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1 Introduction

Vision has become a major element in mobile robot navigation and many
strategies relying on images have already been proposed, based on environ-
ment representation either by image databases[10] or by visual landmarks.
Classically, the latter are detected by the robot, mapped into the environment
representation and recognized during the execution of a navigation task. In
general, the robot’s position estimate is computed mainly from the integration
of outputs of odometers, which tends to accumulate small displacement errors
and produces drift. When recognized, visual landmarks allow to make this
drift vanish, so they play a key role in making navigation systems efficient.

The work presented here aims to be part of a navigation strategy relying on
“natural” visual landmarks, i.e., salient objects a mobile robot detects/recognizes
and from which it can either simply localize itself (if the map of the environ-
ment is known) or incrementally build a metric map integrating perceptual
data and position estimation, according to the Simultaneous Localization And
Mapping (SLAM) paradigm[17]. Our robot has several localization modalities,
based either on laser segments learnt using a laser range finder and on visual
landmarks detected from a single B&W camera: this paper is mainly devoted
to the visual modality. The reader could refer to [1] for a description of these
modalities.

Numerous techniques have been proposed to model landmarks for navigating
in indoor environments. They all rely on two assumptions: (1) landmarks
have to be easily detected in the image signal and (2) they can be locally
characterized to distinguish them from others. In that scope, landmark-based
navigation research has started by using remarkable characteristics of office-
like environments (3D room corners, lights. .. ) [3,11,9], or collections of simple
edge segments[16]. Point sets can also serve as landmarks when combined to
define projective invariants[2].
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Most recent work make use of points to define landmarks[4,15], taking advan-
tage of new, powerful interest point detection and characterization algorithms
such as SIFT, which makes landmark-point recognition much easier[5].

In our work, planar quadrangular objects (posters, doors, cupboards...) are
selected as landmarks, as they are one of the basic structures man-made en-
vironments are made of. Among research works similar to ours, we can quote
[12], where the authors take advantage from genetic algorithms techniques to
recognize 2D landmarks.

The paper is organized as follows. Section 2 details the landmarks detection
process, with results on images acquired during robot navigation. Section 3
presents the landmarks recognition process; an evaluation of our recognition
method, with respect to different acquisition criteria, proves its robustness.
Navigation experiments are presented in section 4. Finally, section 5 sums up
our approach and opens a discussion for our future work.

2 Landmarks detection

The landmark extraction is focused on planar, mostly quadrangular objects,
e.g., doors, windows, posters, cupboards. . .. A natural way of extracting quadri-
laterals relies upon perceptual grouping on edge segments.

2.1 Qwverview of the method

Detected segments

| Single segments filtering |

Pairs of segments set
Relaxation initialisation

| Relaxation #1 |

Unmatched segs Matched segs. pairs

Closure heuristic Relaxation #2
Quadrangles

Fig. 1. The landmark detection scheme. Fig. 2. Segments in a typical indoor scene.

Edges grouping complexity

Let a set of ny edge segments set be £ = {l;}1<i<n,. A naive approach to
test all possible 4-uples inside .Z does not make sense, as illustrated by Fig.2.



To reduce the problem complexity, we propose a two-step algorithm: first,
mapping .Z to £ U {0} so that each segment is matched with at most one
segment; second, associating pairs of matched segments to form quadrangles.
The whole process is described on Fig. 1.

Extracting edge segments. The output of a Canny-Deriche edge detector
is first thinned and chained. The resulting edge chains are then recursively
segmented to produce the set .Z of line segments as illustrated by Fig. 2.
Before the matching process starts, small segments are filtered, altogether
with segments that may correspond to repetitive patterns. Typically, segments
corresponding to the floor tiling (as in the central image of Fig. 5) are found
by an accumulator technique and are eliminated.

Generating segment matches. An initial set of matches is generated by
looking for couples (I, {;) - for which a similarity measure sy is above a given
level. Indices k£ and [ are associated to individual segments. This measure
combines several cues, as explained hereafter, so that segments corresponding
to opposite sides of quadrangles have high values of sy;.

Moreover, a set of geometric constraints on segment pairs denoted by Q};,..,
is used in a first relaxation scheme to validate pairs belonging to quadrangles,
i.e., to generate a set of coherent potential landmarks. Again, indices k,[,m,n
represent individual segments.

Generating potential quadrangular landmarks. With constraints on
pairs of detected quadrangles, a second relaxation process selects only the more
consistent four-segment sets corresponding to landmarks; these constraints are
denoted by Q%,,... Three-segment sets are useful as they may correspond to
occluded landmarks or doors, so a simple heuristic is used to combine two-
segment sets rejected from the second relaxation process with single segments
rejected from the first one by using constraints T3,,. All these constraints,
specified in section 2.3 are applied through a relaxation scheme depicted here-
after.

2.2  Relazxation scheme

Fig. 3. Conventions for segment Fig. 4. Examples of accepted configurations for
matching. two segments pairs or two quadrangles

Given two sets S; (n; elements) and Sy (ny elements), the principle of relax-



ation is to iteratively make all the probabilities py; of associations between
items & (index for an element of S;) and [ (index for an element of Sy) evolve
towards 1 or 0, i.e., towards unambiguous match or mismatch. Let A be the
n1 X ng matrix such as Ay = pu.

We define the variety & = {A € M, xn, | V(k,1) Ay > 0 and Vk Y- Ay = 1}.
]

The relaxation steps maximize iteratively a global consistency score using
gradient ascent in .27 In our specific case, for each relaxation process i € {1, 2},
we maximize a score G*(A) :

GZ(A) = Z Q;flmnAklAmn'

klmn

The terms Q};,,.,, (resp. Q%) represent a compatibility degree between pairs
of segment pairs (resp. quadrangles) (k,[) and (m,n). It is derived from con-
straints detailed in section 2.3.

The gradient step a(P) at iteration p is adaptive and defined by a?) = arg main Gi(AP) —

aVGH?)), Regarding initialization, a priori probabilities are computed from

similarity measures s;; only. If the measure s, is below a threshold sy, p,(fl))

is set to 0, otherwise it is estimated by:

(0) Skl
Dy = ——. 1
X s .

Skn>Smin

The next section describes the different criteria and constraints we use in the
relaxation schemes.

2.8 Comparing sets of segments

In this section, we make the way we use sets of segments more explicit. We
first describe the similarity measure s;; between two segments [, and [; used
to initialize probabilities py;. Then, we give details on the constraints Q..
between pairs of segments, and Q% between quadrangles which are used in
the two relaxation schemes.

2.3.1 Segment similarity

The measure sy; is defined by a weighted sum of the following geometric and
luminance cues:



e segments length ratio %(% + ”é—’;l‘) in Fig. 3,

e angular difference |6, — 6| in Fig. 3,

e a shape criteria giving favour to square-like shapes %( f‘zl;ililfl:;l ﬁ’;fiﬁﬁ

hy; represents the distance defined in Fig 3,

e the overlapping rate between [ and [,

e presence of a third segment in the neighbourhood that forms a convex three-
segments set with the given pair. Segments pairs (I, [;) without at least a

third segment [,,, are discarded for the next.

) where

As far as luminance criteria are concerned, an average grey-level profile is
computed in the direction orthogonal to each segment, so that an association
(Ig, ;) is characterized by the Zero Normalized Cross Correlation (ZNCC) score
between the two segments profiles. In fact we assume here that the intensity
in the background is uniform around a trustworthy quadrangle while its two
opposite insides are supposed to include quite similar texture.

2.3.2  Second degree constraints

Here, uniqueness and convexity of potential matches among segments pairs
are checked. Uniqueness constraint allows to reduce the relaxation algorithm
complexity and enforces the assumption that landmarks are supposed to be
locally unique. Convexity rule says that two segments pairs, correspond to
opposite sides of two trustworthy quadrangles which must verify rules of full
inclusion or no intersection as shown in the left part of Fig. 4.

From the constraints Q},,... described above, the first relaxation outputs a set
of segments pairs. The next step is to match two segment pairs delimiting
trustworthy quadrangles. Indexes k, [, m and n refer now to segments pairs.

2.3.83 Third and fourth degree constraints

The fourth degree constraints Q%,,,, ensue from accepted configurations for
two quadrangles which are shown in the right part of Fig.4 and are applied
throughout the second relaxation scheme.

From the previous steps, it is possible to extract 3-segment sets that can be
helpful in robot navigation. These sets involve an unmatched segment pair
(k,1) coming from relaxation #2 and an unmatched segment m coming from
relaxation #1. The selection of these potential landmarks is based on unique-
ness, on the resulting shape convexity and on vicinity relationships (constraints

Thiim,)-



Fig. 5. Examples of landmarks detection: the numbers on the segments indicate the
final tag associated to the detected landmark.

2.4 Detection results

Experiments have been performed on a large database of about 300 images
acquired from our robot navigating either in a corridor network or in cluttered
open areas. The robot is a Nomadic XR4000, equipped with a SICK laser range
finder and a CCD camera mounted on a pan-tilt platform.

Figure 5 shows examples of landmarks detected in an open cluttered environ-
ment. We note that both quadrangles and three-segment sets are extracted.

During the environment exploration, the robot executes two operations: (1)
a SICK laser map is built by a classical SLAM procedure, and (2) visual
landmarks are detected and combined with the laser segments. The resulted
map is represented in Fig.6, with all laser segments and all detected landmarks:
windows or posters in green (lateral walls or ceiling), doors by a grey icon.
Their associated locations on the walls are triangulated from their perspective
views and the planes defined by the laser segments assuming the multisensory
system is fully calibrated. For every detected landmark, a visibility map (not
shown here) is statically computed according to the environment model by an
analytical method.

Detection rates are computed over the database of images taken by the robot.
In this database, all quadrangular objects have been identified by a human
operator; the landmarks detection module extracts 88% of existing landmarks,
without any false detection.

During this environment exploration step, the robot could stop to perform
both detection and recognition processes, so that only the representation of
new discovered landmarks is learnt. Only quadrangular objects which are suc-
cessfully detected from different view points (section 3.3) are considered as
landmarks in the environment model. Later, when the robot navigates using
the set of learnt landmarks, it must be able to achieve these tasks dynamically.
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Fig. 6. Landmarks detection in office environment

3 Landmarks recognition

Once a landmark has been detected, an appearance model is built so that it
can be recognized from different viewpoints. In section 3.1, we describe the
landmark representation: boundaries of a detected landmark allow to rectify
the observed pattern; and such a mapping provides an invariant representation
under scale and perspective changes. We call it “icon”.

In section 3.2, we propose distances to compare icons and perform recognition.
Section 3.3 thereafter describes the landmark model. Based on this model, a
confidence factor on the recognition process is proposed in section 3.4. In
section 3.5, a correlation-based method is compared with an approach based
on interest points extracted from icons.

3.1 Landmarks iconification

Let us consider, (1) an extracted quadrangular landmark @ from an image
I, and (2) a fixed-size reference square S. The two shapes are related by a
homography Hgg that maps points from S to Q.

By using Hgg, a new small-sized image I’ is built from the image I by aver-
aging pixels from [ into pixels in I’ (see Fig. 7). The computation of Hgg is
straightforward as four point correspondences are available [14].

Averaging is performed in order to avoid too much information compression
in the low-scale front view I’: the grey level value of a pixel (a, b) in image I’ is



Theoretical neighbourhood
—  Approximated neighbourhood

Fig. 7. Model construction: quadrilat- Fig. 8. Approximated averaging for
erals are transformed into icons by the iconification: zoom of the neighbour-
mean of Hgq. hood of the image of an icon pixel (a, b).

determined by taking into account all pixels in image I belonging to a certain
neighbourhood of Hgsg(a,b,1)7, ie., its image in I. This neighbourhood is
computed by approximating the image of a pixel square with simple heuristics
(see Fig. 8).

The icon I’ is processed by the Harris operator to get a set of n interest points
{Xi}1<i<n and a local descriptor[13] in R”, based on Gaussian derivatives, is
associated to every interest point.

3.2  Metric on icons

To perform the recognition between a set of learnt landmarks noted {C; }1<;<n
and a detected landmark ©Q, metrics on icons are defined.

A correlation-based distance. The centered and normalized correlation
score ¢ provides a distance which is theoretically invariant to overall light
changes.

To be less sensitive to local variations or occlusions, the icons Q (from the
new landmark) and Cj (from the reference landmark 1) are divided into 5 x 5
buckets. Then, we define a robust correlation score " between two icons
by using separated correlations %;;(Q,C)) between buckets i and j, and by
choosing the k' greatest correlation score between buckets. The number % is
expressed as a ratio r of admissible outliers among all the buckets. It allows
to ignore the most important local differences between Q and Cj. From this
new score, we derive the distance:

%T(Qa Ol) =1- kihgi,jgscgij(Q, Cl)



A local features-based distance. Many popular appearance-based meth-
ods for object recognition are based on interest points matched thanks to
their local descriptors[13,15]; these local features are remarkably stable under
moderate rotation or light changes. We propose to use the partial Hausdorff
distance[8] to compare sets of interest points {X;}1<i<, extracted from icons.

Let be two sets of points S; = {X!}1<i<n, associated with a known landmark
C, and S = { X }1<j<n, extracted from a new landmark Q. To handle outliers,
the Hausdorff distance between S; and S is modified in the same way as €,
i.e., by considering only a fraction r of all the points, k = r min(n;, n):

Z(Sla S) = max(hr(Sl, S)> hr(Sa Sl))
R (S, S) = kihgignl 1r§nji£n d(Xilan)

A threshold 7; on the distance is set to recognize landmarks Q as instances of
known landmarks Cj, as it will be described in section 3.3.2. An interpretation
of this distance is that an object is recognized provided that for at least k
points of the second set, a similar point can be found in the first set, and
reciprocally.

The partial Hausdorff distance between two sets of points depends on the local
distance d between points. We could simply use the Euclidean distance, but
we would lose explicit local photogrammetric information. In order to take
into account both spatial and photogrammetric similarities between points,
we define a local distance noted d,:

d(a7 b) = dV(a'7 b>||a - b||7

where d,(a,b) is the Mahalanobis distance between the descriptor vectors at
points a and b. The Hausdorff distance based on d is denoted by 7.

3.8  Building appearance models

For each landmark C}, a model is built from a set of N, representative images
I; at several viewpoints (typically N; = 50), from which iconified views I} are
extracted.



3.3.1 Reducing landmark representation

A Principal Component Analysis is first performed on the set of raw icons. We
keep only three icons, denoted respectively by Q}, Q7 Q7. The first one Q]
corresponds to the mean icon of I/, 1 < i < N;, whereas Q7 and Q7 correspond
to the more significant modes on this icon set.

For distance 7", such a process is followed by the extraction of Harris points
and their characteristics in the I} icons closest to the selected eigenvectors.

3.3.2  Determining recognition thresholds

During the recognition step, a detected landmark is compared to each known
landmark C, using a recognition threshold 7; specific to it. During the mod-
elling step, an optimal threshold is computed for each landmark C; by com-
puting distances (¢" or ") between extracted icons for this landmark, with
either the C; model or all the other models noted —C;.

The distance distributions on representative sets of icons from C} and =} give
us a good approximation of the probability densities on the distances, given
the knowledge of C) or =Cj. To specify an optimal threshold 7;, we minimize:

T +oo
S(m) = A [ p(d~Codd 1 [ p(diCi)dd

I

ﬂSl(Tl) SZ(TZ)

with A and p being two weights for respectively false positive and false neg-
ative, noted —S;(n) and S;(7). The choice 1 = ;A allows to give more im-
portance to false positives than to false negatives. The security in the robot
navigation being critical, the recognition of a landmark in a bad position can-
not be accepted, i.e., false positive are more important to be avoided.

3.3.8  Validation gates

For every landmark Cj, the modelling step ends with a verification of two
criteria: (1) C; must be salient enough, and (2) the NV, images from which the
C) appearance model has been generated, must give a good approximation of
all possible viewpoints on C].

The saliency criterion is verified from the covariance of the icons I’, and
from the number of stable extracted interest points. The visibility criterion
indicates how far from each other are the extreme positions at which the
landmark has been detected during this learning step. For all couples (i, j) €
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[1, V}]?, an inter-image homography H* maps corresponding vertices of the
landmark in images I; and I;. Let us consider the normalized homography
H' such as I:[:Z),% = 1, and where image coordinates have been centered and
normalized. Then, we define a visibility confidence as: v, = ma:z:inﬁ 4 — I3

133 is the 3x3 identity matrix. The greater is v,., the more extended is the area
on which the landmark has been perceived during the learning step. The value
v, is clearly correlated to the planarity: planar landmarks are recognized in
a larger area and under greater camera parameters changes than non-planar
ones.

3.4 Confidence in the recognition result

The recognition task requires to index and compare detected landmarks. For
a set of N modelled landmarks {C}}1<;<ny and a detected landmark Q, let us
note 7, = 2(Q, C}), the distance between Q and each class C; (Z being either
¢" or 7). The probability P(C;|Q) of labeling Q to (i, is defined by:

P(Cy|Q) = 1 and VI P(C)|Q) = 0 when VI 7 > 7,
P(C,|Q) =1 and VI # m P(C;|Q) = 0 when 3lm 2, <7

P(Cy|Q) = 0 and VI P(C1]Q) = %7 otherwise
P

where Cy refers to the empty class and h the Heaviside function: h(z) = 1 if
x > 0, 0 otherwise. This allows us to use the entropy-based measure:

m(QACH) = 1+ 1= 3 P(C1|Q)log P(C|Q).

3.5 Recognition evaluation

An important issue for our recognition process, is the way the algorithm be-
haves with light effects, scale/perspective changes and bad segmentation from
the detection step. Other questions are related to the discriminating power of
proposed distances. To investigate this robustness problem, a large test image
database has been constituted both by:

(1) 270 real images of different landmarks acquired while the robot wandered
around the lab (see Fig. 9) represented by the map of Fig. 6.

(2) synthetic images of 300 movie posters with different light, scale/perspective
conditions and occlusions, these modalities remaining quite difficult to
perform and quantify in real conditions (see Fig. 10).
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Fig. 9. Examples of real images with variable scales, occlusions, brightness variations
or specular reflexions

Fig. 10. Examples of synthetic images with variable scales, occlusions, brightness
variations or specular reflexions. Movie posters were used as the basic texture.

3.5.1  Discriminating power

Let us consider probability densities computed from the distribution of dis-
tances between a given landmark and other ones from the database of real
images. A poster found in this database has been selected and learnt as a
landmark, and Fig. 11 now represents distributions of distance values ob-
tained (a) for the objects corresponding which are instances of this landmark
(class Cj) and (b) for objects that are not (class =C}). This distribution can
be approximated by a Gaussian function, which center and variance depends
on the Hausdorff fraction and on sets cardinals.

The overlapping surface under the two curves are relatively small for the two
distances that have been investigated. By following the process described in
section 3.3.3, we have rates of false positive around 1%, whereas false negative
where about 30%, which reflects the high level of disturbances we put on
synthetic data sets.

3.5.2  Behavior under viewpoint changes

The graphs in the left part of Fig. 12 represent the evolution of the ratio
% for distances 2" and € under scale change. This ratio has to remain
below 1 to ensure recognition. Even for a scale factor about 3, values for
both of the compared distances remain small w.r.t. their respective thresholds.
However, as expected, results are degrading fast as soon as the apparent size
of the extracted pattern is below the size of the square used for the iconic

representation.

As far as perspective distortions are concerned, the evolution of the ratio

% have been studied for distances " and " by performing a planar

12
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rotation in the horizontal plane of a landmark. Results on the right part of
Fig. 12 show that the combination of invariants vectors and interest points
is a powerful tool to achieve recognition of planar objects, as distances re-
main reliable up to £75° from the normal to the landmark plane, which is
reasonable.

3.5.8  Behavior under light effects and occlusions

The left graph in Fig. 13 shows that it is possible to have good recognition
results for the two distances until local or global light saturations appear in
the image.

Moreover, as it can be seen on the right part of Fig. 13, the representation
is also robust to partial occlusions, which occurs for partially detected land-
marks, that compose the majority of detected landmarks in indoor environ-
ment. With the distances 2" and €, occlusions of the landmark up to 46%
and 56% of its area do not prevent the landmark from being recognized.

3.6 Discussion: comparing the two metrics

We have compared two different representations and associated metrics by
applying tests w.r.t the main sources of image noise and variations. Both of the
metrics have quite satisfactory results on ambiant brightness variations, scale
or perspective changes, which makes our concept of quadrangles-landmarks a
powerful tool for modelling environments. The " metric gives slightly better
recognition results on all these tests, but it is limited by the size of data that
have to be stored, i.e., all the icons have to be stored.

13
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sions (right) for distances " and €.

under light changes (left) and central occlu-

That is why in practice " is preferred for our experimental work: this dis-
tance is compact and gives fairly good recognition results.

4 Application to robot navigation

Our landmark detection and recognition scheme has been integrated as a vi-
sual localization module in our Diligent Nomadic XR4000 robot, shown in
Fig. 14. Subsection 4.1 describes the landmark localization with calibrated
vision, and experiments showing our robot navigating in indoor environments
are presented. Then, we introduce an extension we developed to handle un-
known camera parameters.

14



4.1 Localization with a calibrated camera

Let us assume that our vision system is fully calibrated and that a 3D model of
the quadrangle Q has been determined i.e. its four corners noted { P"};—; 4 in
the poster frame are a priori known. The landmark localization in the camera
frame, i.e., the displacement [R*, T"], is based on the decomposition of the
homography H™ relating four matches of image points p; and model points
P*. This matrix H™ can be interpreted in terms of a displacement between
the poster frame and the camera frame[14]:

[T;n, Tgn, Tcn] = )\Kﬁl[hl, hg, hg] (2)

[ rs, rg"] (vesp. [hq, ho, h]) are columns of R (resp. H™), [t;”,t‘;”,tg”] are
the components of 7", K the intrinsic parameters matrix and A\ the scale
factor.

Warping pose on #0

Warping pose on #

Warping pose on #3— |
|

!

R

Fig. 14. The XR4000 “DILIGENT” Fig. 15. Robot localization: recognizing
robot we used in the experiments is known landmarks (marked 0, 1, 2, 3)
equipped with a laser and BW cameras. allow to correct the robot’s position.

Let us recall the robot is considered as a complete system, equipped not only
by a camera, but also by a laser range finder and by odometry. A localization
module is associated to every sensor: all computed positions are logically fused
by a dedicated position manager module [1]. The localization strategy is based
on a loose coupling of these modalities. During an off line statistical analysis,

15



Camera robot Camera robot

Vue extérieure

Camera robot Camera robot
~

Vue extérieure Vue extérieure

Gl

Fig. 16. Robot localization: external view (bottom) and robot view (up).

the robot learns the better localization modality it must execute to locate itself
in every area in the environment, according to their intrinsic performances and
to local configurations of learnt landmarks or features. For example, the robot
learns by itself, that: (1) in open space, it is relevant to fuse localizations
computed by all modalities, even if they are computed at various frequencies,
(2) in a given place, due to an uneven area on the ground, the odometry
modality gives an important bias, (3) in a long corridor, vision modality is
better than laser modality.

Fig. 15 and 16 illustrates navigation experiments in a 25 m long corridor
(annoted (b) in Fig 6) where laser localization is known to be inefficient as
there is no identifiable beacon in the direction orthogonal to the corridor. In
each left sub-figure, the blue trace corresponds to current odometry positions;
without another modality, the robot would clearly bump against the left wall of
the corridor. The red trace gives the current corrected position from the vision
method, executed on four previously learnt posters annotated #0 to #3 (red
color) on the laser map. Sub-figures show the robot respectively at corridor
entry, at two positions close to posters and finally at corridor exit. Each upper
right image shows the current robot perception while the bottom right image
shows the robot in its environment. The robot perception is ensured by the
camera mounted on a pan and tilt platform; in every place, the camera is
pointed towards the best landmark, selected with respect to its visibility area
and saliency coefficients estimated during the learning step. The number of
positions corrections performed since the robot enters the corridor is displayed
in the superimposed box on each sub-figure. The robot’s position is corrected
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13 times during its navigation. In such a corridor, the robot can be localized
in the corridor direction, with an error lower than 20 cm.

4.2 Auto-calibration with quadrangles

An extension of our work deals with active vision, which implies to re-estimate
camera intrinsic parameters. We propose to do it online, from several views
of a planar quadrangle. It is assumed here that these parameters are constant
on these views. Using Eq. (2), we evaluate the image of the absolute conic
w = K~TK~! under the simplified form:

w1 0 wy
w=1 0 w ws
W2 W3 Wy
Let Q = (wy,ws,ws, ws)" be the vector to estimate. Such a parametrization
allows to write linear constraints on intrinsic parameters[14]. First, constraints
on planar homography deduced from Eq. 2 lead to:
h{Whl = thhQ

(C1)
h?th =0

Secondly, assuming the roll angle of the camera platform to be neglected,
makes the skyline and vertical vanishing point be known. This entails also:

(010)wha=0 (Cy)

In the same way, given Eq. (2), the constraint of planar robot motion can be
written as follows:

—t"(hfwhy) = hlwhs (C3)
Combining these three constraints (C}), (Cy) and (C3) allows to solve intrinsic
parameters K.

Fig. 17 shows calibration results for different constraint combinations. Syn-
thetic experiments (see Fig. 17, left) show that the first constraint (C) seems
to be sufficient. On the right part of Fig. 17, calibration results for real im-
ages are presented. The relative error to ground truth is inferior to 1% which
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is suitable for active vision purposes. From five to ten views are required to
recover intrinsic parameters with a good precision.
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Fig. 17. On-line calibration: errors on «,, constraints for synthetic (left) or real
(right) views vs. number of views

5 Conclusion and future works

We present an original framework to use quadrangular visual landmarks for
robot navigation in indoor environment. A first contribution concerns a method
for extracting quadrangles in open cluttered and corridor-like spaces. These
quadrangles can correspond to planar objects (posters, doors, cupboards,.. . ).
A new representation and associated recognition method for such landmarks
is presented. It has been verified that this method remains efficient despite
ambiant brightness variations or viewing changes.

Navigation experiments have been performed; the extraction of visual land-
marks is very efficient, as well as the landmark recognition method. During
the environment exploration, about 90% of pertinent landmarks are extracted;
then, when the robot goes along a path planned in the environment model,
landmarks are actively searched and exploited for the robot localization. When
only posters are considered as landmarks, the recognition rate is greater than
97%. Failures are due to unforeseen occlusions or specific ambiant brightness
variations. Our method proposed to select the thresholds, allows to avoid false
positive errors.

Two directions are currently studied regarding our visual landmarks based
navigation system. Firstly, visual functions described here are exploited for
topological navigation and qualitative localization purpose[7]. Considering am-
biguous landmarks (doors,...), a markovian localization [6] will be implemented
to handle multi-hypothesis on the robot position. Secondly, a more tied cou-
pling strategy is studied to improve the explicit robot localization; the land-
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mark model, will be learnt together with the laser map, using a SLAM ap-
proach to build a heterogeneous stochastic map.
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