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Abstract

We propose a Markov random field (MRF) image segmentation model, which aims at combining color and texture features. The theoretical

framework relies on Bayesian estimation via combinatorial optimization (simulated annealing). The segmentation is obtained by classifying the

pixels into different pixel classes. These classes are represented by multi-variate Gaussian distributions. Thus, the only hypothesis about the nature

of the features is that an additive Gaussian noise model is suitable to describe the feature distribution belonging to a given class. Here, we use the

perceptually uniform CIE-L*u*v* color values as color features and a set of Gabor filters as texture features. Gaussian parameters are either

computed using a training data set or estimated from the input image. We also propose a parameter estimation method using the EM algorithm.

Experimental results are provided to illustrate the performance of our method on both synthetic and natural color images.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Image segmentation is an important early vision task where

pixels with similar features are grouped into homogeneous

regions. A broadly used class of models is the so-called cartoon

model, which has been extensively studied from both

probabilistic [1] and variational [2,3] viewpoints. The model

assumes that the real world scene consists of a set of regions

whose observed low-level features changes slowly, but across

the boundary between them, these features change abruptly.

What we want to infer is a cartoon u consisting of a simplified,

abstract version of the input image I: regions Ri has a constant

value (called a label in our context) and the discontinuities

between them form a curve G—the contour. The pair (u, G)
specifies a segmentation. Note that depending on the

segmentation approach G may not be included explicitly in

the model. Once u is determined, G is simply obtained as the

discontinuities of u. Herein, we will also concentrate on u.

Taking the probabilistic approach, one usually wants to

come up with a probability measure on the set U of all
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possible segmentations of I and then select the one with the

highest probability. Note that U is finite, although huge. A

widely accepted standard, also motivated by the human visual

system [4,5], is to construct this probability measure in a

Bayesian framework [6–8]: we shall assume that we have a

set of observed (Y) and hidden (X) random variables. In our

context, the observation F2Y represents the low-level

features used for partitioning the image, and the hidden entity

u2X represents the segmentation itself. First, we have to

quantify how well any occurrence of u fits F. This is

expressed by the probability distribution PðFjuÞ—the

imaging model. Second, we define a set of properties that

any segmentation u must posses regardless the image data.

These are described by P(u), the prior, which tells us how

well any occurrence u satisfies these properties. Factoring

these distributions and applying the Bayes theorem gives us

the posterior distribution PðujFÞfPðFjuÞPðuÞ. Note that the

constant factor 1=PðFÞ has been dropped, as we are only

interested in û which maximizes the posterior, i.e. the

Maximum A Posteriori (MAP) estimate of the hidden field X.

The models of the above distributions depend also on

certain parameters that we denote by q. Supervised

segmentation assumes that these parameters are either

known or a set of joint realizations of the hidden field X

and observations Y (called a training set) is available [1,9]. In

the unsupervised case, however, we know neither q nor X.

This is called the incomplete data problem where both q and X

has to be inferred from the only observable entity Y.
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Expectation maximization (EM) [10] and its variants

(Stochastic EM [11,12], Gibbsian EM [13]), as well as

iterated conditional expectation (ICE) [14,15] are widely used

to solve such problems. It is important to note, however, that

these methods calculate a local maximum [6].
1.1. State of the art and the proposed approach

There are many features that one can take as observation F

for the segmentation process: gray-level, color, motion,

different texture features, etc. However, most of the

segmentation algorithms presented in the literature are based

on only one of these features. Recently, the segmentation of

color images (textured or not) has received more attention

[16–23]. In this paper, we are interested in the segmentation

of color textured images. In [22], a multi-layer MRF model is

proposed: each feature has its own layer, called feature layer,

where an MRF model is defined using only the corresponding

feature. A special layer is assigned to the combined MRF

model. This layer interacts with both color and texture layers

and provides the segmentation based on the combination of

those features. Another approach is [18], where an

unsupervised segmentation algorithm is proposed which uses

Gaussian MRF models for color textures. These models are

defined in each color plane with interactions between different

color planes. The segmentation algorithm is based on

agglomerative hierarchical clustering. Our approach is

different in two major points. First, we use a stochastic

monogrid model-based segmentation framework instead of

multilayer clustering. Second, we use a combination of

classical, gray-level based, texture features and color instead

of direct modeling of color textures. Hence, most of the

classical texture features can be used.

We have also compared our method to JSEG [21], which is

a recent unsupervised segmentation algorithm for color

textured images. It consists of two independent steps: First,

colors in the image are quantized to several representative

classes. The output is a class map where pixels are replaced

by their corresponding color class labels. Then a region

growing method is used to segment the image based on the

multi-scale J-images. A J-image is produced by applying a

criterion to local windows in the class-map (see [21] for

details on that). Although there have been other unsupervised

segmentation methods proposed (like normalized cuts [24]),

we have chosen JSEG as it is also region based and uses

similar cues than our method. The main difference is that

JSEG is not a model-based approach.

The proposed segmentation model consists of an MRF

defined over a nearest neighborhood system. The pixel classes

are represented by multi-variate Gaussian distributions over

image features (basically an additive Gaussian noise model).

Since, the different texture-types are described by a set of

Gaussian parameters, it is possible to classify or recognize

textures based on prior learning of the possible parameters. Of

course, if we do not have training data, parameter estimation

can be a difficult task. Here, we apply the expectation–
maximization (EM) algorithm [10,25] to identify Gaussian

mixture components.

In our approach, the image features F consist of the

perceptually uniform CIE-L*u*v* color values, and texture

features derived from the Gabor filtered gray-level image. Of

course, the nature of the texture features is not crucial to the

algorithm from the segmentation point of view. The only

requirement in the current model is that Gaussian models

should be suitable for describing the texture feature

distributions. Most of the filtering approaches (see [26] for

a comparative study of different filtering techniques) fall into

this category. A detailed study about Gaussian mixture

modelization of different color and texture features can be

found in [27]. One can think of this kind of modelization as

clustering the image pixels into different classes: The mean

value represents the cluster center and the covariance matrix

determines the (approximate) extent of the cluster. However,

clustering algorithms work only in the feature space while

our MRF segmentation model also takes into account the

spatial relationship of pixels in the image domain.

2. Feature extraction

First, we briefly describe the color and texture features

extracted from the input image I. Let us assume that images

are defined over a finite rectangular lattice SZ fs1; s2;.; sNg,

where sZ(i, j) denotes lattice sites (or pixels). At each pixel s,

the features can be represented by a vector ðf s. The dimension of

the vector is determined by the number of features extracted.

Therefore, features form a vector field FZ fðf sjs2Sg (the

observation), which is the input of our MRF segmentation

algorithm discussed in Section 3.

2.1. Color features

The first question, when dealing with color images, is how

to measure quantitatively the color difference between any

two arbitrary colors. Experimental evidence suggests that the

RGB tristimulus color space may be considered as a

Riemannian space [28]. Due to the complexity of determin-

ing color distance in such spaces, several simple formulas

have been proposed. These formulas approximate the

Riemannian space by a Euclidean color space yielding a

perceptually uniform spacing of colors. One of these

formulas is the CIE-L*u*v* [28] color space that we use

here. Fig. 1 demonstrates the difference between RGB and

CIE-L*u*v* color metrics.

2.2. Texture features

Many different techniques have been proposed for

analyzing image texture [26]. Herein, we will adopt multi-

channel filtering where the channels are represented by a bank

of real-valued, even-symmetric Gabor filters. Segmentation

requires simultaneous measurements in both the spatial and

frequency domains. However, spatial localization of bound-

aries requires larger bandwidths whereas smaller bandwidths



Fig. 2. Plot of the misclassification rate vs. b in case of supervised segmentation

of the synthetic images shown in Fig. 5-Fig. 8. For bR 2.0, the error rate

reaches its minimum and stabilizes.

Fig. 1. First order neighborhood system with corresponding cliques.
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give better texture measurements. Fortunately, Gabor filters

have optimal joint localization in both domains [29]. In

addition, when we are combining texture features with color,

the spatial resolution is considerably increased.

The Fourier domain representation H(u, v) of the basic even-

symmetric Gabor filter oriented at 08 is given by [29]

A exp K
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where suZ1/2psx, svZ1/2psy, AZ2sxsy, u0 is the frequency

of a sinusoidal plane wave along the x-axis, and sx and sy are

the deviations of the Gaussian envelope along the x and y-axes.

Filters with other orientations can be obtained by rotating the

coordinate system. In our tests, we used four orientations: 08,

458, 908, 1358 and the radial frequencies u0 were 1 octave apart:ffiffiffi
2

p
;
ffiffiffi
2

p
=2;

ffiffiffi
2

p
=4;

ffiffiffi
2

p
=8;.. For a 2W pixel wide image, the

highest radial frequency falling inside the image array isffiffiffi
2

p
=2WK2.

From each filtered image g, we compute a feature image,

which allows the segmentation of the image by its pixel values

alone. As shown in Fig. 3, such a feature image is basically a

grayscale image with similar intensities within similarly textured

regions. The feature image is obtained via a local energy function

applied to the filtered image. The objective of the local energy

function is to estimate the energy in a local region of the filter

output. The local energy function consists of a nonlinearity and

smoothing (see [26] for a comparative study of different

approaches). Our experiments follow the procedure reported in

[29]: First, the nonlinear transformation, jtanhðagsÞj; s2S (a

rectified sigmoid) is applied which transforms negative

amplitudes to the corresponding positive amplitudes. This is

followed by a Gaussian smoothing filter whose deviation is

proportional to the center frequency of the Gabor filter: sZk/
u0. Note that accurate edge localization calls for a small

Gaussian window while accurate energy estimation calls for

larger window sizes. This is why the filter size is set as a

function of the band center frequency. In our experiments, the

Gabor filtered images are scaled to the interval [K1,1] and we

set aZ40 and kZ1.
3. MRF segmentation model

As discussed in Section 1, the segmentation is obtained as a

cartoon image, which is basically a labeling of the input image

I. Hence for each pixel s, the region-type (or pixel class) that

the pixel belongs to is specified by a class label, us, which is

modeled as a discrete random variable taking values in LZ{1,

2,.,L}. The set of these labels uZ fus; s2Sg is a random

field, called the label process. Furthermore, the observed image

features (color and texture) are supposed to be a realization

Ffðf sjs2Sg from another random field, which is a function of

the label process u. Basically, the image process F represents

the manifestation of the underlying label process. Thus, the

overall segmentation model is composed of the hidden label

process u and the observable noisy image process F. Our goal

is to find an optimal labeling û which maximizes the posterior

probability PðujFÞ, that is the maximum a posteriori (MAP)

estimate [1]

ûZ arg max
u2U

PðFjuÞPðuÞ; (2)

where U denotes the set of all possible labelings.
3.1. Label process

The label process u is modeled as a MRF with respect to a

first order neighborhood system (see Fig. 1). According to the

Hammersley–Clifford theorem [1], P(u) follows a Gibbs

distribution



Fig. 3. Feature images derived from different Gabor filters.
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PðuÞZ
1

Z
expðKUðuÞÞZ
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Z
exp K

X
C2C

VCðuCÞ
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where U(u) is called an energy function, ZZ
P

u2U

exp(KU(u)) is the normalizing constant (or partition

function) and VC denotes the clique potential of clique

C2C having the label configuration uC. In our case, C is

the set of spatial second order cliques (doubletons). Each

clique corresponds to a pair of neighboring pixels. The

prior P(u) will represent the simple fact that segmenta-

tions should be locally homogeneous. Therefore, in our

model, these potentials favor similar classes in neighbor-

ing pixels:

VC Z dðus;urÞZ
C1 if ussur

K1 otherwise

(
(4)

This potential is also know as the Potts model in

statistical physics [30]. From Eq. (3), the full prior is as

follows:

PðuÞZ
1

Z
exp K

X
fs;rg2C

dðus;urÞ

 !
(5)

Note that this energy is proportional to the length of

the region boundaries. Thus, homogeneous segmentations

will get a higher probability.

3.2. Image process

The multivariate Normal density is typically an appropriate

model for most classification problems where the feature

vectors ðf s for a given class l are continuous valued, mildly

corrupted versions of a single mean vector ml [27,31]. Samples

from this type of distribution tend to cluster about the mean,

and the extent to which they spread out depends on the

variance. This kind of modelization corresponds well to our

features: Texture feature images are constructed in such a way

that similar textures map to similar intensities. Hence, pixels

with a given texture will be assigned a well-determined value

with some variance. Furthermore, the CIEKL*u*v* colors

form an Euclidean space [28]: pixels with similar color map to

CIEKL*u*v* vectors that are close to their average (see

Fig. 4). Putting these feature distributions into one multivariate
Normal mixture, the modes will correspond to clusters of

pixels, which are homogeneous in both color and texture

properties. Therefore, regions will be formed where both

features are homogeneous while boundaries will be present

where there is a discontinuity in either color or texture (see

Fig. 7 as an example). Applying these ideas, the image process

Fcan be formalized as follows: Pððf sjusÞ follows a Normal

distribution Nððm;SÞ, each pixel class l2LZ{1,2,.,L} is

represented by its mean vector ðml and covariance matrix Sl

Nðml;SlÞZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞnjSlj
p exp K

1

2
ððfKðmlÞS

K1
l ððfKðmlÞ

T

� �
(6)

where n is the dimension of the combined color–texture feature

space. Note that pixel features are assumed independent which

yields to the following simplified form of the likelihood

PðFjuÞ:

PðFjuÞZ
Y
s2S

Pððf sjusÞ (7)

Z
Y
s2S

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞnjSus

j
q exp K

1

2
ððf sKðmus

ÞSK1
us
ððf sKðmus

ÞT
� �

(8)
3.3. Posterior energy

Before calculating the posterior probability PðujFÞ, we can

further simplify it: first of all, the whole posterior can be

expressed as a first order MRF by including the contribution of

the likelihood term via the singletons (i.e. pixel sites s2S).

Indeed, the singleton energies directly reflect the probabilistic

modeling of labels without context, while doubleton clique

potentials express relationship between neighboring pixel

labels. Therefore, after dropping the normalizing constant,

we get

PðujFÞfexpðKUðu;FÞÞ (9)

fexp K
X
s2S

Vsðus;ðf sÞCb
X

fs;rg2C

dðus;urÞ

 ! !
(10)

where bO0 is a weighting parameter controlling the

importance of the prior. As b increases, the resulting regions



Fig. 4. Color histograms of the image in Fig. 3 generated by the ColorSpace software [39]. In CIE-L*u*v* space, similar colors are well clustered but in RGBmetric,

these colors spread out across the whole space. This property makes the former color space a good choice when using Gaussian modelization. One can easily identify

the ellipsoids corresponding to the different regions in the original image (the ellipsoid corresponding to the middle region is occluded).
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become more homogeneous. The singleton potentials Vsðus;ðf sÞ

are obtained from Eq. (8):

Vsðus;ðf sÞZ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞnjSus

j

q� �
C

1

2
ððf sKðmus

ÞSK1
us
ððf sKðmus

ÞT
(11)

Thus, the energy function Uðu;FÞ of the so defined MRF

image segmentation model has the following form:X
s2S

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn Sus

�� ��q� �
C

1

2
ððf sKðmus

ÞSK1
us
ððf sKðmus

ÞT
� �

Cb
X

fs;rg2C

dðus;urÞ

(12)

It is clear that the original MAP estimation in Eq. (2) is

equivalent to the following energy minimization problem:

ûZ argmin
u2U

Uðu;FÞ (13)

Now, the segmentation problem is reduced to the

minimization of the above function. Since, it is non-convex,

combinatorial optimization techniques are needed to find the

global minimum. Our experiments used simulated annealing

with Gibbs sampler [1] and Iterated conditional modes (ICM)

[32]. A comparative study of these algorithms along with other

combinatorial optimization techniques applied for Bayesian

image segmentation can be found in [33].
4. Parameter estimation

The proposed segmentation model has the following

parameters:
(1) The weight b of the prior term,

(2) the number of pixel classes L,

(3) the mean vector ðml and covariance matrix Sl of each class

l2L.

The automatic determination of L usually requires some

additional, higher level information, which also depends on the

particular application. Nevertheless, estimation of L based

solely on the input image is also possible but it requires special

sampling algorithms. One of these techniques is the Reversible

Jump Markov Chain Monte Carlo algorithm, which can deal

with the model dimension switching [34,35]. However, this is

out of the scope of the paper. In our experiments, we simply set

L manually.

While L strongly depends on the input image data, b is

largely independent of it. Experimental evidence suggests

that the model is not sensitive to a particular setting of

b (see Fig. 2). As long as b is large enough, the quality of

segmentations are quite similar. When b is close to 0, however,

the prior becomes too weak and we get inhomogeneous

segmentations. Although automatic estimation methods exist

[36,12,37], b is rather a hyper-parameter, which can be fixed a

priori. We found that setting bR2.0 gives satisfactory and

stable segmentations.

Unlike the first two parameters, the mean and covariance of

the Gaussians must be computed directly from the input image.

In the remaining part of this section, we will describe how this

task can be tackled.
4.1. Gaussian mixture identification

Estimating the parameters of a mixture density is a well-

known statistical problem. The most widely used approach is



Fig. 5. Segmentation results on a 128! 128 synthetic image with 5 classes using combined features. We have used 2 Gabor filters to extract texture features. We also

show the training regions used for the computation of supervised Gaussian parameters.
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probably the method of maximum likelihood. If a labeled

training set is available, then an unbiased estimate of ðml and Sl

can be obtained as the first and second moments of the labeled

data [31]. Assuming ðxli ðiZ1;.;NlÞ denotes the feature vectors

assigned to class l2L and Nl denotes the number of these

vectors, the following formulas can be used:

ðml Z
1

Nl

XNl

iZ1

ðxli (14)

Sl Z
1

NlK1

XNl

iZ1

ððxli KðmlÞ
Tððxli KðmlÞ (15)

Such a training set can be obtained by manually selecting

representative regions on the input image (as shown in Fig. 5, for

example). However, this procedure requires user interaction,

which may not be acceptable in real life applications.

In case of incomplete data (i.e. when observations are

unlabeled), a general iterative algorithm, known as the EM

algorithm, has been proposed in [10] to compute the maximum

likelihood estimates. Herein, we specialize this method to the

mixture density context [25]. Basically, we will fit a Gaussian

mixture of L components to the histogram of the image features.

The observations consist of the histogram data ðdiðiZ1;.;DÞ of

the feature images. D denotes the number of histogram points

and the dimension of a data point equals to the dimension of the

combined color–texture feature space. Assuming there are L

classes, we want to estimate the mean values ðml and covariance

matrices Sl for each pixel class l2L.
The EM algorithm aims at finding parameter values, which

maximize the normalized log-likelihood function:

LZ
1

D

XD

iZ1

log
X
l2L

PðljðdiÞ

 !
(16)

The underlying model is that the complete data includes

not only the observable ðdi but also the hidden data labels ð[i

specifying which Gaussian process generated the data ðdi

Actually, ð[i is also a vector of dimension L and ð[
l

i Z1. if ðdi

belongs to class l and 0 otherwise. The idea is that if labels were

known, the estimation ofmodel parameters would be equivalent

to the supervised case. Hence, the following algorithm is

alternating two steps: the estimation of a tentative labeling of the

data followed by updating the parameter values based on the

tentatively labeled data.

Algorithm 1. (EM for Gaussian mixture identification)

[Estimation] Replace ð[i with its conditional expectation

based on the current parameter estimates. Since, the

labels may only take values 0 or 1, the expectation is

basically equivalent to the posterior probability

PðljðdiÞZ
PððdijlÞPðlÞP
l2LPððdijlÞPðlÞ

; (17)

where P(l) denotes the component weight.

[Maximization] Then, using the current expectation of

the labels ð[i as the current labeling of the data, the



Fig. 6. Segmentation results on a 256 ! 256 synthetic color textured image with 5 classes. We have used 4 Gabor filters to extract texture features.
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estimation of the parameters is simple

PðlÞZ
Kl

D
(18)

ðml Z
1

Kl

XD

iZ1

PðljðdiÞðdi (19)

Sl Z
1

Kl

XD

iZ1

PðljðdiÞððdiKðmlÞ
TððdiKðmlÞ (20)

where KlZ
PD

iZ1 PðljðdiÞ. Basically, the posteriors Pðlj
ðdiÞ are used as a weight of the data vectors. They express

the contribution of a particular data point ðdi to the class l.
Go to step until convergence. Each iteration is

guaranteed to increase the likelihood of the estimates

[10]. The algorithm is stopped when the change of the

log-likelihood L is less than a predetermined threshold

(our test cases used 10K7).

5. Experimental results

The proposed algorithm has been tested on a variety of color

images including synthetic images (Figs. 5–8), and real (Figs. 9

and 10) scenes. We have used MIT’s VisTex database [38] to

compose the synthetic color textured images. The test program

has been implemented in C and run on an Intel Pentium4

3 GHz workstation. Here, we present a few examples of these



Fig. 7. Segmentation results on a 128 ! 128 synthetic color textured image with 5 classes. We have used 3 Gabor filters to extract texture features.
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results and compare supervised and unsupervised segmentation

results using color-only, texture-only and combined features.

Furthermore, we also compare the results obtained via a

deterministic (ICM [32]) and stochastic (simulated annealing

with Gibbs sampler [1]) relaxation. For the latter algorithm, we

have used an exponential annealing schedule (TkC1Z0.98Tk)

with an initial temperature T0Z4.0. The evaluation of the

results is done in terms of both computing time and

segmentation quality. The quality is measured quantitatively

on the synthetic images as the percentage of misclassified

pixels.

In the case of supervised segmentation, the mean vectors

and covariance matrices were computed over representative
regions selected by the user (see Fig. 5). In all cases, we set bZ
2.5. This value has been found to provide satisfactory results.

An optimal Gabor filter set containing 2–4 filters have been

picked manually for each image. We remark, however, that it is

also possible to automatically select these filters (see [26] for a

collection of methods).

We found in all test cases that segmentation based purely on

texture gives fuzzy boundaries but usually homogeneous

regions, whereas segmentation based on color is more sensitive

to local variations but provides sharp boundaries. As for the

combined features, the advantages of both color and texture

based segmentation have been preserved: we obtained sharp

boundaries and homogeneous regions (see Fig. 5 as a good



Fig. 8. Segmentation results on a 128 ! 128 synthetic color textured image with 5 classes. We have used 3 Gabor filters to extract texture features.
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example). The power of combined features is well demon-

strated by Fig. 6. Three regions contain a wooden texture with

nearly matching colors and a small difference in the direction

(left and lower part) or scale (middle part) in texture. The two

other regions have similar texture but completely different

color. Comparing color- and texture- only segmentations, the

latter two regions are perfectly separated in the color

segmentation but they are mixed in the texture one. On the

other hand, the former three regions are much better separated

in the texture segmentation than in the color one. As for the

combined segmentation, the five regions are well separated,

and the error rate is half of the separate segmentation rates. Of

course, the quality of unsupervised segmentation is inferior to
the supervised one. Due to the difficult separability of the

regions, the EM algorithm cannot provide better parameter

estimates. Especially, the three regions containing the wooden

texture are completely mixed, but one could argue that three

classes would be more reasonable in the unsupervised case.

We can see in Table 1 that supervised, color-only

segmentation provides slightly better results than combined

features. However, the difference is not significant (z0.9). The

reason is that color features have higher resolution, hence

edges are better preserved, while the additional information

provided by texture features is not enough to improve the

quality of segmentation. We can observe a similar effect in

Table 2, where color features alone provide good quality



Fig. 9. Segmentation results on a 384 ! 384 real color image with 4 classes using combined features and ICM algorithm. We have used 3 Gabor filters to extract

texture features.

Fig. 10. Segmentation results on a 256! 256 real image with 3 classes using combined features and ICM algorithm. We have used 2 Gabor filters to extract texture

features.
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supervised segmentation when the Gibbs sampler is used. In

both cases, however, the advantage of combined features is

evident in the case of the ICM algorithm or unsupervised

segmentation.

We found that combined features can considerably increase

the quality of unsupervised segmentations. For example, three

regions are merged in the color-only segmentation of Fig. 7.

Since, these regions have similar colors and we have another

region on the right hand side with several different colors, the

EM algorithm detects only one class in these three regions and

three or four classes in the region on the right hand side. As for

the texture-only segmentation, the regions on the left and right

hand side have similar textures thus parameter estimation tends

to merge them. Similarly, the middle and upper regions are also

merged. This is largely due to the fact that in the middle region,
Table 1

Computing times and segmentation error (misclassification rate) on a 128!128 sy

Feature EM Gibbs (s)

Supervised Gaussian parameters

Texture N/A 8.82

Color N/A 4.78

Combined N/A 12.32

Unsupervised Gaussian parameters

Texture 4.57 s 8.98

Color 3.94 s 6.62

Combined 7.14 s 13.34
only the finer fiber texture is detected since the region size is

too small to detect the larger pattern. In case of combined

features, the five regions are well separated, and results are

comparable to the supervised segmentation. The findings were

the same on Fig. 8.

Regarding the different optimization techniques, we can see

that the suboptimal ICM provides somewhat lower quality

compared to the optimal Gibbs sampler but it converges much

faster (see Tables 1–4). However, this difference in quality is

less important in the case of combined features and for the real

images it is nearly invisible.

In Figs. 6, 7, 8, unsupervised segmentation results has also

been compared to those obtained by the JSEG algorithm [21].

For producing the JSEG results, we have used the code

provided by the authors and kept its default settings throughout
nthetic image (Fig. 7)

Error (%) ICM (s) Error (%)

22.3 0.10 25.6

1.5 0.18 7.5

2.4 0.42 3.9

52.8 0.07 53.1

36.6 0.15 41.0

5.85 0.34 6.8



Table 2

Computing times and segmentation error (misclassification rate) on a 128!128 synthetic image (Fig. 8)

Feature EM Gibbs (s) Error (%) ICM (s) Error (%)

Supervised Gaussian parameters

Texture N/A 9.02 15.9 0.15 18.3

Color N/A 4.49 0.6 0.20 2.0

Combined N/A 9.42 0.9 0.28 1.0

Unsupervised Gaussian parameters

Texture 4.70 s 8.39 39.8 0.13 40.7

Color 1.48 s 6.61 32.3 0.22 33.9

Combined 3.03 s 12.57 2.76 0.28 3.1

Table 3

Computing times and segmentation error (misclassification rate) on a 128!128 synthetic image (Fig. 5)

Feature EM Gibbs (s) Error (%) ICM (s) Error (%)

Supervised Gaussian parameters

Texture N/A 6.25 17.5 0.07 23.3

Color N/A 2.78 0.7 0.13 1.8

Combined N/A 6.44 0.26 0.26 0.45

Unsupervised Gaussian parameters

Texture 3.88 s 5.51 27.0 0.07 29.9

Color 2.22 s 3.82 22.6 0.15 23.9

Combined 5.46 s 7.72 0.8 0.20 1.21

Table 4

Computing times and segmentation error (misclassification rate) on a 256!256 synthetic image (Fig. 6)

Feature EM Gibbs (s) Error (%) ICM (s) Error (%)

Supervised Gaussian parameters

Texture N/A 48.75 19.0 0.42 20.6

Color N/A 33.72 19.7 0.71 23.1

Combined N/A 91.24 8.9 2.41 11.4

Unsupervised Gaussian parameters

Texture 43.48 s 45.09 39.0 0.57 39.7

Color 5.10 s 28.07 34.5 0.59 35.1

Combined 18.33 s 85.77 24.6 2.00 24.6
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our test: automatic quantization threshold and number of

scales. The region merge threshold was also set to its default

value (0.4). Note that JSEG is not model based, therefore there

are no pixel classes, regions are identified based on the

underlying color and texture properties of the input image. This

is why we have got more than five regions on these results. It is

clear that our method outperforms JSEG. However, JSEG’s

advantage is that we do not have to specify the image

dependent parameter L.

We also ran a test on the images published in [18] (see Figs.

9 and 10) and found that our results are comparable to those

reported in [18].
6. Conclusions

We have proposed an MRF image segmentation model,

which combines color and texture features. The model itself is

not restricted to a specific texture feature. In fact, any feature is

suitable as far as feature values belonging to a pixel class can

be modeled by a Gaussian distribution. Due to our model-based
approach, it is also possible to classify different kind of textures

based on a prior training of the corresponding parameters. The

quality of the segmentation is improved with respect to color-

only and texture-only segmentations. We also proposed a

parameter estimation method using the EM algorithm and

found that combined features can help to obtain correct

estimates. Of course, unsupervised segmentation provides

slightly lower quality results, but on real images, the results

are comparable to supervised ones. We also tested different

optimization methods and found that the suboptimal but fast

ICM is a good tradeoff between quality and computing time

when using combined features. Although our implementation

is sequential, the segmentation algorithm is highly parallel due

to the local nature of the MRF model. Thus, a parallel

implementation can further improve the computing speed.
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