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Abstract

Humans are able to recognize objects in the presence of significant amounts of occlusion and changes in the view angle. In human and

robot vision, these conditions are normal situations and not exceptions. In digital images one more problem occurs due to unstable outcomes

of the segmentation algorithms. Thus, a normal case is that a given shape is only partially visible, and the visible part is distorted. To our

knowledge there does not exist a shape representation and similarity approach that could work under these conditions. However, such an

approach is necessary to solve the object recognition problem. The main contribution of this paper is the definition of an optimal partial shape

similarity measure that works under these conditions. In particular, the presented novel approach to shape-based object recognition works

even if only a small part of a given object is visible and the visible part is significantly distorted, assuming the visible part is distinctive.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

When trying to compare natural shapes, one is seldom

successful in finding an identical match. How can shape

similarity then be defined in accordance to human perception?

Our intuitive definition of similarity emphasizes the contri-

bution of common features of the objects compared to those

distinguishing them. As an example, imagine the shape

similarity of a centaur to a human and a horse; although there

is no global similarity between the particular similar parts: the

upper body makes the centaur similar to a human, while the

lower body makes it similar to a horse. As a result, we interpret

a centaur to be similar to a human as well as to a horse.

This example suggests that one needs to concentrate on

parts that are common and disregard parts where objects

differ. Humans judge two objects as being similar if they

have common parts that are similar and that are significant

for the shape of both objects. The question arises how to

identify the common parts. A conceptually simple
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procedure to answer this question is to try to remove certain

parts and see whether the objects become more similar

without them. This leads to a first approximation of the

proposed definition of shape similarity:

The optimal partial similarity of Q to T is the similarity

of Q to modified T, denoted as T *
Q; where T *

Q is T with all

parts that make T distinct from Q removed.

We need to state clearly that there are two different

shape similarity concepts in this definition. The first one,

which we will call ‘global shape similarity’, is the

measure that compares Q to modified T (without the

process of modification). All shape similarity measures

presented in the literature define this global shape

similarity. However, it is not what humans understand

under shape similarity. The second concept is the defined

concept of optimal partial shape similarity. It abstracts

from distinct parts before comparing the modified shapes

using the global shape similarity. Hence it is much closer

to human perception. Let s be any global shape similarity

measure, more formally, s is a distance measure (the

smaller its values, the greater is the similarity of

compared shapes). Now we restate the proposed

definition with the conceptual confusion removed:
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Fig. 1. We are not only able to find the best matching part P of the target

object T for a given query part Q but also to modify P to P*
Q; composed of

only the features of P that are similar to Q. The algorithm introduced in

Section 4 automatically computed the result shown.
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The optimal partial similarity of Q to T, ops(Q, T), is the

global minimum of global similarities s(Q, TKSQ) taken

over all parts SQ of T.

A subpart S*
Q of T that yields the global minimum

identifies the parts that makes T most dissimilar to Q.

Consequently, a subpart T *
Q ZT KS*

Q of T is the part of T

that makes T most similar to Q. We call T *
Q the optimal

subpart of T with respect to Q. Thus, ops measures how

similar to Q part of T is that makes T most similar to Q or,

more simply stated, how much of the shape of Q is

contained in T. Clearly, additionally we could introduce a

penalty for the removed parts. To keep the proposed

definition as simple as possible, and since this definition in

its simple form is sufficient for many applications, we will

consider its extensions later in the paper (Section 7).

Observe also that this definition is not symmetric, i.e. the

query part Q is used in its entirety. This implies that the

query part should be carefully selected. It should be

sufficiently distinctive to allow us to distinguish the shape

of the object we want to retrieve from other objects. It

should also be descriptive in that it should match well the

part of the object we are looking for. The process of query-

part selection is similar to keyword selection in text-based

searches, where a selected keyword must be distinctive and

descriptive. The main contribution of this paper, then, can

be made clear using the analogy of text-based retrieval.

Existing shape similarity measures force the user to submit a

description of the entire object shape (i.e. the whole object

contour) as the query, which corresponds to submitting the

whole sentence as the query, making it very unlikely to find

a good match. The proposed partial similarity allows the

user to submit key parts of the shape (parts of object

contours) as queries the same way keywords are used in

text-based searches.

Although we focus here on the shape of 2D objects, our

approach is also related to shape recognition of 3D objects.

The shape of 3D objects can be recognized using their 2D

projections [10,22]. The key observation is that the contour

variation in the projection of a single visual part is

significantly smaller than the variation in the projection of

the whole 3D object. Moreover, a significant occlusion makes

the recognition of the whole contour impossible, while a part

of contour can still be recognized as long as it is visible.
2. Technical introduction

We use boundary representation of shape. Since we work

with the boundaries of objects in digital images, we can

assume without loss of generality that shape is represented

by polylines (polygonal curves) that form their boundaries.

Given a query part Q (that is a visually significant part) and

a target object T, the goal is to find part P of T that is the

most similar to the query Q (Fig. 1). An initial, simple thing

to do is to try out all subparts P of T and compare them to Q.

Since we work with polylines, and each polyline can be
viewed as an ordered set of vertices, this goal can be easily

achieved by comparison of all subsets of vertices of T to Q

using some global shape similarity measure s and then

selecting as P the subset of vertices that yields a global

minimum of s. However, this strategy leads to combinatorial

explosion that occurs since we consider all subsets of

vertices of T. Clearly, the combinatorial explosion can

easily be avoided if only all connected subsets P of vertices

of T are considered, which reduces the complexity to O(n2),

where n is the number of vertices of T. This strategy is

known as sliding window with variable size. However, it

does not produce desired results. The problem is that the

subpart P of the target shape T that correctly corresponds to

Q has an additional shape feature (the horn on the snout),

Fig. 1. Since the horn is a significant shape feature of P

(viewed as a single shape), it makes P significantly

dissimilar to Q. Therefore, any global shape similarity

measure applied to Q and P yields a value indicating that Q

and P are dissimilar. Consequently, a sliding window

approach with any global shape similarity measure may fail

to find P as the most similar subpart of T to query Q.

In contrast, the proposed optimal partial similarity never

directly compares Q and P, instead we first simplify P in the

context of Q to obtain P*
Q; and then compare Q and P*

Q using

a global shape similarity measure. Hence the partial shape

similarity provides a solution to the problem of additional

shape features without running into the problem of

combinatorial explosion. The simplification of T to P

followed by the simplification of P to P*
Q is obtained by a

single process that recursively removes carefully selected

vertices of T. In each step a vertex that makes T most distinct

from Q is selected for removal. This process is computed by

the algorithm introduced in Section 4. The outcome is

shown by two arrows in Fig. 1. After removing a first set of

vertices, T is transformed into P (horizontal arrow). The

second set of removed vertices transforms P to P*
Q (vertical

arrow). Thus, what remains is P*
Q ZT *

Q; a modified T that is

composed only of the features of T that make T similar to Q.
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Observe that not all removed features of P to obtain P*
Q can

be viewed as noise, in particular the horn on the snout. Note

that the length of the most similar part P*
Q of T to the query

Q, in this example, is only about 20% of the length of T.
3. Relevant work

We use the term visual parts more loosely than parts of

visual form as defined in [12,13]. In the context of this

paper, visual parts mean significant parts of object contours

that are good candidates for identifying the objects. Our

definition includes parts of visual form, but we also allow a

composition of visual parts to be called a visual part, e.g.

the contour of a hand is a visual part of the human body,

according to our definition. In any case, an important

feature of our approach is that we use parts of objects as

query shapes. According to Siddiqi et al. [26], part-based

representations allow for robust object recognition and play

an important role in theories of object categorization and

classification. There is also strong evidence for part-based

representations in human vision, see e.g. [12,13,25,26].

There is a huge variety of shape descriptors, most of them

requiring the presence of the whole shape, some of them

tolerating minor missing or distorted parts, e.g. by

occlusion. Even feature-based approaches, although poten-

tially being based on local features, require the presence of

most of the object to compute the statistics of the features.

This statement applies to all shape descriptors presented in

the recent overview articles [17,18], as well as to the new

shape descriptors presented in [4,11]. There exist feature-

based approaches that allow for object recognition under

occlusion and/or perspective distortion. However, in all

these approaches only a relatively small part of the object

may be occluded. To these approaches belongs probabilistic

model of spatial arrangement of local features [8,27,28],

where the object shape is modeled as spatial arrangement of

point features. Due to a sophisticated Gaussian mixture

model and the correspondence computation of point

configurations that employs an EM algorithm, this approach

works even if a small part of feature points is not present.

This means that a small part of the object may be occluded.

In contrast the presented approach works even if only a

small part of the object is visible.

The process of simplification of target shape T in the

context of query part Q is a context sensitive extension of

discrete curve evolution (DCE) [15,16]. We simplify

polyline T by removing the set of vertices whose removal

yields the highest gain in the similarity value of the

simplified T to query Q. This way we check how much of

the shape of Q is contained in the shape of P. This is in

contrast to all deformation energy approaches (Basri et al.

[3], Sebastian et al. [24]), where a query shape is deformed

until it becomes a target shape and the amount of

deformation defines the similarity value. In our case the

whole process is driven by a shape similarity measure, but
does not define the shape similarity value. The further

differences are that we allow only for shape simplification,

and we simplify until a global minimum of similarity is

reached.

Deformation energy approaches use penalties for length

differences of matched curves. This makes it impossible to

recognize the same shape at different scales. The proposed

approach is scale invariant, since before query Q is

compared to simplified part TKSQ of target T both curves

are normalized to length one without any penalty. Observe

that scaling both curves to the same length alone, does not

solve the problem of different scales when both curves are

not very similar. The simplification of T combined with

scaling to the same length provides a solution to the problem

of different scales.

In contrast to early AI and CV approaches, we do not

regard objects to be composed of primitive parts nor a

specific shape vocabulary like generalized cylinders, super-

quadrics, or geons [5–7,23]. The visual parts we are

interested in are not built of any primitive elements.

Therefore, we have no restriction on shape that may be

complex.

Our approach applies also to the recognition of 3D

objects. There is substantial cognitive evidence that

recognition of 3D objects can be based on 2D projections,

and planar shape similarity measure can be used in this

context (Cyr and Kimia [10]).
4. Computation of the optimal partial shape similarity

Given a query polyline Q and a target polyline T, we face

two related goals: (1) to localize part P of target polyline T

that is most similar to Q, and (2) to simplify P to query

polyline Q such that the simplified version of P is most

similar to Q. Both goals will be achieved by a single process

of simplification of T in the context of Q described in this

section. To achieve these goals we need a global shape

similarity measure of high quality, which we call s, that can

be applied to compare two polylines. We use an improved

version of the cognitively motivated shape similarity

measure introduced in [16], which we describe in Section 6.

A polyline T can be defined as an ordered set of vertices

TZ{t1,.,tn}. Our goal is to find and remove a subset S*
Q of

vertices of T so that the polyline T *
Q ZT KS*

Q is the most

similar subpolyline of T to Q. Thus, we find S*
Q as argument

of the global minimum

S*
Q Z argminfsðQ; T KSQÞ : SQ 4Tg

and the optimal partial similarity between Q and T is

defined by

opsðQ; TÞ Z minfsðQ; T KSQÞ : SQ 4Tg:

The length of both polylines Q and TKSQ is normalized

to one before s(Q, TKSQ) is computed.



Fig. 2. Illustration of the computation of partial similarity ps(Q, A), where A

is part P from Fig. 1. We see a few simplified versions of A. The global

minimum is obtained for P*
Q ZE:
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Observe again that there are fundamental differences of

our approach to the deformation energy approaches ([3],

[24]). First, we only permit the simplification of a given

shape, i.e. we do not allow for arbitrary deformation.

Second we do not measure the cost of deforming a shape,

but instead the shape similarity after deformation. A nice

feature of this definition is that we are always guaranteed to

obtain a global minimum of our shape similarity (therefore

we are parameter free), but its computation may lead to

combinatorial explosion.

Therefore, we now introduce a suboptimal algorithm to

compute ops. It is suboptimal in the sense that we select in

an optimal way a single vertex to be removed in each step,

but the subset of all removed vertices may not be optimal.

First, we recursively generate a sequence of polylines

T Z Tn; TnK1;.; T2

in which TkK1 is obtained by removing a single vertex from

Tk such that

TkK1
Q Z argminfsðQ; Tk K fxgÞ : x2Tkg:

Then we compute the global minimum of similarities

between Q and Tk
Q :

psðQ; TÞ Z minfsðQ;Tk
QÞ : k Z 2;.; ng:

and

T *
Q Z argminfsðQ;Tk

QÞ : k Z 2;.; ng:

The length of both polylines Q and Tk
Q is normalized to

one before sðQ;Tk
QÞ is computed.

We call the obtained similarity measure ps partial

similarity to stress the fact that it is not globally optimal

any more. The computation of the global minimum over all

possible vertex subsets of T is substituted by a global

minimum over the sequence of optimally removed single

vertices.

An important property of the defined partial similarities

ops and ps is the fact that they are invariant to scale

differences between Q and T, since we normalize the length

of polylines compared by s. Observe that if Q and T are at

different scales, making their arc length equal, does not

solve the problem of different scales. The reason is that

actually Q is only similar to a subpolyline T *
Q of T. Hence

making Q and T *
Q to be of the same length solves the

problem of different scales. This is what happens during the

proposed computation of ops and ps, because when global

similarity measure s is used to compare query Q to

simplified target T both curves are scaled to length one.

To summarize simplification of T combined with scaling to

the same length provides a solution to the problem of

different scales.

The vertex removal process has complexity O(n2), where

n is the number of vertices of T. This does not account for

complexity of the global shape similarity measure s that is

used in each step (defined in Section 6). Since s can be
computed in O(n log(n)), the total complexity of partial

shape matching is O(n3 log(n)).
5. Experimental illustration

The best matching part T *
Q of T to query Q shown in

Fig. 1 was computed by the proposed algorithm for partial

similarity ps. A few simplification stages of P that led to

identification of T *
Q are shown in Fig. 2. Only a subset of all

simplified versions of P is depicted. The polylines shown

are marked with letters A to F, where A is part P from Fig. 1.

A plot of the values of sðQ;Tk
q Þ is shown in Fig. 3.

The global minimum of the similarity values is obtained for

kZ15, which is for polyline EZP*
Q ZT *

Q:

As stated before, not all removed features from polyline

PZA to obtain polyline E can be viewed as noise, in

particular the horn on the snout. This feature can only be

removed in the context of the query Q. Since the horn is a

significant shape feature of P (viewed as a single object), it

makes P significantly dissimilar to Q. Therefore, any

classical shape similarity measure yields a value that

indicates that Q and P are dissimilar.

In addition to several successful experiments as the one

presented in Figs. 1–3, we also evaluated the retrieval rate of

our optimal shape similarity measure on the dataset created

by the MPEG-7 committee for evaluation of shape

similarity measures [9,17]. The test set consists of 70

different classes of shapes, each class containing 20 similar

objects, usually (heavily) distorted versions of a single base

shape. The whole dataset therefore consists of 1400 shapes.

For example, each row in Fig. 4 shows four shapes from the

same class.

The goal of this experiment is to prove the ability of our

approach to correctly retrieve the search objects when only

a single part is given as query part Q. As in the case of a

single keyword query in the text-based search, the query

part Q must be a descriptive feature that on the one hand is

common to all searched shapes and on the other hand must

be able to discriminate the search shapes from shapes of

other classes. For this experiment a sufficiently descriptive



Fig. 3. The plot of the values of the similarity measure sðQ; Tk
q Þ: The global

minimum is obtained for kZ15, which is for polyline EZP*
Q ZT *

Q (shown

in Fig. 2). Fig. 5. Top: the 21 most similar shapes retrieved from the MPEG-7 shape

database for the query part Q (shown on top). Bottom: the subparts of the

top shapes that are similar to Q.
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part Q is given by the cross-like top part of the shape

‘fountain-01’, shown in Fig. 5, top left. Every shape of the

MPEG dataset was compared to Q using the partial

similarity measure ps(Q,Ti), for iZ1,.,1400. The top

section of Fig. 5 shows the first 21 shapes that contain parts

that are the most similar to Q. The bottom section shows

the corresponding parts, i.e. the optimal subsets T *
iQ 4Ti:

The algorithm found the desired 20 shapes of class

‘fountainK01’ in the top 21 results. The only misclassifi-

cation (object ‘device0–16’, rank 19, marked with ‘*’)

contains a part visually similar to Q. Note that this result

was achieved with the query being a single part only.

We performed a similar experiment on a small database

composed of 27 shapes shown in Fig. 6. The shapes are

grouped into 9 classes with 3 shapes each. The set of our

query parts is shown in Fig. 7; two query parts for each of

the 9 classes were selected. We measured the retrieval rate

following the MPEG-7 Bulls-Eye test [9]: the number of

objects from the same class that are contained among the

first N most similar objects to the query part, where N is

equal to double the number of objects in the given class

(NZ6 in our test). The overall retrieval rate for selected
Fig. 4. Some shapes used in part B of MPEG-7 core experiment CE-Shape-1.

Shapes in each row belong to the same class, i.e. we see in the first row four

different shapes (out of 20) of class ‘bone’.
query parts (Fig. 7) is 100%. When complete object

contours of the objects in the database are submitted as

queries and we use the global shape similarity s, the retrieval

rate is 91.95%, which is worse than the one for query by

parts. This experiment demonstrates the gain obtained by

using the proposed partial shape similarity for parts as

queries. The result of this test is particularly significant,

since the partial shape similarity is based on the global

shape similarity s. There are two points that must be

addressed here. Clearly, the excellent performance of the

partial shape similarity depends on the selection of query
Fig. 6. Our small test database composed of 27 objects grouped into 9

classes (shown in rows).



Fig. 7. The set of 18 query parts grouped into 9 classes corresponding to the

9 classes in the database in Fig. 6.
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parts. However, it is easier for humans submitting the

queries to sketch a query part than to sketch the whole

contour, and the successful experience with key words

shows that their selection is not a problem for humans. The

second point is whether a different global shape similarity

measure would do a better job. The performance of several

global shape similarity measures on the MPEG-7 Shape1

data set [9] (queries consist of the whole shapes) strongly

indicates that no global shape similarity measure is capable

of yielding 100% retrieval rate due to variations in global

shape. This is justified by the fact that our underlying global

shape similarity measure s has a retrieval rate of 76.45% on

the MPEG-7 data set. The best know retrieval rate for the

MPEG-7 data Shape1 set is 83.19% [1]. The global shape

similarity measure selected for the MPEG-7 standard has a

retrieval rate of 81.12% [21]. It is based on the global

measure introduced by Mokhtarian and Mackworth in [20].

The best six published retrieval rates for global shape

measures (and consequently, for queries being the whole

shapes) for the MPEG-7 data set are shown in Fig. 8. Further

other retrieval results, all with retrieval rates lower than the

rates in Fig. 8, for various global shape similarity

approaches are recorded in the report on the original

MPEG-7 Shape1 experiment in [9].
6. Global shape similarity measure

A global shape similarity measure is the underlying basis

of the partial similarity. There exist numerous approaches to
Fig. 8. The best six published retrieval rates in perc
define the similarity between polygonal curves, some of

which we mentioned in Section 3. However, since this

measure is used to find the optimal window to drive the

simplification process, and finally to provide the numerical

value representing the partial similarity of arbitrary complex

natural shapes, it must be robust to non-uniform contour

deformations. We use an improved version of a visual-part

based shape similarity measure(VPS) introduced in [16]. It

yielded excellent performance on the MPEG-7 experiments

reported in the previous section, which can also be verified

by querying our online shape database at [14]. Like all

global shape similarity measures VPS requires that the

whole object is present as input. Since it is contour based,

this means that the complete contour is given. (Although our

experimental results show that our measure performs well in

the presence of minor occlusions, or to be more precise: if

some significant parts of the contour are absent and other

significant parts are present, then the results are in

accordance with our intuition.)

To compute VPS between two polygonal curves, we

establish the best possible correspondence of maximal

convex arcs. To achieve this, we first decompose the

polygonal curves into maximal convex subarcs. Note that

a convex subarc of an object contour may be either

convex or concave with respect to the object area. Since

a simple one-to-one comparison of maximal convex arcs

of two polygonal curves is of little use, due to the fact

that the curves may consist of a different number of such

arcs and even similar shapes may differ in small features,

we allow for 1-to-1, 1-to-many, and many-to-1 corre-

spondences of the maximal convex arcs. The main idea

here is that we have at least on one of the contours a

maximal convex arc that corresponds to a part of the

other contour composed of adjacent maximal convex

arcs. In this context the corresponding parts of contours

can be identified with visual object parts. Two example

correspondences obtained by our approach are shown in

Fig. 9.

The main advantage of VPS is that it is based on

correspondence of visual parts. A correspondence of visual

parts is defined as a sequence of pairs of parts of contours A

and B

C Z ððp1A; p1BÞ;.; ðpnA; pnBÞÞ

such that AZP1Ag.gpnA and BZp1Bg.gpnB, the

order of parts is respected and at lease one part in each pair

d(piA,piB) is a convex arc. The global shape similarity s is

defined as the global minimum of the sum of distances

darcs(piA,piB) over all possible correspondences, where

polygonal similarity measure darcs is defined below. VPS

uses dynamic programming to find the optimal
ents on the MPEG-7 shape-1 part B dataset.



Fig. 9. Correspondence of visual parts as computed by our global shape

similarity measure. Corresponding arcs are labeled with the same numbers.
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correspondence. Fig. 10 shows an example of corresponding

parts computed by VPS.

Basic similarity of polylines darcs is defined using their

tangent function representation. Tangent function, also

called turning function, is a multi-valued step function

mapping a polyline into the interval [0, 2p) by represent-

ing angular directions of line-segments only. Furthermore,

arc lengths are normalized to one prior to mapping into

tangent space. This representation was previously used in

computer vision, in particular, in Ref. [2]. Denoting the

tangent function by Tg, the similarity gets defined as

follows:

darcsðC;DÞ Z

ð1

0
ðTgCðsÞKTgDðsÞCQðC;DÞÞ2 ds

� �

!max
lðCÞ

lðDÞ
;
lðDÞ

lðCÞ

� �
;

where l(C) denotes the arc length of C and the integral is

taken over the arc length s. The constant Q(C, D) is chosen

to minimize the integral (it accounts for different

orientation of curves) and is given by

QðC;DÞ Z

ð1

0
ðTgCðsÞKTgDðsÞÞ

2ds:
Fig. 10. Our global shape similarity measure is able to compute an intuitive

correspondence of visual parts.
7. General case of the optimal shape similarity

The aforementioned experiments and definitions did not

introduce any penalty for removing vertices of T in our partial

similarity measure ps. An introduction of penalty makes sense

when some estimation of the noise model is known as we will

illustrate in Section 8. The penalty can be easily added to

obtain an optimal partial similarity measure with penalty as

linear combination of the similarity between query Q and

simplified T and the similarity between simplified T and T:

opspðT ;PÞ Z minfa sðQ;T 0ÞCb sðT 0;TÞ : T 0 4Tg;

where aCbZ1 are weights. The penalty s(T0, T) measures

how much T must be simplified in order to become more

similar to query Q. The weights depend on importance of both

terms and are application dependent. As it was the case for

computation of optimal partial shape similarity, we can use a

suboptimal method to compute the optimal partial similarity

measure with penalty. We will call the obtained measure

partial similarity measure with penalty and denote it as psp.

The same applies to the extensions defined in the reminder of

this section.

Our definition of ops in Section 4 assumes that query part

T does not contain any significant distortions. This

assumption is true for many applications, in particular

when Q belongs to a set of learned visual parts, which are

used for the shape-based image retrieval. However, there

exist applications in which both Q and T should be

simplified (e.g. when both T and P may be corrupted by

noise). Therefore, it makes sense to define an optimal

partial symmetric similarity measure with penalty

opsspðQ; TÞ Z minfa sðQ0;T 0ÞCb sðT 0;TÞCg sðQ0;QÞ

: T 0 4T oQ0 4Qg

where aCbCgZ1 are weights.

The proposed opssp constitutes out of two parts: a global

shape similarity measure of simplified shapes and a

simplification measure modeling the noise plausibility.

Computation of optimal similarity is an iterative process.

An initial similarity of contours is computed. As long

as a simplification on either one of the contours involved

exists such that it reduces the dissimilarity added to the

overall sum of simplifications carried out, the simplification

is performed. The resulting similarity plus the overall sum

of simplifications yields the resulting similarity. The reason

for this process being symmetrical is due to the fact that

only vertices may be removed and not introduced. So, if a

shape’s feature is missing in one contour due to noise,

the corresponding feature may be removed from the original

contour in order to yield a better similarity. The challenging

task here is appropriate selection of weights.

In the above definition of opssp we use our global shape

similarity measure in both parts. When the extent of noise

can be estimated, we may use a different measure for the
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second part (that computes the cost of simplification).

The estimated noise level allows for deriving a measure

judging the likelihood that an individual vertex was caused

by noise. Thus, simplifications of shape by removal

of vertices may be measured according to noise plausibility.

A simplification is performed whenever the noise plausi-

bility is lower than a gain in shape similarity. Therefore,

when comparing two shapes, exactly the differing shape

features caused by noise can be removed. This leads us

to the following definition of an optimal partial symmetric

similarity measure with simplification measure that differs

from opssp in that we use a relevance measure r to measure

the amount of simplification of two shapes in the

second part:

opsssðQ;TÞ Z minfa sðQ0;T 0ÞCb rðT 0;TÞCg rðQ0;QÞ

: T 0 4T oQ0 4Qg

where aCbCgZ1 are weights.

Expressing a simplification measure r that accounts for

noise in the context of the target shape T allows us to

differentiate between simplifications that just cancel out

noise and those that would remove shape features. For

example, if we remove a given vertex that was displaced by

noise, the penalty r for its removal will be compensated in

the decreased value of the similarity measure s. In the next

section we show experimental results that demonstrate the

usefulness of the opsss measure.
8. Experimental results for optimal partial symmetric

similarity measures

Within this section we present results from two

different domains, namely shape retrieval and scan

matching as used in robot mapping. In both domains the

application of the optimal symmetric similarity measure

yields improvements as compared to classical shape

similarity measures.
8.1. Recognizing digitally scaled shapes

Suppose, shapes (contours) extracted from images at

varying sizes should be recognized The relative amount of

noise, e.g. caused by segmentation, varies with the image’s

size. Single pixels may be negligible in large images, while

providing valuable shape information in tiny images. The key

idea is based on the observation that often the noise level can

be estimated. Let us assume that contours can be extracted

with a noise of G1 pixel. This is the case, for instance, when

scaling bitmap images digitally. We introduce a term

resolution r0, which is said to be the distance a vertex may

be translated such that the translation is still plausible. One

possible simplification measure judging the likelihood for a

contour vertex to be caused by noise is based on area.
Therefore the triangular area defined by three consecutive

points in shape contour is computed.

The cost function ~r induces the simplification measure r

used in opsss. To prove the performance of opsss, a test on

recognizing digitally scaled contours is performed. Recog-

nition is possible when the similarity between the sealed

query Q and the original contour C1 is higher than between

Q and another contour C2. Therefore, we define a relative

similarity.

S0ðQ;C1Þ Z 100
SimðQ;C1Þ

SðQ;C1ÞCSðQ;C2Þ
½%�

Values above 50% represent a successful recognition

(the original contour is the most similar one), values below

50% represent a confusion of contours.

In a test, we selected two shapes from the MPEG-7

dataset. Then, query shapes are generated by reducing the

original shapes’ resolution. The queries are within a range of

resolution from 10!10 pixel up to 100!100 pixel.

Whereas a query corresponding to the highest resolution

shows basically no distortion, the query obtained from a

10!10 resolution is heavily distorted. Two original

contours C1 and C2 together with their example images

with reduced resolution are depicted in Fig. 11. For each

query (of reduced resolution) the relative similarity to its

original contour is computed. The computation of shape

similarity is performed using the global shape similarity

measure s, marked with black columns in Fig. 11, and the

novel opsss measure, marked with gray columns. Examin-

ing the retrieval rates shown in Fig. 11, it can be observed

that opsss outperforms the classical shape similarity. opsss

is able to recognize scaled contours of both queries

correctly, whereas the classical similarity is not able to

recognize shapes at a resolution of less than 80!80 pixel

(cp. Fig. 11(d)). This example shows that opsss can

significantly improve shape retrieval in contexts where

the noise level can be estimated. We will discuss another

example in the context of robot mapping.
8.2. Matching shapes extracted from laser range finder data

In the field of robot mapping, mobile robots (typically

equipped with a laser range finder as sensor) must construct an

internal spatial representation, a map of the environment, from

sensory data. A key technique here is to match two sensor

readings against each other. Range information obtained from

a laser range finder can be interpreted as a description of the

robot’s surroundings by means of polylines that represent

obstacle boundaries. Therefore, the matching may be

formulated as a shape matching (cp. [19]).



Fig. 11. (a),(b): Two shapes from the MPEG-7 database as extracted from their images with resolutions of 100!100, 40!40, and 10!10 pixel each. (c)

Relative similarity of matching the shape depicted in (a) against the shapes in (a) and (b). Each column represents the relative similarity for a query at the

resolutions 100!100, 90!90,., down to 10!10 pixel. Black columns denote the results of global similarity measure s, gray columns the results of opsss.

The higher the columns, the more reliable the retrieval. (d) The same as (c), but for retrieval of shape (b).
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Polylines extracted from laser range finder data suffer

from sensor noise that cannot be removed easily. This is

due to the relative size of the noise which changes with the

amount of shape information present. To be more precise,

the typical noise of the laser range finder used in our

experiments is about G2 cm, which is just about the size

of a door frame in a wall or table legs. Thus, removing

noise up to the magnitude of G2 cm would also remove

shape features. However, loosing any shape feature cannot

be afforded, as shapes perceived in typical office

environments are poor salient features. To overcome this

problem we apply opsss in a similar way as explained

above. Expressing a simplification measure that accounts

for noise allows to differentiate between simplifications

that just cancel out noise and those that would remove
Fig. 12. (a) Two exemplary polylines as could be obtained when sensing an

object with a laser range finder. As the upper polyline is free of noise, tire

lower one suffers from distortions in the same magnitude as the shape

features present. The grid shown denotes 1 cm distances. (b) Applying the

opsss to compare the two polylines, differing shape features are removed

prior to computing shape similarity (dashed lines). The cost for removal is

low, as the removed vertices are judged likely to be caused by noise.
shape features. For example, if we remove a given vertex

that was displaced by noise, the penalty r for its removal

will be compensated in the decreased value of the

similarity measure s. As the cost for removing a vertex

likely to be introduced by noise is very low, shape

similarity can still be detected reliably, even when the

shapes involved are—relative to the overall shape infor-

mation—strongly distorted. An example is presented in

Fig. 12, where two exemplary polylines are shown.

Computing the similarity of these polylines by means of

standard shape similarity yields a similarity value of more

than 12, which means for this application that they are

dissimilar. Since while computing the opsss measure we

remove vertices that make them dissimilar, the computed

similarity value is just about 1 which means for this

application that they are similar.
9. Conclusions

Global similarity measures fail to cope with partial

visibility (due to occlusion or point of view change) and not

uniformly distributed noise, which is actually a normal

situation for shapes extracted from digital images. There-

fore, we introduce a partial similarity measure that is

capable of finding the most similar part in a target object to a

given query shape, even if the query shape is only a small

part of the target object. The partial shape similarity

measure is optimal in the sense that it is able to focus on

similar shape features and to abstract from distinct features

in an optimal way. We are motivated by the fact that human
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perception of shape is based on similarity of common parts

to the extent that a single, significant visual part is sufficient

to recognize the whole object. For example, if you see a

hand in front of a door, you expect there to be a human

behind the door. For a given query part Q, the proposed

partial shape similarity measure allows us not only to

retrieve a target object T from a database of shapes but also

to identify part P of T that is most similar to Q under the

following conditions:
1.
 The location of P in T that corresponds best to query part

Q is unknown
2.
 Part P is a distorted version of Q
3.
 Part P may be at a different scale than Q

Our experimental results verify that the introduced

partial shape similarity yields excellent results under partial

visibility (e.g. occlusion on the level of 80%) if visible parts

are sufficiently distinctive to identify given objects. More-

over, in contexts where the amount of distortion can be

estimated, the proposed measure is able to account for noise

plausibility.
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