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Abstract

This paper considers the optimisation of a nonlinear functional for image segmentation and noise reduction. Equations optimising this

functional are derived and employed to detect edges using geometrical intrinsic properties such as metric and Riemann curvature tensor of a

smooth differentiable surface approximating the original image. Images are then smoothed using a Helmholtz type partial differential equation.

The proposed approach is shown to be very efficient and robust in the presence of noise, and the reported results demonstrate better performance

than the conventional derivative based edge detectors.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The methods of nonlinear energy optimisation for image

segmentation and smoothing have recently received much

attention in the literature (see e.g. [1–7,17–23]). ‘Inverse

problem’ as a restoration method for signals and images was

initially introduced by Tikhonov et al. [21]. This approach was

then modified by Rudin et al. [22] to introduce the total

variation method. Nonlinear optimisation based on the concept

of bounded variation was later employed in the literature (see

e.g. [23]). On the other hand, a segmentation algorithm known

as ‘snake’ that uses a linear functional was first introduced by

Kass et al. [1]. This was further developed as the Geodesic

active contours model and the level-set method (e.g. See

[8,15,16]). Mumford et al. [2–4] introduced a nonlinear

functional to simultaneously segment and smooth images.

This functional was further implemented using contour

evolution approaches [5–7,17–20] based on the level set

method [8]. A nonlinear functional was also proposed by

Mahmoodi et al. [24,25] for signal segmentation and

smoothing. This functional includes two terms (fidelity and

smoothing terms) of the Mumford–Shah functional. However,
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since the notion of contours is not defined in signal processing

context, the third term (contour length minimisation) is not

included. This functional is investigated for continuous and

discrete signals and a general iterative algorithm based on the

optimised equations is proposed in [24]. The geometric

properties of the smoothed signal are also used in another

algorithm proposed in [25] to segment and smooth a noisy

signal. In this paper, the 2D version of the functional

investigated in [24,25] is considered and equations optimising

the functional are then derived. An approach based on

geometrical intrinsic (GI) properties of a differentiable surface

approximating the original image is then proposed to

implement this functional. This approach can be considered

as the generalisation of the geometrical algorithm employed in

[25] for 2D images. Therefore, the theory of surfaces is

exploited in this paper to propose an algorithm for image

segmentation.

The structure of the paper is as follows. In Section 2, the

theoretical formulas are derived by optimising a nonlinear

functional. The implementation method is outlined in Section

3, and results are presented in Section 4. Finally, conclusions

are drawn in Section 5.
2. Energy optimisation

Image I(x,y) is considered as a piecewise continuous

function with contours Gi representing discontinuities. The

smoothed functions fi(x,y) of class Cn nR2 composing
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Fig. 1. Variations of contour Gi in a small neighbourhood of a point P.
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piecewise smoothed image f(x,y) are considered in an open set

such as Si(x,y) which does not contain any discontinuity.

A functional is, therefore, defined to find the most optimised

image f(x,y) and Si(x,y) for every Ri so that, in region Ri, f(x,y)

approximates I(x,y) as closely as possible and f(x,y) is

smoothed depending on m; and smoothing is avoided over

discontinuities

Eðf ;GÞ Z
1

2

X
i

ðð
RiKGi

½ðfiðx; yÞKIðx; yÞÞ2 CmðVfiÞ
2�Siðx; yÞdx dy

(1)

where E(f,G) is the functional to be optimised, Si(x,y) is an open

connected [11,12] set Ri in which I(x,y) has no discontinuities,

i.e. Gi represents boundary of Si(x,y), and GZ{Gi}. Si(x,y) can

also be defined as

Siðx; yÞ Z
1 x; y2Ri

0 x; y;Ri

(

In computer vision terms, Si(x,y) is the segmented image

and fi(x,y) is the smoothed image.

Functional (1) is for the special case where RihRjZ: for

isj, so that Ri and Rj are represented by Si(x,y) and Sj(x,y). In

this case, Gi is considered a closed curve. However, more

generally, where Gi is not a closed curve, functional (1) can be

written as

Eðf ;GÞ Z
1

2

X
i

ðð
RiKGi

½ðfiðx; yÞKIðx; yÞÞ2 CmðVfiÞ
2�dx dy: (2)

The objective in this paper is to find fi(x,y)s and Gis that

minimise functional (1) and (2). In this functional, minimis-

ation of contour length is not required, which has two

advantages; First, this functional leads to less numerical

computations than the Mumford–Shah functional with equiv-

alent results. Second, implementation complexities are less and

therefore noniterative methods can be employed.

We start from functional (1) to establish a mathematical

framework to find fi(x,y) and Si(x,y) using variational methods

[9,10].

If we assume that dfi is of the same class as fi and fi is varied

by dfi while Si(x,y) remains unchanged. By assuming a fixed

function for Si(x,y), functional (1) can be considered convex

(e.g. see chapter 3 in [9] pp. 39–44). The variations in

functional (1), dEZdEi is calculated as

dEi Z Eiðfi CdfiÞKEiðfiÞ

dEi Z
1

2

ðð
m

vðfi CmdfiÞ

vx

� �2

Cm
vðfi CmdfiÞ

vy

� �2�
C ðfi CmdfiKIÞ2

�
Siðx; yÞdxdy

K
1

2

ðð
m

vfi
vx

� �2

Cm
vfi

vy

� �2

C ðfiKIÞ2
� �

Siðx; yÞdx dy
The above equation can be rewritten as

dE Z m

ðð
m

vfi
vx

� �
vdfi
vx

� �
Cm

vfi

vy

� �
vdfi

vy

� �
CdfiðfiKIÞ

�

Cmm
vfi

vx

� �2

Cmm
vfi

vy

� �2

Cmdf 2
i

�
Siðx; yÞdx dy

Therefore:

dEi

dfi

ZLim
m/0

dEi

m

� �

Z

ðð
RiKGi

m
vfi

vx

� �
vdfi

vx

� �
Cm

vfi
vy

� �
vdfi
vy

� �
CdfiðfiKIÞ

� �
dx dy

By integrating in part and considering that the line integral

on the closed contour Gi should be in one direction either

clockwise or counter clockwise over the contour, then we

obtain

dEi

dfi

Z m

ð
Gi

dfið ðVfi:ðnÞdsK

ðð
RiKGi

dfiðKmV2fi C ðfiKIÞÞdx dy

or

dEi

dfi

Z m

ð
Gi

dfi
vfi
vn

� �
dsK

ðð
RiKGi

dfiðKmV2fi C ðfiKIÞÞdx dy (3)

where ðn is the unit normal vector to the contour path Gi,

dsZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2Cdy2

p
is the element of arc length, ðV is gradient

operator and V2 is Laplacian operator. In order to find the

optimised solution, Eq. (3) is set to zero, since dfis0 in RiKGi,

then

mV2fi Z fiKI in Ri KGi (4)

Eq. (4) is of Helmholtz type equation. Since the boundary

condition is not known on contour Gi, the problem is treated as

a free boundary condition (chapter 7 in [9] pp. 98–107). In this

context, the first term is set to zero to obtain the boundary

condition on contour Gi

vfi
vn

Z 0 in Gi (5)

Let us now vary Gi in a small neighbourhood of an arbitrary

point P on contour Gi between two regions Si and SiC1 (as

shown in Fig. 1) and calculate variations of functional (1).

Obviously, fi is varied in a neighbourhood N of P and these

variations in fi are considered in the calculations of the

functional variations.
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If Gi is varied to GC
i and GK

i in the neighbourhood N of point

P shown in Fig. 1, the variations of functional (1) are calculated

as

ECðfC;GCÞ Z
1

2

X
i

ðð
RC

i
KGC

i

½ðf C
i ðx; yÞKIðx; yÞÞ2

CmðVfC
i Þ2�SC

i ðx; yÞdx dy

EKðfK;GKÞ Z
1

2

X
i

ðð
RK

i
KGK

i

½ðfK
i ðx; yÞKIðx; yÞÞ2

CmðVfK
i Þ

2�SK
i ðx; yÞdx dy

dE Z ECKEK Z
1

2

XiC1

jZi

ðð
RC

j
KGC

j

½ðfC
j ðx; yÞKIðx; yÞÞ2

CmðVfC
j Þ2�SC

j ðx; yÞdxdyK
1

2

!
XiC1

jZi

ðð
RK

j
KGK

j

½ðfK
j ðx; yÞKIðx; yÞÞ2

CmðVfK
j Þ

2�SK
j ðx; yÞdxdy

or

dE Z
1

2

ðð
RC

i
gRC

iC1
KGC

i

½ðfCðx; yÞKIðx; yÞÞ2

CmðVfCÞ2�SCðx; yÞdx dyK
1

2

!

ðð
RK

i gRK
iC1

KGK
i

½ðfKðx; yÞKIðx; yÞÞ2 CmðVfKÞ2�SKðx; yÞdx dy

dE Z
1

2

ðð
N

½ðf Cðx; yÞKIðx; yÞÞ2 CmðVfCÞ2

KðfKðx; yÞKIðx; yÞÞ2KmðVfKÞ2�dx dy (6)

where fC and fK are defined as:

fC Z

fC
i ðx; yÞ2N&ðx; yÞ2Ri

fC
iC1 ðx; yÞ2N&ðx; yÞ2RiC1

unchanged ðx; yÞ;N

8>><
>>:

fK Z

fK
i ðx; yÞ2N&ðx; yÞ2Ri

fK
iC1 ðx; yÞ2N&ðx; yÞ2RiC1

unchanged ðx; yÞ;N

8><
>:

If we represent contour Gi as a natural representation GiZ
Gi(x(s),y(s)), then GC

i can be represented as either
GC
i ZGC

i ðxðsÞ; yðsÞCmdyðsÞ=2Þ or GC
i ZGC

i ðxðsÞCmdxðsÞ=2;

yðsÞÞ. GK
i can be represented by the same form as GC

i . Using

the first form for GC
i and GK

i , Eq. (6) can, therefore, be rewritten

as

dE Z
1

2

ð ðyCmdy=2

yKmdy=2

½ðfCðx; yÞKIðx; yÞÞ2 CmðVfCÞ2

KðfKðx; yÞKIðx; yÞÞ2KmðVfKÞ2�dy dx

or

dE

dGi

Z Lim
m/0

dE

m
Z

1

2

ð
N

½ðfCðx; yÞKIðx; yÞÞ2 CmðVfCÞ2

KðfKðx; yÞKIðx; yÞÞ2KmðVfKÞ2�dy dx

In order to find the condition under which functional (1) is

optimised with respect to the variations of Gi, the above

equation is set to 0, i.e.ð
N

½ðfCðx; yÞKIðx; yÞÞ2 CmðVf CÞ2KðfKðx; yÞKIðx; yÞÞ2

KmðVfKÞ2�dy dx Z 0

Since dy is not zero in the neighbourhood N, we obtain

ðfCðx; yÞKIðx; yÞÞ2 CmðVfCÞ2 KðfKðx; yÞKIðx; yÞÞ2

KmðVfKÞ2 Z 0
(7)

The geometrical concept of Eq. (7) is that the contour Gi is

the intersection between two surfaces ðfCðx; yÞKIðx; yÞÞ2C
mðVfCÞ2 and ðfKðx; yÞKIðx; yÞÞ2CmðVfKÞ2. Although the two

surfaces have common points in continuous regions, however,

in the neighbourhood of discontinuity, they only intersect at the

contour Gi. Eqs. (4), (5) and (7) can also be extended to obtain

optimised solutions for the case where Gi is any nonclosed

curve, i.e. they optimise functional (2) as well.
3. Implementation method

Original image can be approximated by minimising linear

functional (8) to obtain a smooth and differentiable surface

f(x,y):

Eðf Þ Z
1

2

Xðð
R

½ðf ðx; yÞKIðx; yÞÞ2 CmðVf Þ2�dx dy (8)

By optimising functional (8) using Euler–Lagrange

equation, the following differential equation is obtained:

mV2f Z f KI (9)

The solution for the above partial differential equation can

be considered as a smooth differentiable Monge patch

represented as [11,12]:

Sðx1; x2Þ Z x1e1 Cx2e2 C f ðx1; x2Þe3 (10)
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where (x1,x2) are coordinates corresponding to (x,y) and e1, e2,

e3 are unit vectors i, j and k in a Euclidean manifold of three

dimensions. This surface can be described using Gauss

differential equations in tensor notation as (chapter 10 in

[11] pp. 201–215, chapter 4 in [12] pp. 231–237)

vivjS Z Gk
ijvkS CbijN ði; j; k Z 1; 2Þ (11)

where Gk
ij are Christoffel symbols of the second kind, bij are

components of a covariant tensor field of rank two

representing the second fundamental coefficients of surfaces

and N is the unit normal vector to the surface. In Eq. (11),

Einstein summation convention is employed (chapter 1 in

[26]). Christoffel symbols are computed by the first

fundamental coefficients or metric tensors represented by gij

and their derivatives [11,12]. Therefore, according to

Eq. (11), a surface can be uniquely determined by using its

metric tensors and tensors representing its second funda-

mental coefficients (chapter 10 in [11] pp. 203–208). In this

paper, an algorithm is proposed to detect edges represented as

discontinuities of the original image I(x,y), by considering the

smooth surface calculated from Eq. (9).

Normal curvature in any point on a smooth surface with

metric tensors gij and the second fundamental coefficients

tensors bij is calculated as (chapter 9 in [11] pp. 179–181)

kn Z
b11ðdx1Þ2 C2b12dx1dx2 Cb22ðdx2Þ2

g11ðdx1Þ2 C2g12dx1dx2 Cg22ðdx2Þ2
(12)

where dx1:dx2 is the orientation along which normal curvature

is computed. On the smooth surface obtained by solving

Eq. (9), normal curvature along an orientation perpendicular

to the tangent of the contour representing discontinuity is

zero. This can further be investigated in Eq. (12), by

substituting XZdx1/dx2

kn Z
b11X2 C2b12X Cb22

g11X2 C2g12X Cg22

Zero value for normal curvature requires that

b11X2 C2b12X Cb22 Z 0 (13)

In general, if bijs0, there is only one orientation along

which normal curvature is zero. This is the orientation normal

to the contour. Therefore, Eq. (13) should have only one single

real root with multiplicity two. This is achieved when the

discriminant of Eq. (13) is zero, i.e.:

b2
12 Kb11b22 Z 0 (14)

Quantity b2
12 Kb11b22 is a GI property of surfaces and is

known as covariant Riemann tensor curvature. Orientation,

along which normal curvature is zero, is the single real root of

Eq. (13). This orientation is normal to edge path and calculated

as:

X ZK
b12

b11

(15)

Eq. (15) could be used to apply boundary condition of

Eq. (5) on edge paths and contours. The condition indicated in
Eq. (14) can also be obtained by considering zero value for one

of the principle curvatures. This implies that the Gaussian

curvature of the surface in the point in question should be zero

and hence condition (14) is satisfied. Such points on the surface

are known as parabolic points (chapter 9 in [11] pp. 175–187).

The other principle curvature then determines the curvature of

the contour.

Area element on a smooth surface is another GI property

that is used to detect discontinuities in the original image. On a

smooth surface of an image, discontinuities correspond to

regions with maximum area element on the smooth surface.

For a surface with metric tensor gij, area element on the surface

is calculated as the discriminant of metric tensor

g Z
jDSj

Dx1Dx2
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11g22 Kg2

12

q
(16)

Therefore, if we start from a smooth surface obtained from

Eq. (9), the edges correspond to points where Riemann tensor

curvature is zero and Eq. (16) is maximised. Riemann

curvature tensor and area variation calculated by Eq. (16) are

initially computed for the whole image. Maximum values for

this quantity in regions of zero Riemann curvature correspond

to edges in the image. Since discriminant of metric tensor is

definite positive, its minimum value is one corresponding to

points with no variations. Therefore, a point is considered edge

point if its tensor curvature is zero, its area is a local maximum

and this maximum value is greater than a threshold.

Having segmented the image, Eq. (4) with the boundary

condition (5) is applied to reduce the noise from the original

image. To implement this noise reduction process, we start

from the segmented image. For every pixel located at i, j a 3!3

window whose centre is at i, j is considered. If there is no

segmented pixel in this window, the value of pixel at i, j for the

smoothed image is calculated using the discrete version of

Eq. (4) estimated by finite difference method [14], i.e.

f ði; jÞ Z
mðf ðiK1; jÞC f ði C1; jÞC f ði; jK1ÞC f ði; j C1ÞÞ

4m C1

C
Iði; jÞ

4m C1

where I(i,j) is the pixel value at i, j from the noisy image.

However, if any of the pixels’ locations at (iK1,j), (i,jK1),

(iC1,j), and (i,jC1) are segmented, then the second derivative

in Eq. (4) is estimated using the pixel values of the

unsegmented pixels. For instance if the pixel at location (iK
1,j) is segmented, the pixel value of the smoothed image at

location (i,j) is estimated as:

f ði; jÞ Z
mðf ði C1; jÞC f ði; jK1ÞC f ði; j C1ÞÞ

3m C1
C

Iði; jÞ

3m C1

However, if the pixel in location (i,j) is a segmented pixel,

then boundary condition of Eq. (5) is applied to determine the

pixel value of the smoothed image at location (i,j). For

example, if the orientation of the contour passing through pixel

(i,j) is horizontal (parallel to x-axis or the axis representing

columns j) then either f(iK1,j) or f(iC1,j) can be chosen
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depending on how close their pixel value is to f(i,j). This

method guarantees sharp edges in a neighbourhood of an edge

path in the smoothed image. Calculation methods of

parameters bij, gij and curvature tensor are presented in the

Appendix.
Fig. 3. Original noiseless image characterised with a nonclosed contour (a)

contour detection of the noiseless image using the iterative method proposed in

Ref. [6] implementing Mumford–Shah functional, (b) contour detection using

the GI algorithm, (c) noisy image with SNRZ1, (d) contour detection using the

iterative method proposed in Ref. [6], (e) contour detection using the GI

algorithm, (f) contour detection of the original noiseless image using a

threshold set to, (g) 0.15, (h), 0.35, (i) 0.65.
4. Results

A noiseless synthetic image shown in Fig. 2(a), is

contaminated with Gaussian noise to obtain a noisy image

shown in Fig. 2(b) with SNRZ4.2. The GI based algorithm

described in Section 3 is applied to this noisy image. The

segmented images are depicted in Fig. 2(c)-(e) and smoothed

images obtained by applying Eq. (4) with boundary condition

(5) is shown in Fig. 2(f)-(h). mZ0.1, 5, and 50 are used to

smooth the noisy image. As shown from this figure,

segmentation is unaffected for values of m higher than a

threshold depending on the SNR of the image.

Values of m lower than this threshold result in partial or

under segmentation, as shown in Fig. 2(c). This is due to the

fact that with low values of m, edges as well as some portions of

noise in the image have the required geometrical properties for

segmentation. However, by increasing m, the required

geometrical properties for edges remain unchanged, while

noise is heavily smoothed which results in changes in their

geometrical properties. This also suggests that small objects of

the order of few pixels such as noise might not be detected

when a high value of m is chosen. It is, therefore, concluded that

higher values for m should be chosen when the amount of noise

in an image is increased. A smoother image is also obtained

when higher values of m are chosen. This is demonstrated in

Fig. 2(f)–(h).
Fig. 2. Original noiseless image (a) noisy image contaminated with Gaussian

noise with SNRZ4.2 (b) Segmented image using the GI algorithm described in

Section 3 using mZ0.1 (c), mZ5 (d) and mZ50 (e) smoothed image with mZ
0.1 (f), mZ5 (g) and mZ50 (h).
Contour of objects in images can also be open. Fig. 3(a)

shows an image containing an object with a nonclosed contour.

Gaussian noise is added to this image to obtain the image of

Fig. 3(d) with SNRZ1. The edge detected images using an

iterative method implementing Mumford–Shah functional

[6,17–20] and GI method are depicted in Fig. 3(b) and (c),

respectively.

As shown in Fig. 3(b), the detected contour using this

iterative algorithm is a closed contour, i.e. one part of the

resulting contour does not actually exist as an edge in the

original image. This is basically an artefact of the iterative

method. This problem is resolved in the GI algorithm as seen in

Fig. 3(c). The iterative method proposed in [6,17–20] and GI

algorithm is applied to the noisy image of Fig. 3(d). While the

GI algorithm successfully segments the image as depicted in

Fig. 3(f), the iterative method which is operational for a

favourable SNR, fails to segment the image as demonstrated in

Fig. 3(e). The GI algorithm with different threshold values is

applied to the noiseless image of Fig. 3(a), and the results are

shown in Fig. 3(g)–(i).

At this stage, it is interesting to investigate the noise

sensitivity of our algorithm and compare this method to the

derivative of Gaussian (DroG) edge detection algorithm [13].

An original noiseless image is contaminated with Gaussian

noise with different variances to obtain noisy images with

SNRZ0.5, 0.25, 0.03 as depicted in Fig. 4. The proposed GI

algorithm in this paper is applied to the noisy images to obtain

the segmented images. Noise reduction is also achieved by

applying Eq. (4) with boundary condition (5) as shown in

Fig. (4). Edge detection algorithm based on DroG is finally



Fig. 4. Original noiseless image (top) noisy images contaminated with Gaussian

noise with SNRZ0.5, 0.25 and 0.03 (column a) segmented images using the

proposed GI algorithm (column b) smoothed images using the proposed

algorithm (column c) segmented images using DroG edge detector with

window size 9!9, and empirically optimised standard deviations and threshold

values (column d).

Fig. 6. A noisy image of cells (top left) and its segmented image using DroG

edge detector (top right) segmented and smoothed image using GI method with

mZ100 (bottom left and right, respectively).
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applied to the noisy images for comparison. It should be noted

that in both cases, empirically optimised threshold values were

used for fair comparison. The window size for this DroG

algorithm is chosen as 9!9 and empirically optimal standard

deviations of the Gaussian function is chosen. As can be seen

from Fig. (4), DroG operator starts failing for the noisy image

with SNRZ0.25. This failure is more clear for the noisy image

with SNRZ0.03. A better performance of GI algorithm than

that of the DroG operator is clearly observed from this figure.

This point is further investigated in Fig. 5. It should be noted

that noise reduction is considered as a by-product of our

method. This bonus however is absent in the DroG edge

detector.

A further comparison has been made between the DroG

edge detector and GI algorithm as depicted in Fig. 5. A

noiseless image of Fig. 5(a) is contaminated with Gaussian

noise to obtain a noisy image with SNRZ0.28 as shown in

Fig. 5(b). This image is segmented using the DroG edge
Fig. 5. Original noiseless image (a), noisy image with SNRZ0.28 (b)

segmented image using DroG operator with different threshold values (c) and

(d) segmented image using GI algorithm with mZ100 (e).
detector with two different threshold values. The other

parameters are chosen empirically optimal. As can be seen

from Fig. 5(b) and (c), if the threshold is chosen so that a closed

contour is obtained for the object, noise is also segmented in

some parts of the image as depicted in Fig. 5(c). If the threshold

increases to remove the ‘segmented noise’, then according to

Fig. 5(d), the segmentation does not result in a close contour as

expected. The GI algorithm is also applied to the noisy image

of Fig. 5(b), and the segmented image includes a closed

contour with virtually not segmented noise as depicted in

Fig. 5(e). This clearly indicates a better performance for the GI

algorithm compared to the DroG edge detector.

For comparison, the proposed GI algorithm in this paper and

a DroG based edge detector have been applied to a real world

image, a noisy image of polymersomes cells. As depicted in

Fig. 6, DroG edge detector using empirically optimised

parameters partially segment the objects and fail to avoid

detecting noise. However, better segmentation result is

achieved by using the GI algorithm. The smoothed image is

calculated with mZ100. GI algorithm has also been applied to

Lena, Cameraman, and Golden gate images contaminated with

Gaussian noise with SNRZ10.25, 5.81 and 8.25, respectively.

Segmentation and smoothing are achieved by mZ5 as shown in

Figs. 7–9.

5. Conclusion

A nonlinear functional is introduced in this paper for

segmentation and noise reduction of images. The proposed

functional is less complex than the Mumford–Shah functional,

and its implementation is consequently numerically more

efficient. A noniterative method based on intrinsic properties of



Fig. 7. Lena image (top left) and its noisy image contaminated with the

Gaussian noise with SNRZ10.25 (top right) segmented and smoothed images

using the GI method with mZ5 (bottom left and right, respectively).

Fig. 9. Golden gate image (top left) and its noisy image contaminated with the

Gaussian noise with SNRZ8.25 (top right) segmented and smoothed images

using the GI method with mZ5 (bottom left and right, respectively).
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a differentiable surface approximating the original image is

proposed. Results indicate that this method is very robust in the

presence of noise and more effective than methods based on

DroG such as the Canny operator. The proposed method is

generic and can be applied to signals and 3D images for

segmentation and noise reduction.
Fig. 8. Cameraman image (top left) and its noisy image contaminated with the

Gaussian noise with SNRZ5.81 (top right) segmented and smoothed images

using the GI method with mZ5 (bottom left and right, respectively).
Appendix

In this appendix, we calculate metric and curvature tensor

by assuming that the differentiable surface is a Monge patch S.

Normal unit vector N, bij and gij are calculated as [11,12]:

g11 Z v1S$v1S Z ðe1 C f;1e3Þ$ðe1 C f;1e3Þ Z 1 C f 2
;1

g12 Z v1S$v2S Z ðe1 C f;1e3Þ$ðe2 C f;2e3Þ Z f;1f;2

g22 Z v2S$v2S Z ðe2 C f;2e3Þ$ðe2 C f;2e3Þ Z 1 C f 2
;2

N Z
v1S!v2S

jv1S!v2Sj
Z

Kf;1e1Kf;2e2 Ce3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C f 2

;1 C f 2
;2

q

b11 Z v2
1S$N Z

f;11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C f 2

;1 C f 2
;2

q

b12 Z v1v2S$N Z
f;12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 C f 2
;1 C f 2

;2

q

b22 Z v2
2S$N Z

f;22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C f 2

;1 C f 2
;2

q
where f;iZvf/vxi and f;ijZv2f/vxjvxi. Riemann curvature tensor

and discriminant of metric tensor can therefore be rewritten as

R Z b2
12 Kb11b22 Z

f 2
;12 Kf;11f;22

1 C f 2
;1 C f 2

;2
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g Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11g22Kg2

12

q
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 C f 2

;1 C f 2
;2

q
To find the points in x1x2 plane where g is maximum, the

zero-crossing in the directional derivative along unit vector

normal to contour, i.e. vg/vn is examined. To ensure that in

edge candidate points, g is maximised, v2g/vn2 should be

negative. This can be written as:

vg

vn
Z ðVg$n Z ðg;1e1 Cg;2e2Þ

$
g;1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
;1 Cg2

;2

q e1 C
g;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
;1 Cg2

;2

q e2

0
B@

1
CA Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
;1 Cg2

;2

q

v2g

vn2
Z

v

vn

vg

vn

� �
Z ðV

vg

vn

� �
$n

Z
g;1g;11 Cg;2g;12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
;1 Cg2

;2

q e1 C
g;1g;12 Cg;2g;22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
;1 Cg2

;2

q e2

0
B@

1
CA

$
g;1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
;1 Cg2

;2

q e1 C
g;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
;1 Cg2

;2

q e2

0
B@

1
CA

Therefore, in edge points the following inequality should

apply

v2g

vn2
Z

g2
;1g;11 C2g;1g;2g;12 Cg2

;2g;22

g2
;1 Cg2

;2

!0
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