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Abstract—To achieve higher coding efficiency, Versatile Video 
Coding (VVC) includes several novel components, but at the 
expense of increasing decoder computational complexity. These 
technologies at a low bit rate often create contouring and ringing 
effects on the reconstructed frames and introduce various 
blocking artifacts at block boundaries. To suppress those visual 
artifacts, the VVC framework supports four post-processing filter 
operations. The interoperation of these filters introduces extra 
signaling bits and eventually becomes overhead at higher resolu- 
tion video processing. In this paper, a novel deep learning-based 
model is proposed for sample adaptive offset (SAO) nonlinear 
filtering operation and substantiated the merits of intra-inter 
frame quality enhancement. We introduced a variable filter size 
multi-scale CNN (MSCNN) to improve the denoising operation 
and incorporated strided deconvolution for further computation 
improvement. We demonstrated that our deconvolution model 
can effectively be trained by leveraging the high-frequency edge 
features learned in a parallel fashion using feature fusion and 
residual learning. The simulation results demonstrate that the 
proposed method outperforms the baseline VVC method in BD- 
BR, BD-PSNR measurements and achieves an average of 3.762 

% bit rate saving on the standard video test sequences. 

Index Terms—Deep Learning, Artifacts, Versatile Video Cod- 
ing, SAO Filter, Deconvolution. 

I. INTRODUCTION

With the emergence of fast digital media development, ultra-

high definition and virtual reality video have become extremely 

popular. These explosive growths of video data consume lots of 

network bandwidth and pose a challenge in storing and 

transmitting visual data over the channel. Therefore, it is 

necessary to improve the video compression performance and 

efficiently transmit high-quality videos. To meet this demand, 

the JCT-VC expert team proposed the Versatile Video Coding 

(VVC) standard [2] and adopts block- based hybrid coding 

schemes. Most compression block-based algorithms and VVC 

rely on tiling the images into several sub- blocks, applying 

quantization, motion estimation, and compensation, sparse 

transform, context-based adaptive coding, and frame 

reconstruction. Compared with its predecessor HEVC standard 

[1], the upcoming video coding standard, Versatile Video 

Coding achieves up to 50% BD-rate reduction. These high 

compression rates introduce undesired artifacts. The artifacts 

decrease the visual quality and therefore affect various image 

processing tasks such as image super-resolution [7], contrast 

enhancement [5], and edge detection [11]. Subsequently, the 

compressed image regularly blurs due to the loss 
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of high-frequency components. Despite the progress of several 

video and image compression techniques, an effective artifact 

reduction technique remains an active area of research. 

The block-wised operation is widely used in various modern 

video coding standards and encodes the video frame contents. 

Though block-based coding has its own merits, it leads to 

quantization noises, blocking, and ringing artifacts in decoded 

images. The blocking artifacts in video compression mainly 

arise from two aspects. Firstly, after quantization and inverse 

quantization, the difference of pixel values between blocks 

is magnified. Secondly, in the motion estimation and 

compensation process, the selected reference blocks are 

usually copied from various positions of different reference 

frames. Frequently, these matching blocks are not accurate 

and lead to pixel value discontinuity. Subsequently, the 

blocking artifact at the prediction block unit boundary weakens 

the input image’s subjective quality. Additionally, the 

transformation of different frame-blocks follows independent 

coding processes with several parameters. These parameters in 

subsequent downstream processing result in the discontinuity 

of residual signals. In addition to that, the quantization 

distortion of high-frequency co-efficient causes the ripple 

phenomena around the sharp borders and introduces ringing 

artifacts. These ripple non- linear phenomena induce poor user 

experience. Therefore, a solution to minimize the blocking 

artifacts plays a significant role in real-time practical 

applications. 

Four built-in loop filters were proposed for the VVC stan- 

dard to alleviate the coding artifacts in compressed video and 

delineated in in Fig. 1. These decoder in-loop filters include:  

a deblocking filter [6], sample adaptive offset filter [15], 

adaptive loop filter [13], and Luma Mapping with Chroma 

Scaling (LMCS) [32]. A deblocking filter was adopted to target 

the blocking artifacts and smooth the boundary pixels while 

the block’s inner pixels remain unchanged. Subsequently, an 

SAO filter was incorporated to reduce the sample distortion by 

adding an adaptive offset to each sample. An offset, a positive 

or negative integer, is obtained for each category and is then 

added to each sample. Currently, the adopted SAO in VVC 

comprises four one-dimensional edge patterns into 

consideration and uses in edge offset type selection [35]. 

However, if one block contains multiple edges, the four 1-D 

edges offset-based approach will not be efficient enough to 

remove the artifacts in all directions. The alternative approach 

to this problem is to adaptively combine different one-

dimensional edge patterns for several edge types in a par- 

ticular region. Subsequently, an adaptive loop filtering (ALF) 
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technique suggested reducing the coding errors both in output 

and reference samples. Inspired by the Wiener filter theory, 

ALF trains filter coefficients to minimize the mean square 

error between reconstructed and original frames and reduce 

the overhead. These in-loop filters are stacked to overcome 

different distortions and improve visual quality while saving 

coding bit-rate. 

Fig. 1: VVC Decoder Diagram with SAO filter Replaced by our 
MSCNN Deep Learning Model. 

Besides the built-in filters, a few alternative SAO filtering 

approaches have been suggested progressively in VVC. These 

techniques can be broadly classified either as a heuristic or   

a learning-based method. In heuristic methods [26], [20], the 

statistical properties of the artifacts are usually modeled 

according to the image priors. These statistical features include 

gradient, intensity, edges, colors, texture, shape, and varies 

within frames. Although these heuristic approaches boost the 

coding efficiency, the prior features are calculated manually in 

these methods. Thus, such hand-crafted feature extraction does 

not guarantee a good object descriptor and results in 

inefficiency in image quality improvement. Alternatively, it   

is intractable to build a multi-scale filtering framework and 

enhance the coding efficiency. To address the above shortcom- 

ings, learning-based methods are introduced to determine the 

broader image features and optimize with sufficient trainable 

parameters. Besides that, the artifact reduction methods can be 

extended barely from one compression method to another. 

Subsequently, data-driven designs can be an alternative for 

better generalization of image reconstruction and quality 

enhancement in compressed frames. 

We introduced a deep learning-based method for artifact 

reduction in SAO output prediction. Our shallow MSCNN 

network includes the feature enhancement, de-noising, and 

extraction layers in succession and removes the undesired 

noisy features. Additionally, we also find difficulty while 

training the network layers due to sub-optimal initialization. 

To speed up the training process the model learned the residual 

blocks between the neighboring patches and used high learning 

rate values with an adjustable gradient clipping technique [3]. 

The residual blocks are calculated as the difference between 

the blocks in the current (target) frame to that of the blocks  

in the reference (matching) frame after the manipulation. We 

observed that the effective feature learning is improved by 

transferring the model parameters, fine-tuning the network 

variables, and applying data augmentation during the training. 

Finally, our model effectively suppressed the compressed 

artifacts to a great extent while retaining edge patterns, and 

sharp details. The result quantification shows that our MSCNN 

network outperformed previously studied networks in achiev- 

ing better computational speed and higher bit rate reduction. 

Contribution: We acknowledge the in-loop filtering as a 

design problem and it is difficult to dissociate the design of 

deep-learning approaches from that of the video decoder. 

Therefore, a systematic analysis is required to incorporate the 

CNN models in the video decoding framework. A new loss 

function is included for our model training. The global loss 

function measures the mean squared error for each batch and 

adds the intermediate spatial and temporal features for the final 

image reconstruction. In brief, the important contributions of 

our paper are summarized below. 

• We introduced a gated fusion layer in our architecture

design, which effectively combines the inter-frame local

and temporal features. Our model includes a new loss

function to constrain the pixel error and consists of an

intermediate feature layer through skip connections. Our

loss function measures the mean squared error at each

batch and adds the residual sparse feature maps for image

reconstruction. As a whole, our noise-robust loss function

can be viewed as a generalization of MSE and low-level

features learned from intermediate convolution layers.

• During the encoding process, different quantization pa- 

rameters cause different levels of artifacts. To overcome

it, a data-driven deconvolution model is integrated into

decoder framework [8]. We collected a large-scale dataset

for our SAO filter training. The end-to-end framework

learns the feature in different sub-modules, optimizes the

parameters, and removes the noise to a greater extent.

• Our model removes the artifacts in circumstances where

targets are highly crowded and iteratively deconvolve the

blurred images in a multi-layer framework. The result

shows better image visibility with reduced blurring effects

and did not suffer much from distortion.

The rest of the paper is organized as follows. Section II 

describes the related work and reviews the recent heuristic and 

learning-based approaches for VVC in-loop filter. Section III 

presents a summary of the proposed framework design. 

Section IV evaluates the experimental results and Section V 

analyses the result and it’s trade-offs. Section VI reports the 

conclusion. 

II. RELATED WORK

In this section, we briefly discussed the prior work related 

to the VVC loop filtering approach. The current in-loop filter 

usually resides in the video decoder loop, where the filtered 

blocks can be used as a prediction for later coded blocks or the 

reconstruction of the whole frame. Apparently, they change the 

rate-distortion behaviors of each CU, make inconsistency in 

the rate optimization and finally CTU level model decision at 

different QP values. Over the years, a couple of in-loop 
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Fig. 2: Basic In-loop Filtering Steps in VVC Decoder and Encoder 

filtering techniques have been suggested to improve the coding 

efficiency and visual quality of the reconstructed frames in   

the VVC decoder. These techniques are applied to both intra 

and inter predictions and reconstruct the pixels before writing 

them into the decoded buffer [29]. In addition to the VVC 

framework development, four major built-in in-loop filters are 

proposed to reduce the compression artifacts: 1) DBF filter, 2) 

SAO filter, 3) ALF filter, and 4) Luma Mapping with Chroma 

Scaling (LMCS) operation.  At the beginning of this 

subsection, we reviewed the existing in-loop filtering 

algorithms in VVC standard, following which the recent CNN- 

based image restoration method details are presented. 

A. In-Loop Filtering Methods in Video Coding

The block-based transform coding method in different video

coding standards introduces various artifacts and degrades the 

image reconstruction quality. Many post-processing methods 

are proposed in VVC to address these filtering problems, and 

several of them have already been adopted in the current 

standard. The primary motivation to design these low-pass 

filters is to confine the blocking artifacts by adaptively smooth- 

ing the boundary pixels and comparing adjacent boundary 

discontinuity with certain thresholds. 

1) Deblocking Filter: The deblocking filter was initially

introduced to remove the noise and blocking artifacts at the 

transform unit boundaries. As indicated in Fig. 2, the deblock- 

ing operation can split into four steps, namely 1) edge decision, 

2) strength calculation at boundary regions, 3) filtering mode

decision, and 4) edge filtering. The deblocking low pass filters

in H.264 [15] and HEVC [19] originally applied to the 4×4  or

8×8 block boundaries. After that, it calculates the boundary

strengths according to the encoder information and selects one

of possible values 2, 1, and 0 indicating the strong, weak,

and no filtering. If the boundary strength value is high, an 

additional condition check happens and applies weak or strong

filtering mode based on sample values near the boundaries.

Subsequently, edge filters are applied both horizontally and

vertically for further smoothening.

2) Sample Adaptive Offset: Fu et al. introduced the SAO

[17] in 2012 and later included in the HEVC Framework. The

sample adaptive offset filter’s design plan is to compensate

reconstructed samples by adding an offset to each pixel and

reducing the distortion between the frames. The SAO filter 

refines samples in both smoothed and irregular texture regions 

by dividing the samples into different sub-categories [27] and 

then adds offset to each sample value by encoder look-up 

tables. As pointed out in Fig. 2, SAO operation incorporates 

three major steps, precisely 1) statistical feature collection, 2) 

SAO sub-typing and offset decision, and 3) adaptive filtering. 

In step one, the number of pixels and their sum of distortions 

are calculated for a certain SAO type. In step two, the method’s 

key task is to classify the reconstructed samples and select the 

offsets for each category. In the current implementation, the 

SAO filtering operation is categorized broadly into band offset 

(BO) and edge offset (EO) methods. After that, the best SAO 

type and its corresponding offset are selected from the 

candidates of edge offsets and band offset types. Overall, the 

edge offset reduces the artifacts around all edges directions, 

and the band offset reduces the artifacts in a relatively smooth 

region. Lastly, CTU pixels are filtered in step three by 

conditionally adding the corresponding best offset values. 

3) Adaptive Loop Filtering: During the versatile video

coding framework development, an advanced adaptive loop 

filtering (ALF) [13], [30], [31] was suggested and included 

after the SAO filter operation. The proposed ALF is located at 

the last processing stage of the in-loop process and can     be 

regarded as a tool to capture and fix artifacts for each frame 

from previous settings. The ALF operation further minimizes 

the mean square error between all sample locations of 

reconstructed frames and the raw frames. ALF scans the 

decoded pictures at the CTU label and selectively applies 

several two-dimensional finite impulse response filters (Wiener 

filters) before the image becomes output for prediction. At  

the encoder side, the algorithm estimates the sets of low- pass 

frequency-domain filter coefficients that frequently lead to 

minor errors and then conveys the signals to the corresponding 

pixel coefficients at the decoder side. 

4) Luma Mapping with Chroma Scaling: The Luma Map- 

ping with Chroma Scaling in-loop operation in VVC includes 

two basic sequential processes: 1) Luma Mapping and 2) 

Chroma Scaling. The Luma Mapping uses an adaptive piece- 

wise linear reshaping function and scales the input luma code 

values (signal) across the dynamic ranges. The reshaping 
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function takes the intensity lines from the input,  makes  it into 

sixteen segments on the curve, and finally boosts up the signal 

precision. Therefore, the luma mapping makes better use of 

luma code range values within specified bit depth and 

improves the coding efficiency for standard and high dynamic 

range video. On top of Luma mapping, the Chroma scaling 

step applies residual signaling on the Chroma components with 

flag activation. With the above two operations, the decoder 

improves the signal, adopts some signal characteristics, and 

thereby improves the image quality 

B. CNN based SAO Filter in Predecessor HEVC

The existing in-loop algorithms in HEVC primarily target

removing the blocking artifacts. To remove the undesired 

complex artifacts, Park and Kim [9] proposed a deep learning- 

based IFCNN network as an alternative to the de-blocking 

filter and improve the visual quality in HEVC [1]. Kim and Lee 

[3] introduced a super-resolution method using very deeper

residual learning and demonstrated the contextual information

over a large image region. Later Jia et al. [19] proposed an

iterative training scheme and introduced a content-aware deep- 

learning based in-loop filtering technique for quality improve- 

ment. T. Li et al. [4] proposed the MIF-Net to replace original

deblocking and SAO in HEVC and investigated the image

enhancement under low bit-rate intra coding configuration.

Zhang et al. [24] proposed the RHCNN model to measure the

mappings between the raw frames and their corresponding re- 

constructed frames and investigated the residual performance.

Kang et al. [23] suggested a novel multi-modal sub-networks

to substitute the present SAO filter at inter-intra mode. The

model largely contains two CNN sub-networks with different

scales and boosts the performance of the image restoration.

Recently, Ma et al. [36] proposed a CNN cascaded post- 

processing model for multi-level feature learning, improved

information flow, and shown consistent coding gains in VVC.

III. OVERALL ARCHITECTURE

In recent years the deep learning community brings new 

progress in high-level computer vision tasks and shares the 

idea of the deeper network for better output performance. We 

investigated both the traditional and heuristic learning 

methods on video compression and found that the heuristic- 

based method may not outperform the conventional inter 

prediction in view of reducing temporal redundancy. However, 

the traditional video compression framework consumes a high 

rate cost to signal the motion information limiting overall com- 

pression efficiency. This observation motivates us to propose 

a decoder-side multi-scale CNN-based inter-prediction method 

to efficiently obtain similar reference blocks without explicitly 

signaling the motion information. Considering visually an- 

noying artifacts often observed in their reconstructed frames, a 

deconvolution-based filter is adopted to address this issue and 

improve the reconstructed video quality.  Subsequently, the 

spatial and temporal information is jointly exploited by taking 

both the current block and the reference block into 

consideration during temporal frame-blocks processing. Our 

proposed model can reduce the diversity across the frames 

and learn the frame differences, including artifact, noise, object 

motion, and appearance changes. 

A. Inter Frame Operation

In VVC, the working frame is first divided into non- 

overlapping equal-sized CTU regions up to 128×128 samples 

and then further divided into smaller coding units (CU). Each 

CU then recursively split into four square-sized child coding 

blocks. A child coding block can further be split into two 

equal-sized children coding blocks using binary-tree (BT) split 

or into three unequal sized blocks using  ternary-tree  (TT) 

split or four blocks using Quad-tree split. As a consequence, 

the multi-type tree structure follows a flexible hierarchical 

partitioning tree to adapt to the content information in local 

image regions. A CU can be coded by using either inter or 

intra prediction. In intra prediction, the spatial neighboring 

samples are used to predict the current block. Likewise, if  

the inter prediction is used, one or more similar blocks will  

be searched from the already encoded P or B neighboring 

frames and predict the current block. The relative position 

shift between the current block and its similar blocks in the 

reference frame is termed as motion vector (MV) and later 

signaled to the decoder with motion compensation flag 

information. The residual block information is sent to the 

quantization and transform modules to generate the quantized 

residual coefficients, which are then encoded by using the 

CABAC entropy coding. After that, the residual coefficients 

are inverse quantized and inverse transformed to obtain the 

reconstructed residual block at the decoder side. The predicted 

residual block (intra or inter) and the current input block are 

added together to form the reconstructed block. 

B. Network Architecture

The block diagram of our MSCNN network is shown in

Fig. 3 and later integrated locally in the decoder side of the 

VVC reference software VTM 8.0 [8]. The residue image is 

compressed in the VTM framework and feeds into the in-loop 

decoder network. The overall network incorporates a chain  

of ten convolution and symmetric deconvolution layers and 

jointly functions in an end-to-end framework. The convolu- 

tional filter learns the spatial information through activation 

maps and down-samples the input image contents into smaller 

size abstractions. Then the deconvolution and un-pooling lay- 

ers up-sample the abstractions back to the original resolution. 

The intermediate convolution layers act as a feature extractor, 

captures the primary object components in the image through 

a series of activation maps, and reduces the noise components. 

The features extracted on the first layer (Fig. 3) are quite 

noisy. Therefore, we followed three immediate steps: feature 

de-noising, spatial feature shrinking, and feature enhancement 

layer for clearing the low-level attributes. The mapping layer 

maps these high dimension attribute vectors to another inter- 

mediate vector and restores the high-level features. Finally, the 

residual layer aggregates the patch-wise representation, adds 

the input frame patch, and generates the final output (extreme 

right of Fig. 3). The residual feature maps for the upper (U) 

and lower (L) network are defined as below: 
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Fig. 3: Overall Architecture Diagram of our Deep Learning Model for Inter Frame Reconstruction. The Compressed Luminance (Y) input 
Frames from Encoder feed to the Model. Upper and Lower subdivisions are Parallel and Each Contains Symmetric Layers of Convolution, 
Deconvolution, and Includes: Feature Extraction, Denoising, Shrinking, Enhancement, Mapping and Reconstruction Layer. We Merged the 
Current and Reference Block Feature Maps to a Gate Array and weighted the Contribution of each Block for final Image Reconstruction. 

This paper proposes a novel deconvolution learning based 

approach for image quality enhancement and addresses the 

SAO filtering in VVC inter frame prediction. The shallow 

model learns the residual image through a gated architecture 

and later merges the input frames with the residue, and 

finally enhances the object details. We first constructed a 

large balanced database with different video resolutions for 

our model evaluation. Our deconvolution model utilizes 

diverse spatial features and restores the detailed information 

for further image quality improvement. To make the network 

capture more detailed information, a new loss function is 

included for model training. The experiment results show 

that our proposed network outperforms the baseline model in 

terms of achieving higher bit rate reduction and 

computational efficiency. The PSNR versus bit-rate 

comparison was presented and the coding efficiency of 

various state-of-the-art methods assessed using the same 
gradient-based optimization techniques. The proposed 

scheme was able to reduce compression artifacts while 

checking the rate-distortion cost after CU label 

reconstruction. Although our model shows a possible option 

for SAO filtering, more rigorous training strategies are 

th 
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software. The experiment results for the test sequences are 

shown in the result section. Our proposed MSCNN model  

is compared with other latest SAO filtering methods and 

followed the common test conditions defined in [16], [25].  

To verify our algorithm performance, we validated the video 

test sequences of class A, B, C (WVGA), and D (WQVGA) 

videos. Initially, we focused on the inter coding model per- 

formance with AI mode configuration in VTM 8.0 software 

package. The input video I-frame sequences are encoded at 

various QP values {22, 27, 32, 37}. The BD-BR and BD- 

PSNR [12] measurements are calculated for the performance 
evaluation and results are shown in Table II, and III.

TABLE II: Average %BD-Rate of our Model Evaluated across the 
channels on AI Mode and Compared to Baseline VVC Model [8]. 

In Algorithm 1, xi Xi, RN×N denotes the ith training 

compressed sample of a batch. The model predicts the output 

patch  �̂�𝑖∈  Yi and tries to approximate the input patch xi. Our

training scheme follows an iterative process with forward and 

backward propagation and simultaneously optimizes the model 

parameters. The network weight, bias, and hyper-parameter 

values are first initialized in Algorithm 1 and followed for  

Niter iterations. The image patches are processed per iteration 

and integrated at the final layer of deconvolution for full image 

reconstruction. To make the final output image �̂�𝑖  close to Xi 

in Eq. 6, our training steps followed a mini-batch stochastic 

gradient descent and performed constrained optimization with 

the L2 norm. The optimization step in Algorithm 1 includes 

the squared norm of the weight matrix (θ)  multiplied  by the 

regularization parameters. In Eq. 7, The regularization 

component drives the values of weight, bias, and Fi(Y)  matrix 

down and effectively reduces the over-fitting. 

IV. EXPERIMENTAL RESULTS

To validate the performance of the model, we included a 

residue learning mechanism into VVC VTM 8.0 [8] reference 

A. Data Pre-processing and Training Setup

For our model training, we picked seven hundred fifty input

images with different resolutions from DIV2K dataset [14], 

eighteen video sequences of Classes A to E from the  JCT- VC 

test set [21], and collected ninety-two supplementary se- 

quences from Xiph.org [22]. To reduce the correlation between 

the channels, color images are decomposed into YUV 4:2:0 

file format (chroma U and V channels half the resolution of 

luma Y) and encoded by VTM-8.0 at different QP values. All 

raw videos are encoded under All-intra, Random Access, Low- 

delay and Random-access configurations. The built-in inloop 

filters are all enabled while compressing the video sequences. 

The whole dataset is split into two training and testing folders 

and randomly choose ninety-five video sequences for our train- 

set (80%), and the remaining 20% kept aside for the test-set. 

The training and test images had no overlap to demonstrate the 

Class Sequence 
Frame 
Count 

BD-Rate (%) 

Y U V 

Class A 
(2560 × 1600) 

PeopleOnStreet 60 -3.93 -4.19 -5.53 

Traffic 60 -4.29 -5.45 -4.46 
SteamLocomotive 100 -3.24 -3.97 -4.32 
Nebuta 100 -4.36 -4.66 -4.54 

Class B 
(1920 × 1080) 

BQTerrace 100 -2.95 -3.03 -3.56 

ParkScene 100 -3.92 -3.47 -4.62 
BasketballDrive 100 -2.06 -3.52 -5.34 
Kimono 80 -3.29 -3.75 -6.32 

Class C 
(832 × 480) 

BQMall 60 -5.02 -4.61 -5.75 

PartyScene 100 -3.43 -3.98 -5.23 
BasketballDrill 100 -3.92 -4.58 -5.62 
RaceHorses 100 -4.59 -5.24 -4.04 

Class D 
(416 × 240) 

BlowingBubbles 100 -3.62 -3.48 -4.17 

RaceHorses 100 -2.55 -3.23 -5.82 
BasketballPass 100 -4.12 -4.35 -4.83 
BQSquare 100 -3.46 -4.53 -4.95 

Class E 
(1280×720) 

FourPeople 60 -3.92 -5.33 -5.38 

Johnny 60 -4.23 -4.37 -5.04 
KristenAndSara 100 -3.46 -5.44 -4.68 

Summary Class A -3.955 -4.568 -4.713 
Class B -3.055 -3.443 -4.96 
Class C -4.24 -4.603 -5.16 
Class D -3.688 -3.898 -4.943 

Class E -3.87 -5.047 -5.033 

Overall -3.762 -4.312 -4.962 
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generalizability of model validation. During the training phase, 

largely the Y luma channel of video sequences have proceeded 

as input to the network. This is because the Y is the luminance 

channel and contains most of the visual information. For 

training the CNN model, the image pixel values of input  

video frames are normalized between 0 to 1 from its original 

intensity range. To use the training data more efficiently three 

image augmentation techniques are adopted: 1) rotation by 

degrees of 90, and 180, 2) scaling by a factor of 0.75, 0.5,  

and 0.25, and 3) horizontal flipping. Subsequently, our off- 

line augmented training set becomes twenty-four (3×4×2) 

times that of the original dataset. 

V. RESULT ANALYSIS

We validated our model with classes A, B, C, D video 

sequences in AI mode, and their corresponding % BD-bitrate 

results are reported in Table II. A post-processing output 

TABLE III: Average BD-PSNR and SSIM for Different Methods 
Across Y channels: VTM [8], MGNLF [33], and Our Model. 

Evaluation 
Metrics 

Quantization 
Parameter 

VTM [8] MGNLF [33] Our Model 

PSNR(dB) 37 26.16 28.68 31.39 
32 30.29 31.56 35.22 
27 32.25 32.61 35.74 
22 34.15 35.13 38.88 

SSIM 37 0.782 0.824 0.855 
32 0.833 0.861 0.894 
27 0.902 0.917 0.923 
22 0.911 0.936 0.953 

comparison was performed and the results are reported in 

reference to the VVC SAO filter outputs. We calculated the 

BD-rate measures [12] on both chrominance and luminance 

channels and independently evaluated the coding efficiency. It 

was observed that our MSCNN model achieved a considerable 

bit-rate reduction in various test sequences listed in Table II. 

For the luminance (Y) frames, a high of -5.02% BD-rate is 

achieved on the BQMall sequences, and on an average of - 

3.762%, BD-rate is achieved on the rest of the sequences. 

A. Result Comparison with CNN models

We compared our MSCNN model results with VVC Base- 

line [8], AWT [29], and MGNLF [33]. To measure the 

reconstructed frame distortion, the BD-PSNR, and SSIM 

evaluation metrics are compared with diverse test sequences 

and shown in Table III. We also observed that the MSCNN 

network outperformed other models, based on various 

evaluation metrics. This indicates that our MSCNN can 

reconstruct the input image with less compressed artifacts. 

Additionally, the computational complexity of different CNN 

models is compared in terms of decoding time on test 

sequences at different resolutions (Table IV). All methods are 

implemented in the Keras machine learning framework and 

K40 16GB stand-alone GPU system. 

TABLE IV: Time Complexity Comparisons of various In-Loop SAO 
Filters in AI mode and GPU Configuration. 

Class Time Overhead: t {Ref}/t {VTM} in second 
AWT [29] VTM [8] MGNLF [33] Our Model 

Class A 
(2560×1600) 

0.652 0.432 0.184 0.127 

Class B 
(1920×1080) 

0.488 0.516 0.165 0.155 

Class C 
(832×480) 

0.192 0.241 0.158 0.128 

Class D 
(416×240) 

0.184 0.225 0.242 0.216 

Class E 
(1280×720) 

0.285 0.169 0.465 0.343 

Average 0.3602 0.3166 0.2428 0.1938 

B. Time Complexity

We analyzed the time complexity of our MSCNN approach

and compared it with other recent in-loop filter models in GPU 

mode only. The decoding time overhead for each in-loop filter 

reference model  tRef  is  evaluated  in reference  to VTM 

baseline tVTM on class A to E sequences and averaged. 

Thereafter, the tRef/tVTM ratio is reported for model 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 4: Model performance comparison for different video sequences and configurations (AI/RA) in AWT [29], VTM [8], and MGNLF [33]. 
(a) BQMall, AI; (b) BlowingBubbles, AI; (c) Kimono, RA; (d) Traffic, AI; (e) KristenAndSara, AI mode; (f) BasketballDrill, RA mode.

comparison in Table IV. A larger ratio indicates a relatively 

longer time overhead of the in-loop filter operation. Table IV 

summarizes the average run time of representative learning-

based CNN methods across the entire JCT-VC test sequences 

with different image resolutions. The experimenters are 

performed in a machine learning (TensorFlow) VTM 8.0 

framework with GPU mode and recorded the computational 

time. One can notice from Table IV that the AWT [29] based 

in-loop filtering approach has a time overhead among the three 

categories in GPU mode. However, benefiting from the GPU 

acceleration, our MSCNN model is faster (0.1938 sec/frame) 

than the AWT [29] (0.3602 sec/frame) and got a modest 

improvement compared to the VTM [8] performance (0.3166 

sec/frame) and MGNLF [33] (0.2428 sec/frame). From the 

above analysis, we observe that the proposed MSCNN de- 

convolution network consumes less time among the rest of   

the network configurations and can be a holistic approach in 

terms of time complexity. The decoding time did not meet the 

required real-time application requirements and need further 

careful optimization. 

C. Objective Evaluations and Results Analysis

The quality assessment for the reconstructed video se- 

quences in a lossy video compression model is measured 

together in terms of the objective and subjective performance 

viewpoints. The standard objective measurements are per- 

formed mathematically by using pixel differences between a 

compressed frame as compared to that of a reference frame. 

These difference values usually provide the mathematical cor- 

rectness of the measurement. In our objective video analysis 

experiment, we estimated the structural similarity (SSIM) and 

peak signal-to-noise ratio (PSNR) values for different in-loop 

methods and compared those at different bit-rates. Table V 

summarizes the rate-distortion results of all three approaches 

in which the original VVC VTM 8.0 is used as    an anchor and 

with baseline SAO in-loop filtering operation. The BD-BR 

and BD-PSNR results of our algorithm are tabulated in Table 

V for AI, and RA configurations, averaged and successively 

compared with AWT [29], VTM [8], and MGNLF [33] 

methods. As reported  in  Table  V,  the  BD-  BR of our 

MSCNN approach is -4.485% averaged over the conventional 

test sequences, and outperforming -1.943% of AWT [29] and -

3.873% of MGNLF [33]. We observed that our proposed 

MSCNN performs better both in terms of BD- PSNR 

improvement and BD Bit-rate reduction. The MGNLF [33] 

model outperforms the AWT [29] because it involves more 

layers and has higher accuracy. In terms of the PSNR bit-rate 

match, our approach attains 1.466 dB in the standard test set 

and considerably well over the 0.808 dB of [29], and 1.13 

dB of [33] in AI (intra I-frame), and RA configurations. 

Eventually, our MSCNN model achieved superior RD perfor- 

mance across all three approaches. The potential reasons for 

such maximum output include the (1) utilization of wide range 

activation maps, (2) proposed symmetric convolutional and 

deconvolutional blocks, and (3) effective feature de-noising 
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TABLE V: BD-BR Coding Performance (bit rate), %BD-PSNR (dB) of our MSCNN and Other State-of-the-art Methods w.r.t. VTM 8.0 [8] 
across Y channel space, QP values, Class Resolutions and Configurations. 

Class 
(Resolution) 

Sequence Configuration 

AI RA 
AWT [29] 
vs VTM 

MGNLF [33] 
vs VTM 

Our Model 
vs VTM 

AWT [29] 
vs VTM 

MGNLF [33] 
vs VTM 

Our Model 
vs VTM 

BD 
PSNR 

BD-BR 
(%) 

BD 
PSNR 

BD-BR 
(%) 

BD 
PSNR 

BD-BR 
(%) 

BD 
PSNR 

BD-BR 
(%) 

BD 
PSNR 

BD-BR 
(%) 

BD 
PSNR 

BD-BR 
(%) 

Class A1 
(3840×2160) 

Tango2 1.614 -1.102 2.412 -4.23 1.152 -4.18 0.95 -2.52 1.136 -4.293 1.717 -5.06 

FoodMarket4 1.836 -2.163 1.882 -3.57 1.325 -5.41 1.03 -3.07 1.435 -5.018 1.851 -5.35 
Campfire 1.394 -1.881 1.653 -2.35 1.034 -4.13 0.77 -2.37 1.036 -4.016 1.675 -5.14 

Class A2 
(3840×2160) 

CatRobot1 0.665 -2.417 1.314 -3.15 1.567 -5.17 1.022 -2.63 1.461 -3.417 1.853 -4.75 

ParkRunning3 1.841 -2.765 1.386 -2.88 1.732 -5.51 1.056 -3.28 1.452 -4.194 2.072 -4.53 
DaylightRoad 1.475 -2.262 1.514 -2.22 1.652 -4.16 0.813 -2.62 1.162 -4.071 1.883 -5.21 

Class B 
(1920×1080) 

MarketPlace 0.916 -3.29 1.035 -3.77 1.483 -4.34 1.057 -2.52 1.585 -4.18 1.819 -4.31 

BasketballDrive 0.807 -1.91 0.853 -5.02 1.193 -5.37 1.23 -2.91 1.254 -4.85 2.217 -5.17 
Cactus 0.636 -2.15 0.618 -4.48 1.412 -4.05 0.79 -1.39 1.178 -4.11 1.518 -5.34 

BQTerrace 0.501 -1.13 0.546 -4.17 1.328 -3.91 1.27 -1.82 1.315 -4.72 1.553 -5.16 
RitualDance 0.415 -1.08 0.454 -3.64 1.021 -4.58 0.88 -2.19 0.913 -4.57 1.075 -5.12 

Class C 
(832×480) 

PartyScene 0.302 -2.37 0.319 -3.04 1.543 -3.13 1.05 -1.55 1.41 -2.72 1.88 -4.58 

BasketballDrill 0.406 -1.61 0.393 -3.74 1.432 -3.88 0.72 -1.34 1.38 -2.44 1.75 -2.93 
RaceHorses 0.435 -2.68 0.481 -4.022 1.425 -4.51 0.54 -1.52 1.84 -3.11 1.64 -4.32 

BQMall 0.511 -2.811 0.442 -4.07 0.822 -4.46 0.49 -1.13 1.42 -3.75 1.78 -5.12 
Class D 

(416×240) 
BlowingBubbles 0.862 -2.45 0.796 -4.88 1.281 -3.38 0.692 -2.25 1.089 -3.937 1.81 -3.37 

BQSquare 0.781 -2.17 0.773 -4.65 1.34 -4.86 0.481 -1.85 1.839 -4.303 1.34 -4.34 
BasketballPass 0.381 -1.44 0.497 -4.18 1.152 -4.94 0.431 -1.15 1.713 -4.15 1.15 -5.24 

Class E 
(1280×720) 

KristenAndSara 0.298 -0.38 0.556 -3.64 1.04 -3.51 0.58 -0.77 1.453 -3.76 0.87 -4.45 

Johnny 0.121 -0.84 0.295 -3.88 1.16 -4.16 0.89 -1.31 1.274 -2.98 1.33 -3.12 
FourPeople 0.354 -1.08 0.735 -4.12 1.35 -3.75 0.647 -1.45 1.183 -4.404 1.36 -4.38 

Overall 0.788 -1.904 0.903 -3.795 1.307 -4.352 0.828 -1.983 1.358 -3.952 1.626 -4.619 

TABLE VI: The Luma Y Channel BD-BR (%) Performance of Our Model on Fifty-two Xiph.org [22] Video Test Sequences at Different 
Configurations and Evaluated with Respect to Baseline VVC VTM 8.0 Framework [8]. 

Resolution Sequence Our Model vs VTM (AI) Our Model vs VTM (RA) Our Model vs VVC (LDP) Our Model vs VVC (LDB) 
Name No. of BD-BR(%) BD-PSNR BD-BR (%) BD-PSNR BD-BR (%) BD-PSNR BD-BR (%) BD-PSNR 

(1280, 720) Mobcal 4 -5.412 0.125 -5.382 1.155 -4.652 1.282 -4.146 1.367 
Holm 6 -3.021 0.265 -4.185 1.108 -3.523 1.159 -3.328 1.284 
Shields 3 -5.012 0.157 -3.874 1.122 -2.941 1.211 -4.382 1.312 

(720, 480) Calendar 5 -4.271 0.368 -4.584 1.201 -4.573 1.238 -4.536 1.274 
Galleon 4 -3.785 0.122 -4.095 1.152 -4.028 1.186 -2.182 1.202 

WashDC 4 -5.618 2.86 -3.036 1.094 -5.325 1.125 -2.951 1.147 

(640, 360) Fountain 5 -2.782 0.205 -3.584 1.316 -4.274 1.285 -5.172 1.294 
Dance 5 -3.894 0.241 -4.012 1.358 -3.829 1.306 -4.824 1.404 
Bridge 3 -4.856 0.272 -3.013 1.216 -4.083 1.248 -4.511 1.355 

(352, 288) Bowing 2 -5.127 0.286 -4.038 1.284 -5.24 1.342 -3.737 1.463 
News 3 -2.023 0.214 -2.804 1.125 -4.027 1.186 -3.844 1.335 

Football 6 -5.852 0.348 -4.332 1.244 -4.032 1.316 -4.439 1.427 
Bus 2 -3.884 0.192 -4.625 1.117 -4.132 1.262 -4.024 1.504 

Average 52 -4.272 0.449 -3.63 1.192 -4.205 1.244 -4.134 1.339 

and shrinking feature learning. The inter-frame experiment was 

performed in VTM software with original network settings 

provided in Fig. 3. Our Conv and De-Conv CNN model is 

separately applied to different frame blocks in a multi-scale 

fashion (Fig. 3), reconstructed the image features parallelly 

[34], and later merged in a gated fusion layer. In our inter 

coding experiment, each reconstructed frame are served as a 

reference for encoding successive P or B frames. The CNN 

model output is then fed back to the next successive frame in a 

decoded frame buffer to produce its enhanced version. The P 

and B frames are encoded and trained separately for respective 

models and followed adaptive QP training strategy addressed 

in LDP and LDB mode. Additionally, we performed model 

testing on the Xiph.org video media set at [22] and sampled 

thirteen test sequences from each resolution. Table VI presents 

the BD-BR performance of our model under AI, RA, LP, and 

LB configurations. The proposed architecture shows a stable 

performance and achieved a -4.272% bit rate saving in AI 

mode over the video media-set and substantially outperformed 

other three model configuration results as -3.63% (RA), - 

4.205% (LDP), and -4.134% (LDB). In terms of BD-PSNR, 

our LDB configuration model achieved 1.339 dB in the above 

test set, accomplished 0.449 dB in AI model, 1.192 dB in RA 

model, and 1.244 dB in LDP mode. In belief, our proposed 
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(a) AI Configuration (b) LDP Configuration (c) RA Configuration 

Fig. 5: PSNR histogram statistics of AWT [29], VTM [8], MGNLF [33] models and configurations on different test video sequences. 

approach performs favorably under different compression con- 

figurations and network settings. To intuitively compare the 

model performance, we also included the histogram statistics 

of PSNR values for different classes and sequences in Fig. 5. 

It is noted that our model achieves the highest PSNR which 

demonstrates the effectiveness of hierarchical feature learning 

to improve the compression performance. 

Fig. 4 a) to d) shows the Rate-Distortion (RD) curves and 

illustrates the bit-rate savings of our model. The figure 

additionally shows the PSNR performance comparisons of the 

proposed MSCNN network and VVC SAO de-blocking filters 

in luminance frames on four selected sequences: BQ Mall, 

BlowingBubbles, Kimono, and Traffic sequences. To further 

understand the performance, another set of experiments are 

performed at AI and RA configuration mode in 

KristenAndSara and BasketballPass sequences (Fig. 4 e and 

f). We used a constant quality of ten bits per pixel to represent 

each pixel in the frame and measured the number of bits for 

encoding the representations. The optimal bit rate in kb/s×103 

is calculated by multiplying the above bits per pixel and video 

resolution. The graphical comparison between PSNR~Bitrate 

(kbps) is shown in Fig. 4 e) and f). It can be viewed that the 

PSNR gain of our MSCNN method is higher than that of 

AWT [29], VTM [8] methods and a slight edge in 

performance to that of MGNLF [33] at different QP values. 

As shown in Fig. 4 e), the AWT model output looks 

inconsistent at higher QP values. The main reason could be, it 

failed to predict high-frequency wavelet features at different 

filter sizes and uses more memory at the decoder buffer. In 

brief, the proposed method achieved better feature 

generalization in our test dataset and obtained consistent 

evaluation performance under different configurations. 

D. Subjective Results

In this section, we analyzed the variation of decoded frame

quality which serves as a premise for our proposed model. 

Subsequently, subjective measurements are performed and 

evaluated the perceived visual image quality that the human 

eye may not notice. Fig. 6 exhibits visual image quality 

comparisons of the original in-loop SAO filter in VVC [8], 

MGNLF [33], AWT [29], our MSCNN approach, and 

demonstrate the effectiveness of various approaches. The input 

“BQMall” sequence has a resolution 832×480 and the residual 

transfer block coefficients are quantized at a factor   of QP32. 

For the quality comparison, we used the fifth frame of 

“BQMall” video and reconstructed the images. We put a 

bounding box area around the single person of a zoomed-      

in region of “BQMall” (right) for small object reconstruction 

comparison. Although the traditional HEVC filters have been 

applied in Fig. 6 a), one can notice that there is still blurring, 

and the visually ringing effect persists in the baseline results. 

In Fig. 6 b), the frames filtered by the VVC model look 

flattened, and a sudden intensity variation is observed through 

the image objects. Subsequently, one can observe that the 

reconstructed frames in Fig. 6 c) in the third quadrant (left) are 

over-smoothed especially in the leg, bag, and shawl region, and 

introduce noisy lines on the shallow boundary regions. More- 

over, some details are missing in the crowded region of the 

bottom-left corner and minor color distortion at the top right 

of the elliptical edge regions. On the contrary, Fig. 6 (d) refers 

to the results of employing the proposed MSCNN model. Our 

proposed adaptive model successfully recovered the feature 

details around the bag edge, hand and collar regions with less 

compression artifact. After post-processing, the smooth details 

are preserved to a greater extent and look visually appealing. 

This perhaps is due to the better generalization ability of our 

model training. However, some details are missing at the shop 

wall corner and leg of glasses. 

TABLE VII: Ablation Study on Different Model Component Combi- 
nations. Computational Time, BD-BR, and BD-PSNR Performance 
Evaluated and Reported on SJTU Video Sequences [28]. 

No Multi-Scale Network 
BD-PSNR 

(dB) 
BD-BR 

(%) 
Time 

(in Sec) 

1 Conv5 + Padding + Up-Sampling 1.148 -4.52 0.374 

2 Conv5 + Un-pooling + De-Conv1 1.436 -5.46 0.388 

3 Conv5 + Un-Pooling + De-Conv2 1.191 -4.61 0.457 

4 Conv5 + Un-Pooling + De-Conv3 1.525 -4.84 0.484 

5 Conv5 + Un-Pooling + De-Conv4 1.365 -5.07 0.518 

6 Conv5 + Un-Pooling + De-Conv5 0.942 -5.34 0.454 

7 Conv5 + Average Up-Pooling + De-Conv5 1.502 -4.08 0.747 

8 Conv5 + Un-Pooling + De-Conv5 + Modes 1.278 -4.28 0.385 

E. Ablation Study

In this section, we conducted a series of ablation studies

and validated the efficacy of our model components. Our 
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(a) “BQMall” with VVC SAO  filter [8], PSNR  31.22 dB (b) “BQMall” with MGNLF [33] SAO filter, PSNR 29.74 dB 

  

(c) “BQMall” with AWT [29] SAO filter, PSNR 30.35 dB (d) Our MSCNN Model, PSNR 32.07 dB 

Fig. 6: Visual quality of a compressed “BQMall” with RA configuration and 832 480 resolution. The fifth frame with QP = 32 is shown 
at different SAO filter models. 

 
 

analysis starts from the CNN convolution module and then 

incrementally replaced or removed components to understand 

the effectiveness of SAO filter operation. To verify the image 

enhancement, we kept the model convolution module intact 

and varied the deconvolution and pooling layers in both upper 

and lower network of our CNN model (Fig. 3). Consequently, 

we came up with eight networks with different components 

and  listed  them  in  the  second  column  of  Table  VII.  For a 

fair comparison, the testing procedures for each ablation study 

are kept exactly the same. We report the results on SJTU test 

Sequences [28] in Table VII. In network “7”, we replaced the 

un-pooling operation with the un-average pooling. Our 

conventional average pooling layer computes the mean value 

of the activation maps within a filter window.  From   the 

results, one can found that more coding gain achieved with 

network “7”, but at the cost of the decoder computation time. 

Although the average pooling operation achieved robust 

feature representation in noise, it introduced the blurring effect 

in object boundaries. One can note that the base Network “8” 

with all given model components achieves the best image 

enchantment performance in terms of BD-BR, and BD-PSNR 

evaluation. One can notice that the Conv5 activation maps 

embed the rich features and put across those cues into decon- 

volution network. The top Conv4 and Conv5 layers have more 

contextual information and combining deconvolution operation 

on these feature map benefits the overall filtering operation. 

The Network “4”, “5”, and “6” suggest that the up-convolution 

 

feature learning plays a pivotal role in noise reduction and 

possibly because of the propagation of fine-grained features 

during our model learning. 

 
VI. CONCLUSION 

This paper proposes a novel deconvolution learning-based 

approach for image quality enhancement and addresses the 

SAO filtering in VVC inter frame prediction. The shallow 

model learns the residual image through a gated architecture 

and later merges the input frames with the residue, and finally 

enhances the object details. We first constructed a large 

balanced database with different video resolutions for our 

model evaluation. Our deconvolution model utilizes diverse 

spatial features and restores the detailed information for further 

image quality improvement. To make the network capture 

more detailed information, a new loss function is included for 

model training. The experiment results show that our proposed 

network outperforms the baseline model in terms of achieving 

higher bit rate reduction and computational efficiency. The 

PSNR versus bit-rate comparison was presented and the 

coding efficiency of various state-of-the-art methods assessed 

using the same gradient-based optimization techniques. The 

proposed scheme was able to reduce compression artifacts 

while checking the rate-distortion cost after CU label recon- 

struction. Although our model shows a possible option for 

SAO filtering, more rigorous training strategies are needed for  
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real-time application usage. In future proceedings, we would 

like to include a wide-range categorical dataset and include 

local salient features for our experiment. In recent times the 

recurrent neural network is broadly used for three-dimensional 

video analysis [10]. In the future direction, we would like to 

explore the bidirectional LSTM models [18] for (B and P) 

prediction operations and extend the model to adaptive loop 

filtering in Versatile Video Coding. 
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