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Abstract

This paper studies the security of a recently-proposed chaos-based image encryption scheme, and points out the following prob-
lems: 1) there exist a number of invalid keys and weak keys, and some keys are partially equivalent for encryption/decryption;
2) given one chosen plain-image, a subkey K10 can be guessed with a smaller computational complexity than that of the sim-
ple brute-force attack; 3) given at most 128 chosen plain-images, a chosen-plaintext attack can possibly break the following
part of the secret key: {Ki mod 128}10

i=4, which works very well when K10 is not too large; 4) when K10 is relatively small, a
known-plaintext attack can be carried out with only one known plain-image to recover some visual information of any other
plain-images encrypted by the same key.
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1. Introduction

Spurred by the rapid development of multimedia and net-
work technologies, multimedia data are being transmitted
over networks more and more frequently. As a result, con-
tent protection of multimedia data is urgently needed in
many applications, including both public and private ser-
vices such as military information systems and multime-
dia messaging systems (MMS). Although any traditional
data ciphers (such as DES and AES) can be used to meet
this increasing demand of information security, they can-
not provide satisfactory solutions to some special properties
and requirements in many multimedia-related applications.
For example, one requirement is perceptual encryption [1],
meaning that the encrypted multimedia data can still be de-
coded by any standard-compliant codec and displayed, with
a relatively low quality, which cannot be realized by simply
employing a traditional cipher. As a response to this con-
cern, a large number of specially-designed multimedia en-
cryption schemes have been proposed [2, 3, 4, 5, 6, 7, 8].
Meanwhile, security analysis on the proposed schemes have
also been developed, and some of these schemes have been
found insecure to a certain extent [9, 10, 11, 12, 13, 14,
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15]. For more discussions about multimedia data encryp-
tion techniques, readers are referred to some recent surveys
[16, 17, 18, 19, 20].

Since 2003, Pareek et al. [21, 22, 23] have proposed three
different encryption schemes based on one or more one-
dimensional chaotic maps, among which the one proposed in
[23] was designed for image encryption. Recent cryptanal-
ysis results [24, 25] have shown that the two schemes pro-
posed in [21, 22] are not secure. The present paper focuses
on the security analysis of the image encryption scheme pro-
posed in [23], and reports the following findings:

1. There are several types of security problems with the
secret key, and each subkey is involved in at least one
problem.

2. One subkey K10 can be separately searched with a rela-
tively small computational complexity, even when only
one chosen plain-image is given.

3. The scheme is insecure against chosen-plaintext attack
in the sense that using 128 chosen plain-images may be
enough to break part of the key. The attack is especially
feasible when K10 is not too large.

4. When K10 is relatively small and one plain-image is
known, a known-plaintext attack can be used to reveal
some visual information of any other plain-images en-
crypted with the same secret key.
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The rest of the paper is organized as follows. The next
section gives a brief introduction to the image encryption
scheme under study. Section 3 is the main body of the paper,
focusing on a comprehensive cryptanalysis, with both theo-
retical and experimental results. In the last section, some
concluding remarks and conclusions are given.

2. The image encryption scheme under study

In this scheme, the plaintext is a color image with sepa-
rate RGB channels. The plain-image is scanned in the raster
order, and then divided into 16-pixel blocks. The encryption
and decryption procedures are performed blockwise on the
plain-image. Without loss of generality, assume that the size
of the plain-image is M × N, and that MN can be exactly di-
vided by 16. Then, the plain-image I can be represented as
a 1-D signal {I(i)}MN−1

i=0 with Nb = MN/16 blocks, namely,
I = {I(16)(k)}Nb−1

k=0 , where I(16)(k) = {I(16k + i)}15
i=0. Similarly,

the cipher-image is denoted by I∗ = {I∗(16)(k)}Nb−1
k=0 , where

I∗(16)(k) = {I∗(16k + i)}15
i=0.

The secret key of the encryption scheme under study is
an 80-bit integer and can be represented as K = K1 · · ·K10,
where each subkey Ki ∈ {0, . . . , 255}. Two chaotic systems
are involved in the encryption scheme, and both are realized
by iterating the Logistic map

f (x) = µx(1 − x), (1)

where µ is the control parameter and fixed to be 3.9999. One
chaotic map runs globally throughout the whole encryption
process, while another one runs locally for the encryption
of each 16-pixel block. The initial condition of the global
chaotic map is determined by the six subkeys K4 ∼ K9 as
follows:

X0 =

∑6
i=4 Ki · 28(i−4)

224 +

∑9
j=7((K j mod 16) + bK j/16c)

96

 mod 1,

(2)

and the local chaotic map corresponding to each block is
initialized according to selected chaotic states of the global
map. For the k-th block I(16)(k), the encryption process can
be described by the following steps.

• Step 1: Determining the initial condition of the local
chaotic map. Iterate the global chaotic map until 24
chaotic states within the interval [0.1, 0.9) are obtained.
Denoting these chaotic states by {X̂ j}

24
j=1, generate 24

integers {P j}
24
j=1, where P j = b24(X̂ j − 0.1)/0.8c + 1.1

1In Sec. 2 of [23], the interval is [0.1, 0.9] and P j = b23(X̂ j−0.1)/0.8c+

Then, calculate B2 =
∑3

i=1 Ki · 28(i−1) and set the initial
condition of the local chaotic map as

Y0 =

B2 +
∑24

j=1 B2[P j] · 2 j−1

224

 mod 1, (3)

where B2[P j] denotes the P j-th bit of B2.

• Step 2: Encrypting the k-th block I(16)(k). For each
pixel in the block, iterate the local chaotic map to ob-
tain K10 consecutive chaotic states {Ŷ j}

K10
j=1 which fall

into the interval [0.1,0.9), and then encrypt the RGB
values of the current pixel according to the following
formulas:

R∗ = E1(R) = gK4,K5,K7,K8,ŶK10
◦ · · · ◦ gK4,K5,K7,K8,Ŷ1

(R), (4)

G∗ = E2(G) = gK5,K6,K8,K9,ŶK10
◦ · · · ◦ gK5,K6,K8,K9,Ŷ1

(G), (5)

B∗ = E3(B) = gK6,K4,K9,K7,ŶK10
◦ · · · ◦ gK6,K4,K9,K7,Ŷ1

(B), (6)

where ◦ denotes the composition of two functions and
ga0,b0,a1,b1,Y (x) is a function under the control of Y as
shown in Table 1.

• Step 3: Updating subkeys K1, . . . ,K9. Perform the fol-
lowing updating operation for i = 1 ∼ 9:

Ki = (Ki + K10) mod 256. (7)

The decryption procedure is similar to the above encryp-
tion procedure, except that Eqs. (4)∼(6) in Step 2 are re-
placed by the following ones:

R = E−1
1 (R∗) = g−1

K4,K5,K7,K8,Ŷ1
◦ · · · ◦ g−1

K4,K5,K7,K8,ŶK10
(R∗), (8)

G = E−1
2 (G∗) = g−1

K5,K6,K8,K9,Ŷ1
◦ · · · ◦ g−1

K5,K6,K8,K9,ŶK10
(G∗), (9)

B = E−1
3 (B∗) = g−1

K6,K4,K9,K7,Ŷ1
◦ · · · ◦ g−1

K6,K4,K9,K7,ŶK10
(B∗), (10)

where g−1
a0,b0,a1,b1,Y

(x) is the inverse function of ga0,b0,a1,b1,Y (x)
with respect to x as shown in Table 1.

3. Cryptanalysis

In this section, we report our cryptanalysis results about
the image encryption scheme under study. These include a
comprehensive analysis on invalid keys, weak keys and par-
tially equivalent keys, a chosen-plaintext attack to break K10,
a chosen-plaintext attack to break {Ki mod 128}10

i=4, a known-
plaintext attack, and some other minor security problems.

1. However, following this process, P j = 24 when and only when X̂ j = 0.9,
which becomes a rare event and conflicts with the requirement that P j has
a roughly uniform distribution over {1, . . . , 24}. Therefore, in this paper we
changed the original process in [23] to a more reasonable one. Note that
such a change does not affect the performance of the encryption scheme.
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Table 1: The definition of ga0 ,b0 ,a1 ,b1 ,Y (x), where x denotes the bitwise complement of x, and ⊕ denotes the bitwise XOR operation.
Y ∈ ga0 ,b0 ,a1 ,b1 ,Y (x)= g−1

a0 ,b0 ,a1 ,b1 ,Y
(x)=

[0.10, 0.13) ∪ [0.34, 0.37) ∪ [0.58, 0.62) x = x ⊕ 255
[0.13, 0.16) ∪ [0.37, 0.40) ∪ [0.62, 0.66) x ⊕ a0
[0.16, 0.19) ∪ [0.40, 0.43) ∪ [0.66, 0.70) (x + a0 + b0) mod 256 (x − a0 − b0) mod 256
[0.19, 0.22) ∪ [0.43, 0.46) ∪ [0.70, 0.74) x ⊕ a0 = x ⊕ (a0 ⊕ 255) = x ⊕ a0
[0.22, 0.25) ∪ [0.46, 0.49) ∪ [0.74, 0.78) x ⊕ a1
[0.25, 0.28) ∪ [0.49, 0.52) ∪ [0.78, 0.82) (x + a1 + b1) mod 256 (x − a1 − b1) mod 256
[0.28, 0.31) ∪ [0.52, 0.55) ∪ [0.82, 0.86) x ⊕ a1 = x ⊕ (a1 ⊕ 255) = x ⊕ a1
[0.31, 0.34) ∪ [0.55, 0.58) ∪ [0.86, 0.90] x = x ⊕ 0

3.1. Two properties of the scheme
To facilitate the description of the discussion below, we

first point out two properties of the scheme under study in
this subsection. One is about the subkey updating mecha-
nism, and the other is about the essential equivalent presen-
tation form of the encryption function.

To improve the security of the scheme, an updating mech-
anism is introduced for subkeys in Eq. (7) of [23]. Be-
cause the updating process is performed in a finite-state
field, the sequence of each updated subkey produced by
such a mechanism is always periodic (see Fact 1 below).
As a result, the sequence of the dynamic keys is also pe-
riodic. Assuming that the period is T , the Nb plain pixel-
blocks {I(16)(k)}Nb−1

k=0 can be divided into T separate sets ac-
cording to the values of these dynamically updated subkeys:{
I j =

NT−1⋃
k=0

I(16)(T · k + j)
}T−1

j=0
, where NT = dNb/T e. For

blocks in the same set I j, all the updated subkeys are identi-
cal. In other words, for each set I j (1/T of the whole plain-
image) one can consider that the secret key is fixed. Since
1/T of a plain-image may be enough to reveal essential vi-
sual information, one can turn to break any set I j without
considering the updating mechanism.

Fact 1. For x, a ∈ {0, . . . , 255}, the integer sequence {y(i) =

(x + ai) mod 256}∞i=0, has period T = 256/ gcd(a, 256).

With respect to the encryption function, one can see from
Table 1 that each encryption subfunction is represented in
one of the following two formats:

1. ga0,b0,a1,b1,Y (x) = x⊕α, where α ∈ {0, 255, a0, a1, a0, a1};
2. ga0,b0,a1,b1,Y (x) = xuβ, where xuγ denotes (x+γ) mod

256 (the same hereinafter), and β ∈ {a0 u b0, a1 u b1} ⊂

{0, · · · , 255}.

Because (x⊕α1)⊕α2 = x⊕ (α1 ⊕α2) and (xu β1)u β2 =

x u (β1 u β2), consecutive encryption subfunctions of the
same kind can be combined together, and those with α = 0
or β = 0 can be simply ignored. As a result, each encryption
function Ei(x) is a composition of len ≤ K10 subfunctions:
{G j(x)}len

j=1, where G j(x) = x ⊕ αd j/2e or x u βd j/2e, and G j(x),
G j+1(x) are encryption subfunctions of different kinds. Ac-
cording to the types of G1(x) and Glen(x), Ei(x) has four dif-
ferent formats:

1. Ei(x) = ((· · · ((xu β1)⊕α1) · · · )⊕αd(len−1)/2e)u βdlen/2e;
2. Ei(x) = ((· · · ((xu β1)⊕α1) · · · )u βd(len−1)/2e)⊕αdlen/2e;
3. Ei(x) = ((· · · ((x⊕α1)u β1) · · · )⊕αd(len−1)/2e)u βdlen/2e;
4. Ei(x) = ((· · · ((x⊕α1)u β1) · · · )u βd(len−1)/2e)⊕αdlen/2e.

Note that len is generally less than K10. Assuming that
{Yi} distributes uniformly over the interval [0.1,0.9], we can
get the following inequality:

Prob[len = K10] ≤

2 · ( 5
8 ·

1
4 )

K10
2 , when K10 is even,

( 5
8 ·

1
4 )

⌊ K10
2

⌋
( 5

8 + 1
4 ), when K10 is odd.

(11)

From the above equation, we can see that the probability
decreases exponentially as K10 increases. Because it is dif-
ficult to exactly estimate the probability that len is equal to
a given value less than K10, we performed a number of ran-
dom experiments for a 512 × 512 plain-image to investigate
the possibilities. Figure 1 shows a result of 100 random keys
when K10 = 66.

1 6 11 16 21 26 31 36 41 46 51 56 61 66
10

0

10
1

10
2

10
3

10
4

10
5

Upper bound
Lower bound

Figure 1: The number of subfunctions composed of len subfunc-
tions, when K10 = 66 and other subkeys were generated randomly
for 100 times.

Since G j(x) is a composition of multiple functions
ga0,b0,a1,b1,Y (x) of the same kind, and since that a0 ⊕ a1 =
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a0 ⊕ a1 = a0 ⊕ a1 ⊕ 255 and a0 ⊕ a1 = a0 ⊕ a1, one can easily
deduce that

αi ∈ A = {255, a0, a1, a0 ⊕ 255, a1 ⊕ 255, a0 ⊕ a1,

a0 ⊕ a1 ⊕ 255} (12)

and

βi ∈ B = {z1(a0 u b0) u z2(a1 u b1) | z1, z2 ∈ {0, · · · ,K10}

and z1 + z2 ≤ K10}.

Note that A has an interesting property: ∀x1, x2 ∈ A∪ {0},
x1 ⊕ x2 ∈ A ∪ {0}. This property concludes that

⊕
i αi ∈

A ∪ {0}, which will be used later in Sec. 3.5 for chosen-
plaintext attack.

3.2. Analysis of the key space
In this subsection, we report some invalid keys, weak

keys and partially equivalent keys existing in the encryp-
tion scheme under study. Here, an invalid key means a key
that cannot ensure the successful working of the encryption
scheme, a weak key is a key that corresponds to one or more
security defects, and partially equivalent keys generate the
same encryption result for a certain part of the plain-image.
When estimating the key space, invalid keys and weak keys
should be excluded, and all keys that are partially equivalent
to each other should be counted as one single key [26, Sec.
3.2].

3.2.1. Invalid keys with respect to K4 ∼ K9

When X0 = 0, the global chaotic map will fall into the
fixed point 0, which disables the encryption process due to
the lack of chaotic states lying in [0.1, 0.9]. Now, let us see
when X0 = 0 can happen.

Observing Eq. (2), one can see that X0 = 0 is equivalent
to ∑6

i=4 Ki · 28(i−4)

224 ≡

− FP

∑9
j=7((K j mod 16) + bK j/16c)

96

 (mod 1)

(13)

where FP(x) denotes the floating-point value of x. Because
0 ≤

∑6
i=4 Ki · 28(i−4) < 224 and 0 ≤

∑9
j=7((K j mod 16) +

bK j/16c) ≤ 15 · 6 = 90 < 96, one can further simplify the
above equation as follows:

∑6
i=4 Ki · 28(i−4)

224 = 1−
FP

(∑9
j=7((K j mod 16) + bK j/16c)

)
96

.

(14)

By the fact that
∑6

i=4 Ki·28(i−4)

224 mod 2−24 = 0, the following
equality also holds:

FP
(∑9

j=7((K j mod 16) + bK j/16c)
)

96
mod 2−24 = 0.

By checking all the 91 possible values of
∑9

j=7((K j mod
16) + bK j/16c), one can easily get the following result:

9∑
j=7

((K j mod 16) + bK j/16c) = 3C, (15)

where C ∈ [0, 30]. In this case,

1 − FP

∑9
j=7((K j mod 16) + bK j/16c)

96

 = 1 −
C
32
.

Substituting the above equation into Eq. (14), one has

6∑
i=4

Ki · 28(i−4) = 219(32 −C). (16)

As a result, any key that satisfies Eqs. (15) and (16) simulta-
neously can lead to X0 = 0. The number of such invalid sub-
keys (K4, · · · ,K9) can be calculated to be 5592406 = 222.415,
where 5592406 = d166/3e is the number of distinct values
of (K7,K8,K9) satisfying Eq. (15), calculated according to
the following Proposition 1.

Proposition 1. Given an n-dimensional vector A =

(a1, · · · , an) ∈ {0, · · · , 15}n, the number of distinct values of
A that satisfy (a1 + · · ·+ an) mod 3 = 0, 1 and 2 are d16n/3e,
b16n/3c and b16n/3c, respectively.

Proof. This proposition can be proved by mathematical in-
duction.

When n = 1, one can easily verify that the number of dis-
tinct values of A that satisfy a1 mod 3 = 0, 1, 2, are 6, 5, 5,
respectively. Since 6 = d16/3e and 5 = b16/3c, the proposi-
tion is true.

Assuming that the position is true for 1 ≤ n ≤ k, we
prove the case for n = k + 1. First, rewrite a1 + · · · + ak+1
as Ak + ak+1, where Ak = a1 + · · · + ak. Then, observe that
(Ak + ak+1) mod 3 = 0 is equivalent to Ak ≡ −ak+1 (mod 3).
Thus, the number of distinct values of A that satisfying Ak +

ak+1 mod 3 = 0 is the following sum:

N[(Ak + ak+1) mod 3 = 0]
= d16k/3e · d16/3e + 2b16k/3c · b16/3c
= (b16k/3c + 1) · d16/3e + 2b16k/3c · b16/3c
= 16 · b16k/3c + 6.
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Assume 16k = (15 + 1)k = 3C + 1. Then, 16k+1 = 48C +

16 and d16k+1/3e = 16C + d16/3e = 16C + 6. Then 16 ·
b16k/3c+ 6 = 16C + 6 = d16k+1/3e. Going through a similar
process, one can easily get N[(Ak + ak+1) mod 3 = 1] =

N[(Ak + ak+1) mod 3 = 2] = b16k+1/3c. This completes
the mathematical induction, hence finishes the proof of the
proposition.

3.2.2. Invalid keys with respect to K1 ∼ K3

For a given block I(16)(k), if Y0 = 0, the local chaotic map
will fall into the fixed point 0, which will also disable the
encryption process of the corresponding block. According
to Eq. (3), Y0 = 0 when the following equality holds:B2 +

24∑
j=1

B2[P j] · 2 j−1

 mod 224 = 0,

Since 0 ≤ B2 =
∑3

i=1 Ki · 28(i−1) < 224 and 0 ≤
∑24

j=1 B2[P j] ·
2 j−1 < 224, the above equality can be simplified as follows:

24∑
j=1

B2[P j] · 2 j−1 = 224 − B2. (17)

Assuming that P j distributes uniformly in {1, · · · , 24}, B2
and (224 − B2) have m and n 0-bits, respectively, the proba-
bility for Eq. (17) to hold is

ps =

( m
24

)n
·

(
24 − m

24

)24−n

=
mn(24 − m)24−n

2424 .

The relationship between the values of ps and (25m + n) is
shown in Fig. 2, from which one can see that the probability
is not negligible for some values of (m, n). In fact, because
ps > 0 holds for any value of (m, n), we can say that any
key is invalid from the strictest point of view. To resolve this
problem, the original encryption scheme must be amended.
One simple way to do so is setting Y0 to be a pre-defined
value once Y0 = 0 occurs. In the following discussions of
this paper and all experiments involved, we set Y0 = 1/224

when such an event occurs.

3.2.3. Weak keys with respect to K10

In the encryption scheme under study, the update pro-
cess of subkeys K1 ∼ K9 and the number of subfunc-
tions ga0,b0,a1,b1,Y (x) in each encryption function are both con-
trolled by the subkey K10. In the following, we discuss two
weak-key problems with respect to K10, which correspond
to the above two processes controlled by K10, respectively.

From Fact 1, one can see that the update of subkeys K1 ∼

K9 has an inherent weakness, i.e., the possible values for the
period of the sequence of the updated subkeys is 2i, i = 1 ∼

0 48 96 144 192 240 288 336 384 432 480 528 576 624
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

25m+n

p s

Figure 2: The value of ps with respect to the value of (25m + n),
where m, n ∈ {0, · · · , 24}.

8. For some values of K10, this period can be very small,
which weakens the updating mechanism considerably. The
worst situation occurs when K10 = 128, which corresponds
to period two. From the most conservative point of view, T
should take the maximal value 256, which means that K10
should be an odd number.

The other problem deals with the number of subfunctions
ga0,b0,a1,b1,Y (x) in each encryption function. When K10 = 1,
the probability for a pixel to remain unchanged is 1/8 (under
the assumption that Yi distributes uniformly in the chaotic in-
terval). Though the probability seems quite large, our exper-
iments have shown that very little visual information leaks in
the cipher-image. When K10 ≥ 2, experiments have shown
that it is almost impossible to distinguish any visual pattern
from the cipher-image. As a result, in this case there exists
only one major weak key: K10 = 1. To avoid other potential
security defects, K10 ≥ 8 is suggested.

3.2.4. Weak keys with respect to K4 ∼ K9

Observing Table 1, one can see that the encryption sub-
function ga0,a1,b0,b1,y (x) = x or x̄ when the following require-
ments are satisfied:

a0, a1 ∈ {0, 255} and a0+b0 ≡ a1+b1 ≡ 0 (mod 256). (18)

For the sub-image I j, if the subkeys corresponding to one en-
cryption function Ei(x) satisfy the above requirements, Ei(x)
will also be x or x̄. Assuming that the chaotic trajectory
of the local chaotic map has a uniform distribution in the
interval [0.1, 0.9], the probability of ga0,a1,b0,b1,y(x) = x̄ is
p = 3/8. Then, according to Proposition 2 given below (note
that x̄ = x ⊕ 255), ∀i = 1 ∼ 3, the probabilities of Ei(x) = x̄
and Ei(x) = x are (1 − (1/4)K10 )/2 and (1 + (1/4)K10 )/2, re-
spectively. This means that about half of all plain-pixels in
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I j are not encrypted at all, which may reveal some visual
information about the plain-image. As an example, when
K = “3C1DE8FF0151FF012840” (which corresponds to
T = 4), one of our experiments showed that 49.9% of all the
pixels in I0 were not encrypted (see Fig. 3 for the encryption
result).

a) b)
Figure 3: The encryption result when K =

“3C1DE8FF0151FF012840” (represented in hexadecimal
format, the same hereinafter): a) the red channel of the plain-image
“Lenna”; b) the red channel of the cipher-image. For the other two
color channels we have obtained similar results.

Proposition 2. Given n > 1 functions, f1(x), . . . , fn(x), as-
sume that each function is x ⊕ a with probability p and is x
with probability 1− p, where a ∈ Z. Then, the probability of
the composition function F(x) = f1 ◦ · · · ◦ fn(x) = x ⊕ a is
P = (1 − (1 − 2p)n)/2.

Proof. Assume that k = dn/2e. Then, n = 2k if it is an even
integer and n = 2k − 1 when it is odd. To ensure F(x) =

f1 ◦ · · · ◦ fn(x) = x ⊕ a, the number of subfunctions that are
equal to x ⊕ a should be an odd integer. So,

P =

k∑
i=1

(
n

2i − 1

)
p2i−1(1 − p)n−(2i−1)

= (1 − p)n ·

k∑
i=1

(
n

2i − 1

)
(p/(1 − p))2i−1

= (1 − p)n ·
(1 + p/(1 − p))n − (1 − p/(1 − p))n

2
= (1 − (1 − 2p)n)/2.

This completes the proof of the proposition.

By letting Eq. (18) hold for the three encryption functions
E1(x), E2(x) and E3(x), we found a list of weak keys of this
kind, as shown in Table 2.

3.2.5. Partially equivalent keys with respect to K7 ∼ K9:
Class 1

Observing Eq. (2), one can see that the value of X0 re-
mains unchanged if the following segments of K7,K8,K9

exchange their values: K7 mod 16, bK7/16c, K8 mod 16,
bK8/16c, K9 mod 16, bK9/16c. Now let us find out what
will happen if we exchange K9 mod 16 and bK9/16c, i.e., ex-
change the upper half and the lower half of K9. In this case,
since the encryption of the red value of each pixel is indepen-
dent of K9, the red channel of the cipher-image will remain
unchanged. Similar results also exist for K7 and K8, which
correspond to unchanged blue and green channels of the
plain-image, respectively. This problem reduces the subkey-
space of (K7,K8,K9) from 2563 to (16 + (256 − 16)/2)3 =

1363.

3.2.6. Partially equivalent keys with respect to K7 ∼ K9:
Class 2

As remarked in Sec. 3.1, each encryption subfunction
ga0,a1,b0,b1,Y (x) can be represented in one of the following two
formats: x⊕α and xuβ. The following two facts about ⊕ and
u will lead us to construct another class of partially equiva-
lent keys.

Fact 2. ∀ a ∈ {0, . . . , 255}, a ⊕ 128 = a u 128.

Fact 3. ∀ a, b ∈ Z, (a ⊕ 128) u b = (a u b) ⊕ 128.

Fact 3 means that a change in the MSB (most signifi-
cant bit) of x, a0, a1, b0, b1 of any encryption subfunction
ga0,a1,b0,b1,Y (x) is equivalent to XORing 128 on the output of
the composition function Ei(x).

Next, Fact 3 is used to figure out the second class of par-
tially equivalent keys about K7 ∼ K9. First, choose any two
subkeys from K7 ∼ K9. Without loss of generality, let us
take K7 and K8. Then, given a secret key K that satisfies
K7 < 128 and K8 ≥ 128 (or, K7 ≥ 128 and K8 < 128), let
us change it into another key K̃ by setting K̃7 = K7 ⊕ 128
and K̃8 = K8 ⊕ 128. From Eq. (2), it is easy to see that X0
remains the same for the two keys. This means that both the
global and the local chaotic maps have the same dynamics
throughout the encryption procedure for the two keys, and
that the difference on ciphertexts is determined only by the
MSB-changes of K7 and K8. In the following, to analyze the
influence of the MSB-changes on the ciphertexts, we con-
sider the three color channels separately.

First, consider the encryption process of the green channel
of the plain-image, in which K7 is not involved at all. As-
suming that the chaotic trajectory {Yi} distributes uniformly
within the interval [0.1, 0.9], the probability that K8 has an
effect on each encryption subfunction is p = 3/8. If K8
appears for an even number of times in the total K10 encryp-
tion subfunctions, then the value of E2(G) will remain the
same for the two keys K and K̃; otherwise, E2(G) changes
its MSB. Thus, using the same deduction as given in the
proof of Proposition 2, the probability that E2(G) remains
unchanged can be calculated to be P2 = (1+(1−2p)K10 )/2 =

6



Table 2: Some weak keys that cause leaking of visual information.
Weak keys Visual information leaked from

(K4,K5), (K7,K8) ∈ {(0, 0), (255, 1)} Channel R
(K5,K6), (K8,K9) ∈ {(0, 0), (255, 1)} Channel G
(K6,K4), (K9,K7) ∈ {(0, 0), (255, 1)} Channel B

(K4,K5,K6,K7,K8,K9) = (0, 0, 0, 0, 0, 0) the whole plain-image

(1 + 4−K10 )/2. This means that more than half of all green
pixel values in the ciphertexts are identical in probability for
the two keys K and K̃.

For the blue channel, K8 is not involved in the encryption
process. So, following a similar deduction, the probability
that E3(B) remains unchanged is P3 = (1 + 4−K10 )/2 = P2.

For the red channel, both K7 and K8 are involved, but
their differences are neutralized for the encryption subfunc-
tion x u (K7 + K8). So, the probability that the differences
in K7 and K8 have an effect on the ciphertext is reduced to
be p = 2/8 = 1/4. Thus, the probability that E1(R) remains
unchanged becomes P1 = (1 + 2−K10 )/2 > P2 = P3.

Combining all the above analyses together, it is expected
that more than half of all pixel values in the cipher-images
will be identical for the two keys K and K̃. In addition, for
other different pixel values, the XOR difference is always
equal to 128. By enumerating all possibilities about this se-
curity problem, one can conclude that the subkey-space of
(K7,K8,K9) is reduced from 2563 to 4 · 1283 = 2563/2.

To verify the above theoretical results, we have carried
out some experiments for a plain-image of size 512 × 512.
One result is shown in Fig. 4, in which the number of iden-
tical pixel values in red, green and blue channels are 131241
(50.06%), 130864 (49.92%) and 131383 (50.12%), respec-
tively.

Finally, it is worth mentioning that there exists an inter-
nal relationship between the sub-images I j and I j+T/2, where
j ∈ {0, · · · ,T/2 − 1}, which can be easily deduced from the
following fact about the updating process of the subkeys:
Ki + K10 · T/2 = Ki + 128 · K10/ gcd(K10, 256) ≡ Ki + 128 =

Ki ⊕ 128 (mod 256).

3.2.7. Reduction of the key space
Based on the above analyses, we now summarize the in-

fluence of invalid, weak and equivalent keys on the key space
in Table 3. According to the table, one can roughly estimate
that the size of key space is reduced to 275, which is some-
what smaller than 280 (the one claimed in [23, Sec. 3.3]).

3.3. Guessing K10 and {Ki}
9
i=1 separately

The encryption process of the first block I(16)(0) depends
only on the secret values Y0 and K10. In other words, for
the first block one can consider (Y0,K10) as an equivalent to
the original key K. Then, by guessing the value of (Y0,K10)

one can get the value of K10 with complexity O(232). Thus,
the other subkeys can be separately guessed with complex-
ity O(272). The total complexity of such an enhanced brute-
force attack is O(232 + 272) = O(272), which is smaller than
O(280), the expected complexity of a simple brute-force at-
tack.

3.4. Guessing K10 with a chosen plain-image
As remarked in Sec. 3.1, all 16-pixel blocks in I j =⋃NT−1
k=0 I(16)(T ·k + j) are encrypted with the same subkeys. If

these blocks also correspond to the same values of Y0, then
all the three encryption functions for the R, G, B channels
will become identical. Precisely, given two identical blocks,
I(16)(k0) and I(16)(k1), one can see that the corresponding
cipher-blocks will also become identical, if the following
two requirements are satisfied:

(A) the distance of the two blocks is a multiple of T , i.e.,
(k0 − k1) | T ;

(B) Y (k0)
0 = Y (k1)

0 , where Y (k0)
0 and Y (k1)

0 denote the values of
Y0 corresponding to the two 16-pixel blocks.

Therefore, if the probability of the two cipher-blocks to
be identical is sufficiently large, one may use the distance
between them to determine the value of T and narrow down
the search space of K10.

It should be noted that the following two cases can both
ensure the requirement (B): 1) the sequences {P j} corre-
sponding to the two blocks are identical; 2) the sequences
{P j} corresponding to the two blocks are different (which
may have t ∈ {0, · · · , 23} identical elements), but the values
of Y0 are still identical. The second case is tightly related
to the ratio of 0-bits and 1-bits in B2. As an extreme ex-
ample, when B2 = 0 or 224 − 1 (all the bits of B2 are 0
or 1), B2[P j] will be fixed to be 0 or 1, respectively. As-
suming that the number of 1-bits in B2 is m, one can eas-
ily calculate the probability of B2

[
P(k0)

j

]
= B2

[
P(k1)

j

]
to be

(m/24)2+(1−m/24)2, and then the probability of Y (k0)
0 = Y (k1)

0
be PB = ((m/24)2 + (1 − m/24)2)24. We have carried out
a large number of experiments to verify this theoretical es-
timation and the results are shown in Fig. 5. In these ex-
periments, all possible values of B2 were exhaustively gen-
erated to estimate the probability (as the mean value) for
min(m, 24 − m) ≤ 4, and

(
24
4

)
= 10, 626 random keys were

generated for min(m, 24 − m) > 4.
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a) b) c)
Figure 4: The decryption result with partially equivalent keys of Class 2: a) the plain-image “Lenna”; b) the cipher-image corresponding to
K = “1A93DF25CF78DC44E160”; c) the decryption result of subfigure b with a different key K̃ = “1A93DF25CF785CC4E160”.

Table 3: Reduction of the key space due to the existence of invalid keys, weak keys and partially equivalent keys.
Subkeys Size of reduced subkey-space Reason
K1 ∼ K3 - Y0 = 0
K4 ∼ K9 248 − 5592406 ≈ 248 X0 = 0
K7 ∼ K9 1363/2 = 220.2624 Equivalent key of Classes 1 and 2

K10 < (255 − 128 − 1) = 126 Weak keys about K10
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Since Prob((k0 − k1) | T ) is 1/T , the final probability
that both requirements hold is PB/T . According to Fig. 5,
this probability may be large enough for an attacker to find
some identical blocks in the same set I j, especially when
min(m, 24 − m) and T are both relatively small.

To show how the attack works, we chose a 512 × 512
plain-image in which all blocks are identical but all pixels in
each block are different from each other, and performed the
attack for a secret key K = “2A84BCF35D70664E4740”.
As a result, we found 9 pairs of identical blocks whose in-
dices are listed in Table 4. Because all these indices should
satisfy the requirement (k0 − k1) | T , we can get an up-
per bound of T by solving their greatest common divisor
of the differences of the 9 indices. Thus, one immediately
gets gcd(3161 − 1941, 7083 − 2015, 15255 − 3023, 9163 −
4159, 12113 − 5061, 16355 − 5507, 12454 − 9166, 12259 −
9655, 13102 − 11090) = 4. This means T ∈ {2, 4}, thus im-
mediately leading to gcd(K10, 256) ∈ {128, 64} and K10 ∈

{64, 128, 192} according to Fact 1. As can be seen, in this
example the size of the subkey space corresponding to K10
is reduced from 256 to 3, which is quite significant.

3.5. Breaking {Ki mod 128}10
i=4 with chosen-plaintext attack

This subsection presents one of the most important re-
sults of this work, since it shows how to partially break
the encryption algorithm using a very cost-effective chosen-
plaintext attack, in which 128 or even less plain-images are
created. First, in Sec. 3.5.1 some mathematical devices are
introduced. Next, in Sec. 3.5.2 the steps used to recover sub-
keys {Ki mod 128}10

i=4 are described in detail. Finally some
experimental results are given in Sec. 3.5.3 validate the pro-
posed attacks.

3.5.1. Preliminaries
First, we prove some useful properties related to the com-

posite functions Ei(x). These properties are essential for the
attack to be introduced below in this subsection.

Theorem 1. Let F(x) = G2m+1 ◦ · · · ◦ G1(x) be a compos-
ite function defined over {0, . . . , 2n − 1}, where m, n ∈ Z+,
G2i(x) = x⊕αi for i = 1 ∼ m, G2i+1(x) = (x + βi) mod 2n for
i = 0 ∼ m and αi, βi ∈ {0, . . . , 2n − 1}. If F(x) = x ⊕ γ for
some γ ∈ {0, . . . , 2n − 1}, then γ ≡

⊕m
i=1 αi (mod 2n−1).

Proof. Let x =
∑n−1

j=0 x j ·2 j, αi =
∑n−1

j=0 αi, j ·2 j, βi =
∑n−1

j=0 βi, j ·

2 j, and F(x) =
∑n−1

j=0 F j(x) · 2 j.
The proof is based on the following fact.
If F verifies F(x) = x ⊕ γ for some γ =

∑n−1
j=0 γ j · 2 j, then,

for any j = 0 ∼ n − 1, the result of the computation of F j(x)
depends only on the value of the j-th bit of x, that is, x j.
In other words, the value of F j(x) is independent of F j∗ if
j∗ , j.

We are going to check the computation of F(x) starting
from the least significant bit. To get the value of F0(x), we
only need to calculate F̃0(x) = (· · · ((x0 +β0,0)⊕α1,0 +β1,0)⊕
· · · ⊕ αm,0 + βm,0), and then get the least significant bit of
F̃0(x).2 Note that the carry bit generated in each + operation
influences only the most significant bits F1(x) ∼ Fn−1(x),
and for the least significant bit of F̃0(x) the operation + is
equivalent to ⊕. Therefore, we immediately get F0(x) = x0⊕

β0,0 ⊕ α1,0 ⊕ β1,0 · · · ⊕ αm,0 ⊕ βm,0 = x0 ⊕ (α1,0 ⊕ · · · ⊕ αm,0) ⊕
(β0,0 ⊕ · · · ⊕ βm,0).

Then, let us study how the carry bits generated by + op-
erations in the calculation on F̃0(x) affect the value of F1(x),
as an effort to determine the value of β0,0 ⊕ · · · ⊕ βm,0. Note
the following two facts about carry bits:

• when βi,0 = 0, no carry bit appears for any value of x0;

• when βi,0 = 1, a carry bit appears when x0 = 0 or 1 after
the operation +βi,0, and only for one possible value of
x0 there will be a carry bit3.

Denoting the number of βi,0 whose value equals to 1 by N0,
the above facts mean that N0 can be obtained by counting
carry bits when x0 = 0 and when x0 = 1. That is, N0 =∑

x0∈{0,1} N0(x0) = N0(0) + N0(1), where N0(x0) denotes the
number of carry bits generated in the calculation process on
F̃0(x) with respect to x0.

The independence of F1(x) of x0 means that N0(0) =

N0(1), and as a result N0 = N0(0) + N0(1) = 2N0(0) is
an even number. This immediately leads to the conclusion
β0,0 ⊕ · · · ⊕ βm,0 = 0. Thus, F0(x) = x0 ⊕ (α1,0 ⊕ · · · ⊕ αm,0).

Next, consider F1(x). In this case, F̃1(x) = (· · · ((x1+β0,1+

CB0(x0))⊕α1,1 +β1,1 +CB1(x0))⊕· · ·⊕αm,1 +βm,1 +CBm(x0)),
where CBi(x0) denotes the bit carrying from F̃0(x) during the
i-th + operation (which is equal to 0 when a carry bit does
not exist). Then, due to the same reason as in the case of
F0(x), we have F1(x) = x1 ⊕ (α1,1 ⊕ · · · ⊕ αm,1) ⊕ (β0,1 ⊕

CB0(x0) · · · ⊕ βm,1 ⊕ CBm(x0)). Observing the expression of
F̃1(x), we can easily note the following facts:

• when βi,1 = CBi(x0) = 0: no carry bit appears for any
value of x1;

• when βi,1 = CBi(x0) = 1: one carry bit always appears
for any value of x1;

• when βi,1 = 0, CBi(x0) = 1, or when βi,1 = 1, CBi(x0) =

0: one carry bit appears for only one value of x1.

2Here, + mod 2n is replaced by + in the calculation process, because
mod2n does not affect any bit of F(x).

3To be more precise, if there is a carry bit when x0 = 0, then there will
not be a carry bit when x0 = 1 and vice versa.
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Table 4: The indices of 9 pairs of identical blocks in the cipher-image corresponding to the plain-image of fixed value zero.
k0 1941 2015 3023 4159 5061 5507 9166 9655 11090
k1 3161 7083 15255 9163 12113 16355 12454 12259 13102

As a summary, only one carry bit may be generated from a
pair of βi,1 and CBi(x0), which means that one can consider
βi,1 + CBi(x0) as a single value β∗i,1(x0).

Denoting the number of β∗i,1 whose value equals to
1 by N1(x0), the above facts imply that N1(x0) =∑

x1∈{0,1} N1(x0, x1) = N1(x0, 0) + N1(x0, 1), where N1(x0, x1)
means the number of carry bits generated in the calcula-
tion process on F̃1(x) with respect to x0 and x1. Then, be-
cause the value of F2(x) is independent of x1, we can get
N1(x0, 0) = N1(x0, 1) and N1(x0) is even. This means that
β0,1 ⊕ CB0(x0) · · · ⊕ βm,1 ⊕ CBm(x0) = 0 and so F1(x) =

x1 ⊕ (α1,1 ⊕ · · · ⊕ αm,1).
The above deduction can be simply applied to other bits

F2(x) ∼ Fn−1(x). As a result, we get Fi(x) = xi ⊕ (α1,i ⊕ · · · ⊕

αm,i), ∀i = 0 ∼ n − 1.
Finally, combining all the cases together, we have the

result that F(x) ≡ x ⊕ (α1 ⊕ · · · ⊕ αm) (mod 2n−1). This
means that γ ≡

⊕m
i=1 αi (mod 2n−1) and the theorem is thus

proved.

Corollary 1. For the image encryption scheme under study,
if there exists γ ∈ {0, . . . , 255} such that Ei(x) = x ⊕ γ, then
γ ∈

{⊕
i αi,

(⊕
i αi

)
⊕ 128

}
.

Proof. Consider the four classes of Ei(x) as shown in
Sec. 3.1.

1. Ei(x) = ((· · · ((x u β1) ⊕ α1) · · · ) ⊕ αd(len−1)/2e) u
βdlen/2e: From Theorem 1, one has γ ∈{⊕d(len−1)/2e

i=1 αi,
(⊕d(len−1)/2e

i=1 αi

)
⊕ 128

}
.

2. Ei(x) = ((· · · ((x u β1) ⊕ α1) · · · ) u βd(len−1)/2e) ⊕
αdlen/2e: From Theorem 1, one has αdlen/2e ⊕ γ ∈{⊕d(len−1)/2e

i=1 αi,
(⊕d(len−1)/2e

i=1 αi

)
⊕ 128

}
, which means

γ ∈
{⊕dlen/2e

i=1 αi,
(⊕dlen/2e

i=1 αi

)
⊕ 128

}
.

3. Ei(x) = ((· · · ((x⊕α1)u β1) · · · )⊕αd(len−1)/2e)u βdlen/2e:
Assuming that x′ = x⊕α1, we have Ei(x) = x⊕γ = x′⊕
(α1 ⊕ γ). Then, applying Theorem 1 on x′, we can eas-
ily get α1⊕γ ∈

{⊕d(len−1)/2e
i=2 αi,

(⊕d(len−1)/2e
i=2 αi

)
⊕ 128

}
,

thus γ ∈
{⊕d(len−1)/2e

i=1 αi,
(⊕d(len−1)/2e

i=1 αi

)
⊕ 128

}
.

4. Ei(x) = ((· · · ((x⊕α1)u β1) · · · )u βd(len−1)/2e)⊕αdlen/2e:
Using a similar process to the above class, one gets γ ∈{⊕dlen/2e

i=1 αi,
(⊕dlen/2e

i=1 αi

)
⊕ 128

}
.

The above four conditions together complete the proof of the
corollary.

From Corollary 1 and Eq. (12), we get the following re-
sult:

γ mod 128 =
⊕

i
αi mod 128

∈ A∗ = {x mod 128 | x ∈ A ∪ {0}}. (19)

Assuming that a∗0 = a0 mod 128 and a∗1 = a1 mod 128,
we have

A∗ = {0, 127, a∗0, a
∗
1, a
∗
0⊕127, a∗1⊕127, a∗0⊕a∗1, a

∗
0⊕a∗1⊕127}.

(20)

Observing the above equation, we can easily notice the fol-
lowing facts:

1. when a∗0 = a∗1 ∈ {0, 127}, #(A∗) = 2;
2. when a∗0 ∈ {0, 127} and a∗1 < {0, 127} (or a∗1 ∈ {0, 127}

and a∗0 < {0, 127}), #(A∗) = 4;
3. when a∗0, a

∗
1 < {0, 127} and a∗0⊕a∗1 ∈ {0, 127}, #(A∗) = 4;

4. when a∗0, a
∗
1 < {0, 127} and a∗0⊕a∗1 < {0, 127}, #(A∗) = 8.

Apparently, if we can get the set A∗, it will be possible to get
the values of a∗0 and a∗1. The complexity of such a process is
summarized as follows:

1. when #(A∗) = 2, there are only 2 possible values of
(a∗0, a

∗
1): (0,127) or (127,0);

2. when #(A∗) = 4, assuming that A∗ = {0, 127, a, a ⊕
127}, there are 8 possible values of (a∗0, a

∗
1): (0, a),

(0, a⊕ 127), (127, a), (127, a⊕ 127), (a, a), (a, a⊕ 127),
(a ⊕ 127, a), (a ⊕ 127, a ⊕ 127);

3. when #(A∗) = 8, there are 24 possible values of (a∗0, a
∗
1):

a∗0 ∈ A
∗/{0, 127} and a∗1 ∈ A

∗/{0, 127, a∗0, a
∗
0 ⊕ 127}.

One can see that in any case the complexity is much smaller
than 27 × 27 = 214, the complexity of exhaustively searching
all the bits of a∗0 and a∗1. This idea is the key for the chosen-
plaintext attack proposed in this subsection.

Next, let us find out how to distinguish XOR-equivalent
encryption functions. According to Proposition 3, one can
achieve such a goal by checking the following 255 equali-
ties: F(x1)⊕ F(x1 ⊕ i) = i, where x1 is an arbitrary integer in
{0, . . . , 255} and i = 1 ∼ 255.

Proposition 3. Let F(x) be a function defined over
{0, . . . , 2n − 1}, where n ∈ Z+. Then, F(x) = x ⊕ γ for
any x ∈ {0, . . . , 2n − 1} if and only if the following re-
quirement holds: there exists x1 ∈ {0, . . . , 2n − 1} such that
F(x1) ⊕ F(x1 ⊕ i) = i,∀i ∈ {1, . . . , 2n − 1}.
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Proof. The “only if” part is obvious. Now, let us prove the
“if” part. Note that F(x1) ⊕ F(x1 ⊕ i) = i also holds when
i = 0. So, when i = x ⊕ x1, we have F(x1 ⊕ x ⊕ x1) =

F(x) = F(x1) ⊕ x ⊕ x1 = x ⊕ (x1 ⊕ F(x1)). When i = x1,
we have F(x1) ⊕ F(x1 ⊕ x1) = x1 and then get x1 ⊕ F(x1) =

F(0). Therefore, F(x) = x ⊕ F(0), where F(0) = γ is a fixed
value.

For the encryption functions Ei(x) composed of ⊕ and u,
the above result can be further simplified. From Proposi-
tion 4, it is enough to check the following 127 equalities:
F(x1) ⊕ F(x1 ⊕ d) = d, where x1 is an arbitrary integer in
{0, . . . , 255} and d ∈ {1, · · · , 127}.

Proposition 4. Consider any encryption function Ei(x) (i =

1 ∼ 3) defined in Eqs. (4)∼(6). If there exists x1 ∈

{0, . . . , 255} such that Ei(x1) ⊕ Ei(x1 ⊕ d) = d, ∀d ∈

{1, . . . , 127}, then Ei(x) = x ⊕ Ei(0).

Proof. From Fact 3, one has Ei(x1)⊕Ei(x1⊕128) = 128 and
Ei(x1) ⊕ Ei(x1 ⊕ j ⊕ 128) = j ⊕ 128 for j = 1 ∼ 127. This
means that Ei(x1) ⊕ Ei(x1 ⊕ j) = j holds ∀ j ∈ {1, . . . , 255}.
Then, from Proposition 3, Ei(x) = x ⊕ Ei(0).

Next, let us investigate the probability that a given encryp-
tion Ei(x) is equivalent to x ⊕ γ. Again, because the theoret-
ical analysis is quite difficult, we carried out a number of
random experiments with a 512 × 512 plain-image for dif-
ferent values of K10, where K1 ∼ K9 were generated at ran-
dom. Generally speaking, this probability becomes smaller
when K10 increases, but it fluctuates in a wide range for dif-
ferent values of K1 · · ·K9. Two typical examples are shown
in Fig. 6, in which the XOR-equivalent encryption functions
involving the second kind of encryption subfunctions (i.e.,
functions of the form x u β) and those not involving these
encryption subfunctions were counted separately.

3.5.2. Description of the attack
Based on the above discussions, a chosen-plaintext attack

can be developed by choosing 128 plain-images {Il}
127
l=0 of

size M × N as follows: Il = I0 ⊕ l,4 where I0 can be freely
chosen. To facilitate the following description about the at-
tack, denote the encryption function Ei(x) corresponding to
the j-th pixel of the k-th block by Ei,k, j(x), and the parame-
ters a0, a1 corresponding to the k-th block by a0,i,k, a1,i,k, re-
spectively. Similarly, for each updated subkey K j, the value
corresponding to the k-th block is denoted by K j,k. Then,
according to the discussion in Sec. 3.2.6, we have the fol-
lowing:

4In this paper, we use Il = I0 ⊕ l to denote the following facts: ∀i = 0 ∼
MN − 1, Rl(i) = R0(i) ⊕ l, Gl(i) = G0(i) ⊕ l and Bl(i) = B0(i) ⊕ l.
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Figure 6: The number of pixels satisfying E1(x) = x ⊕ γ under
different values of K10: a) K1 ∼ K9 = “8DB87A1613D75ADF2D”;
b) K1 ∼ K9 = “2A84BCF35 D70664347”.

Fact 4. Given two XOR-equivalent encryption functions
Ei,k1, j1 (x) = x ⊕ γk1, j1 and Ei,k2, j2 (x) = x ⊕ γk2, j2 , if k1 ≡ k2
(mod T/2), then γk1 ≡ γk2 (mod 128).

The proposed chosen-plaintext attack works in the follow-
ing steps.

Step 1 – Finding XOR-equivalent encryption functions
For each color channel, scan the 128 plain-images to find

encryption functions Ei,k, j that are equivalent to x⊕γk, where
γk = Ei,k, j(0) (according to Proposition 4). Record all the
XOR-equivalent encryption functions corresponding to each
color channel in an S i × 2 matrix Ai, where S i denotes the
number of blocks containing such encryption functions. The
first and the second rows of Ai contain the block indices and
the corresponding values of γk, respectively. Here, note that
all XOR-equivalent encryptions in the same block are iden-
tical, since they share the same parameters a0,i,k and a1,i,k.

The output of this step is composed of three matrices
{Ai}1≤i≤3, which require

∑3
i=1 2S i memory units.

Step 2 – Estimating A∗i,k (for each guessed value of K10)
Exhaustively search the value of K10 and get the pe-

riod T = 256/ gcd(K10, 256). Then, for each matrix Ai,
generate the following T/2 sets:

{
Ãi,k

}T/2−1

k=0
, where Ãi,k =

{Ai(s, 2) mod 128|s ≡ k (mod T/2)}. Next, expand each
Ãi,k to construct

Ã∗i,k =

{
x1 ⊕ x2 ⊕ x3

∣∣∣∣ x1, x2, x3 ∈ Ãi,k ∪ {0, 127}
}
,

which is an approximation of the following set: A∗i,k =

{0, 127, a∗0,i,k, a
∗
1,i,k, a

∗
0,i,k⊕127, a∗1,i,k⊕127, a∗0,i,k⊕a∗1,i,k, a

∗
0,i,k⊕

a∗1,i,k ⊕ 127}, where a∗0,i,k = (a0,i,0 + k · K10) mod 128 and
a∗1,i,k = (a1,i,0 + k · K10) mod 128. Note that a0,i,0 and a1,i,0
are the two subkeys corresponding to the color channel in
question.
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Then, if there exists k ∈ {0, · · · ,T/2 − 1} such that
#
(
Ã∗i,k

)
< {2, 4, 8}, one can immediately conclude that the

current value of K10 is wrong and then remove it from the
list of candidate values for K10.

The output of this step includes a list of N candidate val-
ues of K10 and at most 3T/2 sets {Ãi,k} 1≤i≤3

0≤k≤T/2−1
for each can-

didate value of K10. The total number of memory units re-
quired is not greater than 6 × 3NT/2 = 9NT ≤ 12 × 256 ×
128 = 294912 ≈ 218.2, which is practical for a PC to store
the intermediate data. Here, note that 0 and 127 are always
in A∗, so they do not need to be kept.

Step 3 – Determining {Ki mod 128}10
i=4

For each color channel, choosing the set Ã∗i,k0
of the

greatest size5, one can exhaustively search all possible
values of (a∗0,i,k0

, a∗1,i,k0
), i.e., search all possible values of

a∗0,i,0 = (a∗0,i,k0
− k0 · K10) mod 128 and a∗1,i,0 = (a∗1,i,k0

−

k0 · K10) mod 128. Note that a∗0,1,0 = K4 mod 128 and
a∗1,1,0 = K7 mod 128 (red channel), a∗0,2,0 = K5 mod 128 and
a∗1,2,0 = K8 mod 128 (green channel), a∗0,3,0 = K6 mod 128
and a∗1,3,0 = K9 mod 128 (blue channel).

All the guessed values of (a∗0,i,0, a
∗
1,i,0) are verified by

employing the relationship between A∗i,k0
and other sets

{A∗i,k}k,k0 . If all possible values of (a∗0,i,0, a
∗
1,i,0) are elimi-

nated, the current value of K10 can also be eliminated. Note
that the other three values of a valid candidate (a∗0,i,0, a

∗
1,i,0 ⊕

128,K + 10 mod 128) = (u, v,w) will also pass the verifica-
tion process due to Fact 5 below: (u⊕127, v⊕127, 128−w),
(v, u,w), and (v ⊕ 127, u ⊕ 127, 128 − w).

Fact 5. Given x, a, c ∈ {0, · · · , 127}, x + ac ≡ (x ⊕ 127 +

(128 − a)c) ⊕ 127 (mod 128).

The output of this step is a list of candidate values of

K∗ = (K4 mod 128, · · · ,K9 mod 128,K10 mod 128).

In the worst case, the number of all possible values is N ×
243 ≤ 256 × 243 = 3538944 ≈ 221.6, which is still much
smaller than the number of all possible values of the subkey
K∗: 26×7+8 = 250. In the best case, the number of candidate
values is only 2 × 23 = 16 (according to Fact 5).

3.5.3. Experimental Results
To validate the feasibility of the above attack, we have

carried out a real attack with a randomly-generated secret

5The greatest size may be 8, 4 or 2. When it is 4 or 2, Ã∗i,k0
may not be a

good estimation of A∗i,k0
and as a result cannot be used to support the attack.

This case often occurs when K10 is relatively large, thus leading to a very
small occurrence probability of XOR-equivalent encryption functions (see
Fig. 6).

key K = “2A84BCF25E6A664E4C41”. As a result, we got
the following output from Step 2:

K10 ∈ {1, 3, · · · , 255},
A∗0,6 = {0, 127, 108, 20, 7, 107, 120, 108},
A∗0,28 = {0, 127, 115, 125, 14, 0, 12, 113},
A∗0,79 = {0, 127, 116, 117, 1, 10, 11, 126},
A∗1,19 = {0, 127, 16, 33, 49, 111, 94, 78},
A∗1,28 = {0, 127, 106, 122, 21, 5, 111, 16},
A∗2,7 = {0, 127, 19, 78, 108, 49, 34, 93},
A∗2,18 = {0, 127, 34, 93, 3, 33, 124, 94}.

The final output of the attack (i.e., the output of Step 3) is
shown in Table 5.

Table 5: The final output of a real attack, where the underlined data
form the real values of {Ki mod 128}10

i=4.

K10 mod 128
{Ki mod 128}9i=4

i = 4 i = 7 i = 5 i = 8 i = 6 i = 9

63

25 13
33 49 51 21

21 51

49 33 51 21
21 51

13 25
33 49 51 21

21 51

49 33 51 21
21 51

65

102 114
94 78 76 106

106 76

78 94 76 106
106 76

114 102
94 78 76 106

106 76

78 94 76 106
106 76

Finally, note that one may also be able to distinguish some
XOR-equivalent encryption functions even with less than
128 chosen plain-images. To investigate such a possibility,
we have carried out some experiments by choosing the fol-
lowing (n + 1) < 128 plain-images instead: {Il}

n
l=0, where

Il = I0 ⊕ l for any l > 0. Let N(n) be the number of XOR-
equivalent encryption functions detected with the above n+1
chosen plain-images. The ratio r(n) = N(127)/N(n) gives an
estimation of the probability that a detected XOR-equivalent
encryption function is real. For three randomly-generated
keys, the values of r(n) with respect to different values of n
are shown in Fig. 7, from which one can see that the value
of r(n) always increases significantly when n increases from
2i − 1 to 2i (i = 1 ∼ 6). We also carried out experiments
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for other random keys, and found out that this fact holds
for most of them. According to this experimental result, we
can choose the following 13 plain-images to minimize the
number of chosen plaintexts: I0, I1 = I0 ⊕ 1, I2 = I0 ⊕ 2,
I3 = I0 ⊕ 3, I4 = I0 ⊕ 4, I5 = I0 ⊕ 7, I6 = I0 ⊕ 8, I7 = I0 ⊕ 15,
I8 = I0 ⊕ 16, I9 = I0 ⊕ 31, I10 = I0 ⊕ 32, I11 = I0 ⊕ 63
and I12 = I0 ⊕ 64. Then, for 1,000 randomly-generated se-
cret keys, our experiments show that the average value of
r∗ = N(127)/N∗ is about 0.825, where N∗ denotes the num-
ber of detected XOR-equivalent encryption functions with
the 13 chosen plain-images. Note that the value of r∗ is not
accurate when N∗ is too small. If only those keys corre-
sponding to N∗ ≥ 100 are considered, the average value of
r∗ increases to about 0.9234. If only those corresponding to
N(n) ≥ 1000 are counted, the average value of r∗ becomes
about 0.9826. In practice, one may have to use more than
13 chosen plain-images to run the proposed attack, but it is
expected that O(20) chosen plain-images are enough in most
cases.

1  2 4 8 16 32 64 127
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1

n

Figure 7: The values of r(n) with respect to different values of n =

1 ∼ 127, where the three lines correspond to the results of three
randomly-generated keys.

3.6. Known-plaintext attack based on a masking image

According to the results shown in Fig. 6, we know that
many encryption functions are equivalent to XOR opera-
tions. Therefore, if we consider all the encryption func-
tions as XOR-equivalent ones, then a masking image can
be obtained by simply XORing a known plain-image and
the corresponding cipher-image pixel by pixel. By using
this masking image as an equivalent of the secret key to de-
crypt other cipher-images, all the pixels encrypted by real
XOR-equivalent encryption functions will be correctly re-
covered. If the number of such correctly-recovered pixels is
sufficiently large, some visual information about the plain-
images may be obtained. It is expected that this known-
plaintext attack can work well when K10 is relatively small.
Figure 8 shows two examples of this attack when K10 = 6
and 30, from which one can see that some important visual
information about the plain-image is revealed.

a) b)
Figure 8: The result of breaking a plain-image “Peppers” with
a masking image obtained when “Lenna” (Fig. 4a) is the known
plain-image: a) K = “8DB87A1613D75ADF2D06”; b) K =

“8DB87A1613D75ADF2D1E”.

4. Conclusion

In this paper, the security of a recently-proposed image
encryption scheme has been analyzed in detail. It is found
that there exists a number of invalid keys, weak keys and
partially equivalent keys, which reduce the size of the key
space. Some attacks to a number of subkeys have also been
developed: 1) given a chosen plain-image, a subkey K10 can
be guessed with a complexity less than 28; 2) part of the
key may be recovered with a chosen-plaintext attack using at
most 128 chosen plain-images. The scheme under study can
also be broken with only one known plain-image, when the
subkey K10 is small. In addition, some other insecure prob-
lems about the scheme have been discussed throughout. The
cryptanalysis presented in this paper shed some new light
on attacking other encryption schemes that are composed of
multi-round encryption functions, a relatively difficult but
important topic to be further investigated in the near future.
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