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Abstract

We investigate the problem of automatically labelling appearances of characieVv or
film material with their names. This is tremendously challenging due to the hugdioar
in imaged appearance of each character and the weakness and amibiguéijednle anno-
tation. However, we demonstrate that high precision can be achievedrbjriag multiple
sources of information, both visual and textual. The principal noveltigsahantroduce
are: (i) automatic generation of time stamped character annotation by aligfitidesiand
transcripts; (ii) strengthening the supervisory information by identifyingnvbharacters
are speaking. In addition we incorporate complementary cues of faceingaéeid clothing
matching to propose common annotations for face tracks, and considegsbbclassifier
which can potentially correct errors made in the automatic extraction of tradiategfrom
the weak textual annotation. Results are presented on episodes of tleeidd/“Buffy the

Vampire Slayer”.
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1 Introduction

The objective of this work is to label television or movie tage with the names
of the people present in each frame of the video. As has prslideen noted
authors [1,2] such material is extremely challenging Viguas characters exhibit
significant variation in their imaged appearance due togéaim scale, pose, light-
ing, expressions, hair style etc. There are additionallprob of poor image quality

and motion blur.

We build on previous approaches which have matched froatakfin order to “dis-
cover cast lists” in movies [3] or retrieve shots in a videataining a particular
character [1,4] based on image queries. The main noveltyrimg s to employ
readily available textual annotation for TV and movie fagmain the form of sub-

titles and transcripts, tautomaticallyassign the correct name to each face image.

Alone, neither the script nor the subtitles contain the meglLinformation to label
the identity of the people in the video — the subtitles reashdtis said, but not
by whom whereas the script recoraeo sayswhat but notwhen However, by
automatic alignment of the two sources, it is possible toaextvho sayswhatand
when Knowledge that a character is speaking then gives a verk aaathat the
person may be visible in the video. A key to the success of @thad is the novel
use of visual speaker detection to leverage cues from the-teisually detecting
which (if any) character in the video corresponds to the lspearhis gives us
sufficient annotated data from which to learn to recognieesther instances of the

character.

In addition to effective exploitation of cues from textualnatation, success de-

pends on robust computer vision methods for face procesgswigeo. We propose



extensions to our method for connecting faces in video [4jctv provides robust
face tracks, and a novel extension of the “pictorial streestumethod [5] which
gives reliable localization of facial features in presen€significant pose varia-

tions.

1.1 Related work

Previous work on the recognition of characters in TV or mevias often ignored
the availability of textual annotation. In the “cast listsdovery” problem [3,6],
faces are clustered by appearance, aiming to collect akfata particular char-
acter into a few pure clusters (ideally one), which must therassigned a name
manually. It remains a challenging task to obtain a small Imemof clusters per
character without merging multiple characters into a grgylister. Other work [2]
has addressed finding particular characters specified a Ipyibuilding a model of
a character’s appearance from user-provided training dathefficient retrieval of

characters based on example face images [4].

Assigning names given a combination of faces and textuabdtation has similar-
ities to the “Faces in the News” labelling of [7]. In that woflaces appearing in
images accompanying news stories are tagged with names kingnase of the
names appearing in the news story text. A clustering appraiaken, initialized
by cases for which the news story contains a single nhame anddtompanying
image contains a single (detected) face. Here we are aled faith similar prob-
lems in establishing the correspondence between text aed:fambiguity can arise
from deficiencies in the face detection, e.g. there may berakeharacters in a
frame but not all their faces are detected, or there may Be fabsitive detections;

ambiguity can also arise from the annotation, e.g. in a I@achot the person



speaking (and therefore generating a subtitle) may not bersh

The combination of face detection and text has also beerieappteviously to
face recognition in video. In [8], transcripts (spoken texthout the identity of
the speaker) and video of news footage were combined to mezofpces. Much
attention was directed at how to predict from a name appganirthe transcript
(typically spoken by a news anchor-persaren(relatively) the person referred to
might appear in the video; addition of a standard face reitiognmethod to this
information gave small improvements in accuracy. A recefdted approach [9]
explicitly restricts the search region of video using thewscence of a name in the
transcript, then applies a clustering approach to find thst+ftequently occurring
face in that region. A limitation of this approach is thataheoot find find a person in
parts of the video where their name is not mentioned. A mesiradar in spirit [10]
applies multiple instance learning instead of a clusteaipgroach. That work also
requires that the correct name be among candidates for atigubar clip of video,

and is further restricted to “monologue” news clips conitagra single face.

1.2 Outline

Our method comprises three threads:

(i) Section 2 describes the processing of subtitles angbtstwiobtain proposals
for the names of the characters in the video. Mining usefiarmation from each
source requires the alignment of the two texts, achievewusdynamic time warp-

ing algorithm.

(i) Section 3 describes the processing of the video to ekfiece tracks and ac-

companying descriptors of face and clothing. As in some iptsvwork in this



area [1,3,4] we maintain multiple examples of a person’seapgnce to cover
changes in e.g. expression and clothing. Robustness to lggge)g and expres-
sion variation in the description of the facial appeararscebtained by localizing
facial features and using a parts-based descriptor egtt@acbund the features. We
also describe the visual speaker detection method whidkiasgbin improving the

strength of the supervisory information available from tine.

(iif) Section 4 describes the combination of the textual aisdial information to
assign names to detected faces in the video. Two classiiicagiproaches are con-
sidered: a “nearest neighbour” approach [11] which basessification directly on
exemplars extracted by speaker detection, and a suppddrvaachine (SVM)
classifier which can potentially correct errors made in kpedetection and prune
unhelpful exemplars with poor appearance. Results of thbadedre reported in
Section 5, and further discussion presented in Section @idbe/ offers conclu-

sions and proposes directions for future research.

The method is illustrated on three 40 minute episodes of thedrial “Buffy the

Vampire Slayer”. The episodes are “Real Me” (season 5, epi@hdNo Place Like
Home” (season 5, episode 5), and “Blood Ties” (season 5, épi$8). In all cases
there is a principal cast of 12 characters and various qtieckiding vampires

(who are detected by the face detector).

2 Subtitle and script processing

In order to associate names with characters detected initle®,vwe use two
sources of textual annotation of the video which are eaditpioed without fur-

ther manual intervention: (i) subtitles associated with ¥ideo intended for deaf



viewers; (ii) a transcript of the spoken lines in the videor @m here is to extract

an initial prediction ofwhoappears in the video, amwehen

2.1 Subtitle extraction

The source video used in the experiments reported here waset) in DVD for-
mat, which includes subtitles stored as bitmap images wkkléss compression,
and corresponding timing information. The subtitle texd aime-stamps (Fig. 1)
were extracted using the publicly available “SubRip” pragrid 2] which uses a
simple table lookup OCR method. Typically the extracted texitains some er-
rors, mainly due to (i) incorrect word segmentation causeddiable length spac-
ing between characters, and (ii) characters indistinginkhin the sans-serif font
used without the use of context — primarily “I" and “I”. An efhe-shelf spelling

correction program was used to reduce the number of suctserro

Although the video used here was obtained in DVD format,iabtcan also be ex-
tracted in the same way from digital TV transmissions, wlgobode the subtitles

using a similar lossless bitmap format.

2.2 Script processing

Scripts for the video were obtained from a fan web-site [E8). the “Buffy the

Vampire Slayer” footage used here, there are a number of surckites which
contain scripts. We stress that for almost any movie or TVesdt is possible to
find the script on the web, and we expect the text and videogssieg methods
here to generalize well to other genres of video. Straightiiod text processing

was used to extract the identity of the speaker and correlspgspoken lines from



the HTML scripts, by identifying the HTML tags enclosing &aript component,

for example the speaker names are identified by bold text.

While the script contains the spoken lines and the correspgridentity of the
speaker (Fig. 1), it containso timing information other than the sequence of spo-
ken lines. For example, in Fig. 1 it is known from the scripattithe character
Harmony speaks, then Spike, but it is not known to which rasfgeames in the
video these events correspond. The processed script thesgg one of the pieces
of information we requirewhois speaking; the knowledge that someone is speak-
ing will be used as a cue that they may be visible in the videmwéVer, it lacks
information ofwhenthey are speaking. By aligning the script and subtitles on the

basis of the spoken lines, the two sources of informationbeafused.

2.3 Subtitle and script alignment

Fig. 1 illustrates the alignment of subtitles and scripttdNthat the transcription
of the spoken lines differs somewhat between the two souEbesmples include
punctuation e.g. “Get out!” vs. “Get out.” and choices omesrmade by the tran-
scriber e.g. “I've been doing a lot of reading” vs. “I've doadot of reading”. In

addition, for the purposes of convenient on-screen vieysirgyle script lines may
have been split across multiple subtitles, or lines spokedifferent characters
merged into a single subtitle. In order to align the two sesranatching of the

spoken lines must allow for these inconsistencies.

A “dynamic time warping” [14] algorithm was used to align teeript and subti-
tles. The two texts are converted into a string of fixed-casepunctuated words

to reduce the effect of inconsistent casing or punctuaiidriting the subtitle text



vertically, and the script text horizontally, the task idital a path from top-left to
bottom-right which moves only forward through either tesit€e sequence is pre-
served in the script), and makes as few moves as possiblegitmequal words.
The globally optimal alignment, in terms of the number of mégched words, is
found efficiently using a dynamic programming algorithmvéi such an align-
ment betweemnwords of the subtitle and script strings, the task remains of trans
ferring the alignment to the individual elements of eachadatturce — the subtitle
lines, and the script lines. A straightforward voting agmio was used: the script
line corresponding to a subtitle line is defined as the limenfbich the number of
words in correspondence, according to the path found byrdigitme warping, is

maximum.

The result of the alignment between subtitles and scrigitas éach script line can
be tagged with timing information from the subtitles. Foaewle, in Fig. 1 it is
now known from the alignment that the character Harmony lsp&@m approx-
imately 18 mins, 55.5 secs to 18 mins, 56 secs in the videotl@m#&nowledge
that she is speaking for this time gives some clue thatsightalso be visible in
the corresponding frames of video. Note however, that thvdfeemain some im-
plicit ambiguities in the alignment due to ambiguity in theottexts. An example
appears in the second subtitle shown in Fig. 1; here, th@pgnoducing the sub-
tittes has merged two spoken lines for convenient on-scienatting. Although
the alignment algorithm correctly assigns the two linehtdharacters Spike and
Harmony, it is not possible to establish at what time the fin&t finishes and the
second line begins, since this information is lost by thegimgy of the lines into
a single subtitle. Possibilities for resolving such amiiiga are discussed in Sec-

tion 7.

It transpires that, while knowing that a particular persospeaking at a given time



gives some cue that they may be visible in the video, this izeat aweakcue.
Discussion of the possibMsual ambiguities is deferred to Section 3.5, where a

solution is proposed.

3 Video processing

This section describes the video processing component oinethod. The aim
here is to find people in the video and extract descriptorkeif appearance which
can be used to match the same person across different shibtswafleo. The task

of assigninghamedo each person found is described in Section 4.

3.1 Face detection and tracking

The method proposed here uses face detection as the firstat@gocessing. A
frontal face detector [15] is run on every frame of the vidaod to achieve a low
false positive rate, a conservative threshold on detecamiidence is used. The
output is a set of bounding boxes of detected faces for eaaefr Example detec-
tions can be seen in Fig. 3a and Fig. 12. The use of a frontaldatector restricts
the video content we can label to frontal faces, but typycgiles much greater
reliability of detection than is currently obtainable wgimulti-view face detec-
tion [16]. Methods for “person” detection have also beerppsed [15,17,18] but
are typically poorly applicable to TV and movie footage &moany shots con-
tain only close-ups or “head and shoulders” views, whereasgqn detection has

concentrated on views of the whole body, for example peid@str

A typical episode of a TV series contains around 25,000 detefaces but these

arise from just a few hundred “tracks” of a particular chégaeach in a single shot.



A face track [4] represents the appearance of a single deait@cross multiple, not
necessarily contiguous, frames of the video. Basing thenilegrand recognition
of people on these tracks rather than individual faces ®ff@o advantages: (i) the
volume of data to be classified is reduced; (ii) stronger app®e models of a
character can be built, since a single track provides melggamples of the per-
son’s appearance. Consequently, face tracks are used fremohend define the

granularity of the labelling problem.

Obtaining face tracks requires establishing that two facedifferent frames of
a shot correspond to the same character. Because a face dreesdtricted to a
single shot this is a much simpler problem than the geneskldbestablishing that
two face images arise from the same person, sincgoncan be used to establish
the correspondence. Face tracks are obtained as follows:for each shot, the
Kanade-Lucas-Tomasi (KLT) tracker [19] is applied. Thigalthm detects interest
points in the first frame of the shot and propagates them toesuling frames based
on local appearance matching. Points which cannot reliablpropagated from
one frame to the next are discarded and replaced with newispdihe output is
a set of point tracks starting at some frame in the shot antdnzoeng until some
later frame. For a given pair of face$ and B, in different frames (since faces
in a single frame are assumed not to belong to the same cegratie relevant
point tracks can be assigned to one of three classes: (&)itta@csects botkd and
B; (b) track intersects! but not B; (c) track intersect$3 but not A. Intersection
of a point track and a face is defined by the point lying withia face bounding
box in the corresponding frame. A confidence measure thawhéacesA and B
belong to the same character is then defined as the numbeeofaytracks divided
by the total number of type (b) and (c) tracks — this is theorafitracks linking

the faces to tracks which intersect only one face. Usingdbididence measure,
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defined between every pair of face detections in the sho¢sface merged into
face tracks by applying a standard agglomerative clugietigorithm. A threshold
on the proportion of intersecting tracks is set to preveatdlustering algorithm
merging unconnected faces; in all experiments this wasosett Fig. 2 shows
examples of face tracks obtained for a shot containing Bogmt camera motion

and variation in head pose and facial expression.

This simple tracking procedure is extremely robust. Congbéoean approach of
tracking the face directly using some face-specific or ganappearance-based
method the point feature-based approach has two advan{@g® method can
establish matches between faces where the face has notd@eruously detected
due to pose variation or expression change. This is chatigrfgr most tracking
methods which do not reliably recover from occlusion; (g tmethod does not
suffer from the “drift” common in object trackers, where tappearance model
maintained by the tracker drifts onto another object in tiiee. In the proposed
method, points are tracked in an “unbiased” manner witheigrence to the face
detections such that there is no tendency to “hallucinayefalling to terminate a
track. It is worth noting that we applied a variant of the kiag method used here
with success in previous work on face matching [4]. In thatkabie basic point
tracker used affine covariant regions to provide more rotmatthing of features
between frames. While the affine invariant method can patiybtain longer
tracks through more severe rotation or deformation of tlee,fas computational

expense is considerably greater than that of the KLT metised here.

By tracking, the initial set of face detections is reducech®arder of 500 tracks,
and short tracks (less than 10 frames, equivalent to 400mms3h are most often

due to false positive face detections, are discarded.

11



3.1.1 Shot change detection

As noted, the face tracking method is applied to individimaits of the video. Shot
changes were automatically detected using a simple methttresholding the

distance between colour histograms computed for conseduéimes of the video.
The shot change detection method gives some false poséteettbns e.g. when a
shot contains fast motion, and potentially might miss “fegteot changes, although
none appear in the Buffy video used here. However, the acgofahot detection

is not at all critical to the overall performance of our meth() false positive shot

changes merely cause splitting of face tracks, which tyigican be “repaired” by

matching the face appearance across the illusory shot ehdiigfalse negative

shot changes are resolved by the point tracker, which tijpiadll correctly fail to

track points across a (missed) shot change.

3.2 Facial feature localization

The output of the face detector gives an approximate locaina scale of the face.
Extracting descriptors directly from this output woulduks$n an unstable descrip-
tor, due both to the approximate nature of the face detectipud, for example the
estimated scale fluctuates with variation in head pose,t@naraged face implic-
itly varies with changes in pose. A more stable descriptibthe face appearance
is obtained by basing it on the position of the facial feagurethe image. Nine
facial features are located, see Fig. 3b — the left and rigiters of each eye, the
two nostrils and the tip of the nose, and the left and righhews of the mouth.
Additional features corresponding to the centres of thes egepoint between the

eyes, and the centre of the mouth, are defined relative tmtagdd features.

12



To locate the features, a model combining a generative septation of the feature

positions with a discriminative representation of the feaiappearance is applied.

Model of feature position and appearance. A variant of the probabilistic parts-
based “pictorial structure” model [5] is used to model thmfgosition (shape)
and appearance of the facial features. To simplify the mdadel assumptions are
made: (i) the appearance of each feature is assumed indageridhe appearance
of other features; (ii) the appearance of a feature is incleget of its position.
Under these assumptions, the confidence in an assignfhehpositions to each

facial feature can be written as a likelihood ratio

n aiF
P(F|p1,7pn) Ocp(plaapn|F)H Ea;F

i=1

!

) (1)

S|

wherep; denotes the position of featuién the detected face region aagddenotes

the image appearance about that point.

The joint position of the features(ps,...,p.|F’) is modelled as a mixture of
Gaussian trees. The likelihood-ratio of the appearancestés modelled using a

discriminative classifier.

Model of appearance. For each facial feature, for example the corner of an eye,
a feature/non-feature classifier was trained using a nkediistance variant of the
AdaBoost learning algorithm, which produces a strong di@sss a linear combi-
nation of “weak” classifiers. The multiple-instance vatig@ratively updates labels
on the training data, compensating for small localizatioors in the training im-
ages. The features used as weak classifiers are the “Haafdétures proposed by

Viola and Jones [20] which can be computed efficiently ushegihtegral image.

13



The classifier is applied to the output of the face detectarshding window fash-
ion, and the classifier output can be considered an approilog:likelihood ratio

which can be directly substituted into Eq. (1).

Model of position. The joint position of the facial features is modelled using
a mixture of Gaussian trees, a Gaussian mixture model intwthie covariance of
each component of the mixture model is restricted to forne@s$tructure with each
variable dependent on a single “parent” variable [21]. Thexlet is an extension
of the single tree proposed in [5], which was applied to fiafgature localization
using simple generative appearance models, and the remabirtation of a single
tree with a discriminative appearance model [22]. The usa ofixture of trees
improves the ability of the model to capture pose variattnee mixture compo-
nents were used, and found to correspond approximatelgmdeirviews and views
facing somewhat to the left or right. At training time, the aebis fitted using an
Expectation Maximization algorithm [21]. At testing timefficient search for the
feature positions using distance transform methods [Shabked by the use of

tree-structured covariance in each mixture component.

A collection of annotated consumer photographs of facef 2§oint to the video
data reported here, was used to fit the parameters of thegoosibdel and train
the facial feature classifiers. The confidence in the fedtwalization (Eq. (1))
proves to be an effective measure for determining whetleefate detector output
is actually a face or a false positive detection, and is tioleed to prune false

positive detections.

Fig. 3 shows examples of the face detection and featureitati@in. Note that

the “frontal” face detector also detects some faces withiBgant out-of-plane

14



rotation. The facial features can be located with high bty in the faces despite

variation in scale, pose, lighting, and facial expression.

3.3 Representing face appearance

A representation of the face appearance is extracted bywtimgmescriptors of the
local appearance of the face around each of the located faatares. Extracting
descriptors based on the feature locations [1,4] givesstoless to pose variation,
lighting, and partial occlusion compared to a global facecdetor [24,25]. Errors
may be introduced by incorrect localization of the featuwesich become more
difficult to localize in extremely non-frontal poses, buingsa frontal face detector

restricts this possibility.

Before extracting descriptors, the face region proposedhéyeace detector is fur-
ther geometrically normalized to reduce the scale uncgytan the detector output
and the effect of pose variation, e.g. in-plane rotation. affime transformation
is estimated which transforms the located facial featuiatpdo a canonical set
of feature positions (roughly those of a frontal verticalda Appearance descrip-
tors are computed around each facial feature within a @rcsiipport region in
the canonical reference frame. Under the affine transfoomagach circle in the
canonical frame corresponds to an ellipse in the origirahi. A simple pixel-wise
descriptor of the local appearance around a facial feasuggtracted by taking the
vector of pixels in the elliptical region and normalizing (fhat the intensity has
zero mean and unit variance) to obtain local photometriariance. The descriptor
for the face is then formed by concatenating the descriftorsach facial feature.
The distance between a pair of face descriptors is compuiag Euclidean dis-

tance. Fig. 4 shows examples of the elliptical regions fromictvthe descriptor is

15



extracted, and the corresponding normalized image regions

It is natural to consider the use of more established imageesentations com-
monly used in face recognition, for example so-called Higess [26] or Fisher-
faces [27], or alternative local feature representatioich as SIFT [28] which have
successfully been used in feature-matching tasks inajufdice matching [4], espe-
cially considering the simplicity of the descriptor propdshere. In classical face
recognition work, two aspects differ from the situationégi) changes in pose,
expression and lighting are typically assumed small; (hjlevmultiple images of
various people may be available for training (e.g. for leagra PCA basis), typi-
cally only asingle“gallery” image is available to model a particular persof][2
Eigenface methods offer some invariance to very small ocbsingpose due to the
empirically band-pass nature of the basis, but cannot caibelavge variations in
pose; Fisherface methods are typically very unstable iptesence of pose varia-
tion due to the empirically high-pass nature of the basis.Ségctond point, however,
is key: the use of gingleimage as the model for a person. This requires that the
descriptor generalizes far from that single image if susgego be obtained for
variations in pose and expression. However, in the domaisidered here, as de-
scribed in Section 3.5 and Sectiomultipleexemplars are extracted as the model
of the person. This requires less generalization from tlserijgtor, and excessive

generalization will degrade performance. We return toploisit in Section 6.

3.4 Representing clothing appearance

In some cases, matching the appearance of the face is ektrehalenging be-
cause of different expression, pose, lighting or motiorr.bAdditional cues to

matching identity can be derived by representing the appearof the clothing [30—

16



33]. We use a simple model of clothing location relative te thce and represent
colour alone here [30,31]. Some recent work has also acedaxiplicitly for vary-
ing pose of the person in locating the clothing [32] and ipooated texture fea-

tures [33].

As shown in Fig. 5, for each face detection a bounding box wiscexpected
to contain the clothing of the corresponding character é&tjgted. The size and
position of the box are fixed relative to the position andescdlthe face detection.
Within the predicted clothing box a colour histogram is congal as a descriptor
of the clothing. We used the YCbCr colour space which has sowvengage over
RGB in de-correlating the colour components. The histograat 16 bins per
colour channel. The distance between a pair of clothingrgascs was computed
using the chi-squared measure [34]. Fig. 5 shows examplehahne challenging
to match based on face appearance alone, but which can beadatorrectly using

clothing.

Of course, while the face of a character can be consideredtbamy unique to that
character and in some sense constant (though note thattdraran this TV series
who are vampires change their facial appearance conslgigralcharacter may,
and does, change their clothing within an episode. This s\ézet while similar
clothing appearance suggests the same character, olgsdiff@rent clothing does
not necessarily imply a different character. As descrilbeBiction 5, we found that
a straightforward weighting of the clothing appearancatia to the face appear-

ance proved effective here.

17



3.5 Speaker detection

The aligned subtitle and script annotation (Section 2.8ppses one or more pos-
sible speaker names for each frame of the video containimg speech. Note that
this annotation says nothing abouberein the frame the speaker appears, or in-
deed whether they are in fact visible at all. With respecthtfaces in the video,
the annotation derived from text alone proves to be extrgraglbiguous. There
are three main forms of ambiguity, illustrated in Fig. 6:tliere might be several
detected faces present in the frame — the script does noifyspdtich one cor-
responds to the speaker. Fig. 6a shows such a case, whereifitededls us that
Tara is speaking, but two faces are visible in the frame — lwfiicany) is Tara?;
(ii) even in the case of a single face detection in the frameeatttual speaker might
be undetected by the frontal face detector. Fig. 6b showsamge, where Buffy
is speaking but is undetected because of the profile posenfisg that the single
detected face (Willow) corresponds to the speaker wouldnberior in this case;
(i) the frame may be part of a “reaction shot” where the &eeas not present
in the frame at all. Fig. 6b shows an example, where we see@W#ind Buffy’s

reaction to what is said by Tara, who is off-screen “behireddamera”.

The goal here is to enhance the annotation provided by thgt,s@solving these
ambiguities by identifying the speaker usimgsual information. By confirming
visually that a particular face in the image is that of songespeaking, the cor-
respondence between that face and the name of the spea&erbyithe script is

established.

Visual speaker detection [35] is achieved here by the imtudpproach of finding

face detections with significant lip motion. A rectangulasuth region within each

18



face detection is identified using the located mouth cor{&estion 3.2). Examples
of the extracted mouth region are shown in Fig. 7b. The sunguéieed difference
of the pixel values within the region is computed betweerctireent and previous
frame as a measure of the amount of motion in the mouth regimachieve moder-
ate translation invariance, giving some robustness to yasation of the head, the
inter-frame difference is computed over a search regioaratéhe mouth region in
the current frame and the minimum taken. Fig. 7a shows a plibteointer-frame

difference for a face track where the character speaks #raains silent.

Two thresholds on the inter-frame difference are set tosdladace detections
into “speaking” (difference above a high threshold), “repeaking” (difference
below a low threshold) and “refuse to predict” (differeneveen the thresholds).
Thresholds were set by eye and kept fixed for all the expetis@ported here —
it should be noted that generating ground truth for spedkorngspeaking so that
these thresholds could be set systematically is in genartd difficult because of
natural pauses in the speech and the production of soundittlghmovement of
the lips. This simple lip motion detection algorithm workslinn practice as illus-
trated in Fig. 7. Fig. 8 shows further examples where the atetorrectly assigns
a class “non-speaking” despite significant changes in head pnd mouth shape
(smiling). Note that in choosing the method and threshdlids somewhat more
important to achieve a low false positive (detector predsgteaking when charac-
ter is silent) rate than false negative rate. As discuss&eation 4.2, false positive
speaker detections cause incorrectly-labelled faces ter ¢ime set of exemplars

used for naming, which may propagate incorrect names ta @ahe detections.

The speaker detector produces a classification for eaclefohmface track. Names
proposed by the script for the corresponding face detexttassified as speaking

are accumulated into a single set of names for the entiretfack. In many cases
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this set contains just a single name, but there are also vagemultiple names,
due to merging of script lines into a single subtitle (Settb3) and imprecise

timing of the subtitles relative to the video.

4 Naming by classification

The combination of subtitle/script alignment and spealetection gives a number
of “exemplar” face tracks for which, with high probabilitihe single proposed
name is correct. Fig. 9 shows examples of exemplar facedraxkacted for two
characters. Note that each face track consists of multgate fletections, so the
number of exemplar faces is much greater than the numbeaakdy as shown in

the figure.

The overall naming problem is effectively transformed iatetandard supervised
classification problem: for some tracks, the correspondarge (class) is extracted
from the text and speaker detection, with high probabilitypeing correct (Sec-
tion 5.1); from these tracks a model or classifier may be foileach character in
the video; this classifier is then applied to assign nameastis which have no, or

an uncertain, proposed name.

We consider here two classification methods. First, a “retareighbour” method
presented in an earlier version of this work [11]; secon@, afsa support vector
machine (SVM) classifier which can, to some extent, cope &iitors in the names
obtained from speaker detection. Central to both methodsaisthe model for a
character has multiple modes (in the sense of density),storgs of a (weighted)
set of exemplars in appearance space. This allows the mod=lpture distinct

“phases” of a person’s appearance, for example mouth opemaesth closed.
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An alternative view is that the multiple modes of the modgkesent sparse sam-
ples on a underlying person-specific appearance manifate tthat this choice of
multi-modal model is possible because the subtitle/sgniptessing and speaker
detection gives multiple examples of a character’s appearavithout the need for
further manual intervention. This is in distinct contrastlassical face recognition
where the number of examples of an individual’s appearaygically very small

(often one) but only a limited range of pose, expression lighting is considered.

4.1 Similarity measure

Common to the two classification methods considered hereeisl¢ffinition of a

similarity measure between a pair of face tracks. Recallaliate track consists of
a bag of face and clothing descriptors, one per frame of #okfSection 3.1), and
that measures of the distance between a pair of face dessrif@ection 3.3) and

clothing descriptors (Section 3.4) have been defined.

Given a pair of “person” detections (faces and associatetthiolg) p; andp;, and
the definitions for the distance between face descriptpesd clothing descriptors
d., we define the similarity(p;, p;) between the two persons as:

s(pi, p;) = exp {—df(pi’pj) } exp {—dC(pi’pj> } (2)

207 202

The scale factors; ando,. control two aspects: (i) the relative influence of the face
and clothing descriptors, and (ii) the overall “peakinesithe similarity measure,
that is how quickly the similarity decays about a pair of &cEhe relevance of the

latter will become clear in Section 4.2.

The similarity S(F;, F;) between a pair of facgacks F; and F; is defined based
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on the person similarity as:

S(F, Fy) = max | s(pi,p;) (3)
This defines the similarity between a pair of face tracks aslximum similar-
ity over any pair of person descriptors taken across th&gsraand has also been
referred to as the “min-min” distance [4]. Note, we are assgrhere that a good
match requires a similarity of both face and clothing. Othessibilities could also
be considered, for example that a track corresponds to the saaracter if the
faces have a high similarity even if the clothing does no@aftow for unobserved

changes of clothing).

Equipped with these definitions and suitable choice of @rtst the similarity be-

tween all pairs of face tracks can be computed.

4.2 “Nearest neighbour” classifier

The first classification method we investigate, first rembiieg[11], uses a “nearest
neighbour” approach. Let us define the name proposed forck ffaby the text
processing and speaker detectiomasA tuple of face track and corresponding
name will be referred to as an exemplar. We then define thestdikalihood” that

an unlabelled track’, arose from the person with nameas:

p(FulX\i) = max S(F,, F)) 4)

i njz)\,‘

This definition is “nearest neighbour” in that only the sianity to the most simi-
lar exemplar with a given name is used to assign the liketihdssuming that the

person associated with each nalenay appear in the video with equal prior prob-

22



ability, and applying Bayes’ rule, we can derive an approxiomeof the posterior

probability that the track should be assigned the name

P(N|Fy) = So(E) (5)

A predicted name is then assigned to the track as the narfoe which the poste-
rior probability P(\;|F,,) is maximal. Note that this is equivalent to the name for
which the likelihood (Eqg. (4)) is maximum. However, the iyilin defining an ap-
proximation of the posterior probability (Eqg. (5)) is thaigives an indication of
the certainty of the predicted name — if a given face tracknslar to exemplars
for several characters, the posterior probability for eaame falls, indicating the
uncertainty in the prediction. It is in defining the postetiwat the overall scale of
the face and clothing distances (Eg. (2)) becomes relegantrolling the scale at

which the difference between two similar exemplars is abgrgd “uncertain”.

By thresholdingthe posterior, a “refusal to predict” mechanism is impletadn-
faces for which the certainty of naming does not reach somestiold will be left
unlabelled; this decreases the recall of the method butdwgsrthe accuracy of the

labelled tracks. In Section 5 the resulting precisionMacadeoff is reported.

The “nearest neighbour” classifier described here has &pp#a simplicity, and
captures the multi-modal distribution of appearance foingle character which
we advocate; it also captures the notion that some trackdmayplicitly difficult
to label reliably, and might best be left unlabelled. Howetlgere are two potential
weaknesses with the method: (i) it is assumed that the nassemad to exemplar
tracks by the text processing and speaker detectioc@rect, (ii) it is assumed
that all exemplar appearances are equally valid, e.g. déggs of whether they

are blurred, show particularly extreme facial expressiane partially occluded,
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etc. Both these assumptions may cause errors since the tpedicade for an
unlabelled track is made on the basis of sieglenearest exemplar, and cannot be

corrected.
4.3 SVM classifier

A possible solution to the assumptions made in the nearagtlmaur classifier we
have investigated is the use of a SVM classifier (see [36]}his approach, the
same definition of similarity between face tracks is retdjri®it is now used as a
kernel for the SVM. One SVM is trained per name using a 1-Vsekleme. All the
exemplar tracks for that name are used as positive datahanekemplars for all
other names provide the negative training data. The SVM égfihe confidence

Q(X\i|F,,) that the name,; should be assigned to an unlabelled traglas:

Qi Fy) = ZwijS(Fu, Fy) + ki (6)

wherew,; is the weight assigned to exemplafor the name);, andk; is a (bias)
constant. Note that the form of the confidence measure idasita that of the
likelihood defined in the nearest neighbour model (Eg. (e max function is
replaced with a sum, analogous to the choice of nearestin@uglilensity estimator
versus a Parzen estimate (see [37]). Additionally, weigiésintroduced forll
exemplars, so that the confidence depends on both the poaiity negative data

(not only on the closest positive example as in Eq. (4)).

The potential strength in the SVM method comes then not frieenform of dis-
criminant, but the criterion used to choose the weightfhe SVM training mini-
mizes a weighted sum of two terms: the margin of the classfiethe training set

and a penalty on the norm of the weight vediarThis latter term regularizes the
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solution, penalizing “non-smooth” discriminants. Theeeffis that elements af
may become small or zero, effectively discarding “outliekemplars which may
have either incorrect names assigned by speaker deteatibaye extreme or non-
discriminative appearance which does not aid classificatiggeneral. The SVM
can thus potentially correct errors made in the names pegplog the text process-
ing and speaker detection, increasing the accuracy in tme r&signment both in

the labelled exemplar tracks and unlabelled tracks.

To implement the SVM method we used the publicly-availablBIVM soft-
ware [38], with a custom kernel defined by the track simyjamteasure of Eq. (3).
The same values for the parameters, etc) are used as in the nearest neighbour
classifier. The “refusal to predict” mechanism was impletaedrby thresholding

the maximum of the confideneg()\;| F,,) over names,,.

5 Experimental results

The proposed method was applied to three episodes of “Buffyémpire Slayer”
— in total around two hours of video. Episode 05-02 contaidd %/ frames in
which 25,277 faces were detected, forming 516 face traghksode 05-05 contains
64,083 frames, 24,170 faces, and 477 face tracks; episcd8 @bntains 64,075

frames, 26,826 faces, and 533 face tracks.

Ground truth names for every face detection were produceldaloygl. While the
task of assigning ground truth to every one of around 75,808 fletections might
appear daunting, the use of the face tracking algorithmti@e®8.1) makes this
a relatively cheap procedure in terms of time. A two stager@ggh was used:

first all face tracks are visually checked to ensure that twyain only a single
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character. As noted in Section 3.1 the tracking algorithaves extremely reliable,
and in practice no false merges of tracks are found, but @nfate was provided
to manually split tracks in the case that errors occurredoSe, a single ground
truth name is assigned to every face detection making uprdek. This approach
reduces the task of ground truth labelling from that of labgl 75,000 faces to

around 1,500 tracks.

The ground truth cast list has twelve named characters: Ay, Dawn, Giles,

Gloria, Harmony, Joyce, Riley, Spike, Tara, Willow, Xanderaddition, a single

name “Other” is applied to faces of other people appearirthervideo — this in-

cludes un-named incidental characters and extras. Falsgvpdace detections
are assigned the name “FalsePositive”. To be considered@ctmame, the algo-
rithm must distinguish between the main characters, undarharacters and false
positive face detections. It should be noted that, whilest#tteof people to be distin-
guished is smaller than might be used in classical face retog research where
a “gallery” of 100 people might be typical, the imaging cdrafis (pose, expres-
sion, lighting, etc.) are far more varied in the domain cdestd here, making this

a challenging task.

Note that ground truth is only established for the face dites produced by the
frontal face detector used [15] (whether true or false paitThe results reported
here, as in previous work [4], are therefore relative to ttupprtion of appearances
of a character detected by a state-of-the-art frontal fateatior. Section 7 discusses
the question of how many of the actual appearances of a deara@ny pose, for
example in profile views or facing away from the camera, apeaegented by this

proportion.

The parameters of the speaker detection, weighting terrtiseirmuasi-likelihood
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(Eq. (4)), and weight parameter in SVM learning were cograahed on episode
05-02 and all parameters were left unchanged for the othsodgs.No manual
annotation of any data was performed other than to evalhatenethod (ground

truth label for each face track).

5.1 Speaker detection

We first report the accuracy of the speaker detection algarifThe performance
of this part of the method is important since, for the neanesghbour classifier
(Section 4.2), errors in speaker detection cannot be dededhe speaker detec-
tion method (Section 3.5) allows for three outputs: “spegki“non-speaking” and
“refuse to predict”. Across the three episodes, the methlbels aroun@5% of face
tracks as speaking, and of those the corresponding labeltfre script has around

90% accuracy.

Fig. 10 shows two examples where the speaker detection filgig. 10a, the
character shouts and is correctly identified as “speakingthe timing information
on the subtitles is inaccurate such that the face is atetbiwn a character who
appears at the beginning of the next shot. Ambiguities sadhia occur because
the timing information on the subtitles does not precisetlicate the time at which
a spoken line starts and finishes, for example when a longdispoken quickly
the subtitle display time may have been extended to fa@litgading. In Fig. 10b,
the face is incorrectly classified as “speaking”. In thisecti®e shot is a “reaction
shot” in which the visible character (silently) gasps inahat what is being said
by another character off-screen. Such cases of speechibkien are difficult to
detect based on visual information alone. Other errorsersgfeaker detection are

due to complex appearance changes of the mouth region syszrtéd occlusion
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by another person, severe head pose changes, and complaxdigffects (e.g. a
moving shadow cast by another person). Such changes cagsafparent motion
of the mouth which is incorrectly classified as speech. @reatcuracy in such
cases might be be obtained by using a more complete modet ehdluth region,

and is left for future work.

5.2 Naming accuracy

We turn now to the performance of the entire method on the mgu@sk. In this

section we concentrate on the performance of the nearegilyair method (Sec-
tion 4.2) previously proposed [11], and comparison to basehethods based on
the subtitle/script alone. In the next section the perfaroeaof the SVM method

(Section 4.3) and the influence of errors in speaker deteatie considered.

Fig. 11 shows precision/recall curves for the proposedestareighbour method.
Quantitative results at several levels of recall are showhable 1. The term “re-
call” is used here to mean the proportion of tracks which asgned a name
after applying the “refusal to predict” mechanism (Sectn The term “preci-

sion” refers to the proportion of correctly labelled tracki®te that reporting per-
formance in terms of face tracks, rather than individuakfdetections, gives a
more meaningful assessment since the faces in a track casbeated in a rather
straightforward manner by tracking (Section 3.1). Repgrperformance by indi-
vidual face detections would allow the presence of some toacks with little or

unchallenging motion to bias the apparent results.

These results illustrate the benefit of learning from thenglars to label other

tracks. The recall and precision of the exemplars alonedngy those tracks for
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which speaker detection assigns a name from the text, widmuvisual labelling
of other tracks) i$31.0% recall,90.6% precision for episode 05-027.9% recall,
91.7% precision for episode 05-05, afd.5% recall,82.1% precision for episode

05-13.

Two baseline methods were compared to the proposed method:

(i) “Prior” — label all tracks with the name which occurs madten in the script
(Buffy). It is expected that the main characters will appeahe video rather more
frequently than secondary characters so it is importanstabéish the extent to
which this is true so that the true accuracy of the method eatisiinguished from

“chance”.

(i) “Subtitles only” — label any tracks with proposed nanfesm the script (not
using speaker identification) as one of the proposed nameaking ties by the
prior probability of the name occurring in the script; lab@icks with no proposed
names as the most frequently occurring name (Buffy). Thiglbses allows us to
assess to what extent the visual processing improves agycovar the use of text
alone. Itis interesting to note that in previous work [8] aihcombined transcripts
of news footage with Eigenface-based face recognitiony; smiall improvements

in accuracy were obtained by incorporating visual face gadon.

As expected, the distribution over the people appearindnénvideo is far from
uniform — labelling all face tracks “Buffy” gives correct rdts 21.9% of the time

in episode 05-02 angb.9% of the time in episode 05-05. In epsiode 05-13 minor
characters dominate, and the prior labels anlyo of tracks correctly. The cues
from the text alone (subtitles and script) increase thisieszy to around5-50% in
each episode. While an improvement over chance, this retreatslative weakness

of the text as a cue to identity.
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Using the proposed nearest neighbour method, if we areddocassign a name to
all face tracks, the accuracy obtained is aro6Beb9% across episodes. Requiring
only 80% of tracks to be labelled increases the accuracy to ar@ang%. We

consider these results extremely promising given the ehglhg nature of this data.

Fig. 12 shows some examples of correctly detected and naamed.fNote that cor-
rect naming is achieved over a very wide range of scale, f@si@) expression and
lighting. The ability of the proposed method to give gooditessin such conditions
is attributable to (i) the automatic extraction of exemsplérroughout the video
such that the changes in appearance are, to some extenieggdanthe exemplar
set; (ii) the use of a multi-modal model of a person’s appeagavhich enables a

representation of the distinctly different appearancdsetmaintained.

5.3 SVM method and errors in speaker detection

As noted in Section 4.2, errors in the speaker detectionfandresence of “outlier”
faces in the exemplar set may contribute to errors on thengatask. A possible
solution is the use of a SVM classifier (Section 4.2) , whidheoretically robust to
such errors in the training data. In this section we exantieeértfluence of errors in
the speaker detection on the nearest neighbour methodepad the performance

of the SVM classifier.

Fig. 13 shows precision/recall curves for the original Bsaneighbour method
(“NIN-Auto”) using automatic speaker detection, and repdrin the previous sec-
tion. The results of two additional experiments are regbije’'NN-Manual” is the
nearest neighbour method usinganuallylabelled exemplars. This corrects any

exemplars which have been assigned an incorrect name byitbenatic speaker
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detection method. Note that this should be considered gmudsion alone, since
the manual labelling of exemplars requires more user ietgron than we desire;
i) “SVM” is the SVM classifier proposed in Section 4.3, trathusing automatic
speaker detection. In this case, the hope is that the SVMingicriterion can
remove errors in the names assigned by speaker detectionearove “outlier”
exemplars which are not helpful to discrimination. We alsedttraining the SVM
using manually labelled exemplars; the results were imdjstshable from those
obtained using automatically labelled exemplars, and ani¢t@d here for the sake

of clarity. Quantitative results for each experiment apgoréed in Table 2.

The first result of note is that the errors in the exemplarli&baused by errors
in speaker detection do indeed impact the overall namingracg of the nearest
neighbour classifier. The precision using manually-lazkkxemplars is consis-
tently greater, at0% recall increasing from1.3% t0 99.6% (+8.3%) for episode
05-02, from91.7% t099.5% (+7.8%) for episode 05-05, and frof6.4% t099.6%
(+13.2%) for episode 05-13. The increase diminishes slightly giéi recall, with
precision atl00% recall 0f73.3% versus8.2% (+5.1%) on episode 05-0Z4.0%
versus69.2% (+4.8%) on episode 05-05, arith.4% versus63.0% (+12.4%) on
episode 05-13, but the improvement obtained by using mbnladdelled exem-
plars is consistent. The notable improvement in resultspsoee 05-13 can be
attributed to the low accuracy of labels from speaker deted82.1%) obtained
for this episode due to factors including imprecise aligntd the video and sub-
title. The decrease in accuracy at high recall is likely cadive of the failure of
the face track similarity measure at “long range” — whenélare examples in the
video for which the similarity to any exemplar is low, thoseamples cannot be

labelled reliably.

As shown, use of the SVM classifier does, to some extent, ousgcthe errors
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in the exemplar labels from the speaker detection. On epi€&d02 at a recall
level 0f40%, the SVM method gives6.7% precision versus1.3% (+5.4%) using

the nearest neighbour meth®d, 7% versu91.7% (+7.8%) on episode 05-05, and
91.2% versusl6.4% (+4.8%) on episode 05-13. These improvements are consider-
able, however, at higher levels of recall the accuracy o811 method decreases
such that above arourtd% recall it gives worse results than the nearest neighbour
method: atl00% recall the precision decreases fr6612% to 62.4% (—5.8%) on
episode 05-02, from9.2% to 64.6% (—4.6%) on episode 05-05, and fro63.0%

to 62.3% (—0.7%) on episode 05-13. The decrease in the precision of the SVM
classifier at high recall levels might be explained by thdieutejection effected

by the SVM training. If there is an exemplar which lies farfrahe other exem-
plars, but is nevertheless correctly labelled, it may b@eduas an outlier; at testing
time, the loss of this exemplar can cause tracks to be incttyrelassified which

lie far from any of the reduced set of exemplars. Howeverjritial improvement

in results obtained by the SVM classifier show promise, amailshmotivate more

application-oriented detection of errors in the labelsisual outliers.

6 Discussion

In the original version of this work [11], the proposed (resimeighbour) classifi-
cation method had no explicit mechanism for error correctihe SVM classifier
proposed here shows some potential for dealing with errotee speaker detec-
tion and “outlier” appearances, but as noted does not reptesfull solution to
the problem. Rather than requiring the classifier trainirgp@athm to cope with
errors in the annotation, a more global approach which densithe resultant la-

belling of the entire video may be more successful. A pramgisapproach is to
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cast the labelling problem as one of solving a conditionadicen field (CRF) over
the graph of connections generated by track and clothingssitres. In this set-
ting, rather than viewing the annotation extracted fromakpe detection as ground
truth, yielding a fully-supervised learning problem, thenatation is viewed in a

“softer” manner as a prior on the labels.

The success of the CRF method would require more “long-rangetactions be-
tween the tracks to be generated in order to build a richereroonnected graph
structure. This requires that the descriptors computedhi®rtracks have greater
generalization (e.g. over pose or expression) than thewupixel-based descriptor
adopted here. For example, replacing the pixel-based igescwith a SIFT [28]
descriptor or using Eigen facial-features would give sooiristness to image de-
formation. Similarly the 2D face description could be regld by a 3D descrip-
tion by fitting a parameterized 3D model to the detected f&894D]. This can be
thought of as “engineering in” some level of invariance angralization. In the cur-
rent exemplar framework slightly worse results on the ngnask were obtained
by using SIFT (compared to the simple pixel-based desajigtat this might rea-
sonably be attributed to the SIFT descriptor incorporatoggmuchinvariance to
slight appearance changes relevant for discriminatingsfaln a CRF framework
this lack of discrimination may not be such a problem as atifermation may be

available to correct such errors.

7 Conclusions

We have proposed methods for incorporating textual andavisformation to au-
tomatically name characters in TV or movies and demonstnatemising results

obtained without any supervision beyond the readily alséelannotation.
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We consider of particular interest the use of visual sped&tzction to improve the
specificity of the ambiguous textual annotation. The idaessoig lower-level vision

methods to improve the annotation does not appear to be pviglas, and could be
applied in domains beyond that addressed here. An examiple &rea of learning
object recognition from images annotated with keywordg,[é1. learning to rec-
ognize cars from images annotated with the word “car” bubwia segmentation of
the image specified. For images annotated with some adadlitapppearance prop-
erties, e.g. “red car”, lower-level vision methods, i.dotw classification, could be
used to “target” the object referred to by the annotation imaaner similar to that

used here in the form of speaker detection.

It is also worth noting that while there is previous work oragnizing people in
video using text, thgideoproperties have not been exploited, treating a segment of
video as an unrelated collection of stillimages. The usacd tracking and speaker
detection here shows the benefits of exploiting the speaifipgrties of video. The
general framework proposed here has also recently beeredmlccessfully to
face recognition from a wearable camera [42], using the sanmeiple of face
tracking to collect exemplars, and the same feature |cat#diz and representation

methods proposed here.

In contrast, one aspect of TV and movie footage which has begfected here

is the audio. While the availability of script and subtitles makes the iaudack
seemingly redundant, since the script speciw® is speaking, and the subtitles
specifywhen there might be more information to be extracted from theaudne

area where the audio might usefully be applied is resolMmegambiguity in the
subtitle/script timing mentioned in Section 2.3. Anotheteresting possibility is

to attempt tdocalizethe speaker in the frame based on the audio, augmenting the

visual speaker detection. Related work in this directior} 3 used the correlation
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between video and audio to discover which pixels are “residet’ for a sound,
and a similar approach might be used for identifying whichspe in the image is

speaking.

The detection method and appearance models used here @ulibloved, for
example by bootstrapping person-specific detectors [2hftbe automatically-
obtained exemplars in order to deal with significantly nomfal poses, and includ-
ing other weak cues such as hair or eye colour. Further usaakihg, for example
using a specific body tracker rather than a generic poinkéracould propagate
detections to frames in which detection based on the facHfisudt. As noted in
Section 5, the results reported here are for frontal facés bmother work [40],
ground truth was prepared for all occurrences of characteagV show (“Fawlty
Towers”), whether facing toward the camera or not. It wasresed that frontal
faces account for only around one third of the occurrencesatfaracter’s face in
the video, with the remainder being approximately one tphnafile, and one third
facing away from the character. This clearly leaves sulbisiespace for improving

the coverage of the proposed method.

In general, it seems promising to pursue further contexiues such as co-occurrence
of particular people or recognition of location. In the partar domain of TV and
movies, there is also “grammar” of editing in cinematogradbr example alter-

nating close-up shots during a dialogue, which could beaitqal.
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00: 18: 55, 453
Get out!

--> 00: 18: 56, 086

00: 18: 56,093 --> 00: 19: 00, 044
- But, babe, this is where | belong.
- Out! I mean it.

00: 19: 00, 133 --> 00: 19: 03, 808
I've been doing a lot of reading

and I'm in control of my own power now,...

00:19: 03,893 --> 00: 19: 05, 884
..s0 we're through.

T
/

HARMONY
Get out.

SPI KE
But, baby... This is where | belong.

HARMONY

Out! I mean it. I've done a lot of
reading , and, and I'm in control

of my own power now. So we're
through.

Fig. 1. Alignment of the subtitles (left) and script (right). The subtitles corgpoken lines

and exact timing information but no identity. The script contains spoken lingéspeaker

identity but no timing information. Alignment of the spoken text allows subtitles to be

tagged with speaker identity. Note that single script lines may be split aarbttes, and

lines spoken by several characters merged into a single subtitle. Theribaaistext also

differs considerably — note the example shown in italics.
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(b)

Fig. 2. Face tracking by point tracking. (a) 8 frames from a sequeh68 frames where
the camera first moves left (frames 0-30) and then stays still (frame2)3C6rresponding
frame numbers are shown below each frame. Note the changing facralseiqn of the
actor on the left (frames 31-62) and the changing head pose of thevadtu right (around
frame 31). (b) Trajectories of points tracked on the actors’ faces stasacurves in the
video volume between the first and last frame. Additional tracks which tmtersect the

faces are omitted for clarity.
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(a) Face detections in original frames (b) Localized fafgatures

Fig. 3. Face detection and facial feature localization. Note the low resojutgmfrontal

pose and challenging lighting in the example on the right.
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Fig. 4. Face appearance descriptors. For the two faces shown, 8ipae the affine-trans-
formed regions around the localized facial features from which theigésicis computed.

Patches on the right show the extracted image regions.
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Fig. 5. Matching characters across shots using clothing appearante two examples
shown the face is difficult to match because of the variation in pose, fagatgsion and

motion blur. The strongly coloured clothing allows correct matches to belisstad) in

these cases.
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Speaking &=
N\

(a) (b) (©)
Fig. 6. Examples of speaker ambiguity. In all the cases shown the aligriptoposes
a single name, shown above the face detections. (a) Two faces arteddiatonly one
person is speaking. (b) A single face is detected but the speaker ifhantissed by the
frontal face detector. (c) A “reaction shot” — the speaker is not visibldnénframe. The

(correct) output of the speaker detection algorithm is shown below eaehdietection.
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Fig. 7. Speaker identification by detecting lip movement. (a) Inter-framerdiftes for
a face track of 101 face detections. The character is speaking betweess 1-70 and
remains silent for the rest of the track. The two horizontal lines indicate dpeaking”
(top) and “non-speaking” (bottom) thresholds respectively. (b) To: IExtracted face
detections with facial feature points overlaid for frames 47-54. Bottom@mmesponding

extracted mouth regions.
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Fig. 8. Correct classification of tracks as “non-speaking”. Examdlésmface tracks are

+++ 7+
+4+
+

shown. (a) Frames 1,6,11, ,36 from a 44 frames long face track. All frames in this face
track are correctly classified as “non-speaking” despite significaad pese variation. (b)
Frames 1,11,21, ., 71 from a 75 frames long face track. The track is correctly identified as
“non-speaking” despite the shape and appearance variations in the doeLthexpression
change (smiling). 73 frames are classified as “non-speaking” andr2fasé to predict”. In
both (a) and (b) the top row shows the extracted face detections with fieaiates overlaid

and the bottom row shows the corresponding extracted mouth regions.
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(a) Buffy (2,300 faces) (b) Willow (1,222 faces)

Fig. 9. Examples of exemplars for two of the main characters. Each traclcomeyst of
tens of faces — a single example is shown for each track. The total nurhbgemplar

faces for each character is shown in parentheses.
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Fig. 10. Examples of errors in speaker identification. (a) Four frantes & 19 frames
long face track where the actor shouts and is detected as speakingteDegid visual
detection, due to inaccurate subtitle timing information this shout is attributed tcarper
speaking in the next shot. (b) Four frames from a 23 frames long fadlewdaere the actor
silently opens her mouth and is wrongly classified as speaking. In botimdaboathe top

row shows extracted face detections with facial features overlaid afmbtteen row shows

the corresponding extracted mouth regions.
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(c) Episode 05-13

Fig. 11. Precision/recall curves for three episodes. Recall is theogiop of face tracks
which are assigned labels by the proposed method at a given configeeteand preci-
sion the proportion of correctly labelled tracks. The graphs show tHerpgaince of the
proposed method and two baseline methods using the subtitles to proposefoiaezeh

face track (see text for details).
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Table 1
Quantitative precision results at different levels of recall. The baselinbads do not

provide a means for ranking, so only the overall accuracy is reported.

Episode 05-02 Episode 05-05 Episode 05-13

Recall: 60% 80% 90% 100% 60% 80% 90% 100% 60% 80% 90% 100%

Proposed method 87.5 78.6 72.9 68.2 88.580.1 75.6 69.2 84.175.269.2 63.0

Subtitles only 45.2 51.1 36.2

Prior 21.3 36.9 51

52



»
b
B 7

Dawn

4

Harmony

Fig. 12. Examples of correct detection and naming throughout epise@2.05
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Fig. 13. Effect of errors in the exemplar labels and the SVM method. “NNXbAis the orig-
inally proposed nearest neighbour method with automatically labelled exem{hiNs
Manual” uses the same method with manually labelled exemplars; “SVM” is the SVM

method trained with automatically labelled exemplars.
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Table 2

Quantitative results showing the effect of errors in the exemplar labelstten&VM

method.

Recall:

Episode 05-02

40% 60% 80% 90% 100%

Episode 05-05

40% 60% 80% 90% 100%

Episode 05-13

40% 60% 80% 90% 10

NN-Auto

NN-Manual

SVM

91.3 87.578.6 729 68.2

99.6 97.2 85.3 79.1 73.3

96.7 89.7 73.8 67.5 62.4

91.7 88.5 80.1 75.6 69.2

99.5 94.1 86.2 80.2 74.0

96.7 89.6 75.569.4 64.6

86.4 84.1 75.2 69.2 63.0

99.6 98.5 87.9 823 754

91.2 85.6 74.0 67.6 62.3
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