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Highlights
EFFNet: Element-wise feature fusion network for defect detection of display panels
Feng He,Jiubin Tan,Weibo Wang,Shutian Liu,Yuemin Zhu,Zhengjun Liu

• A deep-learning-based method for real-time defect detection of display panels.
• An element-wise feature fusion module (EFFM) is proposed for the feature decoder.
• A comprehensive study of the proposed network and transfer learning strategy.
• The proposed model is highly efficient, effective, and robust to challenging objects.
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A B S T R A C T
Online (i.e., real-time) defect detection of display panels after array process is of paramount impor-
tance for quality control and yield rate improvement of products in display industry. However, owing
to the limitation in feature representation, the performances of traditional defect detection methods are
not satisfactory. This paper develops a novel element-wise feature fusion network (EFFNet) to solve
the issue and achieve high-accuracy real-time defect detection of display panels. The method adopts
a transfer learning and fine-tuning strategy for feature extraction layers and a decoder with relatively
less computational complexity. Particularly, a feature fusion module based on element-wise addition
of pyramid features is proposed in skip connection to improve detection efficiency and accuracy.
Our method is compared with many state-of-the-art CNN-based models. Additionally, the effects
of training dataset size, motion blur, and different backgrounds on the performance of the proposed
method are investigated. Extensive experiments, including the ablation study, demonstrate that the
developed network can accurately detect defects with complex textures, ambiguous boundaries and
low contrast. It also has good robustness against motion blur. It outperforms state-of-the-art methods
in terms of mIoU, mPA, and F1-Measure. Moreover, it is able to detect defects at speeds of up to 159
fps with input images of size 256×256.

1. Introduction
Display panels such as the thin-film-transistor liquid-

crystal display (TFT-LCD) and organic light-emitting diode
(OLED) are the main components of display products.
However, the manufacturing process of these components
is complicated and prone to suffer from different kinds of
defects. The array process is the first stage of the entire
manufacture. Its commonly occurring defects have received
extensive attention due to their adverse impact on the yield,
life span, and function of display panels. Therefore, the
detection of defects that arose from the array process plays
a vital role in the quality control and yield rate improvement
of display panels in the actual production process. Generally,
the defect inspection approach built on human vision is
highly subjective, time-consuming, and labor-intensive. It
hardly satisfies the increasing demand, i.e., high accuracy
and speed (efficiency), for online defect detection (i.e., real-
time analysis and detection of defects in an online or contin-
uous manner during manufacturing). The inception of au-
tomatic computer-vision-based defect detection techniques
brings a solution to the above issue.

In the last few decades, a vast number of image pro-
cessing methods have been applied to defect detection,
such as Otsu [1–3], Canny edge detector [4, 5], Fourier
transform [6, 7], Gaussian and Gabor filters [8–10], optical
flow [11], and support vector machine (SVM) [12]. For
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instance, defects in a glass substrate were detected by first
establishing a straight-line interception histogram from the
two-dimensional information of an image and then using
Otsu criteria to find the best interception threshold [1].
Fourier transform was used to detect and localize small
defects in nonperiodical pattern images [7]. The recognition
of five types of steel surface defects was achieved by four
types of statistical features and enhanced twin SVM [12].
However, the performances of these methods in real-time
detection of defects with intricate textures still leave much
to be desired. Intrinsically, the above methods mainly rely
on handcrafted features and rules that are shallow in feature
representation, such as gradient amplitude or local feature
similarity. These properties make it difficult for them to
effectively and integrally characterize target images, and
they usually only perform well in combination with other
techniques. Extrinsically, the majority of the features and the
surrounding backgrounds of defects, such as the defects in
display panels after the array process, are rather complicated.

Recently, deep-learning-based methods have made a
huge impact on the field of computer vision [13–16] due to
their automatic feature learning and superior feature repre-
sentation abilities. Convolutional neural networks (CNNs),
such as VGG [17] and ResNet [18], have been the most
ground-breaking addition. For image processing [19–22],
CNNs have overwhelming performance in object recog-
nition compared to traditional non-deep-learning methods.
Therefore, CNNs have been consecutively applied to defect
detection in industrial production. For example, a U-shaped
network [23] based on ResNet (U-ResNet) was proposed to
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EFFNet: Element-wise feature fusion network for defect detection of display panels

accurately detect conductive particles after anisotropic con-
ductive film (ACF) bonding in the TFT-LCD manufacturing
process. Faster-RCNN [24] was improved by introducing
ResNet50 with feature pyramid networks as the backbone
and was used for the detection of printed circuit boards.
An end-to-end trainable deep convolutional neural network,
DeepCrack [25] built on SegNet [26], was proposed for auto-
matic crack detection. Encoder-Decoder Residual Network
(EDRNet) [27] with the combination of deep supervision
mechanism and fusion loss was developed to detect the
surface defects of strip steel.

Figure 1: Typical hard-to-recognize defects in display panels.
(a) The weak defect in the light-colored background. (b)
The strong defect in the dark-colored background. (c) The
malformation defect with an ambiguous boundary. The red
marks indicate the regions of defects.

Despite CNN models having made considerable
progress in defect detection, the problem of online real-time
defect detection was still not comprehensively addressed,
especially for the inspection of display panel production.
First of all, deep learning is a data-driven technique and the
performance of a CNN model is highly subjected to training
data. Yet, it is both time-consuming and labor-intensive to
obtain a training dataset of display panels with sufficient
numbers and variety. On the other hand, the detection of
defects in display panels faces many unsolved challenges:
1) low contrast between defect and surrounding background
has two forms: weak defects in light-colored background
(Fig. 1(a)) and strong defects in dark-colored background
(Fig. 1(b)); 2) intricate and diversiform background noise
in display panels; 3) malformation defects with ambiguous
boundaries: these defects in display panels have an identical
color with the surrounding defect-free area, which cannot
be distinguished by intensity difference (Fig. 1(c)). These
factors undoubtedly bring harsh requirements for the design
of a fast and accurate CNN model.

Inspired by Attention U-Net [28] that shows an impres-
sive performance in segmentation tasks even with a scarce
amount of labeled training data, we proposed a new CNN
model named element-wise feature fusion network (EFFNet)
to overcome the aforementioned problems and achieve real-
time defect detection of display panels with high accuracy.
Considering the difficulty of gathering a dataset of display
panel defects that is large enough, transfer learning strategy
and data augmentation were used in our method.

The main contributions of this paper are listed as follows:
• A novel EFFNet model based on VGG16 and encoder-

decoder architecture was developed to address the

problem of real-time defect detection of display panels
with multi-class backgrounds, where a transfer learn-
ing and fine-tuning strategy was proposed to speed up
network training and increase detection performance.

• To the best of our knowledge, this is the first attempt to
adopt a CNN model embedded with the additive atten-
tion mechanism to solve the problem of online defect
detection of display panels after the array process.

• We developed a feature fusion module based on the
element-wise addition of size-matched pyramid fea-
tures. It highlights regions of interest (ROIs) on the
same channel of feature maps between shallow and
deep features, which exceedingly shortens detection
time and improves the identification of defect pixels.

The rest of this article is organized as follows. In Section
2, related work is summarized. In Section 3, the proposed
EFFNet is described in detail. Section 4 presents the ex-
periments conducted to evaluate the performance of our
method, including ablation study, comparison with state-
of-the-art defect detection methods and other segmentation
techniques, and discussion on the effects of training dataset
size, motion blur, and backgrounds. Finally, Section 5 gives
the conclusion.

2. Related work
As early outstanding works, non-deep-learning methods

have been applied to achieve automatic defect detection of
display panels. A mura defect detection method [29] was
proposed for thin-film transistor liquid crystal display (TFT-
LCD) panels. This method used the discrete cosine trans-
form and the dual-𝛾 piece-wise exponential transform for
image prepossessing, followed by Otsu’s method to segment
the mura defects. Detection of mura defects on liquid crystal
display (LCD) under uneven brightness [30] was later stud-
ied through the Gabor filter, the background reconstruction
algorithm based on the mura uniform light principle, and the
gamma correction.

More recently, deep-learning methods were widely stud-
ied. Lee et al. [31] adopted VGG16 to study the classification
of defects in TFT-LCD panels. They used several meth-
ods including integrated gradients, SmoothGrad, Decovent,
guided backpropagation, and deep Talyor to achieve the post
hoc analysis of classification. The same year, an end-to-end
multi-task learning network architecture [32] that contains
an encoder, a feature fusion module, a segmentation head,
and a classification head was proposed for the defect detec-
tion of mobile phone light guide plate (LGP). Furthermore,
a multi-category classification model [33] based on the con-
volutional neural network working with automatic optical
inspection (AOI) was proposed for identifying defective
pixels on the TFT-LCD panel. The method used a special
training strategy that worked with data augmentation to deal
with the class-imbalanced problem caused by outnumbered
non-defective pixels. Yao et al. [34] proposed an AYOLOv3-
Tiny network in combination with an overlapping pooling
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EFFNet: Element-wise feature fusion network for defect detection of display panels

Figure 2: An illustration of the proposed EFFNet model.

spatial attention module (OSM) and a dilated convolution
module (DCM) for the defect detection of LGPs. An im-
proved RetinaNet that used ResNeXt50 as the backbone [35]
was proposed for LGP defects detection, which adopted a
Ghost module to replace the 1×1 convolution in the lower
half of the ResNeXt block to reduce the resource parameters
and consumption.

However, the above-mentioned works have mainly fo-
cused on the defects that occurred at the end of display
panel manufacturing and ignored the detection of defects
that occurred during the array process, which is also critical
for yield improvement.

3. Proposed method
The overall architecture of our EFFNet model, as de-

picted in Fig. 2, is composed of an encoder and a decoder.
The encoder, i.e., defect extraction module, is to extract
defect features from complex background layer by layer and
form a spatial feature pyramid structure that contains the
semantic information of defects at different levels. The de-
coder embedded with element-wise feature fusion modules,
on the other hand, gradually integrates the defect information
from the encoded features. After the above processes, the
segmentation results that indicate the localization of defects
in display panels are obtained.
3.1. Defect extraction module

To mitigate small dataset over-fitting and shorten train-
ing time, we adopted the convolutional blocks (ConvBlocks)
of VGG16[17] model pre-trained by ImageNet dataset as our
defect extraction module. The module extracts a set of hier-
archical features with different scales that encode multilevel
contextual information from the input image. The detailed

structure of the module that contains five ConvBlocks is
given in Table 1. Each block consists of several 3×3 con-
volutional layers and one 2×2 max-pooling layer with a
stride of 2 at the end (except the last block). Considering
that the wider the network is, the more interactive cross-
channel information the network will have, we replaced the
last ConvBlock of VGG16 with two convolutional layers
of 512 dimensions and 1024 dimensions to increase the
network width and enhance the detection performance. Here,
we use E𝑙 (⋅) to denotes the 𝑙th ConvBlock operation of the
extraction module for simplicity, where 𝑙 ∈ {1, 2, 3, 4, 5}.
Thus, the extracted features 𝑓𝑙 of the 𝑙th ConvBlock of the
module are calculated as
𝑓𝑙 = E𝑙

(

𝑓𝑙−1
) (1)

where 𝑓𝑙−1 is the output features of the (𝑙 − 1)th ConvBlock
and 𝑓0 (i.e., 𝑙 = 1) is the input image. E𝑙 (⋅) changes with 𝑙
according to Table 1.

In particular, the max-pooling used in our network is
to reduce the resolution of input images and expand the
receptive field of the network while keeping translation
invariance over small spatial shifts. Yet, continuous reduc-
tion of the resolution of feature maps would bring the loss
of information related to boundary detail to some extent.
Therefore, all the max-pooling indices were saved and used
in the subsequent corresponding up-sampling layers to keep
the integrality of defect representation. Furthermore, batch
normalization was added after each convolutional layer to
accelerate training and prevent over-fitting, followed by a
rectified linear unit (ReLU) activation function to increase
the nonlinearity. The feature channels were doubled every
time after one block operation while the feature sizes were
halved.
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Table 1
Defect extraction module.

ConvBlock Layer

1
[Conv 3 × 3 + BN + ReLU,C = 64] × 2
Maxpool 2 × 2

2
[Conv 3 × 3 + BN + ReLU,C = 128] × 2
Maxpool 2 × 2

3
[Conv 3 × 3 + BN + ReLU,C = 256] × 3
Maxpool 2 × 2

4
[Conv 3 × 3 + BN + ReLU,C = 512] × 3
Maxpool 2 × 2

5
Conv 3 × 3 + BN + ReLU,C = 512
Conv 3 × 3 + BN + ReLU,C = 1024

3.2. Feature decoder
As described in previous subsection, 𝑓𝑙 (𝑙 ∈

{1, 2, 3, 4, 5}) is the output features of the 𝑙th ConvBlock
of the encoder. In our decoder, the feature maps obtained
from the fifth ConvBlock (i.e., 𝑙 = 5) were first up-sampled
to twice their original size by using the stored max-pooling
indices from the forth layer of the encoder. Then, a 3×3
convolution operation was added to increase local contextual
information and reduce the feature channels by half. The
mathematical representation is formulated as
𝑥1 = 𝜎1

(

𝑊3×3 ∗ 𝑈
(

𝑓5
)

+ 𝑏
) (2)

where 𝑥1 refers to the up-sampled high-level features of the
first decoder layer and 𝜎1 is the ReLU activation function.
𝑊3×3 and 𝑏 represent the 3×3 convolution kernel and bias,
respectively. “∗” denotes convolution operator and 𝑈 (⋅)
the up-sample operation with saved max-pooling indices
and down-sample rate of the corresponding encoding layer,
respectively.

Afterwards, an element-wise feature fusion module
(EFFM) was developed to guide the skip connection between
shallow and deep features, followed by two 3×3 convolu-
tional layers that halve the feature channels. The mathemat-
ical representation is given by
𝑓 ′

1 = Φ
(

℘
(

𝑓4, 𝑥1
)) (3)

where 𝑓 ′
1 and Φ (⋅) refer to the output of the first decoder

layer and the convolution operation of two 3×3 convolu-
tional layers, respectively. ℘ (⋅) denotes the EFFM operator.

Similarly, the outputs of the other decoder layers are
calculated as
𝑓 ′

𝑚=Φ
(

℘
(

𝜎1
(

𝑊 ′
3×3 ∗𝑈

(

𝑓 ′
𝑚−1

)

+𝑏
)

, 𝑓5−𝑚
)) (4)

where 𝑓 ′
𝑚 (𝑚 ∈ {2, 3, 4}) represents the output of the 𝑖th

decoder layer. 𝑊 ′
3×3 designates the 3×3 convolution kernel

that remains feature channels.
Finally, the segmentation result 𝑌 is computed as

𝑌 = 𝜎2
(

𝑊1×1 ∗ 𝑓 ′
4 + 𝑏

) (5)

where
𝜎2 (𝑧) =

1
1 + 𝑒−𝑧

(6)
is the sigmoid activation function for normalizing the seg-
mentation score. 𝑊1×1 denotes the 1×1 convolution kernel
for decoupling the features and mapping them to lower-
dimensional space.
3.3. Element-wise feature fusion module

The EFFM (i.e., element-wise feature fusion module)
with an additive attention mechanism was developed with
the inspiration of Attention U-Net [28] and is presented in
Fig. 3. It used high-level features that have relatively more
global semantic information as the gating signal to drive
the network to focus more on the target pixels. Particularly,
the up-sampled feature map 𝑥𝑙′ (𝑙′ ∈ {1, 2, 3, 4}) from
the decoder layer 𝑙′ and the feature map 𝑓𝑙 (𝑙 < 5) from
the encoder layer 𝑙 were first halved in channels by 𝑊1×1convolution operation for spatial information extraction. The
halved deep-level and shallow-level features were then com-
bined through element-wise addition, followed by the ReLU
activation function. The resulting features were passed to a
𝑊1×1 convolution layer again to generate a single-channel
image-grid attention map. Finally, the Sigmoid function 𝜎2was adopted to obtain the attention coefficients 𝜉𝑙. Mathe-
matically, the attention coefficients for filtering the output
features from the encoder layer 𝑙 are computed as
𝜉𝑙=𝜎2

(

𝑊1×1 ∗
(

𝜎1
(

𝑊1×1 ∗𝑓𝑙 ⊕𝑊1×1 ∗𝑥𝑙′+𝑏1
))

+𝑏2
)

(7)
where ⊕ denotes the element-wise addition operator. 𝑏1 and
𝑏2 refer to biases.

Figure 3: The architecture of element-wise feature fusion
module.

The obtained attention coefficients were then used to
filter the shallow features from the encoder by multiplica-
tion. Thereafter, the results were fused with the deep features
that were expected to pass to the next layer of the decoder.
Here, we used element-wise addition to achieve the fusion
operation instead of channel-wise concatenation that was
adopted in Attention U-Net. The key reason is that the
former forces the feature fusion module to learn to under-
line the target regions (i.e., ROIs) on the same channel of
feature maps between shallow and deep features during the
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training, which avoids introducing extra parameters to the
subsequent layers and thus significantly reducing computa-
tional complexity. Additionally, reusing coarse information
through this improvement in skip connection can facilitate
the network to learn more relevant information that improves
detection performance. Mathematically, the EFFM output
𝑧𝑙′ of the 𝑙′th decoder layer can be formulated as
𝑧𝑙′ = ℘

(

𝑓𝑙, 𝑥𝑙′
)

= 𝜉𝑙 ⊗ 𝑓𝑙 ⊕ 𝑥𝑙′ (8)
where ⊗ refers to the element-wise product operator.

It is worth mentioning that the attention coefficient map
can be learned according to different levels of defect in-
formation during the training since the attention works in
different layers of the decoder. Furthermore, the attention
coefficients can filter the activations during both backward
and forward passes, as formulated in Eq. 9

𝜕𝑧𝑖𝑙′
𝜕𝑊

=
𝜕
(

𝜉𝑖𝑙 ⋅ 𝑓
𝑖
𝑙 + 𝑥𝑖𝑙′

)

𝜕𝑊

= 𝜉𝑖𝑙
𝜕𝑓 𝑖

𝑙
𝜕𝑊

+
𝜕𝜉𝑖𝑙
𝜕𝑊

𝑓 𝑖
𝑙 +

𝜕𝑥𝑖𝑙′
𝜕𝑊

(9)

where 𝜉𝑖𝑙
𝜕𝑓 𝑖

𝑙
𝜕𝑊 is scaled with 𝜉𝑖𝑙 , which suppresses gradients

derived from regions irrelevant to the target while encour-
aging the network to gradually learn more relevant features
with the increase of the decoder layer.
3.4. Loss function

We updated the parameters of the proposed network by
minimizing a pixel-wise loss function (binary cross-entropy)

𝐿 (𝑔, 𝑝) = − 1
𝐾

𝐾
∑

𝑖=1

[

𝑔𝑖 ⋅ log
(

𝑝𝑖
)

+
(

1 − 𝑔𝑖
)

log
(

1 − 𝑝𝑖
)]

(10)
where 𝐾 is the batch size. 𝑔 and 𝑔𝑖 ∈ {0, 1} are the
ground truth mask and the ground truth of the 𝑖th image,
respectively. 𝑝 and 𝑝𝑖 ∈ [0, 1] are the network prediction and
the predicted probability of the 𝑖th image, respectively.

4. Experimental settings
4.1. Dataset

The defect dataset of display panels contains 571 defec-
tive images of 1024×768 pixels. It was gathered through
a microscope system. The images present six classes of
backgrounds. Each of them has different types of defects,
such as foreign object, film off, film adhesive, malformation,
etc., as shown in Fig. 4.

The publicly available tool LabelMe was used to conduct
the pixel-wise annotation to obtain the ground truth of our
task. A dataset with a large number and variety is of utmost

Figure 4: Different defects in six classes of backgrounds of
display panels.

importance for the outstanding performance of the deep-
learning method in defect detection. To meet this require-
ment and surmount over-fitting, we performed data augmen-
tation on the defective images. The images were enhanced
through random cropping (from 288×288 to 256×256), ro-
tation (90𝑜, 180𝑜, and 270𝑜), horizontal and vertical flip, and
brightness adjustment (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟 = [0.5, 1.5]).
The final distribution of the images in the training and testing
sets is given in Table 2.

Table 2
Distribution of training and testing sets after data augmenta-
tion.

Classes 1 2 3 4 5 6 Total

Training 2109 2811 2304 2400 2304 2208 14136
Testing 91 93 144 96 112 108 644

4.2. Implementation details
All the experiments were implemented on the Pytorch

framework using a single NVIDIA GTX 2080 Ti GPU (with
11G memory) on windows 10. The initialization parameters
of the first four ConvBlocks of our network were loaded from
the pre-trained VGG16 network, while the weights of other
layers were initialized with the “Kaiming” initializer. For
fine-tuning, the learning rates of the pre-trained layers were
set to be 10−5, and 10−4 was chosen for other layers. We used
an Adam optimizer with a batch size of 12 images randomly
cropped to 256×256 pixels from input images of 288×288
pixels to train our network.
4.3. Evaluation metrics

To evaluate the performance of our EFFNet model, the
mIoU [36], mPA (mean pixel accuracy, Eq. 11), F-measure
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(Eq. 12), and the precision-recall (P-R) curve were calcu-
lated between the ground truth and the predicted segmenta-
tion result.

𝑚𝑃𝐴 = 1
𝑁

𝑁−1
∑

𝑖=0

𝑝𝑖𝑖
𝑁−1
∑

𝑗=0
𝑝𝑖𝑗

(11)

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =

(

1 + 𝛽2
)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(12)

where 𝑁 = 2 is the number of pixel classes with a value
of 0 or 1. 𝑝𝑖𝑗 is the number of pixels whose predicted class
is 𝑖 while the ground truth is 𝑗. 𝑝𝑖𝑖 is the number of pixels
whose predicted class and the ground truth are the same. 𝛽
is a weight that weighs the importance between precision
and recall. Here, we set 𝛽 = 1, i.e., F1-Measure.

We also defined threshold-based detection rate (TDR)
expressed as

TDR𝜂 =
𝑁mIoU≥𝜂

𝑁img
× 100% (13)

where 𝜂 designates the threshold of the detection rate,
𝑁mIoU≥𝜂 is the number of images whose mIoU is over 𝜂,
and 𝑁img denotes the number of input images. Notably, the
acceptable threshold of mIoU is 0.5 in our task. Therefore,
we chose 0.5 as the minimum mIoU threshold and took 0.05
as the interval to compute the TDR-mIoU curve to further
evaluate the methods.

5. Results and discussion
5.1. Ablation study

This study aimed to verify the effectiveness of EFFM
component and transfer learning strategy used in our
method.
5.1.1. Effects of EFFM

To evaluate the proposed EFFM used in our method, we
implemented a series of comparative experiments: 1) simple
encoder-decoder architecture without skip connection: we
named it as BaseNet (BN) for simplicity; 2) the BaseNet
with skip connection based on simple element-wise addi-
tion: named as BN+EA; 3) the BaseNet with feature fusion
module based on channel-wise concatenation (brought from
Attention U-Net): simplified as BN+CFFM; 4) the BaseNet
with the proposed EFFM: BN+EFFM (ours).

The evaluation results are provided in Table 3. Values
in bold are the best results and this marking is applied
to all the tables in this paper. It is shown that the EFFM
favorably boosts the performance of our method in terms of
mIoU and F1-Measure compared to simple encoder-decoder
architecture BN and BN+EA. Moreover, compared with
the channel-wise concatenation from Attention U-Net (i.e.,
BN+CFFM), the element-wise addition fusion method in

EFFM not only significantly increases the network’s detec-
tion efficiency (by 35 fps) but also improves its performance
in mIoU and F1-Measure, which denotes the effectiveness
of our refinement. The small decrease in mPA, as we con-
jecture, is due to the fact that the EFFM prefers to improve
the mIoU and F1-Measure in a way that activates more target
regions rather than trying to discredit more irrelevant pixels,
which to some extent leads to an increase in false positives
that is tolerable and negligible in our task.

Table 3
Evaluation results of ablation study in the effects of EFFM.

Method mIoU mPA F1-Measure Speed (fps)

BN 0.8108 0.8904 0.7311 184
BN+EA 0.8282 0.9055 0.7613 178
BN+CFFM 0.8364 0.9023 0.7775 124
BN+EFFM (ours) 0.8377 0.8941 0.7867 159

5.1.2. Transfer learning strategy analysis
Transfer learning is a training strategy that allows the

knowledge (network parameters) learned from other tasks to
adapt to a new task and thus avoid small dataset over-fitting
and accelerate convergence. It can be achieved by either
fine-tuning all the pre-trained layers or freezing some layers
of them and only allowing the rest layers to be updated.
Empirically, shallow layers in CNNs are prone to extract
general features of input images, while deep layers prefer to
identify the distinctive features of a specific task. Therefore,
allowing deep pre-trained layers to be fine-tuned and keeping
shallow layers untrainable may lead to better performance
of a deep-learning model in a specific task. Inspired by the
work of Samala et al. [37], we introduced and analyzed
five potential layer-freezing schemes to find the best transfer
learning strategy of our model for defect detection of display
panels. We first froze all the pre-trained layers, then gradu-
ally released each convolutional block in a deep-to-shallow
manner to allow it to be fine-tuned until released all the pre-
trained layers. They were freezing all the pre-trained layers
(Encoder-F4), freezing the first three ConvBlocks (Encoder-
F3), freezing the first and second ConvBlocks (Encoder-F2),
freezing the first ConvBlock (Encoder-F1), and not freezing
any layer (Encoder-F0, namely ours).

Table 4
Evaluation results of our encoder with different transfer learn-
ing strategies.

Method mIoU mPA F1-Measure

Encoder-F4 0.8347 0.8884 0.7829
Encoder-F3 0.8299 0.8901 0.7684
Encoder-F2 0.8360 0.8867 0.7810
Encoder-F1 0.8297 0.8852 0.7718
Encoder-F0 (ours) 0.8377 0.8941 0.7867

It can be seen from the comparison in Table 4 that,
among all the five transfer learning strategies, the perfor-
mance of Encoder-F0 is the best. It indicates that, in our
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EFFNet: Element-wise feature fusion network for defect detection of display panels

case, freezing the shallow layers (expected to extract general
features of inputs) of the pre-trained extraction module does
not increase the performance of the proposed model in dis-
play panel defect detection. In addition, it in a way prevents
the network from learning more information relevant to the
target. Hence, Encoder-F0 was selected for our method.
5.2. Comparison with state-of-the-art methods

To better demonstrate the superiority and better applica-
bility of the proposed architecture in online defect detection
of display panels, we compared our EFFNet with many
state-of-the-art defect detection and object segmentation
networks. They were Attention U-Net [28], MultiResUNet
[38], U-ResNet [23], EDRNet [27], Huang et al. [39], UTNet
[40], ComBiNetS [41], ComBiNetM [41], ComBiNetL [41],
and DGNet [42].

Fig. 5 gives the learning curves of our EFFNet and
other deep-learning models. It is observed that the proposed
network converges faster than the other methods, which, as
we infer, is due to the pre-trained layers in its encoder. Our
EFFNet also has the lowest overall loss value and smoother
loss curve when the loss is getting stable.

Figure 5: Learning curves of different methods. (a) Training
loss. (b) Validation loss. The curves on the right are the
enlargements of the corresponding areas of the left learning
curves.

The quantitative evaluation results of the deep-learning
methods are provided in Table 5. Clearly, our EFFNet out-
performs other networks in terms of all the three evaluation
metrics. Compared to the second-best results, our method
is 1.57% higher in mIoU (vs. EDRNet), 2.36% higher in
mPA (vs. Huang et al.), and 2.83% higher in F1-Measure (vs.
UTNet). In addition, we studied the efficiency (i.e., detection
speed) of our method and other models. The results are
given in the last column of Table 5, which shows that our
EFFNet achieves the fastest detection speed, 21 fps faster
than the second-fastest model MultiResUNet for images
with an input size of 256×256. The TDR-mIoU and P-R
curves in Fig. 6(a) and Fig. 6(b) also show the superior
performance of our method, from which we can see that our

EFFNet has the biggest TDR over almost the whole mIoU
thresholds and the highest precision over a large range of
thresholds.
Table 5
Quantitative comparison of deep-learning methods.

Methods mIoU mPA F1-Measure Speed (fps)

Attention U-Net 0.8070 0.8646 0.7239 111
MultiResUNet 0.7907 0.8565 0.6729 138
U-ResNet 0.8121 0.8690 0.7290 83
EDRNet 0.8220 0.8697 0.7564 60
Huang et al. 0.8152 0.8705 0.7441 75
UTNet 0.8211 0.8607 0.7584 55
ComBiNetS 0.7362 0.7781 0.5910 30
ComBiNetM 0.7929 0.8237 0.7132 18
ComBiNetL 0.7991 0.8359 0.7198 16
DGNet 0.7960 0.8232 0.7226 98
EFFNet (ours) 0.8377 0.8941 0.7867 159

Figure 6: Evaluation curves of our EFFNet and other models.
(a) TDR-mIoU curve. (b) P-R curve.

Fig. 7 shows the visual comparison of our EFFNet with
other state-of-the-art methods for the segmentation of twelve
typical defective images. We can observe that the other state-
of-the-art networks fail to detect defects in many challenging
cases. For instance, MultiResUNet, U-ResNet, and Huang
et al. fail to find the tiny adhesive defect in the second
column of class 1 and the malformation defect in the first
column of class4. Attention U-Net, EDRNet, ComBiNetS,
ComBiNetM, and DGNet fail to detect the low contrast
region of the defect in the first column of class 5, which
also occurs in U-ResNet and Huang et al.. For the image
in the first column of class 3, all the other networks except
EDRNet either mistakenly connect two tiny foreign objects
as one defect or fail to identify the defect. Furthermore, all
the other networks except UTNet and DGNet fail to locate
the malformation defect in the first column of class 6. Our
EFFNet, on the contrary, can detect the above defects with
the results much closer to the corresponding ground truth.
Notably, even though other methods can detect defects with
high accuracy in many cases, their performance is still worse
than that of the proposed network, as seen in the second
column of classes 2-6.

In general, three factors may influence the performance
of our EFFNet, i.e., the dataset size that decides the network
parameters, the motion blur that occurs during the collection
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EFFNet: Element-wise feature fusion network for defect detection of display panels

Figure 7: The visual comparison of our EFFNet with other state-of-the-art segmentation methods. Ori means original image, GT
represents the ground truth. AU-Net is Attention U-Net. The values underneath the images are the corresponding mIoU of the
detection, where the values in red are the best, and the ones in blue are the second best.

of defect images from the production line, and the intricate
backgrounds around the defects. To investigate these factors
and further validate the performance of our EFFNet, we
implemented the following experiments.

5.2.1. Effects of dataset size
We set two groups of sub-training sets randomly ex-

tracted from the 100% training dataset at percentages of
20% and 60%, respectively, to train all the deep-learning
methods. The evaluation results are given in Table 6. We can
see that our network maintains the best performance against
all the competitive methods in terms of the three metrics in
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EFFNet: Element-wise feature fusion network for defect detection of display panels

Table 6
Evaluation results of deep-learning methods in the study of effects of dataset size.

60% 20%

Methods mIoU mPA F1-Measure mIoU mPA F1-Measure

Attention U-Net 0.7992 0.8569 0.7099 0.7647 0.8233 0.6323
MultiResUNet 0.7807 0.8457 0.6539 0.7387 0.7869 0.5773
U-ResNet 0.8052 0.8599 0.7141 0.7499 0.8139 0.5981
EDRNet 0.8214 0.8670 0.7559 0.8136 0.8638 0.7355
Huang et al. 0.8061 0.8647 0.7269 0.7638 0.8276 0.6406
UTNet 0.8045 0.8634 0.7276 0.6635 0.7457 0.4120
ComBiNetS 0.7262 0.7593 0.5689 0.6715 0.7063 0.4589
ComBiNetM 0.7837 0.8334 0.6939 0.7363 0.7835 0.5900
ComBiNetL 0.7882 0.8181 0.7045 0.7574 0.7966 0.6352
DGNet 0.7926 0.8179 0.7162 0.7834 0.8100 0.6981
EFFNet (ours) 0.8350 0.8951 0.7763 0.8301 0.8868 0.7691

Figure 8: Evaluation curves of CNN-based methods trained with two sizes of datasets. (a) and (c) TDR-mIoU curve. (b) and (d)
P-R curve.

both sub-dataset cases, although the performance drops with
decreasing dataset size. It is fairly in conformity with the
TDR-mIoU and P-R curves depicted in Fig. 8, where our
EFFNet is always at the top right corner.
5.2.2. Robustness to motion blur

The defect images of display panels gathered from the
production line are more or less subject to motion blur due
to the relative movement between products and cameras. In

order to study the robustness of our EFFNet to this noise,
we added two different degrees (Low and High) of motion
blur to the input images. The quantitative experimental
results detailed in Table 7 show that our model has the best
performance under low motion blur, and the performance
is slightly lower than that of EDRNet under high motion
blur. Fig. 9 presents the evaluation curves of the deep-
learning methods in these two sets of experiments. It is
observed that our method outperforms all the other methods

Figure 9: Evaluation curves of deep-learning methods in the robustness experiment. (a) and (c) TDR-mIoU curve. (b) and (d)
P-R curve.
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Table 7
Evaluation results of deep-learning methods in the study of robustness to motion blur.

Low motion blur High motion blur

Methods mIoU mPA F1-Measure mIoU mPA F1-Measure

Attention U-Net 0.6694 0.7473 0.5000 0.6646 0.7434 0.4895
MultiResUNet 0.7023 0.7561 0.5136 0.6825 0.7419 0.4806
U-ResNet 0.6756 0.7717 0.5346 0.6745 0.7747 0.5300
EDRNet 0.8161 0.8624 0.7488 0.8067 0.8475 0.7335
Huang et al. 0.7964 0.8504 0.7083 0.7870 0.8390 0.6916
UTNet 0.7719 0.8146 0.6635 0.7489 0.7904 0.6182
ComBiNetS 0.7256 0.7683 0.5672 0.7097 0.7555 0.5361
ComBiNetM 0.7752 0.8052 0.6766 0.7542 0.7861 0.6299
ComBiNetL 0.7848 0.8175 0.6899 0.7698 0.8047 0.6550
DGNet 0.7926 0.8210 0.7172 0.7818 0.8077 0.6956
EFFNet 0.8276 0.8768 0.7705 0.7943 0.8318 0.7079

in terms of the P-R curve under both noise cases, and it
also has a higher TDR-mIoU curve under low motion blur.
The visual comparison of our EFFNet and other methods in
this study is shown in Fig. 10, where we can observe that,
while the detection performance drops with the increase of
motion blur, our EFFNet has the detection results closest to
the ground truth under low motion blur. Furthermore, our
EFFNet performs the best under high motion blur, except
for some cases (such as the high motion blur case of the
third sample image) poorer than EDRNet, compared to other
methods.
5.2.3. Performance in different backgrounds

The images used in our experiments have six classes
of backgrounds containing different colors and textures, as
shown in Fig. 4. We conducted a series of experiments to
study the effects of these different complex backgrounds on
defect detection performance of the deep-learning methods.
Table 8 summarizes the evaluation results of these methods
in this study. We can observe that our model achieves the
best performance in most of the classes, i.e., classes 1, 2, 4,
and 6. It demonstrates that our EFFNet is more tolerant of
complex background noise in display panels.
5.3. Analysis of failure cases

As analyzed in previous sections, the proposed network
outperforms other state-of-the-art methods. However, there
are still some challenging cases for our network and the
competitive methods. Fig. 11 shows some examples of the
failed segmentation results, which to some extent reveal
certain drawbacks of our model.

First, the network misses some regions of interest where
the contrast is mighty low, as shown in the first row of Fig.
11. Although these areas can be found by using a lower
threshold (0.5 in our task) for the positive pixels, it will bring
more false positives and reduce the accuracy. Furthermore,
the network mistakenly connects some separate areas as one
defect, such as the example in the second row. We infer that
this phenomenon is derived from lacking a large training

dataset having enough numbers of defective images with a
wide variety, which is often necessary for the network to
learn more information related to the boundary of defects.
Finally, as observed in the last row, the model fail to detect
the malformation defect with a tiny size. The conjecture is
that, apart from the lack of a large training dataset, essential
information related to this defect is lost during the down-
sampling process due to its small size. To address these
problems, we have to obtain a dataset with enough diversity
and amount of images at first, which is a task for us in the
future.

6. Conclusion
We proposed a novel EFFNet model for online defect

detection that is of great importance for quality control
and yield rate improvement of display panels. The modified
ImageNet-trained VGG16 ConvBlocks and a fine-tune strat-
egy were introduced for the encoder to extensively extract in-
tricate defect features. Furthermore, an element-wise feature
fusion module (i.e., EFFM) based on the additive attention
mechanism was developed for our decoder to fuse multi-
level features to enhance the detection accuracy while avoid-
ing more computational complexity. Experimental results
show that our method performs better than the state-of-the-
art defect detection methods and other segmentation models.
It also has good robustness against motion blur and small
training dataset. Moreover, our model can detect defects at
speeds acceptable for real-time defect detection.

Nevertheless, there are still some improvements to be
achieved to put the developed network into practice. In future
work, it would be interesting to design a more efficient data
enhancement strategy to avoid the failure of the proposed
method in more challenging cases and optimize the frame-
work to achieve even higher accuracy and faster speed for the
detection of different defects in display panels. In addition,
validating our method using relevant public datasets (not yet
available) is also an interesting complement.
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EFFNet: Element-wise feature fusion network for defect detection of display panels

Figure 10: The visual comparison of different methods in the robustness analysis. Ori means original image, GT represents the
ground truth. AU-Net is Attention U-Net. The values underneath the images are the corresponding mIoU of the detection, where
the values in red are the best, and the ones in blue are the second best.
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Table 8
Evaluation results of deep-learning methods in the study of different backgrounds.

Class 1 Class 2 Class 3

Methods mIoU mPA F1-Measure mIoU mPA F1-Measure mIoU mPA F1-Measure

Attention U-Net 0.7776 0.8229 0.7043 0.8398 0.8686 0.7872 0.7958 0.9238 0.7071
MultiResUNet 0.7283 0.8310 0.5619 0.8554 0.8917 0.8014 0.7501 0.8598 0.5931
U-ResNet 0.7845 0.8395 0.7042 0.8524 0.8849 0.8066 0.7974 0.9196 0.7120
EDRNet 0.7866 0.8031 0.7140 0.8506 0.8664 0.8084 0.8049 0.9180 0.7339
Huang et al. 0.7776 0.8274 0.6984 0.8517 0.8703 0.8025 0.8059 0.9029 0.7372
UTNet 0.7741 0.7848 0.6955 0.8261 0.8377 0.7623 0.8068 0.8950 0.7354
ComBiNetS 0.6961 0.7412 0.5173 0.8197 0.8294 0.7784 0.7250 0.8055 0.5605
ComBiNetM 0.752 0.7706 0.6567 0.7877 0.8033 0.7333 0.7863 0.8251 0.6975
ComBiNetL 0.7302 0.7444 0.6067 0.8187 0.8245 0.7765 0.7826 0.8778 0.6819
DGNet 0.7500 0.7677 0.6417 0.8357 0.8551 0.7938 0.7843 0.8376 0.7046
EFFNet (ours) 0.8108 0.8282 0.7567 0.8709 0.9043 0.8454 0.8048 0.9313 0.7214

Class 4 Class 5 Class 6

Methods mIoU mPA F1-Measure mIoU mPA F1-Measure mIoU mPA F1-Measure

Attention U-Net 0.8015 0.8286 0.7047 0.8044 0.8657 0.7243 0.8175 0.8389 0.7092
MultiResUNet 0.8224 0.8466 0.7284 0.8087 0.8787 0.7322 0.7906 0.8286 0.6444
U-ResNet 0.8071 0.8144 0.7039 0.8091 0.8773 0.7314 0.8243 0.8478 0.7184
EDRNet 0.8049 0.8362 0.7110 0.8469 0.8964 0.8092 0.8465 0.8749 0.7741
Huang et al. 0.8372 0.8788 0.7832 0.8061 0.8800 0.7441 0.8157 0.8465 0.7062
UTNet 0.8437 0.8649 0.8094 0.8405 0.8913 0.7952 0.8307 0.8582 0.7435
ComBiNetS 0.7533 0.7702 0.6332 0.6945 0.7733 0.5120 0.7189 0.7345 0.5354
ComBiNetM 0.8276 0.8642 0.7750 0.7952 0.8347 0.7233 0.8086 0.8329 0.7025
ComBiNetL 0.8286 0.8483 0.7814 0.8006 0.8413 0.7314 0.8141 0.8414 0.7150
DGNet 0.8215 0.8363 0.7716 0.7739 0.8025 0.6937 0.8122 0.8279 0.7325
EFFNet (ours) 0.8561 0.8794 0.8270 0.8307 0.8934 0.7750 0.8610 0.8986 0.8115

Figure 11: Failures of the proposed method.

References
[1] Z. He, L. Sun, Surface defect detection method for glass substrate

using improved otsu segmentation, Applied optics 54 (2015) 9823–
9830.

[2] X.-c. Yuan, L.-s. Wu, Q. Peng, An improved otsu method using the
weighted object variance for defect detection, Applied surface science

349 (2015) 472–484.
[3] L. Meiju, Z. Rui, G. Xifeng, Z. Junrui, Application of improved

otsu threshold segmentation algorithm in mobile phone screen defect
detection, in: 2020 Chinese Control And Decision Conference
(CCDC), IEEE, 2020, pp. 4919–4924.

[4] P. Wang, Z. Li, Y. Pei, In situ high temperature microwave microscope
for nondestructive detection of surface and sub-surface defects, Optics
Express 26 (2018) 9595–9606.

[5] G. Wang, W. T. Peter, M. Yuan, Automatic internal crack detection
from a sequence of infrared images with a triple-threshold canny edge
detector, Measurement Science and Technology 29 (2018) 025403.

[6] B. M. Barnes, M. Y. Sohn, F. Goasmat, H. Zhou, A. E. Vladár, R. M.
Silver, A. Arceo, Three-dimensional deep sub-wavelength defect
detection using 𝜆= 193 nm optical microscopy, Opt. Express 21
(2013) 26219–26226.

[7] D.-M. Tsai, C.-K. Huang, Defect detection in electronic surfaces us-
ing template-based fourier image reconstruction, IEEE Transactions
on Components, Packaging and Manufacturing Technology 9 (2018)
163–172.

[8] P. Li, H. Zhang, J. Jing, R. Li, J. Zhao, Fabric defect detection based
on multi-scale wavelet transform and gaussian mixture model method,
The Journal of The Textile Institute 106 (2015) 587–592.

[9] D.-C. Choi, Y.-J. Jeon, S. J. Lee, J. P. Yun, S. W. Kim, Algorithm for
detecting seam cracks in steel plates using a gabor filter combination
method, Appl. Opt. 53 (2014) 4865–4872.

[10] L. Tong, W. K. Wong, C. K. Kwong, Differential evolution-based
optimal gabor filter model for fabric inspection, Neurocomputing 173
(2016) 1386–1401.

Feng He et al.: Preprint submitted to Elsevier Page 12 of 13

zhu
Note
Marked définie par zhu

zhu
Note
Marked définie par zhu

zhu
Note
Unmarked définie par zhu

zhu
Note
Marked définie par zhu

zhu
Note
Marked définie par zhu



EFFNet: Element-wise feature fusion network for defect detection of display panels

[11] X. Bai, Y. Fang, W. Lin, L. Wang, B.-F. Ju, Saliency-based defect
detection in industrial images by using phase spectrum, IEEE
Transactions on Industrial Informatics 10 (2014) 2135–2145.

[12] M. Chu, R. Gong, S. Gao, J. Zhao, Steel surface defects recognition
based on multi-type statistical features and enhanced twin support
vector machine, Chemomet. Intell. Lab. Syst. 171 (2017) 140–150.

[13] W. Ouyang, X. Zeng, X. Wang, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang,
Z. Wang, H. Li, et al., Deepid-net: Object detection with deformable
part based convolutional neural networks, IEEE Trans. Pattern Anal.
Mach. Intell. 39 (2016) 1320–1334.

[14] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
D. Batra, Grad-cam: Visual explanations from deep networks via
gradient-based localization, in: Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[15] P. E. Carbonneau, S. J. Dugdale, T. P. Breckon, J. T. Dietrich, M. A.
Fonstad, H. Miyamoto, A. S. Woodget, Adopting deep learning
methods for airborne rgb fluvial scene classification, Remote Sens.
Environ. 251 (2020) 112107.

[16] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, K. H. Maier-Hein, nnu-
net: a self-configuring method for deep learning-based biomedical
image segmentation, Nat. Methods 18 (2021) 203–211.

[17] K. Simonyan, A. Zisserman, Very deep convolutional networks
for large-scale image recognition, arXiv preprint arXiv:1409.1556
(2014).

[18] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[19] J. Lei, X. Gao, Z. Feng, H. Qiu, M. Song, Scale insensitive and focus
driven mobile screen defect detection in industry, Neurocomputing
294 (2018) 72–81.

[20] C. Li, X. Wang, W. Liu, L. J. Latecki, B. Wang, J. Huang, Weakly
supervised mitosis detection in breast histopathology images using
concentric loss, Med. Image Anal. 53 (2019) 165–178.

[21] X. Le, J. Mei, H. Zhang, B. Zhou, J. Xi, A learning-based approach for
surface defect detection using small image datasets, Neurocomputing
408 (2020) 112–120.

[22] L. Ruan, B. Gao, S. Wu, W. L. Woo, Deftectnet: Joint loss structured
deep adversarial network for thermography defect detecting system,
Neurocomputing 417 (2020) 441–457.

[23] E. Liu, K. Chen, Z. Xiang, J. Zhang, Conductive particle detection
via deep learning for acf bonding in tft-lcd manufacturing, J. Intell.
Manuf. 31 (2020) 1037–1049.

[24] B. Hu, J. Wang, Detection of pcb surface defects with improved faster-
rcnn and feature pyramid network, IEEE Access 8 (2020) 108335–
108345.

[25] Q. Zou, Z. Zhang, Q. Li, X. Qi, Q. Wang, S. Wang, Deepcrack:
Learning hierarchical convolutional features for crack detection, IEEE
Trans. Image Process. 28 (2018) 1498–1512.

[26] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation, IEEE
Trans. Pattern Anal. Mach. Intell. 39 (2017) 2481–2495.

[27] G. Song, K. Song, Y. Yan, Edrnet: Encoder–decoder residual network
for salient object detection of strip steel surface defects, IEEE Trans.
Instrum. Meas. 69 (2020) 9709–9719.

[28] J. Schlemper, O. Oktay, M. Schaap, M. Heinrich, B. Kainz,
B. Glocker, D. Rueckert, Attention gated networks: Learning to
leverage salient regions in medical images, Med. Image Anal. 53
(2019) 197–207.

[29] S. Jin, C. Ji, C. Yan, J. Xing, Tft-lcd mura defect detection using
dct and the dual-𝛾 piecewise exponential transform, Precis. Eng. 54
(2018) 371–378.

[30] Z. Ma, J. Gong, An automatic detection method of mura defects for
liquid crystal display, in: 2019 Chinese Control Conference (CCC),
IEEE, 2019, pp. 7722–7727.

[31] M. Lee, J. Jeon, H. Lee, Explainable ai for domain experts: a post hoc
analysis of deep learning for defect classification of tft–lcd panels, J.
Intell. Manuf. 33 (2022) 1747–1759.

[32] Y. Li, J. Li, An end-to-end defect detection method for mobile phone
light guide plate via multitask learning, IEEE Trans. Instrum. Meas.
70 (2021) 1–13.

[33] Y.-C. Chang, K.-H. Chang, H.-M. Meng, H.-C. Chiu, A novel
multicategory defect detection method based on the convolutional
neural network method for tft-lcd panels, Math. Probl. Eng. 2022
(2022).

[34] J. Yao, J. Li, Ayolov3-tiny: An improved convolutional neural network
architecture for real-time defect detection of pad light guide plates,
Comput. Ind. 136 (2022) 103588.

[35] J. Li, H. Wang, Surface defect detection of vehicle light guide plates
based on an improved retinanet, Meas. Sci. Technol. 33 (2022)
045401.

[36] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for
semantic segmentation, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[37] R. K. Samala, H.-P. Chan, L. Hadjiiski, M. A. Helvie, C. D. Richter,
K. H. Cha, Breast cancer diagnosis in digital breast tomosynthesis:
effects of training sample size on multi-stage transfer learning using
deep neural nets, IEEE transactions on medical imaging 38 (2018)
686–696.

[38] N. Ibtehaz, M. S. Rahman, Multiresunet: Rethinking the u-net
architecture for multimodal biomedical image segmentation, Neural
Netw. 121 (2020) 74–87.

[39] Y. Huang, J. Jing, Z. Wang, Fabric defect segmentation method
based on deep learning, IEEE Transactions on Instrumentation and
Measurement 70 (2021) 1–15.

[40] Y. Gao, M. Zhou, D. N. Metaxas, Utnet: a hybrid transformer
architecture for medical image segmentation, in: Medical Image
Computing and Computer Assisted Intervention–MICCAI 2021: 24th
International Conference, Strasbourg, France, September 27–October
1, 2021, Proceedings, Part III 24, Springer, 2021, pp. 61–71.

[41] M. Ferianc, D. Manocha, H. Fan, M. Rodrigues, Combinet: Com-
pact convolutional bayesian neural network for image segmenta-
tion, in: Artificial Neural Networks and Machine Learning–ICANN
2021: 30th International Conference on Artificial Neural Networks,
Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part III
30, Springer, 2021, pp. 483–494.

[42] G.-P. Ji, D.-P. Fan, Y.-C. Chou, D. Dai, A. Liniger, L. Van Gool, Deep
gradient learning for efficient camouflaged object detection, Machine
Intelligence Research 20 (2023) 92–108.

Feng He et al.: Preprint submitted to Elsevier Page 13 of 13




