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Abstract The Euclidean hirerachies of openings satisfy Matheron semi-groups
law γλγµ = γmax(λ,µ), where λ is a size factor. One finds this law
when the γλ are adjunction openings by Steiner convex sets, i.e.
by Minkowski sums of segments. The conditions under which, in
Zn, the law remains valid, and the Steiner sets are convex, and
connected, are established.
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1. Matheron semi-groups and convexity

In the practice of morphological image processing, one often uses families of
mappings that depend on a positive factor λ which expresses a size. When
the mappings are idempotent, a convenient model for these hierarchies is
the semi-group introduced by G. Matheron [6] Ch. 7, as a Euclidean gran-
ulometry, where the γλ’s are openings such that

γλγµ = γmax(λ,µ) λ ≥ µ ≥ 0. (1)

As a matter of fact, this law is associated with many other idempotent
operators, such as the alternating sequential filters [13], or with the levelings
[14]. Now all these filters derive from the two basic types of the opening
by adjunction and the connected opening.

We propose to study here the discrete version of Matheron semi-groups
(1) for the openings by adjunction. It is known that in the Euclidean case,
these operators lie on convex structuring elements [6], which are the more
often obtained by Minkowski sum of segments in different directions. They
are then called Steiner compact sets (see Definition 1), and coincide in
R2 with the compact convex sets with a center of symmetry. Now in Zn

the Minkowski sum of two segments may be not convex, and symmetrical
convex sets may not be Steiner (Figure 4(a)). Must we renounce discrete
granulometries by adjunction, or deduce that convexity plays no role in
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digital Matheron semi-groups? Here is the first question we have to clear
up.

But it is not the only one. In vector spaces, compact convex sets are
equivalently defined by barycentres, or by intersection of half-spaces. This
is no longer true in Zn (Figure 4(a)). But what can mean “a straight
line segment”, or “a half-space”, in Zn? Must we choose among several
definitions? Are they definitions for which both convexities are the same?
If so, do they lead to nice hierarchies? On the other hand, what about
connectivity? In Rn, but not in Zn, convex sets are always connected
(Figure 4(a)). Is it a handicap?

In digital geometry, one may either consider the module Zn as a part of
the vector space Rn, or the latter as a possible generalization of module Zn.
In our case, since we deal with structuring elements, i.e., with (necessarily
discrete) actions on the objects and not with the objects themselves, the
Zn framework turns out to be the convenient one.

2. Reminders

Symbol L indicates a complete lattice, whose elements are denoted by cap-
ital letters. When L is of P(E) type, the elements of E are given by lower
case letters. Let L admit a class S of sup-generators, and let {δλ} , λ ≥ 0 be
a family of dilations on L, of adjoint erosions {ελ}. It is known [13,20] that
the family of the openings by adjunction {γλ = δλελ} , λ ≥ 0, then forms a
granulometry if and only if we have for all b ∈ S that

λ ≥ µ ⇒ δλ(b) = γµδλ(b). (2)

In case of P(Rn), the families of homothetic convex sets are essential [6],
because

1. the homothetic version λB of the compact set B is open by µB for all
λ ≥ µ if and only if B is convex;

2. a family {Bλ, λ ≥ 0}, forms a continuous additive semi-group if and
only if Bλ is homothetic of ratio λ of the compact convex set B

Bλ ⊕Bµ = Bλ+µ , λ, µ ≥ 0 ⇔ Bλ = λB, Bµ = µB, B convex.
(3)

The link between convexity and granulometry by adjunction becomes
clear, as applying Equation 2 to Euclidean granulometries, and demanding,
in addition, homothetic structuring elements, i.e., Bλ = λB, yields neces-
sarily to compact convex B′s. In other words, for a Euclidean granulometry,
the convexity assumption and that of homothetics are equivalent. However,
if we relax the magnification assumption, then the δλ(b) do not need to be
convex, nor even connected.

Among all Euclidean convex sets, the most attractive class turns out to
be the Steiner one ([6], sect.4.5).
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Definition 1. A compact set K ∈ K(Rn) is said to be Steiner if there
exists in K a sequence {Kn} ∈ K with K = LimKn and if for all n > 0, Kn

is Minkowski sum of segments centered at a same point. The Steiner class
is denoted by ST (Rn).

In R2, Steiner sets are nothing but the symmetrical convex compact ones
(rectangle, octagon, etc.) and their limits (discs, ellipses, etc.). In Rn, all
2D faces must be symmetrical convex [15]. The datum of a Steiner set K
is equivalent to that of a measure sK = sK(dα) on the unit sphere Ω, since

K = ⊕{sK(dα), α ∈ Ω}. (4)

For example, if K is a rectangle, then sK(dα) reduces to two Dirac measures
of orthogonal directions. Equation 4 has for an obvious corollary that the
directional measure exchanges arithmetic addition and Minkowski one, i.e.,
sK⊕K′ = sK + sK′ , hence

sK′ ≤ sK ⇒ sK	K′ = sK − sK′ ⇒ K is open by K ′. (5)

Consequently, every family of Steiner sets whose directional measures
increase generates a granulometry by adjunction.

3. The Zn module

Which ones of the previous results do remain when Rn is replaced by Zn?
The poorer structure of Zn is that of a module, where (integer) translation is
still defined, hence giving access to Minkowski operations. The homothetic
factors can only magnify, as they must be integer. Unlike integer translation,
which does not pose particular problems, linear equations become a true
stumbling block. However, a classical result, due to Bezout, makes precise
the existence conditions of solutions.

Proposition 1. Let (x1, x2..xn) be the coordinates of point x ∈ Zn. The
so called Bezout equation

∑n
1 aixi = 1 admits solutions in Znif and only if

the ai coefficients relatively prime.

The point of coordinates (a1, a2...an) is usually called Bezout vector.
When one solution −→u 0 Bezout equation −→a −→u = 1 is known, then the solu-
tions for an arbitrary second member c are given by

−→x = c−→u 0 + k1
−→w 1 + ...kn−1

−→w n−1 (6)

where the −→w 1, ...
−→w n−1 generate the sub-module A := { −→a −→x = 0} of dimen-

sion n− 1. Geometrically, Equation 6 defines a straight line in Z2, a plane
in Z3, etc. This geometric structure has the advantage of well scanning Zn.
One goes form the solutions of equation −→a −→x = c to those of −→a −→x = c + 1
by replacing −→x by −→x + −→u , where −→u is an arbitrary solution of Bezout
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Figure 1. This is a Steiner polyhedron (a), but not that (b).

Figure 2. An example of digital plane spanning by Bezout straight lines. Vector
(2,1) is a solution of Bezout equation 2x − 3y = 1, therefore the shifts of this
straight line by all multiples of vector (2,1) span integrally the plane.

equation (see Figure 2) so that, as c spans Z, every point of the space Zn

is met once and only once. This nice property is not an exclusivity of the
Bezout Straight lines: H. Talbot proved in his Phd thesis that the spanning
property is also satisfied by the Bresenham lines [19].

The hyperplanes of the family {
∑n

1 aixi = c, c ∈ Z} generate Bezout
half-spaces E(A, c) =

∑n
1 aixi ≤ c = ∪{H(A, r), r ≤ c}, which are nested

in each other as c increases.

4. Bezout straight lines and discrete Steiner sets

Since Rosenfeld’s pioneer paper [11], digital lines are the matter of an abun-
dant literature, as well as digital convexity. The reader is referred to the
survey by Eckardt [2], where at least five different ways for defining digital
convexity are distinguished. Most approaches aim to provide digital repre-
sentations of a Euclidean background, e.g., Rosenfeld for segments [11] or
Bresenham for straight lines. Other definitions, such as Reveillès straight
lines [10] are introduced in a purely digital framework. More recently, Melin
proposed a digital definition in the framework of Khalimsky topology [8].

Kiselman [5] starts from Reveillès digital Equation 11, but immediately
reorientates it toward the Euclidian world by making real the integers ai.
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However, the simplest, and above all the narrowest digital straight lines are
given by the multiples of Bezout vectors[12, 16]. They will be our starting
point.

Definition 2 (Bezout straight lines and segments). Each Bezout vector
ω = (ω1, .., ωn) defines the direction ω in Zn, the opposite direction −ω
having parameters (−ω1, ..,−ωn). We call a Bezout straight line D(ω), of
direction ω and going through the origin, the union of all integer multiples
of vector ω, namely D(ω) = {kω, k ∈ Z}. Similarly,the Bezout line of
direction ω going through point x is written

Dx(ω) = D(ω)⊕ x = {x + kω, k ∈ Z}. (7)

Every segment Lx(k, ω) of Dx(ω), of origin x and extremity x + kω, k ≥ 0,
consists in the sequence of the points

Lx(k, ω) = x ∪ {x + pω, p ∈ [0, k]}, (8)

its length is the number k + 1 of its points.

In the following, the Bezout line segments are just called“segment”. The
set Ω of all directions coincides with Bezout vectors, and corresponds to the
unit sphere of the Euclidean case. Note also that, from Equation 7, there
exists one and only one Bezout line going through a given point and with a
given direction. Minkowski operations for Bezout segments are character-
ized by the following theorem

Theorem 1. In P(Zn), for all segments Lx(k, ω) and Lx′(k′, ω), ω ∈ Ω,
x, x′ ∈ Zn, k, k′ ∈ N , we have that

1. the Minkowski sum Lx(k, ω) and Lx′(k′, ω) is the segment

Lx(k, ω)⊕ Lx′(k′, ω) = Lx+x′(k + k′, ω), (9)

2. the Minkowski difference Lx(k, ω) 	 Lx′(k′, ω) is Lx−x′(k − k′, ω) if
k > k′, {x− x′} if k = k′ and = ∅ if k < k′,

3. the opening of Lx(k, ω) by Lx′(k′, ω) is Segment Lx(k, ω) itself when
k ≥ k′ or the empty set when not.

Conversely, the first property is only satisfied by the Bezout segments,
and their periodic sub-sets, to the exclusion of the segments of any other
straight line with a finite thickness.

Proof. The three properties derive from Definition 2 in the same manner.
For the first one, for example, it suffices to write the Minkowski addition

Lx(k, ω)⊕Lx′(k′, ω) = {x+x′}∪{x+x′+(p+p′)ω, p ∈ [1, k], p ∈ [1, k′]}
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Figure 3. Decomposition of the naive Réveillès straight line D = {0 ≤ 3x−5y < 5}
into five Bezout lines.

to find Equation 9.
Conversely, suppose Equation 9 satisfied, and consider a set ∆∗ that

contains point x. If, as y and y′ span ∆∗ vector
−→
yy′ always keeps the

same direction, the latter can only be a multiple of a Bezout direction
ω, so that y and y′ describe a periodic sub-set ∆∗ of the Bezout line
∆x(ω). If not, put the origin x in a point of ∆∗ where both length direction
ω and thickness direction ω′ coexist. One can always find two segments
L0(k, ω) and L0(k′, ω′) in ∆∗. By dilating each of them by itself, and
iterating according to Equation 9, we see that ∆∗ is both indefinitely long
and thick.

In [10], Jean-Pierre Reveillès introduces a class of digital straight lines
of Z2 of variable thicknesses, by putting

D = {(x, y) : t0 ≤ ax + by < t + t0} a, b ∈ Z, (10)

where a and b are relatively prime. The term t0 corresponds to a shift
that can be taken equal to zero, and the term t to the thickness of D. In
particular, when t = max(| a |, | b |), line D is said to be “naive”. The
extension to hyperplanes of Zn is straightforward, one just has to replace
ax + by by

∑
aixi in Equation 10. We draw from the equivalence

0 ≤
∑

aixi < t ⇔ {
∑

aixi = s, 0 ≤ s < t}, (11)

that the hyperplanes of Equation 10 represent, for every sub-module A of
dimension n − 1, space slices Π(A, c, c′) = E(A, c′)\E(A, c), c′ ≥ c, which
are parallel to A. For example, Figure 3 depicts the decomposition of a
naive Reveillès line into a union of Bezout lines.

Definition 3 (Digital Steiner set). A set K ∈ K(Zn) is said to be digital
Steiner if it can be decomposed into a finite Minkowski sum of Bezout
segments centred at a same point.
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Denote by ST (Zn) the digital Steiner class. Theorem 1 implies that
the Euclidean properties Equations 4 and (5) remain true in Zn. Therefore
every family of Steiner sets of increasing directional measures generates a
granulometry by adjunction.

Clearly, the possible convexity of the Steiner sets did not play any role
in the above analysis, and this point answers the first question set in intro-
duction. We can however wonder how to link together convexity and digital
Steiner sets, what we will do now.

5. Digital convexity and Steiner class

5.1 Digital convexity

The two definitions of convexity, by barycentre or by intersection of half-
spaces, are no longer equivalent in Zn as they were in Rn (see Figure 4(c)):
we must choose between them. Indeed, the property of spanning of the space
leads us to start from the second definition [12], p.171, [17], p.100-101.

Definition 4 (Digital Convexity). A set X ⊆ Zn is said to be convex when
it is equal to the intersection of all Bezout half-spaces that contain it, i.e.,
when

X = ∩{E(A, c), c ∈ Z, A ∈ A}
where A is the set of all sub-modules of dimension n− 1 in Zn.

Given sub-module A, the smallest space slice Π(A, c, c′) parallel to A
and which contains X is called the supporting slice Π(X, A). We see that
X is convex if and only if it is obtained by intersecting its supporting slices.
This definition of the convexity implies the barycentre property since

Proposition 2. Every Bezout segment in Zn is convex. Moreover, if x, y
are two points of a digital convex set X, then every point z of the Bezout
segment [x, y] belongs to X.

Proof. We begin by the second part of the proposition. Let {H(ω, c), c ∈ Z}
be a family of hyperplanes that span the space, and let cx and cy be the
labels of the planes of two points x and y. The supporting slice Π(ω, x, y)
generated by the hyperplanes {H(A, c), c ∈ [ cx, cy]} contains point z [15].
As set X is the intersection of its supporting half-spaces, and as for each A
this intersection C(X/A) contains the slice Π(X, cx, cy), we can write

z ∈ ∩{Π(X, cx, cy)} ⊆ ∩{C(X/A), A ∈ A} = X.

On the other hand, the intersection of all Π(X, cx, cy) is nothing but
the segment [x, y]. Indeed, suppose that a point t ∈ ∩Π(X, cx, cy) does not
belong to [x, y]. For any family {H(A, c)} of hyperplanes {H(A, c)} parallel
to [x, y], there exists a sense of ordering such that the labels c satisfy the
conditions cx = cy < ct, i.e., [x, y] ∈ H(A, cx). But t /∈ H(A, cx), which
implies that t /∈ ∩Π(X, cx, cy), i.e., that t must belong to segment [x, y].
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Figure 4. (a) This Steiner polygon is not convex, and, if we complete by the
center of the cross, it becomes convex but is no longer Steiner; (b) convexity and
connectivity are two independent notions; (c) for each pair (x, y) among the trois
points, segment [x, y] lies in the set, though the latter is not convex.

5.2 Convexity of the digital Steiner sets

Unlike in the Euclidean case, in Zn the Minkowski sum of two segments of
different directions is not necessarily convex (see Figure 4(a)). As the Steiner
sets are built by means of such sums, the question arises to find under which
conditions a directional measure {kiωi, 1 ≤ i ≤ p} in Zn corresponds to a
convex Steiner set. We start from the following lemma:

Lemma 1. The Minkowski dilate of Reveillès hyper-plane Π = {0 ≤
∑

aixi

< t} by Bezout vector u = {ui} is itself a Reveillès hyper-plane if and only
if |

∑
aiui |≤ t + 1. Then it has for equation one of the two forms

Πu ∪Π = {0 ≤
∑

aixi <
∑

aiui + t} or {
∑

aiui ≤
∑

aixi < t}. (12)

Proof. The translate Πu of Π has for equation 0 ≤
∑

ai(xi − ui) < t, thus
it is the hyper-plane

∑
aiui ≤

∑
aixi < t +

∑
aiui. The union Πu ∪ Π

is still an hyper-plane if and only if the two sequences of integers [0, t] and
[
∑

aiui, t+
∑

aiui] are consecutive, i.e., when
∑

aiui ≤ t+1 or
∑

aiui+t ≥
−1, or again when|

∑
aiui |≤ t + 1, which result in Equation 12.

Proposition 3. The Steiner set X ⊆ Zn of directional measure {kiωi, 1 ≤
i ≤ p} is convex if and only if for all directions ωi the dilate Πi = X ⊕Di,
where Di is the Bezout straight line supporting Li, is an intersection of
Reveillès hyperplanes, or again if the sequence of dilations that generates X
is also a sequence of contiguous translations of Di.

The proof of Proposition 3 is given in [15].

Figure 5 illustrates the criterion by both an example and a counter-
example. Take for Lp vector (3, 2). In case (a), the translations of the line
2x−3y = 0 by vectors L1 and L2 of horizontal and vertical directions lead to
the lines 2x−3y = c, with c = {−3,−1, 0, 1, 2, 4}, which is not a contiguous
series, and also X is not convex. In case (b), segment L3 à 45 has been
added, which implies −4 ≤ c ≤ 4, and also that X becomes convex.
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Figure 5. (a) Non convex but connected Steiner set. (b) Convex and connected
Steiner set.

5.3 Connectivity of the digital Steiner sets

In Zn, convexity does not imply connectivity (see Figure 4), even for convex
Steiner sets (Figure 6(b)). However, in case of the usual arcwise connectiv-
ity, the conditions for the connectedness of a Steiner set can be found. With
all point x ∈ Zn associate the unit cube B(x) of centre x and whose points
of the boundary define the extremities of the elementary arcs of origin x
(e.g., the 8-connectivity in Z2). As every cube B(x), x ∈ Zn contains the
points which are just before and just after x in each direction of the axes,
the parallelepipeds parallel to the axes are connected. Then we can state
the following criterion

Proposition 4. Let C be the arcwise connection on P(Zn) generated by
the unit cubes B(x), x ∈ Zn. Consider a digital Steiner set X ⊆ Zn of
directional measures {ki} in the directions {ωi}, 1 ≤ i ≤ p, with n ≤ p, and
whose the n first directions are those of the axes of Zn. The set X is then
connected according to C if and only if for each j such that n < j ≤ p the
component ωj

i of direction ωj w.r.t. to axis ωi satisfies the inequality

kjω
j
i ≤ ki, 1 ≤ i ≤ n + 1, n < j ≤ p. (13)

Proof. Set X is written

X = L1(k1ω1)⊕ ..⊕ Li(kiωi)..⊕ Lp(kpωp) (14)

where Li is the vector of length ki in direction ωi. The dilate of origin
O by the n vectors

−−→
kiωi, 1 ≤ i ≤ n, along the directions of the axes is a

connected parallelepiped Π0. Consider one of the supplementary directions
ωj , n < j ≤ p. The inequality in (13) means that the extremity zj of the
segment of length ki in direction ωj belongs to the dilate Π0⊕B. As O ∈ Π0,
we have that zj ∈ Πzj therefore if zj ∈ Π0 then zj ∈ Π0∩Πzj and the union
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Figure 6. (a) The left set is open by the unit cross, but not by the right set, though
smaller than the unit cross. (b) An example of non connected convex Steiner set.

Π0 ∪Πzj
is connected. If zj ∈ (Π0 ⊕B)\Π0, then Π0 and Πzj

are adjacent,
and their union is still connected. By iterating the proof for all directions
ωj , n < j ≤ p we conclude that the Steiner set X is connected .

Conversely, suppose that X has several connected components, or
“grains”. As Π0 is connected, it is included in one of the grains X0 de
X. Then Equation 14 implies that in one of the supplementary directions
at least, j say, with n < j ≤ p, the translate of the origin by vector kjωj

belongs to a grain of X disjoint form X0, (if not, X would be a unique
grain), hence disjoint from Π0. Therefore, for label j, the inequalities (13)
are not satisfied.

6. Perpective vision and structuring function

There are various ways to relax digital translation invariance. The one we
develop in this section aims to describe the perspective mapping. We firstly
observe that in Z1 all Steiner openings are trivial on segments (i.e., suppress
them or leave them unchanged), and we want to preserve this property
under perspective changes. We shall proceed by reducing Z1 by elementary
removals. Start from an opening γ = δε, of extensive primitive δ, and which
is trivial on segments. Remove one arbitrary point from Z1, taken as the
origin, and and join together the two reduced half axes. The structuring
elements {δ(x), x ∈ Z1}, once modified, generate a new function δ∗, still
extensive and made of segments, according to the rules expressed in Figure 7,
namely:

Location of the
extremities of
δ(x) δ(x) δ∗(x∗) x∗

xn ≤ 0 {x1, ..., xn} {x1, ..., xn} x
x1 ≤ 0 < xn {x1, .., 0}{1, .., xn} {x1, .., 0}{0, ..xn−1} 0
0 < x1 {x1, ..., xn} {x1 − 1, ..., xn − 1} x− 1

(15)
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Figure 7. Bending of a structuring function δ by removal of the origin.

Consider now the action of opening γ∗ = δ∗ε∗ on a segment L ⊆ Z1 of
extremities y1, yp :

- when yp ≤ 0, then γ∗(L) = γ(L),
- when y1 ≤ 0 < yp, then, we have γ∗(L) = [γ(L ⊕ D)] 	 D, where D

stands for doublet {0, 1} centered at the origin,
- finally, when 0 < y1, then γ∗(L) = γ(L⊕ {1}).
In all cases, γ∗ leaves L unchanged, or removes it, so that we can state

the next proposition.

Proposition 5. Let δ : Z1 → P(Z1) an extensive structuring function δ,
with δ(x) ∈ ST (Z1), x ∈ Z1. The structuring function δ∗ defined by system
(15) is in turn extensive, with δ∗(x) ∈ ST (Z1), x ∈ Z1. Moreover, if the
opening by adjunction γ = δε is trivial for segments, then γ∗ = δ∗ε∗is also
trivial for segments.

The construction can be iterated, and serves when the deformations are
due to an oblique perspective (e.g., T.V camera watching an a road). The
space Z2 being indicated by two axes Ox and Oy (depth), one removes all
the more parallel lines to Ox since their y-ordinates increase. At the same
time, in the lines which are left, the translation invariant δ are reduced as
y increases.

7. Conclusion

It was shown that, in Zn, a Steiner class can be obtained uniquely when one
starts from Bezout straight lines (i.e., the narrowest digital lines), and that
the resulting sets generate granulometries but may be neither convex not
connected. However these two properties are reached when the Steiner class
satisfies Propositions 3 and 4. Most of the results proved for Zn extend to
the sphere and to the boundary of the discrete torus. The main new results
of the developed approach are given by Theorem 1, Propositions 3 and 4,
and by Propositions 2 and 5.
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