐿𝐹, 𝑆𝑔

𝐻𝐹, 𝑆𝑚
𝐿𝐹, and 𝑆𝑚

𝐻𝐹 lie is different and they also 

depend on the nature of distortions. For further processing, each of sum-parameters should be normalized on the scale 

of 0 to 1, which is discussed next. 

3.4 Normalization Factor: 

The set of four parameters related to low-frequency and high-frequency components of DFT (with and without MSCN) 

defined in Eqns. (11) - (14) above, may have any values depending upon image content and nature/degree of 

distortions.   In order to get an idea about the range of these four sum parameters, a set of 100 images from GBLUR 

(Gaussian Blur) and JPEG compressed subsets of LIVE Database [52] are selected randomly. For each of the images, 

Fig.8 Variance distribution for sum parameters (a) 𝑆𝑔
𝐿𝐹

 (b)𝑆𝑚
𝐿𝐹 (c)𝑆𝑔

𝐻𝐹(d) 𝑆𝑚
𝐻𝐹 
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the set of four sum parameters defined in Eqns. (11) - (14) were evaluated. The number of blocks that exist in different 

ranges of these sum-parameters are computed. The number of times a specific bin value (which corresponds to number 

of blocks) occurs for all 100 images are counted individually for each sum parameter and variance of these counts is 

shown in Fig. 8. The variance of values (corresponding to each bin) is utilized to determine the maximum range of 

each of the sum-parameters.  The bin size for Fig.8 (a) is 100 whereas for remaining parameters (Figs. 8(b), 8(c), and 

8(d)), the bin-size is 1.  From Fig. 8, it is clear that most of images have values of individual sum parameters from the 

sets  𝑆𝑔
𝐿𝐹, 𝑆𝑔

𝐻𝐹, 𝑆𝑚
𝐿𝐹, and 𝑆𝑚

𝐻𝐹 lying in the range of 0-10 (bin-size 100, Fig. 8(a)), 0-100 (Fig. 8(c)), 0-100 (Fig. 8(b)) 

and 0-20 (Fig. 8(d)) respectively. In order to bring them in common range of 0 to 1, there is a need of normalization. 

The maximum range for each sum parameter is considered as normalization factor (NF), so that each sum parameter 

can be expressed on the scale of 0 to 1.  The normalization factors (NF) for the four sets of sum-parameters 𝑆𝑔
𝐿𝐹, 𝑆𝑔

𝐻𝐹, 

𝑆𝑚
𝐿𝐹, and 𝑆𝑚

𝐻𝐹are 1000, 100, 100 and 20 respectively. After determining the sum-parameters, they are divided by their 

respective NF to ensure that normalized value of these parameters remain on the scale of 0 to 1. It may be noted that 

the normalization factor ensures that both types of distortions are defined within a common scale.  

3.5 Feature extraction: 

Finally, features are extracted as follows. Since all sum parameters are normalized on the scale of 0 to 1, where zero 

values of each of sum-parameter corresponds to zero-valued AC coefficients in the image. Therefore, the number of 

blocks with zero-value of each of sum parameter are used as four features (one for each sum parameter). The entire 

range (except zero value) is divided into four equal parts 0-0.25 (excluding 0), 0.25-0.50, 0.50-0.75 and 0.75-1.0. The 

number of blocks having each of sum-parameters in each of four ranges will constitute 4×4=16 features. As images 

may be of different sizes, therefore percentage of blocks rather than absolute number of blocks for each of sum-

parameter lying in different ranges are considered as feature vectors. Since there are a total of four sum-parameters 

and each is divided into 5 classes, therefore we get 20 features in this manner. These 20 feature vectors are defined in 

Table 1, and these are the numbers of blocks belonging to each class divided by total number of blocks in an image. 

The features f1, f2, f3, f4 and f5 are percentages of blocks having normalized values of sum-parameter from set 𝑆𝑔
𝐿𝐹 as 

0, in the range of 0-0.25, 0.25-0.50, 0.50-0.75 and 0.75-1.0 respectively. Similarly, f6-f10 correspond to sum-parameter 

set 𝑆𝑚
𝐿𝐹, f11-f15 to 𝑆𝑔

𝐻𝐹 and f16-f20 to 𝑆𝑚
𝐿𝐹, f11-f15 to 𝑆𝑔

𝐻𝐹 and f16-f20 to 𝑆𝑚
𝐻𝐹. In addition to this, four more features (f21-

f24) are extracted by calculating the mean of hundred largest and hundred smallest values from the set of sum 

parameters  𝑆𝑔
𝐻𝐹 and 𝑆𝑚

𝐻𝐹 respectively. Hence, a total of 24 features are derived from the four sum-parameter sets.  

3.6 Regression stage: 

ML-based Regression module is used for mapping the feature vectors to their respective quality scores. Gaussian 

process regression (GPR) is a kernel-based supervised approach and non-parametric in nature.  There are many of its 

variants depending on kernel function used, such as linear, exponential, square exponential, a combination of multiple 

kernels, etc. In the present work, exponential GPR module is used to map frequency domain NSS features of the image 

to its quality score. 

Gaussian Process (GP) is a stochastic process that can be represented as a distribution over function ξ such that it maps 

input feature space F (in our case feature vectors) to output space D (here space consisting of DMOS of images). It 

can be modelled using the mean 𝑚(𝑓) and the covariance 𝐶(𝑓, 𝑓′) (also works as kernel of GP) as defined in Eqn.15 

and Eqn.16 respectively. 

𝑚(𝑓) = 𝐸[𝜉(𝑓)]                                                                                                                                                                   (15) 

𝐶(𝑓, 𝑓′) = 𝐸[(𝜉(𝑓) − 𝑚(𝑓))(𝜉(𝑓′) − 𝑚(𝑓′))]                                                                                                                                       (16) 

In Eqn.16 f and f’ are elements of set F and E is the expectation operator. In the proposed framework, the input space 

F is the set of features f1 to f20 listed in Table I. GP is then a non-linear function of m(f) and C(f, f’) and is defined in 

Eqn. 17 as  follows: 
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𝜉(𝑓)~𝐺𝑃(𝑚(𝑓), 𝐶(𝑓, 𝑓′))                                                                                                                                                        (17) 

It achieves the mapping of inputs 𝑓𝑖 ∈ F to an output space 𝑑𝑖 ∈D by imposing restriction that a group of input-output 

training points {(𝑓𝑖 , 𝑑𝑖)|𝑖 = 1, . , . , . , 𝑛} are known, in priory in order to obtain the posterior distribution. The output d 

of the GP model is a noisy observation represented as: 

𝑑 = 𝜉(𝑓) +  έ                                                                                                                                                                         (18) 

where έ is the additive Gaussian noise 𝑁(0, 𝜎2). To obtain the predicted output DMOS values from testing dataset, 

this posterior distribution is used. The covariance, being the kernel of GP model is also known, whose hyper 

parameters are optimized during the training phase. The joint distribution of training output dtr and test output dp is to 

be defined as: 

[
𝑑𝑡𝑟

𝑑𝑝
] ~𝑁(0, [

𝐶(𝐹, 𝐹) + 𝜎𝑛
2𝐼 𝐶(𝐹, 𝐹∗)

𝐶(𝐹, 𝐹) 𝐶(𝐹, 𝐹∗)
])                                                                                                                   (19) 

Where F and 𝐹∗ are feature vectors for training and test data respectively. The standard deviation of noise is given by 

𝜎𝑛
2𝐼 where I is the identity matrix (N-dimensional). To obtain the predictive function, the observation 𝑑𝑝 is conditioned 

on  𝑑𝑡𝑟 such that  

𝑑𝑝|𝐹, 𝑑𝑡𝑟 , 𝐹∗~𝑁(𝑑𝑝
̅̅ ̅, 𝑉(𝑑𝑝))                                                                                                                                                 (20) 

where  𝑑𝑝
̅̅ ̅ = 𝐶(𝐹∗, 𝐹)[𝐶(𝐹, 𝐹) +  𝜎𝑛

2𝐼]−1𝑑𝑡𝑟,                                                                                                                        (21) 

𝑉(𝑑𝑝) =  𝐶(𝐹∗, 𝐹∗) −  𝐶(𝐹∗, ) [𝐶(𝐹, 𝐹) +  𝜎𝑛
2𝐼]−1 𝐶(𝐹, 𝐹∗)                                                                                        (22) 

GP predicts the output 𝑑𝑝 using this predictive distribution. The test output which is the predicted DMOS is 𝑑𝑝 as 

defined in Eqn. 20. For more details on GP one can refer to [51]. Regression Learner App from the Machine Learning 

toolbox of MATLAB 18a is used in this work for the training and validation of GP model. 

4. RESULTS AND DISCUSSIONS 

In this section, we perform an analysis of the proposed model to examine its performance in accordance with human 

perception on the relevant well-known single-distortion based databases LIVE [52], CSIQ [5], TID2013 [40] and 

KADID-10k [55]. To test the accuracy of state-of-art and proposed methods on multiple distortions, LIVEMD [56], 

IVL MD [57], [58], MDID2013 [46] and MDID [59] datasets and for Bokeh mode images IBBI database [16], [60] 

are used. The methods considered for comparisons, include distortion specific such as Ferzli [9], EZMGM [15], 

Golestaneh [22], Zhan [23], Zhu [24], H. Liu [16] as well as general purpose methods such as DIIVINE [31], 

BLIINDS2 [32], CORNIA [38], BRISQUE [29], GMLoG [33], NFERM [34], FRIQUEE [37], BJLC [39], NIQE [41] 

and IL-NIQE [42]. Some methods designed for multiply distorted images namely GWH-GLBP [44], Miao [45], Zhou 

[47] and SISBLIM [46] specifically, are also included for fair comparison. These methods can be grouped into two 

classes: ML-based and non-ML based.  The IQA methods DIIVINE [31], BLIINDS2 [32], CORNIA [38], BRISQUE 

[29], GMLoG [33], NFERM [34], FRIQUEE [37], BJLC [39], H. Liu [16], GWH-GLBP [44], Miao [45] and Zhou 

[47] are ML-based methods, whereas NIQE [41], IL-NIQE [42], Golestaneh [22], Zhan [23], Zhu [24], Ferzli [9], 

Bahrami [13], EZMGM [15] and SISBLIM [46] are non-ML-based methods.  

4.1 Databases and Evaluation criteria: 

Several databases involving different types of images exposed to varying types and levels of distortions are available. 

The details of some of the used databases are as follows: 

• LIVE [52] consists of 29 reference images, 233 are afflicted to JPEG compression, 174 are exposed to 

GBLUR and 145 images have undergone AWGN type of distortion referred here as LIVE.  

• The CSIQ [5] database has 30 reference images, along with 150 distorted images in JPEG, BLUR and AWGN 

sub-datasets respectively referred here as CSIQ. 
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• TID2013 [40] database has a total of 24 types of distortions with 25 reference images out of which 120 are 

JPEG-compressed, 120 are exposed to GBLUR and 120 afflicted with AWGN referred as TID2013 in this 

work. Five images in each sub-set are not included as they are not natural images.  

• KADID-10k [55] is the largest single distortion-based dataset consisting of 10,125 distorted images obtained 

from 81 reference images. This work includes GBLUR, JPEG compression and AWGN subsets consisting 

405 distorted images respectively. 

• LIVEMD database [56] has a total of 405 distorted images out of which 270 are multiply distorted. It consists 

of 15 reference images which are exposed to three distortion types (Gaussian blur, JPEG compression, and 

white Gaussian noise). In addition to individual subsets exposed to single type of distortion, the database has 

two sub-sets exposed to multiple distortions of type: (i) Gaussian blur followed by JPEG compression and 

(ii) Gaussian Blur followed by White Noise (WN). These two subsets are used to assess the quality of 

multiply distorted images and is referred here as LIVEMD.  

• IVL MD database [57], [58] has 10 original images and it is divided into two subsets of multiply distorted 

images consisting of 750 multiply distorted images. The database consists of two subsets: 1) Blur-JPEG 

where each original image undergoes 7 levels of Gaussian blur, then each resultant blur image undergoes 5 

levels of JPEG compression and 2) Noise-JPEG where each reference image is afflicted with 10 levels of 

Gaussian Noise and each noisy image is exposed to 4 levels of JPEG compression. 

• The Multiply Distorted Image Database 2013 (MDID2013) database [46] comprises of 324 multiply distorted 

images, generated by successively distorting 12 original images by three types of distortions (GBLUR, JPEG, 

and WN). 

• The Multiply Distorted Image Database (MDID) [59] (different from MDID2013) contains 20 reference and 

1600 multiply distorted images by introducing five types of distortions: Gaussian noise, Gaussian blur, 

contrast change, JPEG, and JPEG2000 compression. In this work, Gaussian noise, Gaussian blur and JPEG 

afflicted images have been used for analysis and referred to as MDID.  

• IBBI [16], [60] database has 12 reference images and 60 distorted images having intentionally blurred 

background. 

For performance evaluation different criteria have been used mainly: Spearman rank order correlation coefficient 

(SROCC), Pearson linear correlation coefficient (PLCC), Kendall’s Rank-order Correlation Coefficient (KROCC) 

and Root Mean Squared Error (RMSE). The range for SROCC, KROCC and PLCC is [-1, 1], whereas RMSE is a 

non-negative real number. These parameters depict the correlation between predicted and subjective scores. A lower 

RMSE and a higher SROCC/PLCC/KROCC depict a good correlation with the subjective judgments. Due to non-

linear human response system, there may be non-linearity in subjective and predictive scores. Hence, a logistic 

Table 2 SROCC, PLCC, KROCC and RMSE values for JPEG, GBLUR and WN type of distortions on LIVE, 

CSIQ and TID2013 databases. Best two results are marked using bold face. 

METHOD LIVE  CSIQ TID2013 

  
SROCC 

 
PLCC 

 
KROCC 

 
RMSE 

 
SROCC 

 
PLCC 

 
KROCC 

 
RMSE 

 
SROCC 

 
PLCC 

 
KROCC 

 
RMSE 

DIIVINE [31] 0.831 0.826 0.685 15.24 0.832 0.839 0.642 0.146 0.675 0.635 0.507 1.016 

BLIINDS2 [32] 0.907 0.914 0.737 11.08 0.849 0.873 0.653 0.131 0.751 0.781 0.564 0.820 

NIQE [41] 0.924 0.916 0.755 10.98 0.856 0.870 0.663 0.132 0.736 0.741 0.529 0.898 

IL-NIQE [42] 0.902 0.908 0.722 11.62 0.871 0.874 0.682 0.155 0.863 0.868 0.616 0.655 

CORNIA [38] 0.945 0.951 0.812 8.75 0.916 0.881 0.763 0.153 0.899 0.938 0.686 0.563 

BRISQUE [29] 0.957 0.960 0.819 7.77 0.914 0.936 0.752 0.095 0.832 0.852 0.663 0.688 

GMLoG [33] 0.962 0.957 0.823 7.79 0.926 0.914 0.788 0.113 0.931 0.926 0.763 0.603 

NFERM [34] 0.942 0.955 0.810 8.48 0.921 0.933 0.776 0.101 0.908 0.911 0.691 0.615 

FRIQUEE [37] 0.963 0.953 0.823 8.55 0.939 0.895 0.795 0.149 0.926 0.845 0.755 0.629 

BJLC [39] 0.968 0.963 0.834 7.61 0.923 0.928 0.785 0.102 0.941 0.885 0.783 0.618 

PROPOSED 0.979 0.981 0.861 5.67 0.932 0.948 0.794 0.096 0.922 0.928 0.748 0.599 
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function is used for logistic mapping of scores before computing PLCC and RMSE [61]. The function can be defined 

as in Eqn. 23 where x and f(x) are the predicted scores before and after the regression, 𝛽1, 𝛽2, 𝛽3, 𝛽4, and 𝛽5 are 

regression model parameters. 

𝑓(𝑥) = 𝛽1 (
1

2
−

1

exp(𝛽2(𝑥−𝛽3))
) +  𝛽4𝑥 +  𝛽5                                                                                                                      (23) 

Table 3 SROCC for JPEG, GBLUR and WN type of individual distortions on LIVE, CSIQ and TID2013 databases. 

Best two results are marked using bold face. 

METHOD JPEG BLUR WN 

  

LIVE 

 

CSIQ 

 

TID2013 

 

LIVE 

 

CSIQ 

 

TID2013 

 

LIVE 

 

CSIQ 

 

TID2013 

Golestaneh [22] 0.954 0.923 0.891 - - - - - - 

Zhan [23] 0.961 0.940 0.936 - - - - - - 

Zhu [24] 0.961 0.952 0.952 - - - - - - 

Ferzli [9] - - - 0.943 0.886 0.857 - - - 

EZMGM [15] - - - 0.958 0.932 0.944 - - - 

Bahrami [13]  - - - 0.954 0.925 0.936 - - - 

DIIVINE [31] 0.914 0.888 0.826 0.938 0.856 0.943 0.979 0.940 0.906 

BLIINDS2 [32] 0.951 0.898 0.775 0.926 0.924 0.858 0.941 0.922 0.741 

NIQE [41] 0.943 0.882 0.880 0.939 0.906 0.835 0.961 0.835 0.852 

IL-NIQE[42] 0.944 0.904 0.883 0.924 0.867 0.864 0.977 0.866 0.904 

CORNIA [38] 0.945 0.906 0.891 0.960 0.914 0.922 0.979 0.941 0.935 

BRISQUE [29] 0.963 0.904 0.869 0.947 0.919 0.893 0.981 0.957 0.900 

GMLoG [33] 0.965 0.916 0.923 0.938 0.915 0.929 0.978 0.943 0.946 

NFERM [34] 0.967 0.922 0.911 0.948 0.897 0.926 0.980 0.938 0.931 

FRIQUEE [37] 0.955 0.934 0.912 0.956 0.942 0.945 0.975 0.941 0.950 

BJLC [39] 0.968 0.950 0.946 0.954 0.930 0.968 0.986 0.962 0.958 

PROPOSED 0.979 0.948 0.958 0.972 0.944 0.951 0.984 0.960 0.947 

 

 
Table 4 PLCC for JPEG, GBLUR and WN type of individual distortions on LIVE, CSIQ and TID2013 databases. 

Best two results are marked using bold face. 

METHOD JPEG BLUR WN 

  

LIVE 

 

CSIQ 

 

TID2013 

 

LIVE 

 

CSIQ 

 

TID2013 

 

LIVE 

 

CSIQ 

 

TID2013 

Golestaneh [22] 0.970 0.954 0.938 - - - - - - 

Zhan [23] 0.978 0.963 0.962 - - - - - - 

Zhu [24] 0.971 0.984 0.962 - - - - - - 

Ferzli [9] - - - 0.911 - 0.852 - - - 

EZMGM [15] - - - 0.956 0.928 0.942 - - - 

Bahrami [13]  - - - 0.959 0.907 0.875 - - - 

DIIVINE [31] 0.934 0.897 0.899 0.937 0.898 0.844 0.971 0.899 0.882 

BLIINDS2 [32] 0.943 0.912 0.889 0.899 0.901 0.825 0.932 0.897 0.714 

NIQE [41] 0.935 0.893 0.882 0.936 0.897 0.819 0.946 0.855 0.851 

IL-NIQE [42] 0.942 0.908 0.876 0.918 0.885 0.868 0.974 0.858 0.917 

CORNIA [38] 0.965 0.877 0.963 0.955 0.882 0.941 0.965 0.942 0.937 

BRISQUE [29] 0.973 0.946 0.951 0.951 0.928 0.863 0.974 0.938 0.810 

GMLoG [33] 0.953 0.907 0.925 0.942 0.920 0.931 0.966 0.944 0.925 

NFERM [34] 0.981 0.944 0.907 0.937 0.897 0.928 0.979 0.936 0.939 

FRIQUEE [37] 0.947 0.885 0.813 0.949 0.905 0.881 0.982 0.947 0.955 

BJLC [39] 0.961 0.942 0.873 0.952 0.926 0.853 - - - 

PROPOSED 0.986 0.949 0.966 0.971 0.941 0.953 0.977 0.965 0.946 

 

https://creativecommons.org/licenses/by-nc-nd/4.0/


© <2021>. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license https://creativecommons.org/licenses/by-nc-nd/4.0/ 

4.2 Performance on Individual Database: 

Performance of the proposed method was analyzed for single distortion on five databases namely LIVE[52], CSIQ[5], 

Table 5 SROCC and PLCC on KADID-10k for JPEG, GBLUR and WN image datasets and Bokeh mode images 

on IBBI dataset. Best two performing methods are highlighted using bold face. 

 KADID-10k IBBI 

 

SROCC PLCC SROCC PLCC 

 JPEG  GBLUR WN JPEG  GBLUR  WN  BLUR BLUR  

DIIVINE [31] 0.766 0.787 0.625 0.805 0.794 0.648 0.978 0.955 

BLIINDS2 [32] 0.789 0.759 0.718 0.812 0.806 0.682 0.971 0.974 

ILNIQE [42] 0.871 0.865 0.737 0.908 0.843 0.694 0.964 0.972 

NIQE [41] 0.848 0.872 0.829 0.928 0.893 0.826 0.978 0.965 

BRISQUE [29] 0.789 0.814 0.583 0.810 0.828 0.588 0.980 0.984 

GMLoG [33] 0.811 0.809 0.847 0.856 0.845 0.816 0.972 0.981 

NFERM [34] 0.865 0.884 0.864 0.916 0.938 0.857 0.984 0.972 

FRIQUEE [37] 0.896 0.910 0.871 0.948 0.936 0.884 0.960 0.962 

H. Liu [16] - - - - - - - 0.973 

PROPOSED 0.917 0.934 0.904 0.966 0.957 0.902 0.985 0.977 

 

Fig.9 Plots between standard and predicted scores for different Datasets. (a) LIVE [52] DATASET for JPEG compressed images 

(b) CSIQ [5] DATASET for JPEG compressed images (c) TID2013 [40] DATASET for JPEG compressed images (d) LIVE [52] 

DATASET for BLUR type of distortion (e) CSIQ [5] DATASET for BLUR type of distortion (f) TID2013 [40] DATASET for BLUR 

type of distortion 
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KADID-10k [55], IBBI [16], [60] and TID2013 [40] and compared with other state-of-the-art (SoA) methods. The 

source codes of the considered methods namely DIIVINE [31], BLIINDS2 [32], CORNIA [38], BRISQUE [29], 

GMLoG [33], NFERM [34], FRIQUEE [37], GWH-GLBP [44], NIQE [41], IL-NIQE [42], Miao [45] and SISBLIM 

[46] were obtained from respective author’s websites and amongst these ML-based methods were trained on the 

considered datasets in the same way as the proposed method was trained.  For each of these methods, including the 

proposed method, each dataset was divided for training and testing subsets randomly in the ratio of 80%:20% and 

50%:50% (for section 4.6 only).  The reported results are the median value on the 1000 independent iterations 

performed for train-test splitting for fair analysis. For training-free methods like NIQE [41] and IL-NIQE [42], 1000 

trials were performed on the test set for consistency and the corresponding median value are considered. For 

performance evaluation of other methods namely BJLC [39], Zhou [47], Golestaneh [22], Zhan [23], Zhu [24], Ferzli 

[9], EZMGM [15], Bahrami [13], and H. Liu [16] their results were taken either from corresponding original papers 

or most relevant related articles. Since, Golestaneh [22], Zhan [23], Zhu [24] methods were developed for JPEG 

distortion, whereas Ferzli [9], EZMGM [15], Bahrami [13] were designed for GBLUR type of distortions, hence the 

scores for these methods will be reported for corresponding specific distortion type only. For method proposed by 

Zhou [47], scores are reported only on MDID2013 [46] and LIVEMD [56] as the original paper mentions results only 

on these two databases.   

The experimental results for combined datasets LIVE [52], CSIQ [5] and TID2013 [40] containing all images exposed 

to GBLUR, JPEG and WN type of distortions are shown in Table 2. The results of the best two performing methods 

highlighted using bold face shows that the proposed method gives consistently good results compared with other state-

of-art methods. Tables 3 and 4 represent prediction monotonicity and prediction accuracy respectively for individually 

distorted datasets containing images exposed to GBLUR, JPEG and WN type of distortions corresponding to each of 

the three databases namely LIVE [52], CSIQ [5] and TID2013 [40]. From these results it can be clearly observed that 

Table 7 Cross Validation for SROCC and PLCC comparison of JPEG and BLUR type of distortion. Best two 

performances are marked using bold face 
           LIVE:CSIQ 

           (SROCC) 

             LIVE:CSIQ 

             (PLCC) 

                            LIVE:TID2013                       LIVE:TID2013 

                                (SROCC)                                   (PLCC) 

 JPEG GBLUR WN JPEG GBLUR WN JPEG GBLUR WN JPEG GBLUR WN 

DIIVINE [31] 0.845 0.888 0.876 0.831 0.862 0.851 0.845 0.888 0.868 0.837 0.835 0.857 
BLIINDS2 [32] 0.857 0.783 0.893 0.858 0.803 0.898 0.857 0.783 0.736 0.876 0.774 0.712 

CORNIA [38] 0.895 0.913 0.750 0.887 0.854 0.763 0.895 0.913 0.736 0.882 0.905 0.738 

BRISQUE [29] 0.889 0.872 0.899 0.905 0.871 0.882 0.889 0.872 0.820 0.871 0.856 0.844 

ILNIQE [42] 0.899 0.857 0.848 0.891 0.874 0.836 0.867 0.834 0.885 0.868 0.840 0.863 

NIQE [41] 0.882 0.895 0.809 0.863 0.881 0.828 0.862 0.815 0.816 0.884 0.811 0.823 

GMLoG [33] 0.895 0.911 0.896 0897 0.894 0.905 0.895 0.911 0.899 0.892 0.918 0.903 

NFERM [34] 0.913 0.883 0.916 0.918 0.882 0.917 0.913 0.883 0.905 0.853 0.891 0.922 

FRIQUEE [37] 0.835 0.877 0.849 0.817 0.896 0.844 0.835 0.877 0.810 0.838 0.862 0.846 

BJLC [39] 0.941 0.899 0.932 - - - 0.916 0.891 0.903 - - - 

PROPOSED 0.937 0.946 0.956 0.945 0.932 0.961 0.948 0.939 0.938 0.946 0.937 0.948 

 

Table 6 Cross Validation for SROCC comparison of JPEG and BLUR type of distortion. Best 

performance is marked using bold face. 

  LIVE:CSIQ LIVE:TID13 

 JPEG GBLUR JPEG GBLUR 

Golestaneh [22] 0.882 -- 0.871 -- 

Zhan [23] 0.937 -- 0.927 -- 

Zhu [24] 0.941 -- 0.951 -- 

Ferzli [9] -- 0.874 -- 0.851 

EZMGM [15] -- 0.922 -- 0.925 

Bahrami [13]  -- 0.924 -- 0.938 
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for all databases, the proposed method is always among the best two performing methods except for JPEG compressed 

images from CSIQ [5] database and WN images from TID2013 databases.  The proposed method gives consistently 

good performance compared to other methods and is comparable with FRIQUEE [37] and BJLC [39] methods. 

Specifically, for TID2013 [40] much celebrated methods like BRISQUE [29], GMLoG [33] and NFERM [34] have 

significantly lower performance when PLCC values are compared whereas the proposed method has the best 

performance for both SROCC and PLCC values. 

Furthermore, to test the wider validity of the proposed method, the SROCC and PLCC values are compared with other 

methods on KADID-10k [55] and IBBI [16], [60] databases and results are shown in Table 5. It may be noted that 

KADID-10k database used for analysis in this work consists of images exposed to individual type of distortions 

namely GBLUR, JPEG compression and White Noise, whereas IBBI [16], [60] database consists of intentionally 

blurred background images.  It can be observed from these results that our method maintains its position among best 

two methods for both the criteria (SROCC and PLCC) and for all the three distortions in KADID-10k database.  

However, for images from IBBI [16], [60] database, the proposed method still outperforms majority of SoA methods 

but has slightly inferior performance compared to BRISQUE [29] and GMLoG [33] methods. When compared to H. 

Liu [16] method which is a quality assessment method primarily developed for IBBI [16], [60] dataset, the proposed 

method has superior performance. It may be noted that results of [16] are quoted from the original paper itself.  

The six scatter plots for predicted and subjective DMOS scores on two distortions and three considered databases 

shown in Fig. 9 (a)-(f) further demonstrate the prediction accuracy of the proposed method.  It may be noted that under 

the ideal conditions, the best functioning models should have highly linear and tightly grouped scattering patterns.  

From the scatter plots of Fig. 9, the linear performance can be seen for both types of distortions in three databases, 

except for CSIQ [5] database with GBLUR type of distortion. The cause may be the effect of distortion on color 

component as we are considering only the gray-scale version of the images. Furthermore, highly clustered points can 

be visualized for JPEG and GBLUR type of images in LIVE [52] and TID2013 [40] databases shown in Fig.9 in 

accordance with SROCC (0.979, 0.972), (0.958, 0.951) and PLCC (0.986, 0.971), (0.966, 0.953) as listed in Table 3 

and Table 4 respectively. The superior performance of proposed method for all performance metrics makes it a 

preferable algorithm for accurate quality assessment of images independently/jointly distorted with JPEG and GBLUR 

artefacts. 

4.3 Performance on Cross-Database: 

In the previous section, only database specific and distortion specific results were presented. In order to evaluate the 

performance of proposed method independent of the specific database along with better generalization capability, 

cross-database validation is performed by training and testing the methods on different databases with similar 

distortions. This ensures that learnings from one database are not specific to it and can be used on different databases 

too.  

In this work, the images of the LIVE [52] database are used for training while CSIQ [5] and TID2013 [40] were used 

for testing. This generates two cross-database combinations (train-test) denoted as LIVE:CSIQ and LIVE:TID2013 

respectively and corresponding results (SROCC and PLCC) for each cross-dataset and for each distortion are shown 

in Table 7. For distortion specific methods only SROCC have been listed in Table 6.  It can be observed that the 

proposed method has best performance for both the distortions across the two databases. BJLC [39] performs slightly 

better than the proposed method for JPEG type of distortion on LIVE:CSIQ cross-validation for SROCC values, 

whereas SROCC for JPEG compressed images from LIVE:TID2013 of the proposed method shows better results. Zhu 

[24] also outperforms on JPEG type of distortion when SROCC values are compared for LIVE:TID2013, but the same 

is not true for LIVE:CSIQ based cross validations. For WN type of distortion also, the proposed method mostly 

outperforms other methods, showing good correlation scores. For individual database performance, BJLC [39] was 

giving consistently good performance but for cross-database validation it has significantly lower correlation scores, 

making it a highly database and training dependent model. Clearly, the proposed model stands apart as a highly robust 

and database independent model. 
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4.4 Performance analysis on multi-distortion databases: 

In order to demonstrate that the proposed method can also work on images with multiple distortions, it was also tested 

on images from four multiply distorted datasets LIVEMD [56], IVL MD [57], MDID2013 [46] and MDID [59] 

wherein original images were exposed to combination of JPEG compression, blurriness and white noise. The training 

and testing procedure for ML and Non-ML based methods was the same as described in section 4.1. The performance 

was compared to the state-of-art single-distortion (generic) methods BLIINDS2 [32], BRISQUE [29], GMLoG [33], 

NFERM [34], NIQE [41] and IL-NIQE [42] and multiple-distortion methods GWH-GLBP [44], Miao [45], and 

SISBLIM [46] using their source codes (on LIVEMD, IVL MD, MDID2013 and MDID) and results are listed in Table 

8 and 9. For method proposed by Zhou [47], the scores were directly taken from original paper for LIVEMD and 

MDID2013. It is noteworthy to observe the relatively poor performance and inability of celebrated generic methods 

to assess multiple distortions in an image. From the correlation scores listed in Table 8 namely SROCC and KROCC, 

it can be analyzed that the proposed technique works well on all the databases for the combination of multiple 

distortions except for slightly inferior performance compared with Miao [45] and GWH-GLBP [44] on MDID. But at 

the same time, it outperforms Miao [45] when we compare the PLCC scores. The method was also compared using 

Table 8 SROCC and KROCC comparison of multiple distortion images for the combination of JPEG, GBLUR 

and WN. Best two performances are marked using bold face. 

 LIVEMD IVL MD MDID2013 MDID 

  

SROCC 
 

KROCC 
 

SROCC 
 

KROCC 
 

SROCC 
 

KROCC 
 

SROCC 
 

KROCC 

GWH-GLBP [44] 0.944 0.805 0.889 0.717 0.908 0.719 0.892 0.708 

Miao [45] 0.955 0.810 0.941 0.798 0.921 0.744 0.845 0.661 

NIQE [41] 0.858 0.726 0.837 0.644 0.614 0.456 0.657 0.467 

IL-NIQE [42] 0.900 0.763 0.872 0.691 0.707 0.538 0.693 0.493 

BLIINDS2 [32] 0.887 0.753 0.803 0.617 0.808 0.623 0.773 0.568 

BRISQUE [29] 0.912 0.782 0.815 0.621 0.819 0.642 0.766 0.559 

GMLoG [33] 0.833 0.704 0.901 0.731 0.838 0.657 0.771 0.568 

NFERM [34] 0.898 0.759 0.871 0.688 0.851 0.674 0.803 0.603 

SISBLM [46] 0.907 0.771 0.848 0.672 0.894 0.686 0.744 0.538 

ZHOU [47] 0.943 - - - 0.907 - - - 

PROPOSED 0.957 0.813 0.950 0.816 0.912 0.727 0.842 0.648 

 
Table 9 PLCC and RMSE comparison of multiple distortion images for the combination of JPEG, GBLUR and 

WN. Best two performances are marked using bold face 

 LIVEMD IVL MD MDID2013 MDID 

  

PLCC 
 

RMSE 
 

PLCC 
 

RMSE 
 

PLCC 
 

RMSE 
 

PLCC 
 

RMSE 

GWH-GLBP [44] 0.948 5.873 0.916 6.736 0.895 0.025 0.897 1.048 

Miao [45] 0.959 5.484 0.941 6.378 0.910 0.024 0.828 1.618 

NIQE [41] 0.887 8.933 0.837 7.256 0.648 0.037 0.678 2.766 

IL-NIQE [42] 0.914 7.536 0.871 7.018 0.709 0.034 0.733 2.217 

BLIINDS2 [32] 0.904 7.864 0.803 7.884 0.842 0.028 0.785 2.015 

BRISQUE [29] 0.928 7.141 0.815 7.697 0.833 0.029 0.781 2.059 

GMLoG [33] 0.872 9.164 0.901 6.841 0.830 0.028 0.791 1.956 

NFERM [34] 0.917 7.459 0.872 6.943 0.875 0.027 0.811 1.873 

SISBLM [46] 0.925 7.194 0.822 7.587 0.885 0.025 0.809 1.985 

ZHOU [47] 0.951 5.747 - - 0.919 0.018 - - 

PROPOSED 0.954 5.739 0.976 6.150 0.916 0.021 0.839 1.611 
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the PLCC and RMSE scores on all the four multiple distortion-based databases and are listed in Table 9. The proposed 

method performs better than GWH-GLBP [44] and Zhou [47] for mostly all the sub-sets. To study further, statistical 

analysis (t-test) was conducted for comparison of these methods on LIVEMD [56] dataset. NIQE [41] and IL-NIQE 

[42] were excluded as they are opinion unaware learning free methods. The numbers were used from 1 to 7 to represent 

methods NFERM [34], GWH-GLBP [44], BRISQUE [29], BLIINDS2 [32], GMLoG [33], Miao [45] and proposed 

method respectively. The symbols ‘1’, ‘_’, and ‘0’ tell that the method in row is significantly better, similar or worse, 

compared to metric in corresponding column (with 95% confidence level). Table 10 represents these statistical 

analysis results wherein each symbol in every entry corresponds to results obtained on criteria’s PLCC, SROCC and 

RMSE. It can be observed that the proposed method is statistically superior compared to all the benchmark techniques 

with the exception of Miao [45] for RMSE criteria. 

4.5 Contribution of different features: 

To get a clear understanding of the relationship between the features and subjective scores we performed an 

experiment on LIVE [52] dataset consisting of all images present in GBLUR and JPEG subsets. Each feature was 

individually trained-tested using GPR learner for 80-20 % train-test ratio repeated over 1000 iterations to get all the 

possible combinations. The median scores are reported in Fig. 10, plotted separately for JPEG and GBLUR images. 

From this plot, it can be seen how zero-valued based features i.e. f6, f11 & f16 are highly relevant to human perception 

for GBLUR and JPEG images respectively. Similarly, as f21 and f22 are high-frequency based features hence show 

good results on JPEG compressed images. This work includes two parallel approaches one is only-DFT based and 

second is MSCN followed by DFT operation. To represent how this combination has better affinity towards 

assessment we mention the SROCC and PLCC scores for the three possible scenarios i.e. DFT, MSCN+DFT and 

Table 10 Statistical Analysis between different methods for criteria’s PLCC, SROCC and RMSE on LIVEMD 

database. 

 1 2 3 4 5 6 7 

1 ___ ___ 1__ 111 111 000 000 

2 ___ ___ ___ 111 111 000 000 

3 0__ ___ ___ 111 111 000 000 

4 000 000 000 ___ 111 000 000 

5 000 000 000 000 ___ 000 000 

6 111 111 111 111 111 ___ __1 

7 111 111 111 111 111 __0 ___ 

 

Fig. 10 Correlation of features with human perceptions for SROCC scores on the two types of distortions 
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Combination of DFT and MSCN+DFT in Table 11. It is very clear that the highest scores are obtained for the 

combination of DFT and MSCN+DFT uniformly across all three databases LIVE [52], CSIQ [5] and TID2013 [40].  

4.6 Choice of Regression model: 

To justify the use of GPR model as the mapping tool for extracted features, we make a comparison between the 

SROCC and PLCC scores obtained for Support Vector Machine (SVM) and GPR models respectively at two different 

validation ratios (80-20 and 50-50), as shown in Table 12. Clearly, GPR gives the best performance validating its 

employment in the model. 

4.7 Rum-time comparison: 

 In order to measure and compare the run time-complexity, the proposed method and some of the existing methods 

such as DIVINE [31], BRISQUE [29], NFERM [34], GMLoG [33], FRIQUEE [37] and Miao [45] were executed on 

a computer equipped with Intel (R) Xeon (R) processor, CPU- 2.13 GHz., 20 GB usable RAM and 64-bit operating 

system and 1 TB HDD. The run time measured for each algorithm is shown in Table 13. These results are for a group 

of 100 image of different sizes chosen from LIVE database [52] of GBLUR and JPEG type distortions (50%-50%). 

From Table 13, it can be observed that proposed algorithm gives a moderate performance for rum-time complexity. It 

gives slightly inferior performance (time-complexity) compared to BRISQUE [29] and GMLoG [33] but it is superior 

to DIIVINE [31], NFERM [34], FRIQUEE [37] and Miao [45].  However, it may be noted that although the run-time 

complexity for the proposed method is inferior to that of GMLoG [33] and BRISQUE [29] but the accuracy for the 

proposed method is higher compared to these two models. Hence, the model’s combined performance and accuracy 

(SROCC, PLCC, KROCC and RMSE) along with time-complexity makes it the most suitable algorithm for assessing 

images distorted with either blocking artefacts, blurriness, noise individually or jointly. 

Table 13 Run-time comparison for different methods (in seconds) 

Method DIIVINE 

[31] 

BRISQUE 

[29] 

NFERM 

[34] 

GMLoG 

[33] 

FRIQUEE 

[37] 

Miao 

[45]  

Proposed 

Time 38.6 0.41 82.3 0.19 40.2 5.2 4.81 

 

Table 11 SROCC and PLCC values for three approaches. Best performance highlighted using bold face. 

Database  LIVE TID2013 CSIQ 

Distortion Type  JPEG GBLUR JPEG GBLUR JPEG GBLUR 

I. MSCN+DFT SROCC 

SROCC 

SROCC 

0.964 0.958 0.904 0.911 0.903 0.918 

II.DFT 0.962 0.943 0.924 0.914 0.890 0.912 

Combination of I & II 0.979 0.972 0.958 0.951 0.948 0.944 

I. MSCN+DFT PLCC 0.971 0.965 0.918 0.922 0.926 0.906 

II.DFT PLCC 0.965 0.938 0.960 0.934 0.918 0.924 

Combination of I & II PLCC 0.986 0.971 0.966 0.953 0.949 0.941 

 
 

Table 12 Comparison of SROCC and PLCC values of IQA metrics based on the technique used. Best performance 

highlighted using bold face. 

Database  LIVE TID2013 CSIQ Cross-Validation Ratio 

Distortion Type  JPEG GBLUR JPEG GBLUR JPEG GBLUR  

GPR  SROCC 0.979 0.972 0.958 0.951 0.948 0.944 80-20 

SVM SROCC 0.961 0.965 0.937 0.924 0.917 0.910 80-20 

GPR  SROCC 0.975 0.962 0.953 0.933 0.926 0.928 50-50 

SVM SROCC 0.941 0.953 0.927 0.913 0.910 0.904 50-50 

GPR  PLCC 0.986 0.971 0.966 0.953 0.949 0.941 80-20 

SVM PLCC 0.958 0.947 0.939 0.918 0.903 0.926 80-20 

GPR  PLCC 0.974 0.959 0.953 0.942 0.933 0.927 50-50 

SVM PLCC 0.932 0.941 0.929 0.899 0.893 0.920 50-50 
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5. CONCLUSIONS 

In this work, a novel approach to estimate the quality of images corrupted with blocking artefacts, blurriness, or noise 

individually or jointly. The proposed model is inspired from human perceptions employing the transform domain DFT 

and MSCN coefficients to get the natural scene properties most suited to HVS. The proposed model effectively and 

accurately estimates the quality of images where a combination of blurriness, blocking artifacts and noise are observed. 

The proposed method is relatively faster and highly accurate. It is a fully blind method of image quality assessment 

and is capable of estimating the overall quality of images distorted jointly by blockiness, blurriness and noise, and 

useful to estimate quality of highly JPEG/MPEG/H.26x compressed images/videos received through bandlimited low-

pass channels. This scenario is widely encountered while exchanging images through modern electronic gadgets. In 

future, we aimed to extend this method for VQA (video quality assessment) for real-time quality monitoring of HEVC 

and VVC coded videos.   
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