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a Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
b IRISA/INRIA-Rennes, France

Received 9 February 2006; received in revised form 15 June 2006; accepted 12 July 2006
Abstract

Visual tracking has been a challenging problem in computer vision over the decades. The applications of visual tracking are far-reach-
ing, ranging from surveillance and monitoring to smart rooms. Mean-shift tracker, which gained attention recently, is known for track-
ing objects in a cluttered environment. In this work, we propose a new method to track objects by combining two well-known trackers,
sum-of-squared differences (SSD) and color-based mean-shift (MS) tracker. In the proposed combination, the two trackers complement
each other by overcoming their respective disadvantages. The rapid model change in SSD tracker is overcome by the MS tracker module,
while the inability of MS tracker to handle large displacements is circumvented by the SSD module. The performance of the combined
tracker is illustrated to be better than those of the individual trackers, for tracking fast-moving objects. Since the MS tracker relies on
global object parameters such as color, the performance of the tracker degrades when the object undergoes partial occlusion. To avoid
adverse effects of the global model, we use MS tracker to track local object properties instead of the global ones. Further, likelihood ratio
weighting is used for the SSD tracker to avoid drift during partial occlusion and to update the MS tracking modules. The proposed tracker
outperforms the traditional MS tracker as illustrated.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The objective of object tracking is to faithfully locate the
targets in successive video frames. The major challenges
encountered in visual tracking are cluttered background,
noise, change in illumination, occlusion and scale/appear-
ance change of the objects. Considerable work has already
been done in visual tracking to address the aforementioned
challenges. Most of the tracking algorithms can be broadly
classified into the following four categories.
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(1) Gradient-based methods locate target objects in the
subsequent frame by minimizing a cost function [1,2].

(2) Feature-based approaches use features extracted from
image attributes such as intensity, color, edges and
contours for tracking target objects [3–5].

(3) Knowledge-based tracking algorithms use a priori
knowledge of target objects such as shape, object
skeleton, skin color models and silhouette [6–9].

(4) Learning-based approaches use pattern recognition
algorithms to learn the target objects in order to
search them in an image sequence [10–12].

Visual tracking in a cluttered environment remains one
of the challenging problems in computer vision for the past
few decades. Various applications like surveillance and
monitoring, video indexing and retrieval require the ability
to faithfully track objects in a complex scene involving
appearance and scale change. Though there exist many
with motion estimation and ..., Image and Vision Computing
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Fig. 1. Overview of the proposed tracking system.
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techniques for tracking objects, color-based tracking with
kernel density estimation, introduced in [13,8], has recently
gained more attention among research community due to
its low computational complexity and robustness to
appearance change. The reported work in [13] is due to
the use of a deterministic gradient ascent (the ‘‘mean shift’’
iteration) starting at the location, corresponding to the
object location in previous frame. A similar work in [8]
relies on the use of a global appearance model, e.g., in
terms of colors, as opposed to very precise appearance
models such as pixel-wise intensity templates [14,15].

The mean-shift algorithm was originally proposed by
Fukunaga and Hostetler [16] for clustering data. It was
introduced to image processing community by Cheng [17]
a decade ago. This theory became popular among vision
community after its successful application to image seg-
mentation and tracking by Comaniciu and Meer [18,5].
Later, many variants of the mean-shift algorithm were pro-
posed for various applications [19–24].

Though mean-shift tracker performs well on sequences
with relatively small object displacement, its performance
is not guaranteed when the objects move fast as well as
when they undergo partial occlusion. Here, we attempt
to improve the performance of mean-shift tracker when
the object undergoes large displacements (when the
object regions do not overlap between the consecutive
frames) and in the event of partial/full occlusion. The
problem of large displacements is tackled by cascading
an SSD tracker with the mean-shift tracker. An SSD
tracker based on frame-to-frame appearance matching,
is useful in finding the object location in successive
frames. However, the problem with SSD tracker is its
short-term memory which can cause drifting problems
or even complete loss in worse cases. On the other hand,
MS trackers which rely on persistent global object prop-
erties such as color, can be much more robust to detailed
appearance changes due to shape and pose changes.
However, MS tracker has problems with large displace-
ments. It thus seems interesting to combine the advanta-
ges of the two aforementioned trackers.

In order to improve the performance of MS tracker, in
the event of the object undergoing partial occlusion, we
propose to rely on a number of elementary MS modules
(tracking points) embedded within the object, rather than
on a single global MS tracker representing the whole
object. We also address the issue of large scale changes
due to camera operations.

For each of the above-mentioned challenges, solutions
proposed so far have been within the realm of pure MS
trackers: incorporation of a dynamic model (e.g., using
Kalman filter in [13,25] or particle filter in [26,27]) to cope
with large displacements, occlusions and, to some extent,
with scale changes; simple linear histogram updates with
fixed forgetting factor [27] for on-line adaptation of refer-
ence model; rather complex procedures [28,29] for address-
ing the generic problem of scale changes (independent of
their origin).
Please cite this article as: R. Venkatesh Babu et al., Robust tracking
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The novelty of the proposed approach lies in a one-step
approach which exploits the fact that the reference color
model and instantaneous motion estimation based on pix-
el-wise intensity conservation, complement one another.
The latter is provided by greedy minimization of the inten-
sity sum-of-squared differences (SSD), which is classic in
point tracking and motion field estimation, by block
matching. Scale changes of the object that are due to cam-
era zoom effect or ego-motion are estimated by approxi-
mating the dominant apparent image motion by an affine
model. By using local object color models (tracking points
embedded on the object) instead of a global one, the per-
formance of the tracker is greatly improved when the
object undergoes partial occlusion.

The paper is organized as follows. Section 2 explains the
proposed SSD/MS combined tracker to track fast moving
objects. The problem of occlusion handling is discussed in
Section 3. The results illustrating the performance of pro-
posed tracker are given in Section 4. Concluding remarks
are given in Section 5.

2. Proposed combined tracker

In this work, tracking is done in Kalman filter frame-
work. The object to be tracked is specified by the location
of its center and scale (for a fixed aspect ratio) in the image
plane. The objective of the tracking algorithm is to find the
object location in successive frames. In this work, we cas-
cade SSD tracker with MS tracker to obtain better tracking
performance. The measurements obtained by the combined
tracker module are used for estimating the states of the
Kalman filter. The overview of the proposed system is illus-
trated in Fig. 1.

The state-space representation of the tracker used in
Kalman filter framework is given below:
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where, xt = (xt, yt) indicates the location of the object cen-
ter at time t, st represents the scale at time t and wt is white
Gaussian noise with diagonal variance Q. The measure-
ment equation relates the states and measurements at time
t as follows:
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where, ut = (ut,vt) is the measured velocity (displacement)
of the object, nt is the measured scale at time t, and zt is
white Gaussian noise with diagonal variance R. The dis-
placement measurement ut is obtained through the SSD-
MS tracker module, whereas scale measurement is provid-
ed by global parametric motion estimation.

2.1. SSD-MS motion measurement

SSD tracker localizes the object in a given search
window of the successive frame based on minimum
distance criterion between the target and candidate
object images. SSD tracker works well even for large
displacements as long as the object appearance changes
only slightly between two adjacent frames. However, in
reality, the appearance of the object often changes con-
siderably with time. In a typical SSD tracker, the win-
ning candidate becomes the new target for the next
time instance. This process might make the SSD tracker
forget the original model with time, although it per-
forms well between any two consecutive frames for a
given target.

Given the state estimate ðx̂t�1; ŝt�1Þ at previous instant,
the SSD-based displacement estimate is

ussd
t ¼ arg min

u2W

X
d2D

½F tðuþ x̂t�1 þ ŝtjt�1dÞ

� F t�1ðx̂t�1 þ ŝt�1dÞ�2; ð3Þ

where, Ft�1 and Ft are the two consecutive intensity images,
ŝtjt�1 = ŝt�1 is the scale prediction, W is the search window,
and D is the normalized sub-image support (rectangle of
the size of original object with the origin placed at its
center).

This first displacement estimate is used for initializing
the MS tracker. The target color model q = (qi)i=1� � �m, withPm

i¼1qi ¼ 1, is composed of m bins in some appropriate col-
or space (e.g., RGB or Hue-Saturation). The bins are con-
structed at the start of the tracking. The candidate
histogram p(x, s) = (pi(x,s))i=1� � �m, at location x and scale
s in the current frame is given by:

piðx; sÞ ¼

P
d2s�D

kðs�2jdj2Þd½bðxþ dÞ � i�P
d2s�D

kðs�2jdj2Þ
; ð4Þ
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where, k(x) is a convex and monotonically decreasing
Epanechnikov kernel profile, almost everywhere differentia-
ble and with support D, which assigns smaller weights to pix-
els far away from the center, d is the Kronecker delta
function, and function b(x) 2 {1 . . . m} is the color bin num-
ber at pixel x in the current frame. One seeks the location
whose associated candidate histogram is as similar as possi-
ble to the target one. When similarity is measured by Bhatta-
charyya coefficient, qðp; qÞ ¼

P
i
ffiffiffiffiffiffiffiffi
piqi
p

, convergence towards
the nearest local minima is obtained by the iterative mean-
shift procedure [13]. In our case, this gradient ascent at time
t is initialized at y0 ¼ x̂t�1 þ ussd

t and proceeds as follows:

(1) Given current location y0 and scale s, compute candi-
date histogram p(y0,s) and Bhattacharyya coefficient
q[p(y0,s),q].

(2) Compute candidate position.

y1 ¼

P
d2s�D

wðy0 þ dÞk0ðs�2jdj2Þðy0 þ dÞP
d2s�D

wðy0 þ dÞk0ðs�2jdj2Þ

with weights at location x

wðxÞ ¼
Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi

piðy0; sÞ

r
d½bðxÞ � i�;

where, k 0 is derivative of kernel profile k.

While q[p(y1,s),q] < q[p(y0,s),q] do y1  1
2
ðy1 þ y0Þ.

If iy1 � y0i < e then stop, otherwise set y0 ‹ y1 and
repeat Step 2.

The final estimate provides the displacement measure-
ment ut ¼ y1 � x̂t�1. Finally, the two entries associated with
this measurement in the covariance matrix Rt of the obser-
vation model (2) are chosen as

r2
u ¼ r2

v ¼ ae�bjðy1Þ; ð5Þ
where, j(y1) is the curvature of SSD function around y1

and a and b are two parameters set to 100 and 50 respec-
tively in the experiments.

2.2. Scaling measurement

Scaling is a very important parameter in visual tracking.
Often scale changes of the objects are due to camera zoom
operation or camera ego-motion. The scale change in our
work is measured (to be plugged in Kalman Filter) through
the affine motion parameters of the global (dominant)
image motion between the current and subsequent frames.
Quick and robust estimation of these parameters is
obtained using [30]. If the 2 · 2 matrix At stands for the lin-
ear part of the affine motion model thus estimated at time t,
the measured zoom factor is
with motion estimation and ..., Image and Vision Computing



Define Object

at Frame 1
(Target Model)

SSD + MS Linear

Displacement/Scale
Measure Object

Ft

FG/BG

Obtain 

4 R.V. Babu et al. / Image and Vision Computing xxx (2006) xxx–xxx

ARTICLE IN PRESS
nt ¼ 1þ 0:5 traceðAtÞ: ð6Þ
The entry associated with this measurement in the covari-
ance matrix Rt of the observation model (2) is set to a small
constant (1 in the experiments).
Kalman Filter

Estimate 
Object location

Target Model
Update and Scale

Ft+1 log–likelihood map Tracker

Fig. 2. Overview of the proposed tracking system with occlusion handling.
2.3. Target model update

Updating the target model is one of the crucial issues in
tracking. The performance of the mean-shift algorithm
decreases considerably when the global appearance of the
object changes with time. In this case, the color histogram
obtained using the target definition from the first frame cor-
relates less with the current view of the tracked object. In
order to maintain the effectiveness of the mean-shift tracker
in this scenario, it is essential to update the target model
while tracking. This model update helps the tracker perform
well in cluttered background conditions and in the event of
appearance changes. In our system, Bhattacharyya dis-
tance, which measures the distance between target model
and the one at the current location estimate provided by
the Kalman filter, is used to update the reference. This mod-
el update is a trade-off between adaptation to rapid changes
and robustness to changes due to occlusion. In our system,
candidate models close to the target contribute more than
farther ones. The update procedure used is defined as:

qtþ1 ¼ qt þ e�a½1�qðqt ;pðx̂t ;̂stÞÞ�pðx̂t; ŝtÞ; ð7Þ
where, a is a real positive scalar, which determines the
model update rate. Typical value of a used in our experi-
ments is set to 10.

The performance of the proposed combined-tracker is
discussed in Section 4.1.

3. Occlusion handling

Although the proposed combined tracker works better
than individual SSD or MS tracker, its performance
degrades when the object undergoes partial occlusion for
a longer time duration. This is clearly illustrated in Fig. 3.
a b

Fig. 3. The shift of tracking window when the object undergoes partial occlusio
is shifted up due to partial occlusion.
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Here, the MS tracker (green window) shifts up to due to
partial occlusion, though there is no upward displacement
of the object. This shift is due to the property of the MS
tracker which maximizes the similarity (Bhattacharya coef-
ficient) between the target model under no occlusion and the
candidate model under partial occlusion. Since this adverse
effect of MS tracker is due to the single tracking window
that represents the object, we embed a number of elementary
tracking windows (tracking points) on the object within the
global MS tracker window. Now the object is tracked using
the information only from the reliable MS tracking points
that are not undergoing occlusion. The overview of this
occlusion handling process is illustrated in Fig. 2. The
following sections explain each of the modules in detail.

3.1. Object-background separation and initialization of

tracking points

Tracking an object undergoing partial occlusion can be
performed if we can separate the object region from the
background at each time instant. The object-background
separation is useful in weighting the pixels for SSD tracker
and helps to locate reliable MS modules for updating. To
achieve this, the R-G-B based joint pdf of the object region
and that of a neighborhood surrounding the object is
obtained. This process is illustrated in Fig. 4. The region
within the red rectangle is used to obtain the object pdf
n. In (b), the red window is the desired tracking window, the green window

with motion estimation and ..., Image and Vision Computing
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Fig. 4. Track point initialization using T0: (a) Initial frame with object boundary (b) likelihood map T0 (c) Mask obtained after morphological operations
(d) tracking points with the support region. Here, the number of tracking points is 20 with a support region of 100 pixels.
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and the region between the green and red rectangles is used
for obtaining the background pdf. The resulting log-likeli-
hood ratio of foreground/background region is used to
determine object pixels. The log-likelihood of a pixel con-
sidered, at time t, within the outer bounding rectangle
(green rectangle in Fig. 4) is obtained as

LtðiÞ ¼ log
maxfhoðiÞ; �g
maxfhbðiÞ; �g

; ð8Þ

where, ho(i) and hb(i) are the probabilities of ith pixel
belonging to the object and background respectively; and
� is a small non-zero value to avoid numerical instability.
The non-linear log-likelihood function maps the multimod-
al object/background distribution as positive values for
colors associated with foreground, while negative values
are marked for background. Only reliable object pixels
are used as weighting factors for SSD tracker. The weight-
ing factor Tt is obtained as:

T tðiÞ ¼
LtðiÞ if LtðiÞ > tho;

0 otherwise;

�
ð9Þ

where, tho is the threshold to decide on the most reliable
object pixels. In our experiments the value of tho is set at
0.8. Once the object is localized, by user interaction or
detection in the first frame, the tracking points are placed
on the object in the first frame. Then the likelihood map
of the object/background is obtained using (9). A binary
mask corresponding to Tt is obtained by mapping all posi-
Please cite this article as: R. Venkatesh Babu et al., Robust tracking
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tive values of Tt to 1. This object mask is further subjected
to morphological closing operation and used for embed-
ding the tracking points (see Fig. 4). The tracking points
are randomly spread, with due care, to ensure that their
center lies within the object mask. In our experiments,
the support region of all tracking points is a square of side
c Æ min(object length, object width). The typical range of c

used in our experiments is 0.3 to 0.5.

3.2. Tracker with occlusion handling

Given the state estimate ðx̂t�1; ŝt�1Þ at previous instant,
the modified SSD-based displacement estimate now is:

ussd
t ¼ arg min

u2W

X
d2D

T t:½F tðuþ x̂t�1 þ ŝtjt�1dÞ

� F t�1ðx̂t�1 þ ŝt�1dÞ�2 ð10Þ

where, Tt is the weighting function obtained from the fore-
ground/background likelihood maps.

In our work, instead of using a single MS tracker for
the entire object, we use multiple small regions of the
object for tracking. The locations of these tracking
points are randomly placed on the object area with the
help of previously obtained object/background likelihood
maps.

The first displacement estimate given by (10) is used
for initializing these MS trackers. Let N be the total
number of tracking points. The target color models
with motion estimation and ..., Image and Vision Computing
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Fig. 5. (a) One frame showing object under partial occlusion and the (b) corresponding log-likelihood map.
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qn ¼ ðqn
i Þi¼1���m, with

Pm
i¼1qn

i ¼ 1, are composed of m bins
in some appropriate color space (e.g., RGB or Hue-Satu-
ration, in our experiments RGB color space with 10 bins
along each dimension is used), where superscript n 2 N indi-
cates the nth model corresponding to the nth tracking point.
The target model bins are constructed at the start of the
tracking. The candidate histogram pn, at location xn and
scale s in the current frame is given by:
Fig. 6. Tracking results of proposed system (magenta) against SSD (green) an
620 and 1150.
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pn
i ðxnÞ ¼

P
d2s�D

kðs�2jdj2Þd½bðxn þ dÞ � i�P
d2s�D

kðs�2jdj2Þ
ð11Þ

where, k(x) is Epanechnikov kernel profile with support D.
After initializing the gradient ascent (at time t) at
yn

0 ¼ x̂n
t�1 þ ussd

t , the modified algorithm proceeds as
follows:
d MS (blue) tracker for ‘‘train’’ sequence. Frames shown 20, 50, 200, 270,

with motion estimation and ..., Image and Vision Computing



Fig. 7. Tracking result of proposed system (red) against SSD (green) and MS (blue) tracker for ‘‘go-carts’’ sequence. Frames shown 35, 42, 45, 46, 47, 48,
50, and 58.
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(1) Given current location yn
0 compute histogram pnðyn

0Þ
and Bhattacharya coefficient qðpnðyn

0Þ; qnÞ.
(2) Compute candidate position.
yn
1 ¼

P
d2s�D

wnðyn
0 þ dÞk0ðs�2jdj2Þðyn

0 þ dÞP
d2s�D

wnðyn
0 þ dÞk0ðs�2jdj2Þ
with weights at location x
wnðxÞ ¼
Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qn

i

pn
i ðyn

0; sÞ

s
d½bðxÞ � i�:
u v
(3) while qðpnðyn
1; sÞ; qnÞ < qðpnðyn

0; sÞ; qnÞ do
yn

1  1
2
ðyn

1 þ yn
0Þ.

(4) if kyn
1 � yn

0k < e the stop, otherwise set yn
0  yn

1 and
repeat Step 2.
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(5) Use only the reliable displacements out of N measure-
ments for the final estimate. Let R � {y1 . . . yN} be the
set of all reliable MS trackers. The final global motion
estimate is obtained as: y = mean(yi), i 2 R.

The final estimate provides the displacement estimate
ut ¼ y� x̂t�1. In our experiments, the MS trackers whose
Bhattacharya coefficients lie in the top 10 percent are con-
sidered as reliable MS trackers. Finally, the two entries
associated with this measurement in the covariance matrix
Rt of the observation model (2) are chosen as

r2 ¼ r2 ¼ esð1�meanfqigÞ; i 2 R ð12Þ

where, qi are the Bhattacharya coefficients of the reliable
MS trackers. The parameter s is set to 25 in the experiments.

3.3. Model update

The presented video sequences were shot with a hand-
held camcorder, which automatically adjusts the brightness
with motion estimation and ..., Image and Vision Computing



Fig. 8. Tracking result of proposed system (red) against SSD (green) and
MS (blue) tracker for ‘‘lab’’ sequence. Frames shown 53, 56, 59, 101, 149,
200, 251, and 296.
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based on the background illumination. The change of
object color in these videos is due to this automatic adjust-
ment of camera parameters. In such videos, working with a
fixed color model would drastically reduce tracking accuracy.
The target in sequence shown in Fig. 11 not only under-
goes partial occlusion, but also object luminance changes
drastically from the start to the final frame. In such cases,
it is necessary to adapt the tracking model to brightness/
color change. In our system, the tracking points whose sup-
port lies mostly within the object are updated with the lat-
est color model. The area of intersection between the object
and the support of each tracking point is estimated using
the current log-likelihood map. Fig. 5 shows the log-likeli-
hood map when the object undergoes partial occlusion.
The model corresponding to a particular tracking point is
updated if the object area occupies a certain minimal frac-
tional area (in our system it is set as 50%) of its support
region. Only those support regions of the tracking points
that intersect with the object are used for updating the tar-
get color model of the corresponding tracking points. Let
Please cite this article as: R. Venkatesh Babu et al., Robust tracking
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Mt be the binary mask obtained from the log-likelihood
map:

MtðiÞ ¼
1 ifLtðiÞ > thu

0 otherwise

�
ð13Þ

In our experiments, threshold thu is set as 2 for considering
only the most reliable object pixels. Let qn be one of the MS
models located at x with support region s Æ D + x. If
1
jDj
P

d2DMtðs � Dþ xÞ > Dth, then replace the model qn with
the recent model obtained as:

qn
i ðxÞ ¼

P
d2D

Mtðs � Dþ xÞkðs�2jdj2Þd½bðxþ dÞ � i�P
d2D

Mtðs � Dþ xÞkðs�2jdj2Þ
ð14Þ

In our experiments, Dth is set as 0.5 (corresponding to 50%
of the support area).
3.4. Algorithm summary

The complete algorithm is summarized below. Given
previous reference color models qn

t�1 and previous state esti-
mate ðx̂t�1; ŝt�1Þ with error covariance Rt�1:

(1) Obtain the thresholded likelihood map Tt of the
object/background according to Eq. (9)

(2) Obtain SSD-based displacement measurement ussd
t

according to Eq. (10) with the weighting factor (Tt).
(3) Correct this measurement with reliable MS trackers,

initialized at ussd
t and with reference color models

qn
t�1, to obtain final measurement ut.

(4) Update the target models of reliable MS tracking
modules.

(5) Estimate global affine motion over the image and
derive new scale measurement nt according to Eq. (6).

(6) Using displacement and scale measurement ut and nt,
update state estimate with Kalman filter, providing
ðx̂t; ŝtÞ and associated error covariance Pt.

Initial state ðx̂1; ŝ1 ¼ 1Þ in frame 1 (and associated sup-
port region) is obtained either by manual interaction or
by detection, depending on the scenario of interest.
4. Results and discussion

The computational complexity of the proposed tracker
is the combined (sum) complexities of the individual SSD
and MS trackers. As known, the complexity of MS
tracker is suitable for real-time tracking. Hence, it is
the SSD tracker that critically determines the speed of
the proposed algorithm. The complexity of SSD tracker
is proportional to the size of the search range as well
as the object being tracked. Most objects typically occu-
py a small region in the whole frame. Besides, the search
range is usually limited to a small window around the
object. Exploiting the two characteristics, SSD tracker
with motion estimation and ..., Image and Vision Computing



Fig. 9. Tracking result of proposed system against the [SSD+global MS] on ‘‘walk’’ sequence for frames 2, 20, 40, 100, 140, and 200 are shown. The ‘+’
marks indicate the MS tracking points, the red rectangle corresponds to the proposed tracking and the green rectangle corresponds to the [SSD + global
MS] tracker result.
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can be used for real-time tracking of objects as illustrated
by Hager et al. [31]. Our proposition of initialization of
object location by SSD tracker, brings down the number
of mean-shift iterations, since mean-shift iterations are
only used here for finer adjustments of object location.
These aforementioned factors work in favor of speeding
the algorithm, making it feasible for real-time applica-
tions. Since the objective of the SSD tracker is to pro-
vide the approximate initial location for MS tracker, it
can also be replaced with some of the well known fast-
search techniques [32–34].

In the following subsections, we discuss the experimen-
tal results for the proposed combined tracker, as well as
its performance with the addition of the module for occlu-
sion handling.
Please cite this article as: R. Venkatesh Babu et al., Robust tracking
(2006), doi:10.1016/j.imavis.2006.07.016
4.1. Performance of the combined tracker

The proposed algorithm has been tested on several
complex video sequences. Most of the videos used in
our experiments are shot by a hand-held camcorder
containing a wide variety of camera operations. The
presented videos were chosen for the camera operations
they include. For example the ‘‘train’’ sequence con-
tains lots of jerky motion with camera pan, tilt and
zoom operations. In the ‘‘go-carts’’ sequence, the fast
moving go-carts move away from the camera, creating
shrinking effect of the object. This sequence contains
pan tilt camera operations also. In both ‘‘train’’ and
‘‘go-carts’’ sequence the objects undergo significant
appearance changes too. The ‘‘lab’’ sequence contains
with motion estimation and ..., Image and Vision Computing



Fig. 10. Tracking result of proposed system on a movie sequence ‘‘run-lola-run’’ is shown. The ‘+’ marks indicate the MS tracking points, the red
rectangle corresponds to the proposed tracking result.
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camera pan, tilt and zoom operations. The experimen-
tal results show that the proposed tracking system,
which uses both SSD and MS tracker, works better
than either of them used individually. Tracking results
for these personal videos of low quality are presented
in Figs. 6–8.

The first sequence includes jerky movements that
make it challenging for the trackers to follow the objects.
However, the proposed algorithm was able to track the
toy train throughout the sequence. It is observed that
the mean-shift tracker oscillates about the object when-
ever an intense jerk occurs, and gets lost later. On the
other hand, the SSD tracker performs well till about
the 600th frame and collapses after an intense jerk. It
can be seen that the toy train turns around almost 180
degrees from starting to end, and experiences substantial
scale changes due to camera zooming in and out. The
model update helps here to learn the object while
tracking.

In the second sequence, fast camera movements and
those of racing go-carts result in large displacements in
the image and dramatic motion blur. In addition, go-carts
get briefly occluded. Despite these difficulties, the combined
tracker manages to successfully track the target go-cart,
whereas, when the SSD and MS trackers perform individ-
ually, they lose track of the target.

For the third sequence, results were presented for frames
that are temporally sub-sampled by 3. In this sequence,
rapid camera movements make the MS and SSD tracker
fail, while the combined tracker faithfully tracks the object,
efficiently handling the consequences of zooming.
Please cite this article as: R. Venkatesh Babu et al., Robust tracking
(2006), doi:10.1016/j.imavis.2006.07.016
4.2. Performance of the proposed tracker with occlusion

handling

The proposed algorithm has been tested on several vid-
eos and it is observed to have performed well, not only
under partial, but also a brief span of complete occlusion.
The tracking result for ‘‘walk’’ sequence is shown in Fig. 9
for both, proposed tracker as well as the [SSD + global
MS] tracker. In this sequence, the object undergoes partial
occlusion. The proposed system was able to track the
object correctly without any shift even when the object
got partly occluded. The global MS-based tracker vastly
deviates from the desired result during partial occlusion.
Tracking result of the proposed algorithm for a dynamic
video shot from the movie ‘‘Run, Lola, run’’ is shown in
Fig. 10. The number of MS tracking points used in ‘‘walk’’
sequences were 20, while 15 MS tracking points were used
for ‘‘run-lola-run’’ sequence.

The results obtained with such update model is shown in
Fig. 11. In this example, the [SSD + global MS] tracker
does not perform satisfactorily. The proposed method
without model update tracks the object till the end of
sequence but suffers deviation from the object due to lumi-
nance/color change of the object. However, the proposed
tracker with model update is able to track the object faith-
fully, with no deviation.

5. Conclusion

In this paper, we have proposed an efficient visual tracker
by coupling SSD and mean-shift algorithms, which have
with motion estimation and ..., Image and Vision Computing



Fig. 11. Tracking result of proposed system against the [SSD + global MS] tracker on another ‘‘walk’’ sequence is shown. The yellow rectangle
corresponds to to the proposed tracking with model update, the red rectangle corresponds to the proposed tracking without model update and the green
rectangle corresponds to the [SSD + global MS] tracker result.
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complementary properties. Further, tracking local color
properties of the object using multiple MS tracking points
on the object, instead of a single global MS tracker,
improves the performance when the object undergoes par-
tial occlusion. The improved performance of the proposed
tracker, over combined SSD and global mean-shift tracker,
is proved using various video sequences. Since both track-
ers have real-time computational complexity, the proposed
compound tracker is suitable for real time tracking of
objects.
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