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 Motion databases have a strong potential to guide progress in the field of machine 

recognition and motion-based animation. Existing databases either have a very loose structure 

that do not sample the domain according to any controlled methodology or too few action 

samples which limits their potential to quantitatively evaluate the performance of motion-based 

techniques. The controlled sampling of the motor domain in the database may lead 

investigators to identify the fundamental difficulties of motion cognition problems and allow the 

addressing of these issues in a more objective way. In this thesis, we describe the construction 

of our Human Motion Database using controlled sampling methods (parametric and cognitive 

sampling) to obtain the structure necessary for the quantitative evaluation of several motion-

based research problems. The Human Motion Database is organized into several components: 

the praxicon dataset, the cross-validation dataset, the generalization dataset, the 

compositionality dataset, and the interaction dataset. The main contributions of this thesis 

include (1) a survey of human motion databases describing data sources related to motion 

synthesis and analysis problems, (2) a sampling methodology that takes advantage of a 
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systematic controlled capture, denoted as cognitive sampling and parametric sampling, (3) a 

novel structured motion database organized into several datasets addressing a number of 

aspects in the motion domain, (4) a study of the design decisions needed to build a custom 

skeleton to generate joint angle data from marker data, and (5) a study of the motion capture 

technologies and the general optical motion capture workflow including capturing and post 

processing data. 
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CHAPTER 1 

INTRODUCTION 

Understanding the fundamentals of human motion involves the study of various 

aspects of this phenomenon. The same action can be performed in various manners. Human 

beings are equally adept at combining actions sequentially and concurrently to produce more 

complex activities. While actions require coordination between different body parts of the same 

subject, interactive actions require coordination among two or more subjects. The study of 

human motion must encompass the full repertoire of these variations. 

The advancement of motion capture technology in recent years has paved the way for 

good quality motion data which can be used to study human motion precisely. This technology 

has been used for the construction of benchmark databases with attributes relevant to several 

human motion problems. These standard databases should create an even measuring ground 

for the quantitative evaluation of methods by all researchers. However, the existing motion 

capture databases either have a very loose structure or too few action samples which limits 

their potential to quantitatively evaluate the performance of motion-based techniques. 

The correctness of an algorithm for motion synthesis or analysis is mostly assessed 

visually. This is very subjective in nature and does not provide a uniform method of evaluation. 

On the other hand, the performance of any algorithm can be quantitatively evaluated when they 

are tested with precise data providing sampling of all motion variation in a principled controlled 

fashion. 

Motion databases contain data samples used to train and test recognition and 

generation algorithms. Consequently, these databases are crucial for a proper evaluation of 

motion synthesis and analysis methods. For these reasons, motion databases have a strong 
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potential to guide progress in the field of machine recognition and motion-based animation. 

Existing databases do not sample the domain according to any structured controlled 

methodology or have very limited resources. The controlled sampling of the motor domain in the 

database may lead investigators to identify the fundamental difficulties of motion cognition 

problems and allow the addressing of these issues in a more objective way. Therefore, there is 

a need for motion databases built with a controlled methodology. In this thesis, we describe the 

construction of our Human Motion Database (HMD) using controlled sampling methods 

(parametric and cognitive sampling) to obtain the structure necessary for the quantitative 

evaluation of several motion-based research problems. 

The unique features of the Human Motion Database are: 

• The praxicon dataset, a corpus of human motion from a single subject with a wide 

range of more than 350 commonly performed actions. This organized vocabulary of usual 

actions (no specific domain) is designed to aid the training and testing phases of motion 

indexing, automatic animation, and action recognition problems. 

• The cross-validation dataset, a subset of 70 actions in the praxicon performed by a 

large set of 50 different subjects. The cross-validation dataset provides a range of skeletal 

structures distributed over height, weight, gender, and age of the subjects. 

• The generalization dataset, a set of representative actions where each action is 

performed several times according to different manners represented by specific parameters. For 

instance, the reach action is executed for all different discrete 3D target locations in front of the 

subject, the walk action is obtained for 8 different directions (N, NE, E, SE, S, SW, W, NW) 

while facing forward (i.e., N), and the sitting action is capture for a range of seat heights. 

• The compositionality dataset, a set of representative pairs of individual actions that 

may be composed sequentially or concurrently into a more complex action. 

• The interaction dataset, a praxicon with more than 140 actions where two different 

subjects interact with each other. 
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The main contributions of this thesis include (1) a survey of human motion databases 

describing data sources related to motion synthesis and analysis problems, (2) a sampling 

methodology that takes advantage of a systematic controlled capture, denoted as cognitive 

sampling and parametric sampling, (3) a novel structured motion database organized into 

several datasets addressing a number of aspects in the motion domain, (4) a study of the 

design decisions needed to build a custom skeleton to generate joint angle data from marker 

data, and (5) a study of the motion capture technologies and the general optical motion capture 

workflow including capturing and post processing data. 

The rest of this thesis is organized as follows.  

Chapter 2 describes related work with a survey of existing human motion databases. 

We discuss and review several motion capture databases, referred as mocap databases from 

here on, which have been made available for research purposes by educational institutions. In 

this discussion, we identify, analyze, and evaluate features and principles of these existing 

databases. We also consider the potential issues and limitations of these databases that lead to 

the creation of the Human Motion Database. The databases considered in this chapter 

demonstrate that such repositories of motion data are essential for the advancement in a 

number of fields. They are the inspiration and guidelines for creating a database to the 

advancement of automated animation, robotics, surveillance, human-machine interfaces, and 

gait recognition. 

Chapter 3 describes the equipment, setup, and human resources used for the capture 

of the Human Motion Database. First, we discuss different kinds of motion capture systems that 

can be used to record human motion. Next, the chapter describes the motion capture hardware 

used to create the HMD. Finally, the details on the anthropomorphic distribution of subjects in 

HMD are discussed. We present our sampling methodology and the organization of our 

database 
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In Chapter 4, we discuss the capture and post processing stages of the creation of the 

database. Capture is the process by which a phenomenon of interest is recorded and stored 

digitally. Motion capture primarily records the movements of a human or in some cases animals 

or birds to recreate the motion for various applications. This chapter goes through the various 

workflows for the capturing process such as camera calibration, volume calibration, subject 

calibration, and capture sessions. Next, the chapter discusses the various errors present in the 

captured raw data and the techniques by which the data was cleaned and post processed to 

finally obtain the joint angle data output.  

In chapter 5, we first discuss the challenges and design approach of constructing a 

skeleton from a marker set. We also describe the creation of the hierarchy of the skeletal 

structure. Finally, we discuss the theory, methods, and code used to implement our automatic 

skeleton building process. 

Chapter 6 introduces several problems in motion synthesis and analysis that may 

benefit of this database. It describes the structure of the Human Motion Database and the 

methodology developed to collect several aspects of human motion. First, we discuss and 

justify the need for a database like the Human Motion Database. Then, we introduce the goals 

and unique features in the database. Finally, we enumerate which areas, problems, and 

applications the database is targeted. 

Chapter 7 contains our conclusions where we mention what value the Human Motion 

Database brings to the research community. We go over the problems that it intends to solve 

and how it achieves its goals. 

 



 

5 
 

 
 

CHAPTER 2 

RELATED WORK 

In this chapter, we discuss and review different motion capture databases, referred as 

mocap databases from here on, which have been made available for research purposes by 

educational institutions. In this discussion, we identify, analyze, and evaluate features and 

principles of these existing databases. We also consider the potential issues and limitations of 

these databases that lead to the creation of the Human Motion Database. The databases 

considered in this chapter demonstrate that such repositories of motion data are essential for 

the advancement in a number of fields. They are the inspiration and guidelines for creating a 

database to the advancement of automated animation, robotics, surveillance, human-machine 

interfaces, and gait recognition. 

Motion capture databases have been constructed to serve as input for various research 

problems including gesture recognition [10], identification of motion properties [11], motion 

blending and synthesizing [12], pose estimation and tracking [14], interactive communication [5]. 

Some mocap databases were built as a general repository to address various problems [1]. 

The construction of a mocap database creates a level ground and standardizes the 

metric for the evaluation of many open problems so that the research community is able to 

compare different approaches. A widely used and accepted database is a necessary condition 

to determine and evaluate the state of the art in current research. The performance of different 

methods is evaluated using the same datasets as a benchmark and, consequently, a feasible 

comparison between several approaches is achieved. In this sense, the design and sampling 

method of the mocap database is an important characteristic to guide the progress of research 

efforts. 



 

6 
 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

   
(g) (h) (i) 

Figure 2.1: Existing Motion Databases: (a) CMU MoCap Database, (b) IEMOCAP Database, (c) 
HumanEva Database, (d) CMU Motion of Body Database, (e) HDM05 Motion Capture 

Database, (f) Biological Motion Library, (g) Korea University Gesture Database, (h) HID 
Database at Georgia Tech, (i) ICS Action Database 
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The media formats of motion databases vary from video data of the whole body 

performing various actions, video data of facial expressions, motion capture data of the whole 

body, and motion capture data of the face. Synchronous motion capture data and video data 

are also supplied as ground truth and test data pairings. 

2.1 Existing Mocap Databases 

2.1.1 CMU Mocap Database 

The CMU motion capture database [1] is one of the earliest and most widely used 

motion databases in the research community. It contains over 6 hours of full body motion 

capture data with 2605 different motion clips (or trials) organized in 6 categories and 23 

subcategories. The database is a large repository of many different kinds of motions divided into 

the following 6 major categories: (1) Human Interaction, (2) Interaction with Environment, (3) 

Locomotion, (4) Physical Activities & Sports, (5) Situations & Scenarios, and (6) Test Motions. 

The subcategories include classes such as two subjects, playground, path with obstacles, 

running, jumping, basketball, dance, boxing, pantomime, communication gestures and signals 

to name a few. 

The actions have been performed by 144 subjects (some subjects are the same 

person) which correspond to 144 sessions. The database has no formal structure or goal to 

address a particular problem and was built just to provide a free source of animation data for the 

research community. Most sessions have a different set of actions. For example, while one set 

may have a set of similar or slightly different walk actions, another set contains both walk and 

run actions, and another set may contain basketball moves. Even the same action performed 

across different sets may or may not have been performed in the same way. For example, a 

soccer ball can be kicked in many different ways and it depends on how the subject performs 

the motion. 

The CMU mocap database has been applied to many research problems in motion-

based animation and beyond. More recently, the database has been enhanced with a set of 
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kitchen activities. This kitchen dataset has 43 subjects performing 5 different sequences of 

actions to cook 5 different recipes. The mocap data in the kitchen dataset is also synchronized 

with video, audio, and other sensor data such as accelerometers and other internal 

measurement units. This section of the CMU mocap database contains well-defined actions as 

well as data of special cases of anomalies like sudden fire, smoke, or falling dishes. The 

definition of the action concerns how rigidly the action is executed in terms of subject training. 

Natural variation happens when action definition is left to the subject’s interpretation. 

The lack of structure of the action sampling brings variation which is both the advantage 

and disadvantage of this database. While variation is natural in human motion, actions which 

have the same meaning semantically (such as reach) can be very different when performed by 

different people as well as where the person is reaching. The action variation, lacking structure 

and proper parameterization, is a realistic sampling of the generalized nature of the corpus of 

human motion, where one action can be instantiated by many different motions or by a 

conjugation of a simpler set of motions. On the other hand, the use of such an unstructured 

database requires additional effort from the user to subjectively evaluate semantically similar 

motions by manually going through the motion frame by frame. For example, in the action 

recognition problem which concerns the identification of a particular query action such as run, it 

would be beneficial to collect well-defined motion data. A well-defined motion is performed 

according to precise performance guidelines such as accurate descriptions and demonstrations. 

If natural variation is required for that particular action, it is essential that there is an uniform 

distribution of the variations so that the learning algorithms do not introduce any bias in the 

classification process. Herein lies the limitaions of the CMU Mocap database as there is no 

uniformity in the sampling of variations or consistency across the same motion performed by 

differernt subjects. Hence, there is a need to create a subset of the database by manually 

evaluating every action for the purpose of any research problem. The HMD solves this problem 

by providing well-defined action sets and a uniform distribution of variation. 
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2.1.2 IEMOCAP Database 

The IEMOCAP database [5], collected at the University of South California, contains 

audio as well as motion capture data of the human face, head, and hands. They assume the 

emotion of a human being is expressed by a combination of multiple features or channels which 

include various properties of the speech, facial expressions, gestural movements of the hand, 

motion of the head and torso, and gaze. The IEMOCAP database was created to provide the 

first integrated datasets of the above mentioned channels which will assist in the study of 

modeling "expressive human communication". 

The IEMOCAP database is a well-structured database developed according to the 

requirements for the study of emotional expression. Initially, the design and construction of the 

database considered the limitations and scope of already existing datasets. Special importance 

was given to have a large corpus of emotions performed by many (10) trained subjects or 

experienced actors to get realistic data. The emotions expressed in the database include 

happiness, anger, sadness, frustration, neutral, disgust, fear, excitement, and surprise. The 

parameters taken into account in the designing of the database include scope (number and 

distribution of properties such as gender and variation of emotions), naturalness (sessions 

performed by actors), context (5 minute long dialogs to capture how one emotion can change 

from one to another), descriptors (supplying additional meta data to describe the performance in 

terms of parameters such as intensity, variability, and others). 

The systematic and planned nature of the database is one of its great advantages. 

However, the database fails with respect to the number of subjects involved. Only ten subjects 

are used over 5 dyadic sessions, where two subjects are communicating with each other. These 

sessions give very little scope of distribution of data over parameters such as gender and 

culture. Our HMD has a much larger distribution over 50 subjects and the scope of capturing 

motion variations is much higher which enables the learning and discovery of more robust 

methods. 
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2.1.3 HumanEva Database 

The HumanEva database [14] is an effort to provide data that will assist in pose 

estimation and tracking of human motion and establish quantitative evaluation metrics. The 

HumanEva database was motivated by the lack of quantitative analysis of pose estimation and 

tracking algorithms as a limitation in the current state-of-the-art algorithms dealing with the 

problem. The correctness of an algorithm was mostly assessed visually which was very 

subjective in nature and did not provide a uniform method of evaluation. The HumanEva 

database, in an effort to address this issue, provides ground truth data to enable the testing of 

pose estimation and tracking algorithms. For every video of a human figure performing some 

action, there is the corresponding motion capture data of the same performance. For any 

algorithm trying to estimate pose using various vision techniques, the result can be readily 

compared quantitatively to the true pose of the body. By using motion capture technology to 

provide the ground truth, the subjects were able to perform more flexible actions. In earlier 

databases, the actions were performed in a constrained way in order to provide the ground 

truth. For example, instead of having predefined restrictions on the performance of certain 

actions such as traversing a circular groove of known dimension on a table with the tip of the 

hand [9], the HumanEva database used a much more relaxed action definition. The HumanEva 

dataset provides real noise and real data with a degree of accuracy very close to synthetic data. 

The dataset also provides a standard evaluation metric which can be used to evaluate 

algorithms using the data. 

There are 6 actions performed by 4 subjects in the HumanEva dataset. There is a 

tradeoff between the realism of the video data and the accuracy of the ground truth mocap data. 

The subjects had to wear "natural clothing" in order to provide the "complexity posed by moving 

clothing". Motion capture with markers is typically done while wearing tight fitting bodysuits to 

minimize the effect of moving clothes. The use of realistic clothing leads to inaccurate motion 

capture data, as reconstructed motion data will contain artifacts such as movements which are 
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not part of the body but from the clothes. The HumanEva database has undergone "minimal 

post-processing". Errors in the motion capture process, such as missing or mislabeled markers, 

have been identified and not included in the quantitative evaluation. The limitation of the 

HumanEva database is the errors in the motion capture data provided as ground truth. On the 

other hand, our HMD contains motion capture data which has gone through extensive post 

processing to maintain its quality in terms of accuracy. 

2.1.4 CMU Motion of Body Database 

The CMU Motion of Body (MoBo) Database [8] was one of the first motion databases to 

advance research on human gait from a biometric point of view. Biometrics usually focuses on 

identification of human from their gait characteristics. The database contains four different styles 

of walk (slow, fast, inclined, and with a ball in the hand) performed on a treadmill by 25 subjects. 

The data is in the form of video data from six different cameras placed at six different locations 

around the subject. A disadvantage of this database is the fact that only images are available. 

The frame rate is 30 fps which is quite low when compared to motion capture databases 

currently available. However, being one of the first such databases, it contains a good variation 

and range in terms of number of subjects. Although there are only four motions captured, they 

are relevant to the problem of subject identification by gait. Our HMD has motion capture data 

with a much higher sampling rate recorded at 120 fps. Furthermore, besides gait, the HMD 

contains a set of 70 different actions performed by 50 different subjects. 

2.1.5 HDM05 Motion Capture Database 

The Hochschule der Medien (HDM05) database [12] provides data "that can be freely 

used for systematic research on motion analysis, synthesis and classification". The HDM05 

database was motivated by the lack of data for research in reusing and synthesizing mocap 

data. More specifically, motion data for editing, morphing, and blending. These problems require 

a large variety of motions to be able learn from, morph, and blend. The HM05 database is 

categorically divided into groups describing the general kind of motion such as locomotion, 
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grabbing, sports, and others. These categories are again subdivided into motion classes which 

describe one particular motion. The HDM05 dataset consists of around 100 different motion 

classes performed by 5 different actors. The trials were captured with detailed instruction on 

how to perform them. Each trial may contain more than one motion concatenated one after 

another. However, the trials are edited and divided into 1,457 smaller motion clips where each 

motion clip contains only one type of motion. These different motion clips combined amount to 

each motion class having between 10 and 50 realizations of the same action. These realizations 

may be slightly different to each other but semantically have the same representation. The 

multiple realizations of the same action are necessary to learn and classify the motion. 

The data is available in both animation asf/amc format as well as raw mocap data c3d 

format. The database has a good range of actions as well as variation of same action such as 

walking with different weights. The repeated actions of the same class are very good for 

training. The HDM05 database is very well structured where all the motions are well-defined 

(i.e., performed according to a certain script). One of the limitations of this database is the low 

number of 5 actors. This may lead to non scalable classifiers with respect to the size and shape 

of the skeleton or to the variation of execution over a broader range of subjects. Another 

limitation is the lack of symmetry of the actions performed by the actors. As mentioned above, 

each motion class has between 10 and 50 realizations or repetitions. However, not all subjects 

contribute equally to the class. For example, some classes such as shuffle do not have the 

performance from one subject altogether. The distribution of our HMD is much more uniform as 

50 subjects perform the same set of 70 actions. 

2.1.6 Biological Motion Library 

The Biological Motion library [11] has been built by the University of Glasgow, Scotland 

in order to analyze and identify motion properties or features such as gender, identity, and 

affects in the form of emotions (e.g., angry, sad, happy, neutral) in a motion. The Biological 

Motion Library was inspired by a lack of data to study the perception of human motion. This 
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dataset is structured and evenly distributed across the parameters mentioned above. There are 

15 male and 15 female actors who perform three types of actions: walk, a set of arm motions 

(knocking, throwing and lifting), and sequences of a walk performed between two arm actions. 

The walk actions and sequenced actions are performed twice while the arm actions have five 

iterations each. The whole set of actions is performed according to four different emotional 

affecters. One of the important aspects of capturing the data has been noted as not 

demonstrating the actions for the actors. On the other hand, the actors were asked to perform 

with the aid of a script describing the action as well as the emotion. This enables variability of 

performance which is natural between different people performing the same action and does not 

induce any bias in the performance. 

The commonly used motion capture formats such as bvh and asf/amc are not provided. 

The data is in the form of marker data which stores the point coordinates of individual markers 

in Character Studio csm motion capture file format.  Hence, only translational data is provided 

while rotational data can only be obtained by designing a skeleton model and developing a 

special purpose method. This limits the applicability of the library in other fields although the 

sequence data can be used as ground truth for synthetically generated data to be applied to 

motion-based animation problems. Since the goal of the library is to solely identify properties 

such as gender, identity, and affects, there was no need for a huge corpus of motions, rather it 

has the same motions performed with an even distribution of gender and affects over the 30 

subjects. The range of actions covered by the database is not enough for a motion library trying 

to encompass the whole gamut of human motion. Our HMD provides over 350 different actions 

that are distributed over gender, age, and size of skeleton. 

2.1.7 Korea University Gesture Database 

The Korea University Gesture (KUG) database [10] was created to assist human 

tracking and gesture recognition problems. It contains motion capture data along with 

synchronized video data from multiple stereoscopic cameras from different directions. The KUG 
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database contains 20 actors evenly distributed with respect to gender and between the ages of 

60 and 80 years old. The set of actions or gestures captured are divided into three parts: 14 

normal gestures (such as sitting on a chair, walking at a place, or other "human gestures in 

everyday life"), 10 abnormal gestures (different forms of falling such as forward, backward, or 

from a chair), and 30 command gestures (well-defined and commonly used in gesture based 

studies such as yes, no, pointing, and drawing numbers). The stereoscopic cameras provide 

noisy depth information while the motion capture data provides very accurate 3D data. 

The flexibility of this database lies in its ability to be utilized in multiple approaches. Both 

the mocap as well as the stereoscopic data can be used to aid gesture recognition in various 

approaches. The mocap data can also act as an evaluation by providing the ground truth for 

pose estimation. The KUG database was inspired by the lack of data concerning various 

gestures or actions performed specifically by a large number of subjects. Hence, the database 

aims at providing a structured action set performed by 20 actors. However, the selection of 

actions for the database is a drawback. There is no concrete reason given to choose the sets of 

actions in the normal and abnormal subsets. The choice of 14 normal actions which are 

generally performed in everyday life is very subjective and no explanation is given as to why 

certain actions were chosen over others. The abnormal dataset also contains actions involving 

fall which is an involuntary action and very difficult to replicate in a natural way. The actors are 

also wearing motion capture suits and not normal clothing. This is undesirable for approaches 

which use vision techniques on the video data as the actors are not wearing realistic clothing. 

Our HMD has a larger number of subjects and a wider variety of actions which are chosen using 

novel techniques to ensure a good distribution and capture variability of motion. 

2.1.8 Human Identification at Distance Database at Georgia Tech 

The Human Identification at Distance (HID) database [3] at Georgia Tech has been 

built with the primary goal of gait recognition. It has been applied in biometrics to identify a 

person from properties in the motion while doing a specific action. The database has 20 
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subjects performing walk motions. The motion capture data is supplemented with video data of 

the subjects performing the action walk. The video data includes video of the subject wearing 

the motion capture suit in the motion capture volume, video of the subject in normal clothing 

performing the same action indoors from two different angles, and video of the subject in normal 

clothing performing the same action outdoors captured from the side from two different 

distances. A number of 15 out of the 20 subjects captured have a complete set of data. A 

complete set consists of 6 trials each of the two angles of the outdoors video and 3 trials each 

of the two distances of the indoor video. 

The HID database can be used to learn the difference of execution of the same action 

by different subjects. However, the database is limited in terms of the range of actions. As the 

database contains only walk motion, the identifying unique properties or parameters that the 

database aims to detect will be a very small subset of the actual parameters that a subject can 

have. For example, a subject can have a very typical walk but a very unique run action or could 

be easily identified by how the person sits. Having a larger set of actions would definitely help 

the subject classes to be trained much better and have more knowledge of the subject. 

Variations of particular actions are just a subset of the HMD whose flexibility and scope is much 

greater than HID. 

2.1.9 ICS Action Database 

The ICS Action Database [2] at the University of Tokyo has been used for human action 

recognition and segmentation. The ICS database contains a set of 25 different actions with 

each action having five trials making a total of 125 trials of motion capture data in the bvh file 

format. The information about the subjects performing the actions is not given such as whether 

the 5 sets of 25 actions are performed by different subjects. 

The uniqueness of this database is that each trial is labeled frame by frame to belong to 

a set of actions. This way, every frame can belong to multiple actions. Each trial has a set of 25 

files corresponding to the 25 actions in the database. Each line in the file corresponds to a 
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particular frame and whether it is part of the action. For a pair of frame and action, there are 

three possible modes {1.0, 0.5, 0.0}, where 1.0 means true (i.e., the frame appears to be part of 

the said action), 0.0 means false (i.e., the frame appears not to be part of the said action), and 

0.5 is neutral (i.e., the frame cannot be adjudged whether it is part of the said action). For 

example, the action “get up” in the database starts with the subject lying down. Thus, the initial 

frames of “get up” motion file are labeled as 1.0 in the “get up_lying on back” label file and 

labeled as 0.0 in the “get up_get up” label file. The latter file shows true frames once the actual 

motion of get up starts and goes on till the subject is in a sitting position. Then, the “get 

up_sitting” file starts to show true frames. This frame by frame labeling enables very good 

action definition. Our HMD provides a much wider range of subjects and actions than this 

database. 

Table 2.1 shows the summarized information for all the mocap databases surveyed in 

this chapter. The table shows the information regarding the type of data, the categories of 

motion, the number of different  subjects, the advantages, and disadvantages of each database. 

2.2 Analysis and Features of the Human Motion Database 

From the databases discussed in the previous section, a set of guidelines can be 

formulated when creating a new database. At the basic level, a database can be semi-

structured or well-structured. Semi-structured databases, such as the widely popular CMU 

mocap database, do not have any specific goal but the sheer size of the database makes it 

possible to have different applications. However, the semi-structured nature (i.e., lack of 

consistency across the database with regards to distribution of motions and subjects) of a 

database requires some time to find a specific subset of actions for a particular experiment. 

Well-structured databases, like the HDM05 database, are created to cater to a specific need in 

the research community with a very specific goal. 
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Table 2.1. Summary of features of existing databases 
 

 

Database Goal Number 
of 

Subjects 

Number of 
Actions 

Additional 
Data 

Advantages Disadvantage
s 

CMU 
Mocap  

Repository to 
aid research in 
animation 

144 in 
general, 5 
in the 
kitchen 
DB 

23 broad 
categories 
in 
general,5 
sets in the 
kitchen DB 

Audio, video 
and 
accelerometers 
only in the 
kitchen DB 

Lots of 
actions 

Lack of 
structure 

IEMOCAP  Model 
expressive 
human 
communication 

10 actors 
total, 
mocap of 
only 5 
actors 

9 different 
emotions 

Audio Very well 
structured 

Low number of 
subjects 

HumanEva  Establish 
Quantitative 
Evaluation for 
pose estimation 
and human 
tracking 

4 6 Video Structured Lower Range 
of subjects and 
actions. Motion 
capture data 
has bad quality 

HDM05  Motion analysis 
synthesis and 
classification 

5 100 None Very well 
structured. 
Same motion 
performed in 
many ways 

Only 5 actors. 
Motion 
realizations not 
evenly 
distributed 
among actors 

Biological 
Motion 
Library 

Analyze and 
identify motion 
properties or 
features such 
as gender, 
identity, and 
affects in the 
form of 
emotions 

15 male 
and 15 
female 

4 basic 
actions in 4 
different 
emotions 
and 
sequences 
of the 4 
actions 

None Structured, 
actions 
performed 
over a range 
of 4 emotional 
affects 

Focus is on 
emotions and 
not on the 
range of 
actions 

KUG Gesture 
recognition and 
human tracking 

20 with 
age 
ranging 
from 60 
to 80 

54 Stereoscopic 
video data 

Well 
structured 
and defined 
range of 
motions 

No explanation 
why certain 
actions chosen 
over others. 
Video data is 
not ideal as 
subjects are 
wearing mocap 
suits 

HID Gait recognition 20 1 Video data from 
multiple angles 

High number 
of subjects 
with data in 
both video 
and mocap 
form 

Range of 
actions very 
low 

ICS 
 

Human action 
recognition and 
segmentation 

5 
Different 
sets 

25 Mocap data is 
labeled frame 
by frame  

Very well-
defined 
actions, 
particularly 
when there 
are multiple 
actions within 
a particular 
trial 

Not much 
information 
about subjects, 
30 fps data 
rate 
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The goal of the database determines the following important factors: 

• Type of motion data: full body motion capture, just motion capture of the face, a 

combination of both, or mocap associated with data such as video, audio, and others. 

• Range of motion: a wide range of motion or a limited number of motions performed in 

different ways or repeated in multiple realizations. 

• Range of subjects: wide distribution of features and more variation important or a small 

set of subjects. 

• Definition and execution of the motions: trained actors perform the actions or untrained 

subjects. 

• Output data: animation formats such as asf/amc and bvh or point light display format. 

These are important decisions that form the basis of the database design. Except the 

CMU mocap database, all the other databases have multiple subjects performing the same set 

of actions. The actions are always defined to varying degrees of detail and there is some rigidity 

on how the actions are executed. Repeated actions and multiple realizations are an essential 

part of learning actions and training algorithms. Most of the databases have proper annotation. 

In a case where there are multiple motions in the same file, the files are split up to contain only 

one type of motion. The only exception to this is some trials which must have multiple actions to 

satisfy one of the goals of the database: transition. Some databases put a lot of effort into 

assuring that the motion captured is real and natural and not overly scripted or simulated. There 

are databases that even use actors (who are trained to express emotions) to perform scenarios 

in the most realistic way. 

One first goal of our Human Motion Database (HMD) is to be a corpus of human 

motion. The Human Motion Database has been constructed to have the most complete set of 

human actions. Besides being a structured human motion corpus, the Human Motion Database 

is designed serve as a benchmark for motion-based animation problems such as motion 

indexing, retargeting, splicing, transitioning, and generalization. Although there exist data in 
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other databases which can be used to address these problems, none of them are structured 

specifically for these problems. The HMD makes addressing these above mentioned problems 

its secondary goal. This enables a structure which caters to the motion-based animation 

problems. The database has a large range of actions (over 350 actions from a single subject 

and 150 interactions between two subjects), a large range of subjects (50) each performing a 

set of 70 actions. Furthermore, the 50 actors are distributed over a range of anthropomorphic 

features such as gender, age, height, and weight. Each motion class is performed by every 

subject for at least 10 realizations. All the motion clips are carefully annotated with the actions 

clearly defined. The output of the data is the standard animation format of bvh. 

Ground truth data is provided for motion-based animation problems, such as 

synthesized motions in transitioning and splicing, where it is necessary to quantitatively 

evaluate the results. Additionally, HMD also provides data of interaction between two subjects 

with motion data of both humans in a synchronize manner. This enhances the corpus of human 

motion with actions which were previously not available in any other database. The whole 

structure of the database is explained in more detail in Chapter 6. 
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CHAPTER 3 

EQUIPMENT & SUBJECTS 

This chapter describes the equipment, setup, and human resources used for the 

capture of the Human Motion Database. First, we discuss different kinds of motion capture 

systems that can be used to record motion in Section 3.1. Next, the chapter discusses the 

motion capture hardware used to create the HMD in Section 3.2. Finally, Section 3.3 gives 

details of the anthropomorphic distribution of subjects in HMD. One of the primary goals of this 

chapter is to elaborate on how the Human Motion Database is structured according to the set of 

volunteers. 

3.1 Motion Capture Systems 

Motion Capture systems have initially been developed in history to study the human gait 

[13]. In recent years, it is been used extensively in the animation and gaming industry for the 

synthesis of more realistic, natural movements. Motion capture, as the term implies, is the 

digital recording of motion performed by a subject and then reconstructed in a 3-dimensional 

volume [9]. Various motion capture systems based on different technologies can be used to 

capture motion. The most prevalent ones commercially available use optical, magnetic, inertial, 

mechanical, time-of-flight or a combination of these principles. These systems are explained in 

the next section.  

3.1.1 Types of motion capture systems 

There are several types of motion capture systems, each one having its own 

advantages and disadvantages. These systems may also vary in terms of the data collected 

(i.e., points in space or joint angle data) depending on the type of application. Different research 
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areas such as psychology require point data, while animation research generally uses joint 

angle data. Next, we present a representative set of common types of motion capture systems. 

Optical Motion Capture systems use sensors to capture images, which are 

processed to track human motion. The basic principles of optical motion capture systems can 

be summarized as using multiple cameras to observe the same space, then using stereo 

matching techniques on the 2D images to estimate 3D features. Stereo matching techniques 

use the camera parameters and common tracking points in the images to correlate and 

calculate 3D information. Where most optical motion capture systems vary is the technique to 

identify the common tracking points across the images. Various camera sensor technologies 

can be employed to capture the images and correspondingly many techniques of computer 

vision and pattern recognition are used to take benefit of the unique raw data generated by the 

sensors. These systems are considered to have a high degree of accuracy and to give 

adequate freedom of movement. However, they suffer from occlusion (when an object is not 

observed because another object comes between the object and the sensors' line of sight) and 

the capture is restricted to a volumetric space where the sensors need to be installed and 

calibrated. Optical Motion capture systems can be can be placed in two broad classifications: 

• Marker based systems: These systems rely on detection of specific tracking points 

in the form of markers which are placed on the skin of the subject being captured. 

The markers used are system specific and they depend on what kind of technology 

the sensors use and on which techniques are used for detecting the markers. For 

example, a system using near infrared source of light may use retro-reflective 

markers (e.g., Vicon), while a sensor capturing frequencies in the visible range may 

use white patches on black clothing [9], and yet others will have active markers 

which emit a unique frequency such that sensors are tuned to capture only those 

frequencies. The techniques implemented to extract 3D motion information will be 

custom made to use the specific raw data each system generates. Generally, these 
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systems minimize the cost of pose estimation by focusing on filtering the marker 

data to build skeletal models of the subject. Marker-based capture is considered to 

be more accurate and to show real-time results. 

• Markerless systems: Markerless systems depend solely on vision based pose 

estimation techniques to build the model of the subject. These systems also 

requires at least two cameras, are more sensitive to error and require more strict 

capture conditions (like restrictions on the background of the capture space) than 

the marker based system.  

Magnetic Motion Capture systems work with magnetic field sensors coupled with 

magnetic field transmitters both having three orthogonally placed coils which serve as axes. The 

magnetic sensors are placed on the body, which detects low frequency magnetic fields from the 

transmitter. As the strength of a magnetic field is proportional with distance, the sensors can 

provide data that is used to calculate to the position and orientation of each sensor in a 3-

dimensional space. The human body does not affect magnetic fields and thus these systems do 

not have occlusion problems. However, the presence of any ferromagnetic substance in the 

capture space can induce error in the data. The transmitter also has a certain range within 

which the sensors can detect the magnetic fields generated by it. Another disadvantage is that 

the wires associated with the sensors on the body of the subject can restrict freedom of 

movement. 

Inertial motion capture systems use inertial sensors such as accelerometers and 

gyroscopes to calculate the body pose. Like markers of the optical motion systems, the sensors 

are put on the human body in specific locations according to a skeletal model. The sensors can 

detect parameters such as orientation, angular velocity, and angular acceleration which can be 

used to calculate the motion of the whole body figure by calculating the relative transformations 

between connected links in a skeletal model. These systems do not suffer from occlusion and 

can be used in a more flexible capture volume as long as the receivers are within range of the 
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sensors. However, the sensors are very sensitive to errors such as slight movement of the 

sensors on the skin. All the errors always add up leading to progressively worse quality data till 

a new calibration is performed. In practice, although it allows a subject to perform actions such 

as rolling on the ground (which is very difficult in optical motion systems due to occlusion), the 

quality of data is not good due to the high sensitivity of the sensors. Also the sensors require a 

power source to function which means carrying batteries on the subject while performing, which 

does affect the natural performance of an action. Thus, even if these systems give more 

flexibility of use, the overall quality of data is not as accurate as the optical systems. 

 Time of Flight systems use pulses from different wave sources (such as acoustic or 

infrared) to get the depth information of the scene using time of flight principles. A pulse 

generated from a source reflects back off objects and sensors can calculate the distance of 

these objects from the time it took for the pulse to come back. This way, a system can generate 

3-dimensional depth fields of the observed space. The data can then be used to track human 

movement. Time of flight cameras are sensors which perform in real-time. They require low 

processing power compared to stereoscopic systems and can provide a very high frame rate 

data. However, the current state-of-the-art suggests that using the depth data to get the human 

motion in the form of joint angles takes more processing power and generates at best 4-10 

frames per second [7]. Thus, time of flight real-time systems still cannot match other systems 

described above in terms of frame rate. Other problems include multiple time of flight cameras 

can cause interference and multiple reflections can cause false depth information. 

Mechanical systems fit an exoskeleton on the subject. The exoskeleton consists of 

articulated joints, which are controlled by the movement of the subject. Sensors such as 

goniometers are attached to the system that measures the joint angles of the articulated 

mechanical parts. These systems have no limit on capture volume and do not suffer from 

occlusion. However, the exoskeleton may either restrict the movement or alter the performance 

of the action. The accuracy of the captured data is considered to be less than other systems. 
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Hybrid systems use a combination of two or more technologies mentioned above to 

use the advantages of both systems as well as to compliment each others data quality. Such a 

system using ultra sonic time of flight and inertial motion sensors has been discussed in [15]. 

That system produces more accurate data than inertial systems by supplementing the data with 

time of flight data. It also provides good portability and can be used in everyday locations 

without the use of a capture volume. However, these are still emerging technology and no 

commercial solutions are available yet which uses such a configuration. 

3.1.2 Optical Motion Capture System 

As described in section 3.2.1, optical motion capture systems provide very accurate 

data and unrestricted freedom of movement for most human actions. However, they also suffer 

from problems such as occlusion and restricted capture volume. The intention of the Human 

Motion Database was to collect very high quality data in terms of accuracy. Marker-based 

optical systems provide accuracy better than any other type of existing motion capture system. 

On the other hand, occlusions cause an extra overhead of cleaning the data and restrict some 

actions such as rolling on the ground. However, most of these disadvantages can be overcome 

by capturing multiple takes to get the best possible take as the cost of capturing data is trivial 

compared to post processing data. 

3.2 Equipment 

The equipment used to construct the Human Motion Database is a Vicon optical motion 

capture system. It consists of near infrared cameras, base stations, a capture space and a 

desktop with software to help in the collection of data. The individual components are described 

in the following sections. 

3.2.1 The Vicon optical motion capture system 

The system architecture of the Vicon system used has been shown in Fig.3.1. The 

cameras are placed around the capture volume looking towards the intended center of the 

volume. All the cameras are connected with data cables to the central Ultranet HD core system,  
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Figure 3.1: Architecture of the Vicon system. 

which in turn is connected to the Host PC which contains all the software. The system consists 

of the following major components: 

• Cameras: 16 MX 3+ cameras were used to look at the capture volume (see Fig. 

3.2(a)). The cameras have a resolution of 0.3 megapixels (659 x 494 pixels) and 

can operate at a maximum rate of 240 frames per second. There were 8 cameras 

that were placed on trusses, which had Pentax TV lens with a focal length of 

8.5mm. The other 8 cameras, placed on tripods closer to the capture volume, had 

Fujinon lenses with focal length of 6mm. The lens of the cameras consists of 

sensors capable of detecting only near infrared light. The near infrared light is 

provided from strobes attached around each of the cameras emitting light of 

wavelength 780 nm. The cameras can detect markers from its field of view and 

send their pixel coordinates to the Vicon software. 

• Calibrating device: A calibrating device is needed to setup the system at the start of 

each capture session. The Vicon calibration device is an L shaped wand with five 

14 mm markers placed on it at specific positions (see Fig. 3.2(b)). It has a handle to 
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hold it while doing a dynamic calibration and spirit levels with adjustable feet to be 

used during static calibration. The calibration process will be described in detail in 

Chapter 4. 

• Markers: These are spherical objects of radius 14 mm that are covered with retro-

reflective paint or material. The Vicon cameras can detect these markers. These 

markers are put on the subject to be captured. 

• MX Ultranet HD: This is the core unit that connects the cameras to the Host PC. It 

can supply power, synchronizations, and communications for up to 10 MX cameras. 

It can also synchronize with other third party hardware such as video cameras, 

electromyography equipment, and force plates. In case more than 10 MX cameras 

are used, more than one such unit is used. However, only one primary unit will be 

connected to the Host PC while all secondary units are connected to this primary 

unit. In our system of 16 cameras, there were two MX Ultranet HD units with both 

the primary and secondary connected to 8 cameras each. 

• Host PC: The MX Ultranet HD is connected to a PC for communication and data 

transfer with the help of a gigabit Ethernet wire. The PC, loaded with Windows XP, 

contains the software to control the system. 

•  Tripods, trusses and pan-tilt head: Manfrotto tripods were used to place 8 cameras 

closer to the capture volume. The heights of the tripods ranged from 92 cm to 141  

   

(a) (b) 

Figure 3.2: Vicon mocap devices: (a) Vicon MX 3+ camera, (b) Vicon L-frame 
calibration wand 
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cm. The other 8 cameras were placed on trusses at two heights of approximately 

263 cm and 290 cm. Manfrotto pan-tilt heads were used to mount all the cameras to 

their respective truss or tripod. The pan tilt heads offered three degrees of freedom 

of pitch, yaw, and roll which helped in pointing the cameras towards the intended 

direction. 

• Software: Vicon provided the two softwares to control the system: Vicon Nexus and 

Vicon Blade. Vicon Nexus has been developed to cater to the kinesiological 

applications and has facilities to capture data from force plate and EMG data. Vicon 

Blade is more useful for animation applications and has more tools to generate 

animation formats such as bvh and asf-amc easily. 

3.2.2 Camera Configuration 

The system has sixteen cameras. The cameras are arranged at four different levels 

around the capture volume in order to make every section of the capture volume equally 

covered. The camera setup in the capture room is shown in Fig. 3.3. Eight cameras were 

placed on horizontally hanging trusses while eight more were placed on tripods on the ground. 

The cameras were attached to both the truss and tripods using pan-tilt head mounts. The 

trusses, shown in blue and orange in Fig. 3.3, were built at two different heights 103.5 inches 

and 89.5 inches. The tripods were adjusted to fit the pan-tilt head at approximately three varying 

heights from 36.5 inches to 55.5 inches. 
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Figure 3.3: Camera setup in the capture room. 

3.2.3 Capture Room 

The capture volume is defined as the space where all the subjects can perform actions 

such that the system can record the motion. It is a calibrated space where the system can 

calculate the exact positions of 3-dimensional points from the 2-dimensional data from each of a 

subset of the cameras. The capture volume does not have rigid boundaries although it does 

have defined edges within which a point will always be spotted and reconstructed with a high 

degree of accuracy provided the point is not occluded. It is recommended not to collect data 

beyond these edges, although the data collected may be of good quality depending on where in 

the volume the rules are broken. Figure 3.4(a) shows the capture volume as generated by Vicon 

Nexus program. The bounding box, as shown in the figure, is not rigid as mentioned above. 

Figure 3.4(b) shows the frustum or field of view of all 16 cameras from the top view. We can get 

an idea of the real capture volume from this figure as any space where the frustums of 2 or 

more cameras overlap. Subjects were always asked to perform inside the predefined edges 

during capture session. 
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(a) (b) 

Figure 3.4: Camera configuration in the capture room: (a) Capture volume as shown in Vicon 
Nexus, (b) Camera frustums 

 

3.2.4 Marker Configuration 

The cameras are able to detect only near infrared light having wavelength 780 nm. The 

system is designed to detect special markers, which are covered with retro-reflective material. 

As the strobes are placed around the lenses of the cameras, the retro-reflective markers reflect 

most of the light incident on it back to the direction of the lenses. The markers however are to 

be placed on specific locations on the body according to the skeletal model, known as Plug-in 

Gait model, used in the reconstruction of the human skeleton in the software. The markers are 

placed on specific bones on the body according to specific points described in the model. The 

model is a set of independent rigid structures moving with respect to each other and attached at 

articulated joints. The system reconstructs the markers present in the capture volume to the 

virtual capture space. These markers are then automatically labeled and made to fit into the 

skeletal model. The fitting process helps in creating the joints using inverse kinematics with the 

information of the assumed rigid structures of the model. Such a model is needed also to aid in 

post-processing tasks such as marker tracking and generating joint angle data. 

The Plug-in Gait model provided by Vicon is included in the Nexus software. Given a 

set of captured markers, the Plug-in Gait model can generate the angular joint kinematics and 



 

30 
 

 
kinetics of the subject. There are many variations of the model and the one used to capture the 

Human Motion Database is the Plug-In Gait Full-body model. The marker configuration is 

explained in detail in Chapter 6. 

3.2.5 Software provided by Vicon 

The software used for the modeling, reconstruction, and post-processing is the Vicon 

Nexus 1.4.115.43300. Some steps of post processing such as generation of joint angle data 

using a custom skeleton was done in Vicon Blade 1.6.214.46031. The Vicon Nexus program is 

used mainly by the researchers studying the kinesiological aspect of motion and has the facility 

to collect data from force plates and muscle EMGs along with the optical data. The Vicon Blade 

program is more suited for animation purposes and has more features enabling generating a 

bvh and creating a custom skeleton. 

3.3 Volunteers 

The Human Motion Database collected motion data from a total of 51 subjects. 

Volunteers were asked to respond from both university postings as well as local postings. A set 

of volunteers were selected from the pool of applicants. Our main objective in terms of subject 

selection was to have a diverse distribution and uniform coverage of anthropomorphic (e.g., 

height, weight) parameters as described below. An special effort was made to get, as much as 

possible, a diverse distribution and uniform coverage of subjects in terms of: 

• Age: The age of the volunteers ranged from 7 to 82 years. Approximately half of the 

volunteers (28) are in the age range between 7 to 21 years because variation of skeletal 

structure, height, and weight is more pronounced in this range. 

• Gender: Approximately half of the volunteers were selected from both genders: male 

and female. There are 26 male and 24 female subjects in the database. 

• Height: The height of the subjects captured varies from 45.8 inches to 74.0 inches. A 

special effort was given to get both male and female representatives at most height levels. 
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• Weight: The weight of the subjects captured varies from 42.2 lbs to 262.8 lbs. Again, 

a special effort was given to get both male and female representatives at most weight levels. 

As subjects were included in the database during the selection process, a Voronoi 

diagram as shown in Fig 3.5 was constructed using the weight and height parameters as 2-

dimensional coordinates. The Voronoi diagram was used to find out interesting data points 

(subjects) that would increase diversity (points further from existing points in the diagram) and 

increase coverage of the anthropomorphic parametric space. This guided the selection criteria 

of new subjects to enter the database construction. 

 

Figure 3.5: The distribution of height and weight for all volunteers as a Voronoi diagram. 
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(a) (b) 

Figure 3.6: Distribution of subject parameters. Male subjects in red and female subjects in blue: 
(a) Age against height, (b) Age against weight 

The distribution of height and the distribution of weight with respect to age are given in 

Fig 3.6(a) and 3.6(b), respectively. These figures show that there are both male (depicted as 

red points) and female (depicted as blue points) subjects at most height and weight levels as 

well as age categories. The more uniform distribution of data points in Fig 3.5 justifies the effort 

to capture 28 subjects under the age of 21 years which resulted in a better variety of skeletal 

structure. 

3.4 Organization in terms of actions 

One of the most important design goals (as explained in more details later) to create 

this database was to have a proper structure and to have metadata associated with the actual 

mocap data in order to solve current problems in human motion synthesis and analysis. The 

novel way of using cognitive and parametric sampling brings distribution in the database which 

is supplemented with metadata, such as the anthropomorphic data of the subjects. The 

sampling methodology is discussed in detail in Chapter 6. The subject data shown here is 

provided as a text format file along with the database. 

Since the actions captured in the construction of the database were everyday general 

actions and did not involve any special skills, there was no need to hire professional actors. 
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Rather paid volunteers with any background were used and asked to perform the said corpus of 

motion. The main selection criteria was guided by the need for even distribution and coverage 

on the above mentioned parameters as well as the actors ability to perform all the said actions 

on direction or demonstration. We have to mention that some older subjects could not perform 

certain actions, such as jump, in a consistent manner, thus sometimes those actions could not 

be captured or have been performed differently from the rest of the subjects in the database. 

This information can help in identifying change of motion characteristics due to age. 

Each of the 50 subjects performed 70 actions in a single 2-3 hour long session. They 

were given vocal instructions to maintain the consistent performance over the range of subjects. 

Two out of the 50 actors perform an additional set of actions to address the problems of 

transitioning, splicing, generalization, and praxicon. There is also a set of synchronized actions 

performed by two subjects doing interactive motions. The interactive motions are performed 

together although the data for the subjects are placed in different files. The data of both subjects 

is synchronized with each other. The interaction set of data has some actions that are acted out 

and not real such as stabbing, as capturing those actions realistically is impossible. 
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CHAPTER 4 

CAPTURE AND POST-PROCESSING 

In this chapter, we will discuss capture and post processing stages of the creation of 

the database. Capture is the process by which a phenomenon of interest is recorded and stored 

digitally. Motion capture primarily records the actions of a human or in some cases animals or 

birds to recreate the motion for various applications. This chapter describes the various 

workflows for the capturing process such as camera calibration, volume calibration, subject 

calibration, and capture sessions. Next, the chapter discusses the various capture errors 

present in the raw data and the techniques by which the data was cleaned and post processed 

to finally obtain the joint angle data output. 

Except for subjects 001, 007 and 030, all subjects were captured in one session in 2.5-

3.5 hours. There was provision for breaks during a session, but most subjects completed the 

session without stops. Subject 001 was involved in six different sessions, while subject 007 was 

involved in two sessions. Both subjects 001 and 007 have extra sets of actions as described 

later in chapter 6. 

Motion capturing is comprised of many stages. Considering that the hardware is 

already fixed and the capture room is setup, the system still needs multiple calibrations such as 

intrinsic calibration, extrinsic calibration, Euclidean calibration, and subject calibration. The 

intrinsic calibration, extrinsic calibration, and the Euclidean calibration must be done to calibrate 

the cameras. All these processes were done at the beginning of every capture day because the 

chances of the camera locations shifting from the previously calibrated locations were higher 

under no supervision. Once the cameras are calibrated, multiple subjects and multiple sessions 
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can be captured every day with the same camera calibrations as long as the camera locations 

are not accidently changed. 

The subject must wear a body fitting mocap suit. Then the subject is measured and 

anthropomorphic data collected. This data serves as valuable annotation for the database and 

demonstrates the good distribution of subjects that is so essential to the dataset. Then retro-

reflective markers are placed on the subject according to Figure 4.1. The subject then 

undergoes a subject calibration followed by the reconstruction and labeling of markers. Before 

the capture of every action, the action is described to the subject, demonstrated by the staff, 

and practiced for a few realizations such that the captured action conforms to the definition. 

Then the action is recorded for at least 10 repetitions. All actions are captured in individual 

trials. Sometimes when the required number of realizations is not covered in a single trial, 

multiple trials of the same action are captured for the subject. The capture workflow is shown in  

 

Figure 4.1: The marker configuration. 
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Figure 4.2: The capture workflow. 

Figure 4.2. The raw data recorded during each session is stored and kept for the post 

processing step. The post processing stage includes reconstruction of the raw data, labeling the 

data, and the cleaning stage. All these stages are explained in detail in the following sections. 

4.1 Capture 

4.1.1 Calibration 

The capture of a session is preceded by calibration. Calibration is required by a motion 

capture system to compute the extrinsic (position and orientation) properties and the intrinsic 

properties (focal length, geometric image distortion) of cameras [9] and to set up the axes and 

Euclidean metrics of the capture volume. A calibration method optimizes the system for 

maximum accuracy of the captured data. Generally the calibration of vision-based motion 

capture systems relies on observing an object of known dimensions and using it as the 

reference object. This reference object is known as a calibration device. The calibration device 

serves a way for the system to measure its own accuracy. The calibration device used in the 

system is a five marker L frame wand as shown in Figure 3.2(b). Euclidean calibration and 

extrinsic/intrinsic calibration were performed once every day. Subject calibration was performed 

every time a subject starts a new session, where a session consists of a set of trials each 

consisting of only one type of action. The calibration of an optical motion capture system has 

the following phases: 

 



 

37 
 

 

 

Figure 4.3: The extrinsic and intrinsic camera calibration workflow. 

4.1.1.1 Extrinsic and Intrinsic Camera Calibration 

During this process, the calibration device is waved in the capture volume such that the 

cameras can observe the features on the calibration device. The calibration device is moved in  

such a way to cover the whole capture volume. As some sections of the volume are only 

covered by a subset of the cameras, the calibration device must cover all the cameras equally. 

For this reason there is a feedback, which has real time detected features for all the cameras 

showing the cumulative calibration data. Each camera can be set to have a threshold for the 

number of features captured in the calibration data. The threshold set for our calibrations was 

1000 features per camera. Once the number of features for each camera hits the minimum 

threshold, the calibration procedure is finished. When all the cameras have adequate calibration 

data, the reconstruction accuracy of the system is determined. The extrinsic and intrinsic 

camera calibration workflow is shown in Figure 4.3. If the accuracy is acceptable, we continue 

to the next step, which is the Euclidean calibration. 

4.1.1.2 Euclidean Calibration 

The Euclidean calibration is a process to calibrate the axes of the capture volume and 

the Euclidean metrics of the World coordinate system. Setting up the extrinsic parameters of the 

cameras in the previous calibration phase already establishes a coordinate system. However, 

this coordinate system cannot identify the up direction of the capture volume. The Euclidean 

calibration aligns the global coordinate system of the capture volume in the system with that of 

the capture volume in the lab. The Euclidean calibration defines the axes of the system 

effectively specifying the up direction and the other directions. A specific five marker L frame  
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Figure 4.4: The Euclidian calibration workflow. 

calibration device was used in this step. The Euclidean calibration device has sprit level 

indicators, which can be used to adjust it to be horizontal on the ground. The calibration device 

is placed on the floor in the middle of the capture volume at the location which becomes the 

origin of the coordinate system. The intersection of the two sections forming the L frame 

calibration device defines the origin of the global coordinate system. The hand of the device 

defines the Z axis while the other horizontal bar defines the X axis. The up direction, which is 

also the Y axis, is calculated from the X and Z axes. When the Euclidean calibration process is 

started, the system captures a few frames and does the calculations as mentioned above. The 

Euclidian calibration workflow is shown in Figure 4.4. 

4.1.1.3 Subject Calibration 

The camera and Euclidean calibration is followed by the calibration of the subject. 

Subject calibration is required to develop a model for the subject so that it can be used to label 

the capture trials. The calibration procedure followed uses a Gait full body model. The model is 

based on a specific marker configuration which is used create a skeleton model for the subject. 

This model contains the topology of the markers and bone segments. The subject is required to 

wear a bodysuit such that markers do not move with the clothing. The subject anthropomorphic 

measurements are taken. The specific measurements taken are the leg length, knee width, 

ankle width, shoulder offset, elbow width, wrist width, hand thickness for both right and left parts 

of the body. Additional measurements include the height and weight of the subject. These 

measurements are part of the subject description. The markers are placed on the subject at 

specific locations according to the marker configuration model as shown in Figure 4.1. Then the  
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Figure 4.5: Subject standing in T pose. 

subject takes a static neutral pose such that the recording is of good quality and there is no 

occlusion. All subjects were instructed to stand in a T pose at the center of the capture volume 

for this purpose (see Figure 4.5). A T pose is defined as the subject standing with both legs 

straight and stretching out the hands on the side such that they are parallel to the floor. After 

that a short static trial is captured with the subject in T pose. The recorded data is reconstructed 

and labeled manually according to the model. All the markers should be reconstructed and 

labeled in the whole length of this static trial. Then this trial is used to define the rigid body 

segments of the subject such as the joint centers, bone lengths, and bone orientations. The 

result of this step is a custom skeleton model for the subject which is generated by scaling the 

skeleton template to match the values obtained in the subject calibration step. This skeleton 

model is used in the capture trials to automatically label the subject provided they have the 

same marker set. The subject calibration workflow is shown in Figure 4.6. 

4.1.2 Capture Session 

The capture session consists of one subject performing a set of trials, each trial 

corresponding to one action repeated several times. A capture consists of the following steps: 

• Each action is explained to the subject and sometimes demonstrated by the staff to 

follow strict guidelines of action definition. The aim was to make the realizations of 

the same action similar and consistent throughout the database for all subjects. 
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Figure 4.6: The subject calibration workflow. 

• In some actions, props, such as a football, a soccer ball, a table, chairs, and a 

hammer, were used. However, the motion of the props was not captured. Some 

actions like shake hands and throw-catch ball required another human to be 

involved, although only the primary subject was captured. The actions of the other 

person in these cases were mostly reflective of the subject being captured. 

• The subject practiced the action till it conformed to the action definition. If required, 

additional instructions were given. Otherwise, the capture starts by asking the 

subject to perform the action. 

• The subject performs the action for at least 10 repetitions. While the action is being 

performed, the action is observed for any execution errors. Errors, explained in 

detail in the next section, include major variation of action performance over time, 

misplacement of markers, large sections of data being missing due to occlusion. In 

case the recording is not satisfactory for the first time, multiple trials are taken till 

ten good repetitions are recorded. 

• The capture is stopped and the raw data is stored with the action name. This is 

later used for post processing. 

• Open a new trial and go through the same steps. 

The capture session workflow can be seen in Figure 4.7. Some capture sessions 

involved interactions where two subjects perform actions together in the capture space. The 

subject calibration procedure to enable the capturing of two subjects is different. In this case,  
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Figure 4.7: The capture session workflow. 

both the subjects are prepared according to the marker configuration model. Once a new 

session is opened, both subjects are added consecutively. The first subject is created and the 

measurements are entered into the subject description as discussed in the single subject 

calibration. Then the subject is asked to stand in a T pose and a small trial is captured for the 

calibration operations to process. Next the second subject is added to the session and the 

above mentioned procedure is also followed for the second subject. After this, both subjects can 

be captured in trials with the same procedure as the single subject capture. 

4.2 Post Processing 

The data recorded during the capture process may contain errors and artifacts. Post- 

processing is the stage where the stored data is converted to a more useful, consistent form 

with the aim of only enhancing the data while taking care not to alter correctly captured good 

data. The final product is known as clean data. The post-processing steps can be broadly 

described as follows: 

4.2.1 Reconstruct and Auto Labeling 

The raw data captured is reconstructed. Using the calibration information, the motion 

capture system tries to automatically label the markers according to the marker configuration 

model. This builds a relationship between the markers as well as creates marker trajectories. 

4.2.2 Clean data 

The trials are manually checked for errors and artifacts and corrected or improved using 

various techniques. Some techniques involved some individual functions while others used  
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Figure 4.8: The time taken in minutes for the cleaning of actions per subject. 

custom macros and scripts. The process of cleaning data was iterative where, after every round 

of cleaning, outputs were generated and the joint angle data is processed through our Matlab 

scripts to check for errors. These Matlab scripts were used iteratively as a guide to go into the 

next round of cleaning.  

Figure 4.8 shows the time taken to clean the data of the entire database for the first iteration. 

Note that the data shown in Figure 4.8 cover only 39 subjects and 59 actions. Thisdata shows 

that some actions, such as lift box and crawl (see Fig. 4.9(a)), and some subjects, like subject 

16 (see Fig. 4.9(b)), took more time to post-process than others. Successive iterations took 

more time on each trial because of more attention to detail but showed a similar trend with 

respect to distribution of workload throughout the database. The interactions dataset also took a 
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lot of time to clean due the occurrence of more occlusions resulting from two subjects being in 

the capture volume. 

 

 

(a) 

 

 (b)  
Figure 4.9: Time taken to complete the first iteration of data cleaning: (a) Cleaning time per 

action, (b) Cleaning time per subject 
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4.2.3 Generate Output 

The outputs generated by a motion capture system were of two formats: c3d and csv files. The 

c3d is a binary file containing the 3D coordinate positions of the markers for every frame. The 

csv is a comma separated variable file containing both the trajectory data and the joint angle 

data generated according to the marker configuration model. The csv files were used as input 

for the Matlab scripts to check for errors. 

4.2.4 Types of Capture Errors 

Errors or artifacts are defined as undesirable noisy data, which do not belong to the 

intended captured motion (see Fig. 4.10). Errors can be detected on a manual frame by frame 

inspection of the markers. The cleaning of the data as mentioned was an iterative process. The 

rounds of cleaning in the iterative process varied from one to another. Initially the volume of 

data being observed and checked was very high. At that stage all the frames of all trials were 

checked. The main checking performed in the first step was if the auto labeling was correct 

throughout the trial and to detect big artifacts in the data. Progressively in successive iterations, 

using the Matlab scripts as guide, the volume of the data to be checked became lower. This 

enabled more detailed inspection of certain sections of the trials. As a result, the cleaning 

became more fine-tuned and focused, taking care of artifacts having aberrations to a lesser and 

lesser degree.  

   

(a) (b) (c) 

Figure 4.10: Trajectories of markers show artifacts: (a) Jump, (b) Shake, (c) Impact 
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The cleaning rounds involved a lot of discussions and problem solving. There is no 

documentation to help in cleaning mocap data that we could go through. The problems included 

first deciding a threshold for error, such as defining what is an artifact and what is not an artifact. 

This defines the minimum quality of the data in the Human Motion Database. After that, different 

artifacts required different solutions using different methods. These methods are not defined 

anywhere. The motion capture system provides a set of functions or operations, which help in 

the cleaning process, but we had to select what method to use in each particular case. We  

reached situations where no apparent clearly defined solution seemed to exist. In those 

situations, we had to devise a new procedure to solve the problem.  

 
(a) 

 
(b) 

Figure 4.11: Various artifacts such as disappearing markers and falling markers: (a) Two 
consecutive frames where the STRN marker disappears, (b) Three non consecutive frames 

when the RTOE marker falls off the subject 
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The list of errors in order of frequency of occurrence is as follows: 

• Jumpy markers: The marker changes its trajectory by a significant margin and distorts 

the rigid body model of the subject (see Fig. 4.10(a)). 

• Shaky markers: The markers have a very inconsistent trajectory with a series of small 

but sharp jittery movements when a smooth trajectory is expected (see Fig. 4.10(b)). 

• Markers changing position or jerky markers due to an impact of motion: The markers 

show jerky movement as they are on the skin instead of the bones of the subject (see 

Fig. 4.10(c)). 

 
(a) 

 
(b) 

Figure 4.12: Markers being mislabeled: (a) Mislabeling at the beginning, (b) Mislabeling when 
the subject leaves the volume and reenters: (left) correctly labeled subject before the subject 
leaves the volume, (center) the subject is partially outside of the volume with some markers 
missing, (right) subject is completely in the volume again but contains mislabeled markers 
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• Markers disappears (dropouts): The marker data is not captured for a few frames (see 

Fig. 4.11(a)). 

• Markers falling off the subject: During the capture markers fall from the subject (see 

Fig. 4.11(b)). 

• Mislabeled models (swapping): Markers can be mislabeled in multiple ways. At the 

beginning, the markers are not labeled correctly (see Fig. 4.12(a)). In the middle of a 

capture, the marker is not labeled or incorrectly labeled even if the data exists. Subject 

leaves and reenters the volume. Once the subject reenters, the markers are incorrectly 

labeled (see Fig. 4.12(b)). 

The causes of these errors can be due to various reasons such as occlusion, incorrect 

reconstruction, and skin movement to name a few. The errors are a result of one or a 

combination of the following: 

• Occlusion: Occlusion occurs when 3D objects are not visible from a certain 

viewpoint due to other 3D objects obstructing the line of sight. At least two cameras 

must observe a marker in every frame to allow a 3D reconstruction. The quality of a 

capture increases as more cameras observe the same marker as it reduces the 

chance of occlusion. During capture, there are occasions where certain markers 

could not be captured because the cameras could not observe them in the space. 

Occlusions result in markers disappearing and, in some cases, jerky trajectories. 

There are several causes for occlusion. Self-occlusion occurs when a body part of 

the subject covers the marker. Objects such as a box or a suitcase used during the 

trials could obstruct the marker. Another subject in the capture space during trials 

such as shake hands will obstruct the markers. This was a more prominent 

problem during capture of the interaction dataset as two subjects were involved in 

all trials. 
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• Incorrect reconstruction of 3D marker location: This results in a jerky marker 

trajectory. This occurrence is particularly observed at the edges of the capture 

volume. The edges of the capture volume have lesser number of cameras covering 

the space, thus the accuracy and quality of the data captured goes down in these 

sections of the capture volume. 

• Markers loosely attached to the subject: Markers were attached using two-sided 

tape. However, during capture the tape loses adhesive strength resulting in a very 

shaky marker and, consequently, a shaky trajectory. Whenever this was observed 

during the capture phase, the markers were replaced with new ones. 

• Lost marker tracking: Once a subject leaves the volume partially or totally and 

comes back in the same trial, the marker labeling may not be correct as the system 

could not track the markers through the period when the subject was outside the 

capture volume. Tracking loss also occurs when the movement of an action is very 

fast. In these cases, the markers loose the label or are mislabeled. The system can 

be tuned to capture different speeds of motion. However, the problem occurs when 

an action involves different degrees of speed in the same trial. 

• Skin Movement: The marker configuration model requires markers to be placed on 

bones as the model considers rigid body parts of the subject. However, the 

markers placed on the skin do not accurately follow the motion of the bone on 

which it is placed on. This results in marker trajectories that are very different from 

what is expected. 

• Subjects touching or hitting the marker while doing an action: Subjects may 

accidently change the position or dislodge the marker while doing an action. 

4.2.5 Techniques Used to Correct Errors 

The motion capture system provides tools for post-processing. However, these tools 

are not capable of solving all the errors mentioned in section 4.2.4. We did not find any 
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documentation on post-processing and had to set guidelines and use the provided tools in 

various ways to solve each problem. The techniques used to correct errors are as follows: 

• Woltring filter: This is a spline smoothing technique that is provided in the motion 

capture system. This filter can fill gaps in the marker trajectory by using a spline that 

tries to fit the missing section. It was observed that this generally provided a good 

solution for very short gaps. In the Human Motion Database, the use of the Woltiring 

filter was restricted to gaps whose length is less than 20 frames. 

• Rigid body reconstruction macros: The maker configuration model as explained earlier 

assumes the human figure to consist of rigid body parts to estimate the joint angles. 

Each rigid body is made of at least three markers. A rigid body such as the head and 

thorax consists of more than three markers. In a trial, if a marker is missing from one of 

these rigid bodies, the coordinates of the lost marker can be inferred from the remaining 

reconstructed markers as long as at least three markers of that rigid body are present in 

the frame. This function can only work as long as there is one frame in the whole trial 

where all the markers constituting the rigid body part are reconstructed. For example, 

the reconstruction macro for the thorax gets all coordinates of markers in the thorax at a 

particular frame where all five markers in the thorax are reconstructed. Then it uses this 

information to fill gaps in the whole trial in frames which meet the criteria of at least 

three markers being present. This function is called “Perform Dynamic Body Language 

Modeling” and is available under the Workstation Operations in Vicon Nexus. We 

extended the functionality of this operation by modifying the macro and adapting the 

code to work for all rigid body parts having more than three markers, namely the head, 

forearms, the pelvis, and thighs. However, this function did not work very well in all 

cases. For instance, in an action where the subject bends down, the marker locations of 

the thorax are significantly different than when the person is standing. Thus, if a marker 

is missing while the subject is bent down and the macro chooses to calculate the 



 

50 
 

 
relative coordinates of the markers in the thorax from a standing position, the estimated 

marker position will be very different than what is expected. 

• Pattern fill: In a trial, multiple markers may have similar trajectories for a few frames. 

For example, when a subject is walking straight, the markers on the head have very 

similar trajectories. If one of these markers is noisy, any other marker in the head that 

has a smooth trajectory can be used to fill or replace the faulty trajectory. The marker 

from which the pattern or trajectory is taken is called a source marker. However, the 

change must be evaluated subjectively for quality by checking whether the new 

trajectory is close to what is expected. Generally, this method involves multiple tries for 

each gap, using different source markers to fill the gap and find out which one provides 

the best result. 

• Spline fill: The spline fill functionality is similar to the pattern fill as described above. In 

this case, the gaps are filled by creating a trajectory using cubic spline interpolation. 

This operation also needs to be subjectively evaluated for quality. 

  

(a)  (b) 
 

Figure 4.13: The same frame before and after the cleaning process: (a) Multiple errors such as 
missing markers and mislabeling, (b) The same frame after post processing with the correct 

labeling. All the markers could not be reconstructed because there were no ways to generate 
the data with the degree of accuracy maintained in the database. 
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• Delete noisy data within files: There are actions where the subject leaves the capture 

volume and then reenters the volume in the same trial. The motion capture system 

cannot track and label the subject properly every time the subject reenters. If the 

subject leaves the volume multiple times, each section of the trial containing the 

intended motion needs to be disassociated with the previous as well as the next 

section. This is done by unlabeling all the markers at the beginning and at the end of 

each section. Then the frames inside each section are labeled. This method creates a 

gap of data within the motion that consists of unlabeled, noisy, and a partial marker set. 

These unlabeled markers are deleted. So, in the final output, the trial consists of 

sections of good data separated by a few frames containing no data. 

• Crop data at the beginning and end: While capturing the trial, recording was stopped 

whenever errors, such as a marker falling off or occlusion for long periods, were 

detected. These recorded actions are trimmed to get the all the valid clean data while 

editing out the error prone sections. The motion capture system has the facility to crop 

only at the beginning and end of a motion trial. 

An example of data cleaning can be seen in Figure 4.13 where the same frame is 

shown before and after the cleaning process. The experience of cleaning the motion data led us 

to a list of desirable tools and techniques that are not yet available in motion capture systems 

but will increase the quality of motion data as well as the speed of the cleaning process. These 

tools are as follows: 

• Pattern fill with more options: The motion capture system allows the pattern fill 

operation using the trajectories from source markers only in the same time frame as the 

gap that is being filled. However, the motion trial may contain the same motion 

performed multiple times. In this case, the data of the same marker is not noisy in all 

the iterations in the same trial or a different trial. If the data from a different time frame 
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of the same marker could be used for the pattern fill, it would give an additional viable 

solution to the cleaning process. 

• Rigid body macro with more options: The rigid body macro is only effective if there exist 

at least one frame with all the markers present in the trial. However, there are multiple 

trials done by the same subject in the same session. There were some trials where one 

of the markers was missing or noisy throughout the trial. These trials would have 

benefitted if the tool offered the option to choose a frame from another trial in the same 

capture session to reconstruct the missing marker. Another issue, as mentioned before, 

is the change of relative marker positions in a rigid body depending on the nature of the 

action. The example cited earlier states that the macro operation does not do an 

accurate job when the subject is bent down. Given the option to choose a specific 

source frame, such that the source frame is the one used to obtain the relative marker 

positions in the rigid body, we would be able to select a frame where the subject is bent 

down to provide a viable and possibly better alternative for this reconstruction. 

• Sophisticated spline control: The cubic spline generated in the spline fill operation just 

gives two ways to control the spline. The spline can be changed by adjusting the first 

and last frames of the missing trajectory. That means, if the default generated spline 

with the borders at the beginning and at the end of the gap needs to be changed, we 

are forced to move the borders over the trajectory which was already there beyond the 

gap, thus overwriting good data with the spline data. If there were more controls to 

adjust the spline without changing the first and last frames of the gap, it would preserve 

the correct data. 

• More markers in each rigid body part: If the marker configuration model has more 

markers per rigid body part then there is a higher chance that at least three markers are 

captured and reconstructed with good quality. Redundant markers would make the 
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generation of joint angle data more robust and there would be a higher chance of using 

the rigid body reconstruction macros to recover missing marker trajectories. 

• Markers uniquely identifiable: If the markers on the subject were each uniquely 

identifiable, then the labeling problem would become much easier. The markers on the 

subject are passive and all alike. There are motion capture systems that have active 

markers emitting unique signatures, which could yield much better auto labeling 

solutions. 

• Flexible reconstruction parameters: The reconstruct and label operation has adjustable 

parameters such as marker movement speed, label model rigidity, quality speed, and 

minimum number of cameras per marker. These parameters can be set to reconstruct 

and then label a trial. However, a trial may contain different types of data at different 

sections within the trial. The more the number of cameras observing the same marker, 

the more accurate the data is. There are sections in the trial, which can have very good 

quality data while sections where only two cameras can observe the marker. The 

current system allows only an optimized setting for the whole trial where we reach a 

compromise with the quality of overall data in order to get marker trajectories such that 

only a lesser number of cameras were observing the markers. Similarly an action such 

as a baseball hit may consist of both slow and high speed sections. However, the 

setting is not flexible enough to accommodate such actions. 

4.2.6 Generation of output data 

The outputs generated from the motion capture system are c3d and csv files. After a 

skeleton is designed, the motion capture files in the bvh format were created. The c3d or 

Coordinate 3d files is in binary format and contains the 3D marker coordinates for all the 

frames. The csv or comma separates variable files is in text format and contains both the 

marker coordinates and the joint angles values for all the frames. The bvh or BioVision 
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Hierarchy files were generated using a custom made skeleton. The hierarchy of the skeleton is 

discussed in detail in Chapter 5. 
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CHAPTER 5 

SKELETON DESIGN 

Motion data can be represented and studied using both the spatial location of the body 

parts or from joint angles of a skeletal model. The spatial location approach uses a sparse 

model of the actual body using 3-dimensional points [6]. The movement of these 3-dimensional 

points over a period of time is used to represent the body motion. Both the number of points and 

the accuracy of all points determine the quality of the data. There may be some metadata 

regarding the identity of each point on the model as to which part of the body it actually 

corresponds to. 

The other approach uses the movement of articulated joints in the body to study human 

motion. This is based on the assumption that the human body is a system of rigid links 

connected by joints. Although the human body is not actually rigid and the joints are not non-

extensible this assumption allows motion to be studied using principles of angular kinematics. 

This approach also takes advantage of the internal skeleton of a human being, or whatever 

animal motion that is being studied, and represents human motion in a more anatomically 

congruent manner. The data obtained using this representation is a set of angles for each joint 

in the skeleton over a period of time. The joints depend on the skeletal model used to collect the 

data. Different skeletal models are used in different systems as well in the same system with 

different objectives. The level of detail may vary from just a basic skeletal model having all the 

major joints to models including details on individual fingers and facial features. 

Motion data captured from our system in its raw format is a just a collection of points 

which are a representation of the physical markers placed on the subject's body. These points 
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are spatial data in the world Cartesian coordinate system defined during the calibration phase of 

the system setup. A skeletal model is created and fitted to the set of markers to obtain angular 

data for the joints of the skeleton. Skeletal motion capture formats such as bvh and asf/amc are 

widely used in the animation industry and it also gives a good visual representation of the 

motion before animators actually rig a character on it. 

In this chapter, we will first discuss the challenges and design approach of constructing 

a skeleton from a marker set. Next, we describe the creation of the hierarchy of the skeletal 

structure. Finally, we discuss the theory, method, and code used to implement our automatic 

skeleton building process. 

5.1 Skeleton Design Considerations 

Designing a skeleton involves the following design considerations: the number of bones 

in the skeleton, the hierarchy of bones, the position and orientation of the bones, and the 

markers to drive the motion of each bone. To design a skeleton, we took inspiration from a real 

human skeleton. During a capture session, the markers are placed on specific points on bones 

of a subject. The maker configuration model, as described earlier in Chapter 4, determines the 

marker positions. The design of the skeleton uses the given marker locations and the label 

information as input. To construct a skeleton, we establish a relationship between subsets of 

markers and each one of the bones. If we consider each bone to be a rigid body, each of them 

must be associated with at least three markers to be reconstructed individually. As shown in 

Figure 5.1, the upper arm can be reconstructed using three markers which can be defined as 

the origin marker, the orientation marker, and the direction marker. At least three markers are 

needed to define a 3 dimensional transformation to place and orient the bone. Markers can be 

reused to build multiple bones. For example, the marker used for direction marker of the upper 

arm can be used as the origin marker for the lower arm. 

Ideally, to reconstruct the human motion perfectly, the skeleton should have exactly the 

same number of bones as a real human subject. However, this process would require too many  
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Figure 5.1: Typical markers used to calculate the parameters of each bone. 

markers (at least one for each bone and two more shared with others) or some sort of 

estimation technique to find the relationship between a subset of markers and particular 

bone.For example, if we consider the human spine, there are 33 bones that compose the 

vertebral column. Either we need to have three markers assigned to each and every bone in the 

spine or we need to assign the same markers to multiple bones. In the former case, it is 

practically impossible to place that many markers on the spine and have a robust automatic 

labeling algorithm which consistently labels each of the closely placed markers correctly. In the 

latter case, we must discover the approximate relationship between the movement of each 

marker subset and the corresponding movement of the bone. To strike a compromise between 

approximating the actual bone movement and getting real data, we have to take design 

considerations which will consider the marker set that was used for capturing the data and 

develop a skeleton as close to a real human skeleton as possible. 

We consider each bone to be a rigid body part and a subset of the markers drive each 

bone. A set of connected bones which are very close to each other can be approximated as one 

rigid bone. Hence, the spine is divided into upper spine and lower spine. With this setup, we 

shall obtain accurate data of the joint angle between the lower spine and the hips as well as the 

lower spine and the upper spine. This setup is necessary to estimate the real data from the 
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given marker set. The set of markers C7 (cervical vertebrae 7 in the lower neck), CLAV 

(clavicle), STRN (sternum), T10 (thoracic vertebrae 10), RBAK (right back), LPSI and RPSI 

(posterior hips) were used to calculate the lower and upper spine. If we were to divide the spine 

into 33 bones, we would have had to use the same set of seven markers to estimate the angles 

of these 33 bones. This way, only the lowest bone in the spine will contain real captured data 

and all the other bones connected to it will be synthetic data as approximated or estimated from 

that real data. We avoided such estimations. 

5.2 Skeleton Hierarchy and Bones 

The skeleton created consists of twenty one bones including a dummy root. A dummy 

root is needed to conform to the hierarchical tree structure of the bvh and asf/amc file formats. 

The dummy root does not have any dimension of its own. It does have a coordinate in the 

global coordinate system. This provides the initial location to find the transformation of all 

succeeding branches. All the bones in the hierarchical structure have a local coordinate system,  

 

Figure 5.2: The hierarchy used to build our custom skeleton. 



 

59 
 

 
which is calculated with respect to its immediate parent. We have followed the convention of 

placing the root at the posterior hip location of the skeleton providing the base for the hip bones 

as wells as the lower spine. 

Bones that did not have markers representing them are not added to the skeleton. 

Markers were placed on the base of the fingers and toes, so dummy bones like fingers and toes 

are not included in the skeleton. Pairs of bones doing very similar motions like the radius and 

ulna or the tibia and fibula are represented as one bone. Movements of bones such as the wrist 

bones residing between the forearm and the palm are impossible to capture using external 

markers and, consequently, avoided. The only exception was to include the neck bone joining 

the end of the spine to the base of the head. Although there were no markers to differentiate the 

movement between the neck and the head of the subject, the result of fusing the head and neck 

together produced a skeleton which generated a very unnatural animation. The hierarchy of the 

skeleton is shown in Figure 5.2. The end sites, as mentioned in the figure, are not actually 

bones but they are specified to indicate the end of a branch. 
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Table 5.1. The set of markers associated with each bone to set up the location, direction, and 

oriention of each bone. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Automatic Construction of Skeleton 

Once the set of bones are decided, each bone must be placed and oriented in the three 

dimensional space. As the skeleton has a hierarchical structure, any transformation in a parent 

bone affects all its children. The position and orientation of the bones are controlled by a subset 

of markers as described in Section 5.1. The set of markers associated with each bone bone is 

indicated in Table 5.1. Each bone has its own local coordinate system and the axes of this 

Bone Set of Markers 

Root LASI, RASI, LPSI, RPSI 

L_Hip LASI, LPSI, RPSI 

L_Upper_Leg LASI, LTHI, LKNE 

L_Lower_Leg LKNE, LTIB, LANK 

L_Foot LANK, LHEE, LTOE 

R_Hip RASI, LPSI, RPSI 

R_Upper_Leg RASI, RTHI, RKNE 

R_Lower_Leg RKNE, RTIB, RANK 

R_Foot RANK, RHEE, RTOE 

Lower_Back STRN, T10, LPSI, RPSI 

Upper_Back CLAV, C7, STRN, T10, RBAK 

L_Collar CLAV, C7, LSHO 

L_Upper_Arm LSHO, LUPA, LELB 

L_Lower_Arm LELB, LFRM, LWRA, LWRB 

L_Hand LWRA, LWRB, LFIN 

R_Collar CLAV, C7, RSHO 

R_Upper_Arm RSHO, RUPA, RELB 

R_Lower_Arm RELB, RFRM, RWRA, RWRB 

R_Hand RWRA, RWRB, RFIN 

Neck LBHD, RBHD, C7, CLAV, LSHO, RSHO 

Head LFHD, RFHD, LBHD, RBHD, C7, CLAV 
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system must be aligned using the markers associated with the bone. Instead of visually aligning 

the bones, we implemented a script to calculate vectors from three markers and orient the 

bones using these vectors. Table 5.1 shows the markers associated with each bone. This 

enables automation and consistency in the generation of skeletons across all the fifty subjects 

in our database. As the orientation of one bone is not constrained by the orientation of its parent 

bone, all bones other than the root have three degrees of freedom. Although this violates the 

actual bone structure of real human joints, we assume this will not cause any problems because 

the marker data is gathered from real humans. The joint data derived from these markers 

should not break the natural laws. 

The markers that are used to determine the position and orientation of a bone are also 

used to drive the rigid body bones during the motion. The hierarchical structure of the bones 

ensures that the joint angles of all the joints can be calculated with no gaps. 

A script was written to create the skeleton automatically for every subject using the 

scripting language Vicon HSL that is provided with Vicon Blade. Using this script, we were able 

to generate a consistent skeleton for all the 50 different subjects. The script uses the 3D 

Cartesian coordinates of individual markers and calculates the position and orientation of each 

bone. The set of markers are used to create three parameters, the origin position, the aim 

vector, and the up vector. The bones are defined by its point of origin, the direction in which the 

bone points to from its parent to its child, and the direction in which the bone’s Y axis will face. 

Other parameters of the bone such as the length of the bone are obtained from the origin of the 

bone to the origin of its child bones in the skeleton hierarchy. The end sites in the hierarchy 

define the length of the leaf nodes of the tree. This offset, called pre-translation, sets the length 

of the parent bone. The markers associated with each bone are used to calculate the origin 

position, the aim vector, and the up vector for each bone. The markers were always placed on 

bones of the human subjects. As the reconstructed skeleton consists of joints, the location of 

the joints need to be close to the real joints of a real human skeleton to result in realistic data. 
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(i) (ii) (iii) (iv) 

    

(v) (vi) (vii) (viii) 

    

(ix) (x) (xi) (xii) 

    

(xiii) (xiv) (xv) (xvi) 

    

(xvii) (xviii) (xix) (xx) 

    

(xxi) (xxii) (xxiii) (xxiv) 

    

(xxv) (xxvi) (xxvii) (xxviii) 
Figure 5.3: (i) Markers in Vicon Nexus, (ii) Markers in Vicon Blade in Z up format, (iii) Markers in 

Vicon Blade in Y up format, (iv) Actor_1.vst loaded, (v) Root is placed, (vi) Lower_Back is 
placed, (vii) Upper_Back is placed, (viii) Neck is placed, (ix) Head is placed, (x) L_Collar is 

placed, (xi) R_Collar is placed, (xii) L_Upper_Arm is placed, (xiii) ) L_Lower_Arm is placed, (xiv) 
L_Hand is placed, (xv) R_Upper_Arm is placed, (xvi) R_Lower_Arm is placed, (xvii) R_Hand is 
placed, (xviii) R_Hip is placed, (xix) R_Upper_Leg is placed, (xx) R_Lower_Leg is placed, (xxi) 
R_Foot is placed, (xxii) L_Hip is placed, (xxiii) L_Upper_Leg is placed, (xxiv) L_Lower_Leg is 

placed, (xxv) L_Foot is placed, (xxvi) Whole figure is constructed with constraints. 
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As it not possible to obtain the actual measurement of the location of the real joints, we 

had to get the closest estimation of the respective joints from the marker subset provided. Joints 

such as elbows, shoulders, and knees had only one marker. The markers are placed at an 

offset to the actual joint position. However, for these joints it is not possible to calculate a point 

closer to the joint with consistency without more information. Joints that had two markers, such 

as the wrists, can be approximated and placed in the middle of the two markers. However, all 

these approximations were considered not to be highly erroneous except for the hip joints. It is 

advisable to put at least three markers on each joint to correctly estimate the actual joint 

location. A step by step diagram of each bone being placed automatically with the script can be 

seen in Figure 5.3 while the full script code can be seen in Appendix B. 

The markers for the hip joints are placed on the anterior superior and posterior superior 

spines, which are prominent bone structures of the hip that can be measured from the outside. 

The actual hip joints are however at a greater offset with respect to other bones than the 

measurable marker positions captured during the sessions. If the joints are placed like other 

joints on the markers themselves it will bring a huge amount of error due to the distance from 

the actual location. However, there is a lot of material and research trying to solve this problem 

as this is an important problem in human gait analysis where precise location of joints are 

needed. Using the method described in [16], the markers RASI, LASI, RPSI, and LSI were used 

to calculate the locations of the hip joint centers. First, pelvic width is calculated as the distance 

between RASI and LASI. The hip joints have been calculated from the middle of the pelvic 

width. It is estimated to be offset 36% laterally, 22% posteriorly, and 30% caudally. 

The other joint that does not lie on a marker is the joint between the neck and the head. 

As mentioned in Section 5.2, the neck bone was included in the skeleton design even though 

there were no markers to differentiate between the head and the neck. The joint has been 

placed at a location that is the weighted geometric center of the following markers: C7, CLAV, 

LSHO, RSHO, RFHD, LFHD, RBHD, and LBHD with only C7 being weighted by 2 while every 
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other marker is weighted by 1. The end site for the bone representing the head is placed at the 

center of RFHD, LFHD, RBHD, and LBHD. The location of the markers can be seen in Figure 

4.1. 
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CHAPTER 6 

METHODOLOGY 

This chapter describes the structure of the Human Motion Database and the 

methodology developed to collect several aspects of human motion. First, we discuss and 

justify the need for a database like the Human Motion Database. Then, we introduce the goals 

and unique features in the database. Finally, we enumerate which areas, problems, and 

applications the database is targeted. 

The construction of a benchmark database with attributes relevant to a particular 

problem creates an even measuring ground for all researchers. The advancement of motion 

capture technology in recent years has paved the way for good quality motion data which can 

be used to study human motion. There are several motion capture databases publicly available 

for the research community. The CMU Motion Capture Database [1] is the most widely used 

and contains a wide variety of actions organized in a very loose structure. On the other hand, 

databases like the HDM05 [12] have structure, but their range and quantity of motions are very 

limited compared to the CMU database. We have created a motion capture database by using 

novel techniques and sampling methods. The database has structure and can be directly 

applied to current research problems. 

6.1 Understanding Human Motion 

As mentioned in Chapter 2, the design of a structured database should be guided by 

specific goals. The main goals of Human Motion Database are: create a corpus of human 

motion, create data targeted towards specific research areas, provide ground truth data to 

quantitative evaluation of the performance of techniques, and provide data in a standard format 

to be used by the research community. 
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The ultimate purpose of the HMD is to provide data for the better understanding of 

human motion. Human motion consists of a range of different aspects. The same action can be 

preformed in various ways. Furthermore, human beings are equally adept at performing 

individual actions as well as well as combining them in various ways to produce complex 

actions. Interactive motions are also different, as they require coordination among two or more 

people. We believe to understand human motion we must study all these various aspects of 

human motion. 

Actions can be classified as simple and complex from the perspective of the granularity 

of motions. Some simple actions, which semantically are considered to be well-defined, can be 

broken down into smaller sets of actions. For example, the action jump can be defined as a 

motion where a subject leaves the ground with both legs and then lands again. However, the 

actual jump motion is preceded by a bending from the knees and ankles without which 

performing a jump motion is practically impossible. If we consider the motion squat, the start of 

the action is performed in the same way as that of a jump. Almost all actions which have a 

semantically clear meaning can be divided and sub-divided into multiple actions which can 

again be defined individually. We have considered actions which are semantically defined as 

one action to be simple actions. Thus we consider jump to be a simple motion since it is defined 

as consisting of all sub-actions necessary to perform the motion. The identification of these 

subdivisions or segments is a research problem. The corpus of human motion in our database, 

named a praxicon, contains simple motions. 

Human motion also varies and adjusts over age, gender, skeletal structure, and 

personal style of the person performing the actions. It has been shown that an observer, if 

shown the motion data without giving any background about the subject that was captured, can 

identify features such as gender and emotion [11]. We can also observe a distinct change in the 

performance of the same action over the skeletal structure of the subject. The HMD is built to 
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provide data to understand all these variations by achieving a distribution over these 

parameters. 

Actions having the same meaning can be performed in many different ways. For 

example, the reach action can be defined as extending an arm to touch a point in space. 

However, the action may vary considerably depending on the target point of space the subject 

is trying to reach. The study of this aspect of the human motion is known as generalization. 

Motions which are a combination of two simple actions are called complex actions. 

These complex actions can be composed by joining two motions sequentially one after another 

(transitioning), by performing two motions in parallel (splicing), and by performing motion in 

coordination with multiple subjects (interaction). These forms of compositionality are specific 

research areas and have been discussed in detail in Section 6.3. Our database contains both 

simple actions and complex actions. 

The study of human motion must encompass the full repertoire of these variations 

identified above and the performance of any algorithm and technique can be properly evaluated 

when they are tested with data providing this variation. 

The unique features of the Human Motion Database are: a wide range of motions to 

create a dictionary of commonly performed actions by humans, known as praxicon, to aid 

classification and recognition problems; a varied range of skeleton structures distributed over 

height and weight of the subject; the subjects are also distributed in terms of gender and age; 

data targeted towards the study of complex motions; and a set of interactions between two 

subjects. These features are explained in detail in the next sections. 

6.2 Database Structure 

6.2.1 Praxicon 

A praxicon, a lexicon of human motion, is a novel concept that we are introducing in this 

database. Although existing databases contain a range of motions, there is no underlying 

methodology or well-defined rules in the creation of those databases to attempt a complete set  
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Figure 6.1: Meaningful, observable, and voluntary actions: jump, kick, and step up. 

of human motions. The aim of our praxicon is to learn the primitives or the building blocks of 

human motion. Our praxicon contains over 350 actions performed by a single subject (Figure 

6.1 shows three such actions). The list of all possible actions was constructed considering only 

meaningful, observable, and voluntary movement. To obtain a set of meaningful actions, we 

used the hierarchical structure of the lexical database WordNet [4] to select a set of meaningful 

“concrete” verbs that denote an action. Then the set is filtered by picking out only verbs 

corresponding to observable actions. Examples of non-observable actions are thinking and 

snoring which are actions but do not involve any perceivable motion. This set of meaningful, 

observable verbs is further filtered to find actions which are voluntary and are not initiated by 

someone other than the subject. The actions are a subset from a much larger set of all actions 

that a human can perform. The ultimate goal is to enable the learning of the primitives of 

motion. Hence, a wide range of different actions is chosen to capture all possible primitives 

Other constraints during short listing of the actions to be included in the praxicon 

considered limitations of capturing actions which created too many occlusions like rolling on the 
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ground, limitations of the capturing environment thus not allowing actions such as swim or horse 

riding, and actions which cannot be consistently replicated in a natural manner such as tripping 

or slipping. 

6.2.2 Range of skeletal structures 

The range of skeletal structures is distributed over 50 different subjects. The 

distribution was constructed with the help of a Voronoi diagram as described in Section 3.3. 

This enabled the selection of candidates such that an even distribution and coverage is 

obtained. All 50 subjects perform the same set of 70 actions. This results in a set of 3500 

motion trials distributed according to gender, height, weight, and age. This data can also be 

used to study retargeting, classification, and identification of motion as explained in Section 6.3. 

6.2.3 Multiple ways to perform each action 

When a motion is described semantically, the verb by itself does not define the exact 

way the action is performed. There must be additional adverbs or quantified values to describe 

a motion more accurately. For example, a person sits on a chair may make perfect sense 

semantically but there are external parameters such as the height of the chair, the reclining 

angle at the back which may alter the posture of the subject. Similarly the action of a person 

walking while carrying a box may depend significantly on the dimensions and weight of the box. 

The Human Motion Database contains data to study such phenomena. 

  

(a) (b) 

Figure 6.2: Target points in 3D space for actions in the generalization dataset: (a) Reach action, 
(b) Kick action 



 

70 
 

 
There are 270 motion trials captured from one subject which are divided into 163 reach 

motions, 7 sit-stand up motions, 36 kick motions, 32 step motions, 8 hop motions, 8 jog 

motions, 8 jump motions, and 8 walk motions. Each of the six sets provides data for the same 

action but performed differently with respect to a discrete volume of space. For example, the 

reach motion can be described as the subject reaching into a 3D discrete volume at various 

uniformly distributed points in the volume. The volume is defined as a right-handed Cartesian 

coordinate system with the origin at the projected center of mass on the floor when the subject 

is standing straight. There are 163 trials in this dataset where the subject does the reach motion 

and touches 163 different points in the volume (See Figure 6.2). 

Similarly the sit-stand up set consists of the subject sitting and then standing up for 7 

different heights of the chair. The kick motion has the subject kicking at various points in a 

fronto-parallel vertical plane. The step action consists of the subject stepping in different 

directions. The first motion is stepping directly forward which is termed 0 degrees. The next 

motion is to the right front of the subject at an angle of 45 degrees. These sets of 8 step actions 

in different directions are repeated at four varying step sizes. This yields a dataset of 32 motion 

trials. Each of the hop, jog, jump, and walk motions follow the same direction scheme as 

described in the step action. The motions are in different directions starting at 0 degrees and 

taking 45 degree increments. However, these motions are not repeated for varying step sizes 

and thus have only 8 trials each. 

Additionally, a different subject has a set of 60 trials that are divided into 16 kick 

motions, 9 lift motions, and 35 reach motions. Each of these three actions provides data for the 

same action but performed with different kicking speed, lifting load weight, and reaching speed. 

The speed of the kick and reach motions are uniformly varied keeping the point where the 

subject reaches or kicks constant. The weights being lifted were also uniformly increased for the 

lift motions. 
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6.2.4 Complex Motion 

Complex motion as described before is a combination of two or more actions. Complex 

motion can also include when two or more subjects are interacting with each other. The three 

datasets of complex motion in the Human Motion Database are the sequential composition 

dataset, the parallel composition dataset, and the interaction dataset. 

The parallel composition dataset contains 99 motion files corresponding to sets of 41 

different parallel motions. For example, each of the 41 sets will consist of the individual motions 

such as walk and wave separately as well as the motion performing walk and wave 

simultaneously. 

The sequential composition dataset contains 53 motion files corresponding to sets of 

39 different complex motions where the simple motions are sequentially concatenated one after 

the other. Each of the 39 sets includes individual motion files such as jog and jump as well as 

the jog and jump performed consecutively. There is also a co-articulation dataset where motions 

such as step and reach are first performed in a single template manner and, after that, 

concatenated with variations of the same motion. For example, all the step co-articulation 

motions have a common section which is stepping at a 45 degree angle. After this section, this 

single motion template is concatenated with a step motion ranging from 0 degrees to 315 

degrees in 45 degree steps. Similarly, all the 8 reach motions have a 45 degree reach as the 

common control motion which is concatenated with a second reach towards directions ranging 

from 0 degrees to 315 degrees in 45 degree steps. 

The interaction dataset contains actions that require mutual or reciprocal motions 

between multiple subjects. The actions may require synchronization between the subjects and 

the motion of one subject must always depend on the motion of the other. Examples of 

synchronized movements are dancing waltz and handshake where both subjects must perform 

mutually with respect to each other in order to execute the action. Non-synchronized actions 

are, for instance, push or slap where one subject initiates and executes the action and the other 
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subject exhibits the resultant involuntary action. There are 143 trials containing data involving 

two subjects performing actions conforming to the definition of interaction as explained above. 

6.3 Research Problems 

The different datasets of the HMD are designed to be used in various research problems 

pertaining to the study of different aspects of human motion. Problems such as classification 

and identification concern the cognitive challenge of motion. Retargeting is the problem of 

adapting the motion of one skeleton to that of another skeleton having different structure. 

Generalization is the challenge of converting all variations of a semantically unique action from 

a discretized space to a continuous space. Transitioning is the problem of concatenating two 

different actions such that the synthesized motion seems realistic. Splicing refers to the problem 

of merging actions performed by two or more different body parts into one single whole body 

motion. These problems are explained in detail in the following sub-sections and a relation is 

made on how the HMD will provide the ideal data to solve such problems. 

6.3.1 Classification and Identification 

Given that all actions can be performed in so many ways and so many styles, 

algorithms must approach the action recognition problem by discovering the fundamental 

features of each action. The corpus of motions and the range of skeletons will enable robust 

methods for motion cognition problems. The Human Motion Database contains enough data to 

train robust classifiers able to classify actions performed in various manners according to all 

aspects covered in our datasets. The motion cognition problems (i.e., classification and 

identification) can be approached in the following different ways with the HMD: 

• The 350 actions from the praxicon can be used to find a set of essential features for 

human movement. This way, each motion is represented by a subset of the essential 

features. 
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Figure 6.3: Interaction database with actions handshake (left) and passing a suitcase (right). 

• The 50 different subjects perform the same subset of 70 actions in the praxicon. This 

can bring considerable skeletal structure variability to improve classifiers robustness. 

• Actions are varied according to the attributes of the performing subject. The distribution 

of the database according to gender and age allow the study of methods for the 

identification of these attributes from motion data. 

• Once the essential features of a particular action are identified, other features such as 

personal style may be discovered to enable the identification of an individual subject 

from motion data. 

• The interaction dataset consisting of 143 actions should also be used to understand 

human motion in a more complete sense as a significant part of human activity is based 

on interaction (see Fig. 6.3). 
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6.3.2 Retargeting 

Retargeting is the problem of adapting the motion performed by one subject to consider 

the articulated figure of another target subject that is structurally different from the source 

subject. The structural difference between articulated figures can be the length of each 

segment. 

One of the main goals of retargeting is to keep as much of the original features of the 

motion as possible while adapting it to the target figure. For example, when the motion of a 

biped subject is retargeted to a quadruped subject, the retargeted quadruped motion is 

supposed to be similar to the bipedal motion. In animation, retargeting refers to using the motion 

captured from one subject to another character. The skeleton of the subjects must be different 

in at least one of the structural aspects. Animation retargeting can be extended to retarget 

human motion to humanoid robots that can be represented as an articulated figure. 

The Human Motion Database provides motion data from 50 subjects with different 

skeletal structures distributed in terms of height and weight. Figure 6.4 shows four such  

 

Figure 6.4: Different skeletal structures. 
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skeletons. The subjects perform the same subset of 70 actions in the praxicon. This provides 

ample data to divide into training and testing sets. For example, while 40 subjects can be used 

to train and learn how motion varies with skeletal structure, 10 subjects can be used to test. 

This provides the additional advantage of measuring the performance quantitatively with ground 

truth data. Another challenge of retargeting is to identify features which are independent of the 

structure of the skeleton and dependent only on external factors. For example, this dataset will 

help in identifying features such as “at least one foot should be on the floor while walking” while 

that feature is not necessarily true during a jump motion. Artifacts such as foot skating where 

the foot of the subject slides along the floor unnaturally are also undesirable. Current 

approaches aim to apply motion specific constraints to make the motion realistic. These 

constraints are however identified by humans and heuristics are developed to enforce these 

constraints. On the other hand, these constraints are unique to each particular type of motion. 

The Human Motion Database allows the study of these unique constraints for each action and 

consequently, the discovery of more robust methods for motion retargeting that consider 

different constraints for each action. 

6.3.3 Generalization 

Generalization is the problem where all the variations of a semantically defined action 

are parameterized from a discrete space to a continuous space. For example, a reach motion 

can vary according to the point where it reaches or the speed at which the reach action is 

performed. One approach to such a problem is to learn from the sample data where parameters 

such as speed and reaching point are known. Then the reach space or the speed variable can 

be parameterized to synthesize motion at any reaching point or at any speed within the range of 

the training data. 
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Figure 6.5: Reach motion data with nine target points of the whole dataset. 

The Human Motion Database provides discrete data for 11 such actions as described 

in Section 6.2.3. For all actions, only one parameter such as speed or reach point or direction of 

movement is changed while everything else is kept constant. Figure 6.5 shows nine instances 

of the reach dataset. 
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Figure 6.6: Transitioning data. A walk action (left), a jump action (center), and the ground truth 
data for a concatenated walk and jump action (right). 

6.3.4 Transitioning 

Transitioning can be defined as the sequential concatenation of different actions. When 

two actions are to be joined one after another, transitioning techniques verify whether their 

concatenation is feasible and then find the motion transition that takes a virtual character from  

one action to the next action. For example, a walk motion and a jump motion can be sequenced 

together to produce a walk and then a jump (See Figure 6.6). The Human Motion Database 

provides 39 sets of sequential motion data as part of the complex motion dataset, each of which 

consists of two individual trials of the subject performing the simple actions and one trial of the 

subject performing the transitioned action. 

6.3.5 Splicing 

The motion splicing problem consists in merging two different motions performed by 

different body parts into a single concurrent whole body motion. For example, a subject 

performing a walk motion and a wave motion separately can be spliced together to produce a  
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Figure 6.7: Splicing dataset. A walk action (left), a wave action (center), and the ground truth of 
a simultaneous walk and wave action (right). 

 

single walk and wave motion being performed in parallel (see Fig. 6.7). The literature has 

various methods to solve automatic motion splicing but performance evaluation is subjective. 

The results of such algorithms are evaluated visually for a degree of realism. There are no 

databases that provide ground truth data that can be used to get a quantitative measurement by 

comparing the synthesized spliced data to the real motion data. 

The Human Motion Database provides 41 sets of parallel motion data as part of the 

complex motion dataset, each of which consists of individual trials of the subject performing the 

two simple actions separately and one trial of the subject performing the spliced action. 
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CHAPTER 7 

CONCLUSION 

Motion databases have a strong potential to guide progress in the field of machine 

recognition and motion-based animation. Existing databases either have a very loose structure 

that do not sample the domain according to any controlled methodology or too few action 

samples which limits their potential to quantitatively evaluate the performance of motion-based 

techniques. The controlled sampling of the motor domain in the database may lead 

investigators to identify the fundamental difficulties of motion cognition problems and allow the 

addressing of these issues in a more objective way. In this thesis, we have described the 

construction of our Human Motion Database using controlled sampling methods (parametric 

and cognitive sampling) to obtain the structure necessary to the quantitative evaluation of 

several motion-based research problems.  

A number of applications ranging from automatic surveillance, motion-based animation, 

humanoid robotics, smart environments, and human-machine interfaces can benefit from the 

structured data in our Human Motion Database. For example, the detection of suspicious 

activities can be studied to aid in automatic surveillance of possible dangerous situations. 

Another salient feature of our Human Motion Database is the presence of ground truth data for 

the compositionality dataset. This has the scope to introduce quantitative evaluation of 

synthesized data as opposed to subjective evaluation. The large collection of data also 

facilitates the study of human motion in a more complete sense by classifying the human 

repertoire of motion as a composition of different types of motion such as individual actions, 

iteractions, compositional or compund actions as well as generalized actions. We intend to 

provide the basis by which any algorithm can be judged or evaluated by their performance in 
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the different aspects as mentioned above. The novel sampling methodologies followed aims to 

give an insight into how motion varies parametrically with height, weight, age and gender of the 

subject. The sampling also extends to provide an understanding of how certain actions, even 

though they are performed differently, are perceived cognitively to be the same. For example, a 

person picking up different weights where the motion varies considerably depending on the 

amount of weight being picked.  

The Human Motion Database is organized into several components: the praxicon 

dataset, the cross-validation dataset, the generalization dataset, the compositionality dataset, 

and the interaction dataset. The main contributions of this thesis include: 

• a survey of human motion databases describing data sources related to motion 

synthesis and analysis problems  

• a sampling methodology that takes advantage of a systematic controlled capture, 

denoted as cognitive sampling and parametric sampling 

• a novel structured motion database organized into several datasets addressing a 

number of aspects in the motion domain 

• a study of the design decisions needed to build a custom skeleton to generate joint 

angle data from marker data 

• a study of the motion capture technologies and the general optical motion capture 

workflow including capturing and post processing data 
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APPENDIX A 

 

WORLKFLOW TO GENERATE BVH FILES IN VICON BLADE 
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The workflow in Blade to create the Pipeline to generate bvh files is as follows: 

• Click on Import file and load the clean and labeled subject calibration trial c3d file. 

• If Vicon Blade Script Editor is not already open, go to the Editor tab and Click on Script 

Editor. 

• Click on Open Script in Script Editor and load Snap_Skeleton.hsl. 

• The first two lines convert the c3d data from Z up to Y up format and then load the 

custom skeleton .vst. Check to see if the path for the custom Actor_1.vst is correct. 

• Click on Run Script. 

• Visually check the result without changing the frame of the trial. Go to the Post 

Processing tab and click on Solve Motion. This should solve the motion for all the 

frames. 

• If Vicon Blade Skeleton Editor is not already open, go to the Editor tab and click on 

Skeleton Editor. 

• In the character box, make sure that Actor_1 is chosen such that the skeleton hierarchy 

is shown in a hierarchical representation below it. 

• Click the Create Script button. Make sure that "Root Node", "To File" and "Generate 

Solver Info" are selected in the new box. Give a name and click OK to generate the .hsl 

solver script. 

• If Vicon Blade Pipelines is not already open, go to the Editor tab and Click on Pipelines. 

• Click on the circular Main button on the top left of Vicon Blade and click on Preferences. 

• Click on Directories and make sure the path where the solver script was saved as well 

as the path to the script ZuptoYup (this was a script specially supplied by Vicon Support 

to change the coordinate system of the markers from Z up mode to Y up mode) is 

added in the script directories. Click on Reparse and then click Ok. 
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• In the Pipelines tab make a New Pipeline and add the following scripts: ZuptoYup, 

Solver script, and SolveSkeleton located in C:\ProgramFiles (x86) \Vicon \Blade1.6 

\Scripts \DefaultOps\) in that order. Save the pipeline with an appropriate name. 

The batch processing workflow in Blade to generate bvh is as follows: 

• The Pipelines for Subject 1 to 50 as well as Subject A and B are already created and 

stored at C:\Program Files (x86)\Vicon\Blade1.6\Scripts\HMD_Pipelines and can just be 

loaded in the Pipelines tab. To solve a trial with an action, import the c3d and then just 

run the Pipeline for the Subject. Then click on Export at the top to get the required 

format including bvh. 

• For batch processing, click on the Main Button on the top left of Vicon Blade and click 

on Batch Process. 

• Select the Script/Pipeline, the output directory, the export type as bvh, and click on Add 

Files to add the required files. Click on Start. Trials of only one subject can be batch 

processed at a time. 
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APPENDIX B 
 
 

SCRIPT TO GENERATE CUSTOM SKELETON AUTOMATICALLY 

 

 

 

 

 

 

 

 

 

 

 

 



 

85 
 

 
ZupToYup; 
loadFile -importType "selCreateNew" "C:/Users/Arnab/Desktop/Skeletons/Actor_1.vst"; 
 
create Marker Origin; 
create Marker Aim ; 
create Marker Up; 
vector $vKeys, $vPreTrans, $vPreRot; 
float $KeyX, $KeyY, $KeyZ, $PreX, $PreY, $PreZ; 
 
vector $RFHDPos  = `getPosition RFHD -ws`; 
vector $LFHDPos  = `getPosition LFHD -ws`; 
vector $RBHDPos = `getPosition RBHD -ws`; 
vector $LBHDPos = `getPosition LBHD -ws`; 
vector $C7Pos   = `getPosition C7   -ws`; 
vector $T10Pos  = `getPosition T10  -ws`; 
vector $RBAKPos = `getPosition RBAK -ws`; 
vector $CLAVPos  = `getPosition CLAV -ws`; 
vector $STRNPos = `getPosition STRN -ws`; 
vector $RSHOPos = `getPosition RSHO -ws`; 
vector $RUPAPos = `getPosition RUPA -ws`; 
vector $RELBPos = `getPosition RELB -ws`; 
vector $RFRMPos = `getPosition RFRM -ws`; 
vector $RWRAPos = `getPosition RWRA -ws`; 
vector $RWRBPos  = `getPosition RWRB -ws`; 
vector $RFINPos = `getPosition RFIN -ws`; 
vector $LSHOPos = `getPosition LSHO -ws`; 
vector $LUPAPos = `getPosition LUPA -ws`; 
vector $LELBPos = `getPosition LELB -ws`; 
vector $LFRMPos = `getPosition LFRM -ws`; 
vector $LWRAPos = `getPosition LWRA -ws`; 
vector $LWRBPos  = `getPosition LWRB -ws`; 
vector $LFINPos = `getPosition LFIN -ws`; 
vector $RASIPos  = `getPosition RASI -ws`; 
vector $LASIPos  = `getPosition LASI -ws`; 
vector $RPSIPos  = `getPosition RPSI -ws`; 
vector $LPSIPos  = `getPosition LPSI -ws`; 
vector $RTHIPos = `getPosition RTHI -ws`; 
vector $RKNEPos = `getPosition RKNE -ws`; 
vector $RTIBPos = `getPosition RTIB -ws`; 
vector $RANKPos = `getPosition RANK -ws`; 
vector $RHEEPos = `getPosition RHEE -ws`; 
vector $RTOEPos  = `getPosition RTOE -ws`; 
vector $LTHIPos = `getPosition LTHI -ws`; 
vector $LKNEPos = `getPosition LKNE -ws`; 
vector $LTIBPos = `getPosition LTIB -ws`; 
vector $LANKPos = `getPosition LANK -ws`; 
vector $LHEEPos = `getPosition LHEE -ws`; 
vector $LTOEPos  = `getPosition LTOE -ws`; 
 
//Root  
vector $Root_Origin = << float( $RPSIPos.X + $LPSIPos.X )/2 , float( $RPSIPos.Y + 
$LPSIPos.Y)/2, float( $RPSIPos.Z + $LPSIPos.Z)/2 >>; 
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setPosition Origin $Root_Origin; 
vector $Root_Aim = <<float( (($RASIPos.X+$LASIPos.X)/2) ), float( 
(($RASIPos.Y+$LASIPos.Y)/2)  ), float( (($RASIPos.Z+$LASIPos.Z)/2) ) >>; 
setPosition Aim $Root_Aim; 
 
vector $a = << float($Root_Aim.X-$Root_Origin.X), float($Root_Aim.Y-$Root_Origin.Y), 
float($Root_Aim.Z-$Root_Origin.Z) >>; 
vector $b = << float($Root_Origin.X-$Root_Origin.X), float(($Root_Origin.Y+1)-$Root_Origin.Y), 
float($Root_Origin.Z-$Root_Origin.Z) >>; 
vector $c = cross($a, $b); 
vector $d = cross($c, $a); 
setPosition Up << $Root_Origin.X+$d.X, $Root_Origin.Y+$d.Y, $Root_Origin.Z+$d.Z   >>; 
 
select Origin Aim Up; 
snapToSystemAlign Root 0 0 0 "Z" "Y" -allTime; 
 
//Lower_Back  
vector $Lower_Back_Origin = $Root_Origin; 
setPosition Origin $Lower_Back_Origin; 
vector $Lower_Back_Aim = $T10Pos; 
setPosition Aim $Lower_Back_Aim; 
vector $a = << float($Lower_Back_Aim.X-$Lower_Back_Origin.X), float($Lower_Back_Aim.Y-
$Lower_Back_Origin.Y), float($Lower_Back_Aim.Z-$Lower_Back_Origin.Z) >>; 
vector $b = << float($STRNPos.X-$Lower_Back_Origin.X), float($STRNPos.Y-
$Lower_Back_Origin.Y), float($STRNPos.Z-$Lower_Back_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($Lower_Back_Origin.X+$c.X), float($Lower_Back_Origin.Y+$c.Y), 
float($Lower_Back_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign Lower_Back 0 0 0 "Y" "X" -allTime; 
select Aim Upper_Back; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty Lower_Back "Pre_Translation"`; 
select Lower_Back; 
$KeyY = `getFloatProperty Lower_Back "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod Lower_Back; 
select Lower_Back; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty Lower_Back "Pre_Rotation"`; 
select Lower_Back; 
$KeyX = `getFloatProperty Lower_Back "Rotation.x"`; 
$KeyY = `getFloatProperty Lower_Back "Rotation.y"`; 
$KeyZ = `getFloatProperty Lower_Back "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 



 

87 
 

 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod Lower_Back; 
select Lower_Back; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//Upper_Back  
vector $Upper_Back_Origin = $T10Pos; 
setPosition Origin $Upper_Back_Origin; 
vector $Upper_Back_Aim = $C7Pos; 
setPosition Aim $Upper_Back_Aim; 
vector $a = << float($Upper_Back_Aim.X-$Upper_Back_Origin.X), float($Upper_Back_Aim.Y-
$Upper_Back_Origin.Y), float($Upper_Back_Aim.Z-$Upper_Back_Origin.Z) >>; 
vector $b = << float($STRNPos.X-$Upper_Back_Origin.X), float($STRNPos.Y-
$Upper_Back_Origin.Y), float($STRNPos.Z-$Upper_Back_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($Upper_Back_Origin.X+$c.X), float($Upper_Back_Origin.Y+$c.Y), 
float($Upper_Back_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign Upper_Back 0 0 0 "Y" "X" -allTime; 
select Aim Neck; 
snapTo -allTime; 
select Aim L_Collar; 
snapTo -allTime; 
select Aim R_Collar; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty Upper_Back "Pre_Translation"`; 
select Upper_Back; 
$KeyY = `getFloatProperty Upper_Back "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod Upper_Back; 
select Upper_Back; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty Upper_Back "Pre_Rotation"`; 
select Upper_Back; 
$KeyX = `getFloatProperty Upper_Back "Rotation.x"`; 
$KeyY = `getFloatProperty Upper_Back "Rotation.y"`; 
$KeyZ = `getFloatProperty Upper_Back "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod Upper_Back; 
select Upper_Back; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//Neck 
vector $Neck_Origin = $C7Pos; 
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setPosition Origin $Neck_Origin; 
vector $Neck_Aim = 
<<float(((2*$C7Pos.X+$RSHOPos.X+$LSHOPos.X+$RBHDPos.X+$LBHDPos.X)/6) ), 
float(((2*$C7Pos.Y+$RSHOPos.Y+$LSHOPos.Y+$RBHDPos.Y+$LBHDPos.Y)/6) ), 
float(((2*$C7Pos.Z+$RSHOPos.Z+$LSHOPos.Z+$RBHDPos.Z+$LBHDPos.Z)/6) ) >>; 
setPosition Aim $Neck_Aim; 
vector $a = << float($Neck_Aim.X-$Neck_Origin.X), float($Neck_Aim.Y-$Neck_Origin.Y), 
float($Neck_Aim.Z-$Neck_Origin.Z) >>; 
vector $b = << float($CLAVPos.X-$Neck_Origin.X), float($CLAVPos.Y-$Neck_Origin.Y), 
float($CLAVPos.Z-$Neck_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($Neck_Origin.X+$c.X), float($Neck_Origin.Y+$c.Y), 
float($Neck_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign Neck 0 0 0 "Y" "X" -allTime; 
select Aim Head; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty Neck "Pre_Translation"`; 
select Neck; 
$KeyY = `getFloatProperty Neck "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod Neck; 
select Neck; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty Neck "Pre_Rotation"`; 
select Neck; 
$KeyX = `getFloatProperty Neck "Rotation.x"`; 
$KeyY = `getFloatProperty Neck "Rotation.y"`; 
$KeyZ = `getFloatProperty Neck "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod Neck; 
select Neck; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//Head 
vector $Head_Origin = $Neck_Aim; 
setPosition Origin $Head_Origin; 
vector $Head_Aim = <<float((($LFHDPos.X+$RFHDPos.X+$RBHDPos.X+$LBHDPos.X)/4) ), 
float((($LFHDPos.Y+$RFHDPos.Y+$RBHDPos.Y+$LBHDPos.Y)/4) ), 
float((($LFHDPos.Z+$RFHDPos.Z+$RBHDPos.Z+$LBHDPos.Z)/4) ) >>; 
setPosition Aim $Head_Aim; 
vector $a = << float($Head_Aim.X-$Head_Origin.X), float($Head_Aim.Y-$Head_Origin.Y), 
float($Head_Aim.Z-$Head_Origin.Z) >>; 



 

89 
 

 
vector $b = << float($CLAVPos.X-$Head_Origin.X), float($CLAVPos.Y-$Head_Origin.Y), 
float($CLAVPos.Z-$Head_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($Head_Origin.X+$c.X), float($Head_Origin.Y+$c.Y), 
float($Head_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign Head 0 0 0 "Y" "X" -allTime; 
select Aim Head_End; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty Head "Pre_Translation"`; 
select Head; 
$KeyY = `getFloatProperty Head "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod Head; 
select Head; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty Head "Pre_Rotation"`; 
select Head; 
$KeyX = `getFloatProperty Head "Rotation.x"`; 
$KeyY = `getFloatProperty Head "Rotation.y"`; 
$KeyZ = `getFloatProperty Head "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod Head; 
select Head; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//Head_end 
select Aim Head_End; 
snapTo -allTime; 
$vPreTrans = `getVectorProperty Head_End "Pre_Translation"`; 
select Head_End; 
$KeyX = `getFloatProperty Head_End "Translation.x"`; 
$KeyY = `getFloatProperty Head_End "Translation.y"`; 
$KeyZ = `getFloatProperty Head_End "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod Head_End; 
select Head_End; selectProperty Translation; selectKeys -all; cutKeys; 
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//L_Collar 
vector $L_Collar_Origin = $Neck_Origin; 
setPosition Origin $L_Collar_Origin; 
vector $L_Collar_Aim = $LSHOPos; 
setPosition Aim $L_Collar_Aim; 
vector $a = << float($L_Collar_Aim.X-$L_Collar_Origin.X), float($L_Collar_Aim.Y-
$L_Collar_Origin.Y), float($L_Collar_Aim.Z-$L_Collar_Origin.Z) >>; 
vector $b = << float($CLAVPos.X-$L_Collar_Origin.X), float($CLAVPos.Y-$L_Collar_Origin.Y), 
float($CLAVPos.Z-$L_Collar_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($L_Collar_Origin.X+$c.X), float($L_Collar_Origin.Y+$c.Y), 
float($L_Collar_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign L_Collar 0 0 0 "Y" "X" -allTime; 
select Aim L_Upper_Arm; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Collar "Pre_Translation"`; 
select L_Collar; 
$KeyY = `getFloatProperty L_Collar "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Collar; 
select L_Collar; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty L_Collar "Pre_Rotation"`; 
select L_Collar; 
$KeyX = `getFloatProperty L_Collar "Rotation.x"`; 
$KeyY = `getFloatProperty L_Collar "Rotation.y"`; 
$KeyZ = `getFloatProperty L_Collar "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod L_Collar; 
select L_Collar; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//R_Collar 
vector $R_Collar_Origin = $Neck_Origin; 
setPosition Origin $R_Collar_Origin; 
vector $R_Collar_Aim = $RSHOPos; 
setPosition Aim $R_Collar_Aim; 
vector $a = << float($R_Collar_Aim.X-$R_Collar_Origin.X), float($R_Collar_Aim.Y-
$R_Collar_Origin.Y), float($R_Collar_Aim.Z-$R_Collar_Origin.Z) >>; 
vector $b = << float($CLAVPos.X-$R_Collar_Origin.X), float($CLAVPos.Y-$R_Collar_Origin.Y), 
float($CLAVPos.Z-$R_Collar_Origin.Z) >>; 
vector $c = cross($a, $b); 
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setPosition Up << float($R_Collar_Origin.X+$c.X), float($R_Collar_Origin.Y+$c.Y), 
float($R_Collar_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign R_Collar 0 0 0 "Y" "X" -allTime; 
select Aim R_Upper_Arm; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Collar "Pre_Translation"`; 
select R_Collar; 
$KeyY = `getFloatProperty R_Collar "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Collar; 
select R_Collar; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty R_Collar "Pre_Rotation"`; 
select R_Collar; 
$KeyX = `getFloatProperty R_Collar "Rotation.x"`; 
$KeyY = `getFloatProperty R_Collar "Rotation.y"`; 
$KeyZ = `getFloatProperty R_Collar "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod R_Collar; 
select R_Collar; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//L_Upper_Arm 
vector $L_Upper_Arm_Origin = $LSHOPos; 
setPosition Origin $L_Upper_Arm_Origin; 
vector $L_Upper_Arm_Aim = $LELBPos; 
setPosition Aim $L_Upper_Arm_Aim; 
vector $a = << float($L_Upper_Arm_Aim.X-$L_Upper_Arm_Origin.X), 
float($L_Upper_Arm_Aim.Y-$L_Upper_Arm_Origin.Y), float($L_Upper_Arm_Aim.Z-
$L_Upper_Arm_Origin.Z) >>; 
vector $b = << float($LUPAPos.X-$L_Upper_Arm_Origin.X), float($LUPAPos.Y-
$L_Upper_Arm_Origin.Y), float($LUPAPos.Z-$L_Upper_Arm_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($L_Upper_Arm_Origin.X+$c.X), float($L_Upper_Arm_Origin.Y+$c.Y), 
float($L_Upper_Arm_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign L_Upper_Arm 0 0 0 "Y" "X" -allTime; 
select Aim L_Lower_Arm; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Upper_Arm "Pre_Translation"`; 
select L_Upper_Arm; 
$KeyY = `getFloatProperty L_Upper_Arm "Translation.y"`; 
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$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Upper_Arm; 
select L_Upper_Arm; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty L_Upper_Arm "Pre_Rotation"`; 
select L_Upper_Arm; 
$KeyX = `getFloatProperty L_Upper_Arm "Rotation.x"`; 
$KeyY = `getFloatProperty L_Upper_Arm "Rotation.y"`; 
$KeyZ = `getFloatProperty L_Upper_Arm "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod L_Upper_Arm; 
select L_Upper_Arm; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//L_Lower_Arm 
vector $L_Lower_Arm_Origin = $LELBPos; 
setPosition Origin $L_Lower_Arm_Origin; 
vector $L_Lower_Arm_Aim = <<float( (($LWRAPos.X+$LWRBPos.X)/2) ), float( 
(($LWRAPos.Y+$LWRBPos.Y)/2)  ), float( (($LWRAPos.Z+$LWRBPos.Z)/2) ) >>; 
setPosition Aim $L_Lower_Arm_Aim; 
vector $a = << float($L_Lower_Arm_Aim.X-$L_Lower_Arm_Origin.X), 
float($L_Lower_Arm_Aim.Y-$L_Lower_Arm_Origin.Y), float($L_Lower_Arm_Aim.Z-
$L_Lower_Arm_Origin.Z) >>; 
vector $b = << float($LFRMPos.X-$L_Lower_Arm_Origin.X), float($LFRMPos.Y-
$L_Lower_Arm_Origin.Y), float($LFRMPos.Z-$L_Lower_Arm_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($L_Lower_Arm_Origin.X+$c.X), float($L_Lower_Arm_Origin.Y+$c.Y), 
float($L_Lower_Arm_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign L_Lower_Arm 0 0 0 "Y" "X" -allTime; 
select Aim L_Hand; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Lower_Arm "Pre_Translation"`; 
select L_Lower_Arm; 
$KeyY = `getFloatProperty L_Lower_Arm "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Lower_Arm; 
select L_Lower_Arm; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty L_Lower_Arm "Pre_Rotation"`; 
select L_Lower_Arm; 
$KeyX = `getFloatProperty L_Lower_Arm "Rotation.x"`; 
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$KeyY = `getFloatProperty L_Lower_Arm "Rotation.y"`; 
$KeyZ = `getFloatProperty L_Lower_Arm "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod L_Lower_Arm; 
select L_Lower_Arm; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//L_Hand 
vector $L_Hand_Origin = $L_Lower_Arm_Aim; 
setPosition Origin $L_Hand_Origin; 
vector $L_Hand_Aim = $LFINPos; 
setPosition Aim $L_Hand_Aim; 
vector $a = << float($L_Hand_Aim.X-$L_Hand_Origin.X), float($L_Hand_Aim.Y-
$L_Hand_Origin.Y), float($L_Hand_Aim.Z-$L_Hand_Origin.Z) >>; 
vector $b = << float($LWRAPos.X-$L_Hand_Origin.X), float($LWRAPos.Y-$L_Hand_Origin.Y), 
float($LWRAPos.Z-$L_Hand_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($L_Hand_Origin.X+$c.X), float($L_Hand_Origin.Y+$c.Y), 
float($L_Hand_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign L_Hand 0 0 0 "Y" "X" -allTime; 
select Aim L_Hand_End; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Hand "Pre_Translation"`; 
select L_Hand; 
$KeyY = `getFloatProperty L_Hand "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Hand; 
select L_Hand; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty L_Hand "Pre_Rotation"`; 
select L_Hand; 
$KeyX = `getFloatProperty L_Hand "Rotation.x"`; 
$KeyY = `getFloatProperty L_Hand "Rotation.y"`; 
$KeyZ = `getFloatProperty L_Hand "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod L_Hand; 
select L_Hand; selectProperty Rotation; selectKeys -all; cutKeys; 
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//L_Hand_end 
select LFIN L_Hand_End; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Hand_End "Pre_Translation"`; 
select L_Hand_End; 
$KeyX = `getFloatProperty L_Hand_End "Translation.x"`; 
$KeyY = `getFloatProperty L_Hand_End "Translation.y"`; 
$KeyZ = `getFloatProperty L_Hand_End "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Hand_End; 
select L_Hand_End; selectProperty Translation; selectKeys -all; cutKeys; 
 
//R_Upper_Arm 
vector $R_Upper_Arm_Origin = $RSHOPos; 
setPosition Origin $R_Upper_Arm_Origin; 
vector $R_Upper_Arm_Aim = $RELBPos; 
setPosition Aim $R_Upper_Arm_Aim; 
vector $a = << float($R_Upper_Arm_Aim.X-$R_Upper_Arm_Origin.X), 
float($R_Upper_Arm_Aim.Y-$R_Upper_Arm_Origin.Y), float($R_Upper_Arm_Aim.Z-
$R_Upper_Arm_Origin.Z) >>; 
vector $b = << float($RUPAPos.X-$R_Upper_Arm_Origin.X), float($RUPAPos.Y-
$R_Upper_Arm_Origin.Y), float($RUPAPos.Z-$R_Upper_Arm_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($R_Upper_Arm_Origin.X+$c.X), float($R_Upper_Arm_Origin.Y+$c.Y), 
float($R_Upper_Arm_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign R_Upper_Arm 0 0 0 "Y" "X" -allTime; 
select Aim R_Lower_Arm; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Upper_Arm "Pre_Translation"`; 
select R_Upper_Arm; 
$KeyY = `getFloatProperty R_Upper_Arm "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Upper_Arm; 
select R_Upper_Arm; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty R_Upper_Arm "Pre_Rotation"`; 
select R_Upper_Arm; 
$KeyX = `getFloatProperty R_Upper_Arm "Rotation.x"`; 
$KeyY = `getFloatProperty R_Upper_Arm "Rotation.y"`; 
$KeyZ = `getFloatProperty R_Upper_Arm "Rotation.z"`; 



 

95 
 

 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod R_Upper_Arm; 
select R_Upper_Arm; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//R_Lower_Arm 
vector $R_Lower_Arm_Origin = $RELBPos; 
setPosition Origin $R_Lower_Arm_Origin; 
vector $R_Lower_Arm_Aim = <<float( (($RWRAPos.X+$RWRBPos.X)/2) ), float( 
(($RWRAPos.Y+$RWRBPos.Y)/2)  ), float( (($RWRAPos.Z+$RWRBPos.Z)/2) ) >>; 
setPosition Aim $R_Lower_Arm_Aim; 
vector $a = << float($R_Lower_Arm_Aim.X-$R_Lower_Arm_Origin.X), 
float($R_Lower_Arm_Aim.Y-$R_Lower_Arm_Origin.Y), float($R_Lower_Arm_Aim.Z-
$R_Lower_Arm_Origin.Z) >>; 
vector $b = << float($RFRMPos.X-$R_Lower_Arm_Origin.X), float($RFRMPos.Y-
$R_Lower_Arm_Origin.Y), float($RFRMPos.Z-$R_Lower_Arm_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($R_Lower_Arm_Origin.X+$c.X), float($R_Lower_Arm_Origin.Y+$c.Y), 
float($R_Lower_Arm_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign R_Lower_Arm 0 0 0 "Y" "X" -allTime; 
select Aim R_Hand; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Lower_Arm "Pre_Translation"`; 
select R_Lower_Arm; 
$KeyY = `getFloatProperty R_Lower_Arm "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Lower_Arm; 
select R_Lower_Arm; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty R_Lower_Arm "Pre_Rotation"`; 
select R_Lower_Arm; 
$KeyX = `getFloatProperty R_Lower_Arm "Rotation.x"`; 
$KeyY = `getFloatProperty R_Lower_Arm "Rotation.y"`; 
$KeyZ = `getFloatProperty R_Lower_Arm "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod R_Lower_Arm; 
select R_Lower_Arm; selectProperty Rotation; selectKeys -all; cutKeys; 
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//R_Hand 
vector $R_Hand_Origin = $R_Lower_Arm_Aim; 
setPosition Origin $R_Hand_Origin; 
vector $R_Hand_Aim = $RFINPos; 
setPosition Aim $R_Hand_Aim; 
vector $a = << float($R_Hand_Aim.X-$R_Hand_Origin.X), float($R_Hand_Aim.Y-
$R_Hand_Origin.Y), float($R_Hand_Aim.Z-$R_Hand_Origin.Z) >>; 
vector $b = << float($RWRAPos.X-$R_Hand_Origin.X), float($RWRAPos.Y-
$R_Hand_Origin.Y), float($RWRAPos.Z-$R_Hand_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($R_Hand_Origin.X+$c.X), float($R_Hand_Origin.Y+$c.Y), 
float($R_Hand_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign R_Hand 0 0 0 "Y" "X" -allTime; 
select Aim R_Hand_End; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Hand "Pre_Translation"`; 
select R_Hand; 
$KeyY = `getFloatProperty R_Hand "Translation.y"`; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$vPreTrans = <<$vPreTrans.x, $PreY, $vPreTrans.z>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Hand; 
select R_Hand; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty R_Hand "Pre_Rotation"`; 
select R_Hand; 
$KeyX = `getFloatProperty R_Hand "Rotation.x"`; 
$KeyY = `getFloatProperty R_Hand "Rotation.y"`; 
$KeyZ = `getFloatProperty R_Hand "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod R_Hand; 
select R_Hand; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//R_Hand_end 
select RFIN R_Hand_End; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Hand_End "Pre_Translation"`; 
select R_Hand_End; 
$KeyX = `getFloatProperty R_Hand_End "Translation.x"`; 
$KeyY = `getFloatProperty R_Hand_End "Translation.y"`; 
$KeyZ = `getFloatProperty R_Hand_End "Translation.z"`; 
$PreX = $vPreTrans.x; 
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$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Hand_End; 
select R_Hand_End; selectProperty Translation; selectKeys -all; cutKeys; 
 
//R_Hip 
vector $R_Hip_Origin = $RPSIPos;  
setPosition Origin $R_Hip_Origin; 
 
vector $Hip_Origin = <<float( (($RASIPos.X+$LASIPos.X)/2) ), float( 
(($RASIPos.Y+$LASIPos.Y)/2)  ), float( (($RASIPos.Z+$LASIPos.Z)/2) ) >>; 
vector $Hip_Vx = <<float( ($RASIPos.X-$LASIPos.X) ), float( ($RASIPos.Y-$LASIPos.Y)  ), 
float( ($RASIPos.Z-$LASIPos.Z) ) >>; 
float $PW = getLength($Hip_Vx); 
$Hip_Vx = `normalize $Hip_Vx`; 
vector $Hip_Vz = cross($Hip_Vx, << 0, 1, 0 >>); // Potential error: check order 
vector $Hip_Vy = cross($Hip_Vx, $Hip_Vz);       // Potential error: check order 
vector $R_Hip_Aim = <<float( 
($Hip_Origin.X+0.36*$PW*$Hip_Vx.X+0.22*$PW*$Hip_Vy.X+0.30*$PW*$Hip_Vz.X) ), float( 
($Hip_Origin.Y+0.36*$PW*$Hip_Vx.Y+0.22*$PW*$Hip_Vy.Y+0.30*$PW*$Hip_Vz.Y)  ), float( 
($Hip_Origin.Z+0.36*$PW*$Hip_Vx.Z+0.22*$PW*$Hip_Vy.Z+0.30*$PW*$Hip_Vz.Z) ) >>; 
 
setPosition Aim $R_Hip_Aim; 
vector $a = << float($R_Hip_Aim.X-$R_Hip_Origin.X), float($R_Hip_Aim.Y-$R_Hip_Origin.Y), 
float($R_Hip_Aim.Z-$R_Hip_Origin.Z) >>; 
vector $b = << float($LPSIPos.X-$R_Hip_Origin.X), float($LPSIPos.Y-$R_Hip_Origin.Y), 
float($LPSIPos.Z-$R_Hip_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($R_Hip_Origin.X+$c.X), float($R_Hip_Origin.Y+$c.Y), 
float($R_Hip_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign R_Hip 0 0 0 "Y" "X" -allTime; 
select Aim R_Upper_Leg; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Hip "Pre_Translation"`; 
select R_Hip; 
$KeyX = `getFloatProperty R_Hip "Translation.x"`; 
$KeyY = `getFloatProperty R_Hip "Translation.y"`; 
$KeyZ = `getFloatProperty R_Hip "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Hip; 
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select R_Hip; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty R_Hip "Pre_Rotation"`; 
select R_Hip; 
$KeyX = `getFloatProperty R_Hip "Rotation.x"`; 
$KeyY = `getFloatProperty R_Hip "Rotation.y"`; 
$KeyZ = `getFloatProperty R_Hip "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod R_Hip; 
select R_Hip; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//R_Upper_Leg 
vector $R_Upper_Leg_Origin = $R_Hip_Aim; 
setPosition Origin $R_Upper_Leg_Origin; 
vector $R_Upper_Leg_Aim = $RKNEPos; 
setPosition Aim $R_Upper_Leg_Aim; 
vector $a = << float($R_Upper_Leg_Aim.X-$R_Upper_Leg_Origin.X), 
float($R_Upper_Leg_Aim.Y-$R_Upper_Leg_Origin.Y), float($R_Upper_Leg_Aim.Z-
$R_Upper_Leg_Origin.Z) >>; 
vector $b = << float($RTHIPos.X-$R_Upper_Leg_Origin.X), float($RTHIPos.Y-
$R_Upper_Leg_Origin.Y), float($RTHIPos.Z-$R_Upper_Leg_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($R_Upper_Leg_Origin.X+$c.X), float($R_Upper_Leg_Origin.Y+$c.Y), 
float($R_Upper_Leg_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign R_Upper_Leg 0 0 0 "Y" "X" -allTime; 
select Aim R_Lower_Leg; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Upper_Leg "Pre_Translation"`; 
select R_Upper_Leg; 
$KeyX = `getFloatProperty R_Upper_Leg "Translation.x"`; 
$KeyY = `getFloatProperty R_Upper_Leg "Translation.y"`; 
$KeyZ = `getFloatProperty R_Upper_Leg "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Upper_Leg; 
select R_Upper_Leg; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty R_Upper_Leg "Pre_Rotation"`; 
select R_Upper_Leg; 
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$KeyX = `getFloatProperty R_Upper_Leg "Rotation.x"`; 
$KeyY = `getFloatProperty R_Upper_Leg "Rotation.y"`; 
$KeyZ = `getFloatProperty R_Upper_Leg "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod R_Upper_Leg; 
select R_Upper_Leg; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//R_Lower_Leg 
vector $R_Lower_Leg_Origin = $RKNEPos; 
setPosition Origin $R_Lower_Leg_Origin; 
vector $R_Lower_Leg_Aim = $RANKPos; 
setPosition Aim $R_Lower_Leg_Aim; 
vector $a = << float($R_Lower_Leg_Aim.X-$R_Lower_Leg_Origin.X), 
float($R_Lower_Leg_Aim.Y-$R_Lower_Leg_Origin.Y), float($R_Lower_Leg_Aim.Z-
$R_Lower_Leg_Origin.Z) >>; 
vector $b = << float($RTIBPos.X-$R_Lower_Leg_Origin.X), float($RTIBPos.Y-
$R_Lower_Leg_Origin.Y), float($RTIBPos.Z-$R_Lower_Leg_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($R_Lower_Leg_Origin.X+$c.X), float($R_Lower_Leg_Origin.Y+$c.Y), 
float($R_Lower_Leg_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign R_Lower_Leg 0 0 0 "Y" "X" -allTime; 
select Aim R_Foot; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Lower_Leg "Pre_Translation"`; 
select R_Lower_Leg; 
$KeyX = `getFloatProperty R_Lower_Leg "Translation.x"`; 
$KeyY = `getFloatProperty R_Lower_Leg "Translation.y"`; 
$KeyZ = `getFloatProperty R_Lower_Leg "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Lower_Leg; 
select R_Lower_Leg; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty R_Lower_Leg "Pre_Rotation"`; 
select R_Lower_Leg; 
$KeyX = `getFloatProperty R_Lower_Leg "Rotation.x"`; 
$KeyY = `getFloatProperty R_Lower_Leg "Rotation.y"`; 
$KeyZ = `getFloatProperty R_Lower_Leg "Rotation.z"`; 
$PreX = $vPreRot.x; 
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$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod R_Lower_Leg; 
select R_Lower_Leg; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//R_Foot 
vector $R_Foot_Origin = $RANKPos; 
setPosition Origin $R_Foot_Origin; 
vector $R_Foot_Aim = $RTOEPos; 
setPosition Aim $R_Foot_Aim; 
vector $a = << float($R_Foot_Aim.X-$R_Foot_Origin.X), float($R_Foot_Aim.Y-
$R_Foot_Origin.Y), float($R_Foot_Aim.Z-$R_Foot_Origin.Z) >>; 
vector $b = << float($RHEEPos.X-$R_Foot_Origin.X), float($RHEEPos.Y-$R_Foot_Origin.Y), 
float($RHEEPos.Z-$R_Foot_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($R_Foot_Origin.X+$c.X), float($R_Foot_Origin.Y+$c.Y), 
float($R_Foot_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign R_Foot 0 0 0 "Y" "X" -allTime; 
select Aim R_Foot_End; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Foot "Pre_Translation"`; 
select R_Foot; 
$KeyX = `getFloatProperty R_Foot "Translation.x"`; 
$KeyY = `getFloatProperty R_Foot "Translation.y"`; 
$KeyZ = `getFloatProperty R_Foot "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Foot; 
select R_Foot; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty R_Foot "Pre_Rotation"`; 
select R_Foot; 
$KeyX = `getFloatProperty R_Foot "Rotation.x"`; 
$KeyY = `getFloatProperty R_Foot "Rotation.y"`; 
$KeyZ = `getFloatProperty R_Foot "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
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$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod R_Foot; 
select R_Foot; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//R_Foot_end 
select RTOE R_Foot_End; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty R_Foot_End "Pre_Translation"`; 
select R_Foot_End; 
$KeyX = `getFloatProperty R_Foot_End "Translation.x"`; 
$KeyY = `getFloatProperty R_Foot_End "Translation.y"`; 
$KeyZ = `getFloatProperty R_Foot_End "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod R_Foot_End; 
select R_Foot_End; selectProperty Translation; selectKeys -all; cutKeys; 
 
//L_Hip 
vector $L_Hip_Origin = $LPSIPos;  
setPosition Origin $L_Hip_Origin; 
float $zero= 0.0; 
$Hip_Vx = <<float($zero-$Hip_Vx.X), float($zero-$Hip_Vx.Y), float($zero-$Hip_Vx.Z)>>; 
vector $L_Hip_Aim = <<float( 
($Hip_Origin.X+0.36*$PW*$Hip_Vx.X+0.22*$PW*$Hip_Vy.X+0.30*$PW*$Hip_Vz.X) ), float( 
($Hip_Origin.Y+0.36*$PW*$Hip_Vx.Y+0.22*$PW*$Hip_Vy.Y+0.30*$PW*$Hip_Vz.Y)  ), float( 
($Hip_Origin.Z+0.36*$PW*$Hip_Vx.Z+0.22*$PW*$Hip_Vy.Z+0.30*$PW*$Hip_Vz.Z) ) >>; 
 
setPosition Aim $L_Hip_Aim; 
vector $a = << float($L_Hip_Aim.X-$L_Hip_Origin.X), float($L_Hip_Aim.Y-$L_Hip_Origin.Y), 
float($L_Hip_Aim.Z-$L_Hip_Origin.Z) >>; 
vector $b = << float($RPSIPos.X-$L_Hip_Origin.X), float($RPSIPos.Y-$L_Hip_Origin.Y), 
float($RPSIPos.Z-$L_Hip_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($L_Hip_Origin.X+$c.X), float($L_Hip_Origin.Y+$c.Y), 
float($L_Hip_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign L_Hip 0 0 0 "Y" "X" -allTime; 
select Aim L_Upper_Leg; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Hip "Pre_Translation"`; 
select L_Hip; 
$KeyX = `getFloatProperty L_Hip "Translation.x"`; 
$KeyY = `getFloatProperty L_Hip "Translation.y"`; 
$KeyZ = `getFloatProperty L_Hip "Translation.z"`; 
$PreX = $vPreTrans.x; 



 

102 
 

 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Hip; 
select L_Hip; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty L_Hip "Pre_Rotation"`; 
select R_Hip; 
$KeyX = `getFloatProperty L_Hip "Rotation.x"`; 
$KeyY = `getFloatProperty L_Hip "Rotation.y"`; 
$KeyZ = `getFloatProperty L_Hip "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod L_Hip; 
select L_Hip; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//L_Upper_Leg 
vector $L_Upper_Leg_Origin = $L_Hip_Aim; 
setPosition Origin $L_Upper_Leg_Origin; 
vector $L_Upper_Leg_Aim = $LKNEPos; 
setPosition Aim $L_Upper_Leg_Aim; 
vector $a = << float($L_Upper_Leg_Aim.X-$L_Upper_Leg_Origin.X), 
float($L_Upper_Leg_Aim.Y-$L_Upper_Leg_Origin.Y), float($L_Upper_Leg_Aim.Z-
$L_Upper_Leg_Origin.Z) >>; 
vector $b = << float($LTHIPos.X-$L_Upper_Leg_Origin.X), float($LTHIPos.Y-
$L_Upper_Leg_Origin.Y), float($LTHIPos.Z-$L_Upper_Leg_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($L_Upper_Leg_Origin.X+$c.X), float($L_Upper_Leg_Origin.Y+$c.Y), 
float($L_Upper_Leg_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign L_Upper_Leg 0 0 0 "Y" "X" -allTime; 
select Aim L_Lower_Leg; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Upper_Leg "Pre_Translation"`; 
select L_Upper_Leg; 
$KeyX = `getFloatProperty L_Upper_Leg "Translation.x"`; 
$KeyY = `getFloatProperty L_Upper_Leg "Translation.y"`; 
$KeyZ = `getFloatProperty L_Upper_Leg "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
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$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Upper_Leg; 
select L_Upper_Leg; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty L_Upper_Leg "Pre_Rotation"`; 
select L_Upper_Leg; 
$KeyX = `getFloatProperty L_Upper_Leg "Rotation.x"`; 
$KeyY = `getFloatProperty L_Upper_Leg "Rotation.y"`; 
$KeyZ = `getFloatProperty L_Upper_Leg "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod L_Upper_Leg; 
select L_Upper_Leg; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//L_Lower_Leg 
vector $L_Lower_Leg_Origin = $LKNEPos; 
setPosition Origin $L_Lower_Leg_Origin; 
vector $L_Lower_Leg_Aim = $LANKPos; 
setPosition Aim $L_Lower_Leg_Aim; 
vector $a = << float($L_Lower_Leg_Aim.X-$L_Lower_Leg_Origin.X), 
float($L_Lower_Leg_Aim.Y-$L_Lower_Leg_Origin.Y), float($L_Lower_Leg_Aim.Z-
$L_Lower_Leg_Origin.Z) >>; 
vector $b = << float($LTIBPos.X-$L_Lower_Leg_Origin.X), float($LTIBPos.Y-
$L_Lower_Leg_Origin.Y), float($LTIBPos.Z-$L_Lower_Leg_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($L_Lower_Leg_Origin.X+$c.X), float($L_Lower_Leg_Origin.Y+$c.Y), 
float($L_Lower_Leg_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign L_Lower_Leg 0 0 0 "Y" "X" -allTime; 
select Aim L_Foot; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Lower_Leg "Pre_Translation"`; 
select L_Lower_Leg; 
$KeyX = `getFloatProperty L_Lower_Leg "Translation.x"`; 
$KeyY = `getFloatProperty L_Lower_Leg "Translation.y"`; 
$KeyZ = `getFloatProperty L_Lower_Leg "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Lower_Leg; 
select L_Lower_Leg; selectProperty Translation; selectKeys -all; cutKeys; 
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$vPreRot = `getVectorProperty L_Lower_Leg "Pre_Rotation"`; 
select L_Lower_Leg; 
$KeyX = `getFloatProperty L_Lower_Leg "Rotation.x"`; 
$KeyY = `getFloatProperty L_Lower_Leg "Rotation.y"`; 
$KeyZ = `getFloatProperty L_Lower_Leg "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod L_Lower_Leg; 
select L_Lower_Leg; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//L_Foot 
vector $L_Foot_Origin = $LANKPos; 
setPosition Origin $L_Foot_Origin; 
vector $L_Foot_Aim = $LTOEPos; 
setPosition Aim $L_Foot_Aim; 
vector $a = << float($L_Foot_Aim.X-$L_Foot_Origin.X), float($L_Foot_Aim.Y-
$L_Foot_Origin.Y), float($L_Foot_Aim.Z-$L_Foot_Origin.Z) >>; 
vector $b = << float($LHEEPos.X-$L_Foot_Origin.X), float($LHEEPos.Y-$L_Foot_Origin.Y), 
float($LHEEPos.Z-$L_Foot_Origin.Z) >>; 
vector $c = cross($a, $b); 
setPosition Up << float($L_Foot_Origin.X+$c.X), float($L_Foot_Origin.Y+$c.Y), 
float($L_Foot_Origin.Z+$c.Z) >>; 
select Origin Aim Up; 
snapToSystemAlign L_Foot 0 0 0 "Y" "X" -allTime; 
select Aim L_Foot_End; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Foot "Pre_Translation"`; 
select L_Foot; 
$KeyX = `getFloatProperty L_Foot "Translation.x"`; 
$KeyY = `getFloatProperty L_Foot "Translation.y"`; 
$KeyZ = `getFloatProperty L_Foot "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Foot; 
select L_Foot; selectProperty Translation; selectKeys -all; cutKeys; 
 
$vPreRot = `getVectorProperty L_Foot "Pre_Rotation"`; 
select L_Foot; 
$KeyX = `getFloatProperty L_Foot "Rotation.x"`; 
$KeyY = `getFloatProperty L_Foot "Rotation.y"`; 
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$KeyZ = `getFloatProperty L_Foot "Rotation.z"`; 
$PreX = $vPreRot.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreRot.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreRot.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreRot = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Rotation $vPreRot -onMod L_Foot; 
select L_Foot; selectProperty Rotation; selectKeys -all; cutKeys; 
 
//L_Foot_end 
select LTOE L_Foot_End; 
snapTo -allTime; 
 
$vPreTrans = `getVectorProperty L_Foot_End "Pre_Translation"`; 
select L_Foot_End; 
$KeyX = `getFloatProperty L_Foot_End "Translation.x"`; 
$KeyY = `getFloatProperty L_Foot_End "Translation.y"`; 
$KeyZ = `getFloatProperty L_Foot_End "Translation.z"`; 
$PreX = $vPreTrans.x; 
$PreX = $PreX + $KeyX; 
$PreY = $vPreTrans.y; 
$PreY = $PreY + $KeyY; 
$PreZ = $vPreTrans.z; 
$PreZ = $PreZ + $KeyZ; 
$vPreTrans = <<$PreX, $PreY, $PreZ>>; 
setProperty Pre_Translation $vPreTrans -onMod L_Foot_End; 
select L_Foot_End; selectProperty Translation; selectKeys -all; cutKeys; 
 
select Origin Aim Up; 
delete; 
 
//Adding Constraints 
attach Actor_1\\Head Actor_1\\LFHD Actor_1\\LBHD Actor_1\\RFHD Actor_1\\RBHD; 
attach Actor_1\\Neck Actor_1\\C7 Actor_1\\CLAV Actor_1\\LBHD Actor_1\\RBHD; 
attach Actor_1\\L_Collar Actor_1\\C7 Actor_1\\CLAV Actor_1\\LSHO; 
attach Actor_1\\L_Upper_Arm Actor_1\\LSHO Actor_1\\LUPA Actor_1\\LELB Actor_1\\CLAV; 
attach Actor_1\\L_Lower_Arm Actor_1\\LWRA Actor_1\\LWRB Actor_1\\LFRM Actor_1\\LELB; 
attach Actor_1\\L_Hand Actor_1\\LWRB Actor_1\\LWRA Actor_1\\LFIN Actor_1\\LFRM; 
attach Actor_1\\Upper_Back Actor_1\\C7 Actor_1\\CLAV Actor_1\\RBAK; 
attach Actor_1\\Lower_Back Actor_1\\T10 Actor_1\\STRN Actor_1\\RPSI Actor_1\\LPSI; 
attach Actor_1\\Root Actor_1\\LPSI Actor_1\\RPSI Actor_1\\LASI Actor_1\\RASI; 
attach Actor_1\\R_Hip Actor_1\\LPSI Actor_1\\RPSI Actor_1\\RASI; 
attach Actor_1\\L_Hip Actor_1\\LPSI Actor_1\\RPSI Actor_1\\LASI; 
attach Actor_1\\R_Upper_Leg Actor_1\\RASI Actor_1\\RTHI Actor_1\\RKNE Actor_1\\RPSI; 
attach Actor_1\\R_Lower_Leg Actor_1\\RKNE Actor_1\\RTIB Actor_1\\RANK Actor_1\\RHEE; 
attach Actor_1\\R_Foot Actor_1\\RANK Actor_1\\RHEE Actor_1\\RTOE Actor_1\\RTIB; 
attach Actor_1\\L_Upper_Leg Actor_1\\LKNE Actor_1\\LTHI Actor_1\\LASI Actor_1\\LPSI; 
attach Actor_1\\L_Lower_Leg Actor_1\\LKNE Actor_1\\LTIB Actor_1\\LANK Actor_1\\LHEE; 
attach Actor_1\\L_Foot Actor_1\\LANK Actor_1\\LHEE Actor_1\\LTOE Actor_1\\LTIB; 
attach Actor_1\\R_Collar Actor_1\\CLAV Actor_1\\C7 Actor_1\\RSHO; 
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attach Actor_1\\R_Upper_Arm Actor_1\\RSHO Actor_1\\RUPA Actor_1\\RELB Actor_1\\CLAV; 
attach Actor_1\\R_Lower_Arm Actor_1\\RFRM Actor_1\\RELB Actor_1\\RWRA Actor_1\\RWRB; 
attach Actor_1\\R_Hand Actor_1\\RFIN Actor_1\\RWRA Actor_1\\RWRB Actor_1\\RFRM; 
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LIST OF ACTIONS IN HMD 
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List of actions in the Praxicon : 

adjust hair 
answer phone 
answer phone sitting 
answer wall phone 
arm wrestle 
balance on one leg 
bang door  
beat 
bend knee 
bend over 
bob horizontal 
bob vertical 
bounce 
bow 
braid 
brush 
brush teeth horizontal 
brush teeth inside 
brush teeth vertical 
bump 
bump in place 
butterfly 
call 
carry both hands heavy 
carry both hands light 
carry both hands medium 
carry one hand heavy 
carry one hand light 
carry suitcase 
carry together heavy 
cast spell 
catch one hand 
chair spin 
chair walk backwards 
chair walk backwards both  
chair walk forward 
chair walk forward both 
chair walk sideways 
check  
chin in hand 
chop  
chop hor 
chop ver 
clap 
clap cross 
clap mute 
climb ladder 
cock head 
coil rope 
comb hair 

come sign  
crab backwards 
crab forward 
crab sideways 
cradle 
crawl 
crawl backwards 
crawl sideways 
cross legs 
crouch 
cut with knife 
dangle legs 
dart 
dial phone 
dial phone circle 
dig hole 
dodge 
drink bottle 
drink water 
drum 
duck 
dust off 
elbow 
embrace 
fan 
fan vertical 
fishing 
flail 
flap 
flex ankle 
flex ankle B 
flex bicep 
flex elbow 
flex tricep 
flex wrist 
flick 
fling 
flip coin 
fluff up 
get by 
hail 
halt  
handover 
hang clothes 
head butt 
heave 
heft 
high five 
hike up shorts 
hike up socks 

hit 
hit the dirt 
hoist 
hold hands 
hop 
hunch 
hurdle 
hurl 
incline head  
incline head hand 
jerk open 
jog 
jump backwards 
jump down 
jump forward 
jump inplace 
jump inplace 180 
jump inplace 90 
jump sideways 
jump up 
jump walk 
jumping jack 
kick full 
kick high 
kick low 
kick sideway 
kick soccer pass 
kneel  
kneel both 
knock door 
lasso 
lean object forward 
lean object sideways 
lift box 
lift heavy 
lift light 
lift medium 
limp 
look around 
look around 180 
look back 
look sidways 
march 
mop floor 
nod maybe 
nod no 
nod yes 
nose picking 
nudge 
open box 
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open-close bottle 
pace step 
paint wall 
pass over 
pass over suitcase 
pass sign 
pat shoulder 
pick up 
pick up floor 
pick up suitcase 
pick up together heavy 
play guitar 
play piano 
play violin 
poise 
poke ground 
pour 
pronate 
pronk 
pull 
pull chair 
pull gun 
pull heavy chair 
pull nail 
pull rope hor 
pull rope hor cross 
punch 
punch curved 
punch hook 
punch uppercut 
push 
push chair 
push heavy chair 
push swing 
pushup 
put on cap 
put on hat 
put on headphones 
reach 

pace step 
paint wall 
pass over 
pass over suitcase 
pass sign 
pat shoulder 
pick up 
pick up floor 
pick up suitcase 
pick up together heavy 
play guitar 
play piano 
play violin 
poise 
poke ground 
pour 
pronate 
pronk 
pull 
pull chair 
pull gun 
pull heavy chair 
pull nail 
pull rope hor 
pull rope hor cross 
punch 
punch curved 
punch hook 
punch uppercut 
push 
push chair 
push heavy chair 
push swing 
pushup 
put on cap 
put on hat 
put on headphones 
reach 
reach across 
reach back 
reach sideways 
rest on one leg 
revolve around 
revolve around sideways 
rip paper 
rock sit back forth 
rock sit back sideways 

pace step 
paint wall 
pass over 
pass over suitcase 
pass sign 
pat shoulder 
pick up 
pick up floor 
pick up suitcase 
pick up together heavy 
play guitar 
play piano 
play violin 
poise 
poke ground 
pour 
pronate 
pronk 
pull 
pull chair 
pull gun 
pull heavy chair 
pull nail 
pull rope hor 
pull rope hor cross 
punch 
punch curved 
punch hook 
punch uppercut 
push 
push chair 
push heavy chair 
push swing 
pushup 
put on cap 
put on hat 
put on headphones 
reach 
reach across 
reach back 
reach sideways 
rest on one leg 
revolve around 
revolve around sideways 
rip paper 
rock sit back forth 
rock sit back sideways 
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step on 
step on brakes 
step over 
step up 
step up high 
step up medium 
step up over 
step up over medium 
stir 
stir big 
stomp 
stoop 
stop sign 
stretch back 
stretch head 
stretch kick sideways  
stretch sideways 
stretch thigh 
stretch thigh back 
stretch thigh sideways 
stretch triceps 
stretch triceps B 
stride 
stroll 
swagger 
swat 
sweep broom 
swing bat 
swipe 
swipe reverse 
tap 
tap foot 
throw catch 
throw catch random 
throw pitch 
thrust 
thump 
tip toe 
tip toe backwards 

step on brakes 
step over 
step up 
step up high 
step up medium 
step up over 
step up over medium 
stir 
stir big 
stomp 
stoop 
stop sign 
stretch back 
stretch head 
stretch kick sideways  
stretch sideways 
stretch thigh 
stretch thigh back 
stretch thigh sideways 
stretch triceps 
stretch triceps B 
stride 
stroll 
swagger 
swat 
sweep broom 
swing bat 
swipe 
swipe reverse 
tap 
tap foot 
throw catch 
throw catch random 
throw pitch 
thrust 
thump 
tip toe 
tip toe backwards 
toe 
tow 
tread in place 
tread walk 
trip 
trot 
tug 
tug oar 
tug oar alt 
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List of Interactions: 

andoleta 
arm wrestling 
back pet 
basketball ground pass 
basketball 
beat 
boxing 
brush hair 
brush teeth 
bump while walking 
caress arms 
caress face 
carry on arms 
carry together box 
carry together flag 
carry together luggage 
carry together sofa chair 
carry together table 
chuck 
ciranda 
collar grab 
comb hair 
cut nails 
dance forro 
dance waltz 
dodgeball 
elbow 
embrace 
eskimo kiss 
excercise arms 
excercise legs 
feel pulse 
feel 
fist pound 
fold sheets 
football 
forehead slap 
frogleap 
give drink 
give injection 
hand kiss 
handover keys 
handshake 
high five 
le petit petat 
lean on hand 
lean on 
left hand to upper body 
touch  
mace 

 
 
make out 
march 
massage back hit 
massage back 
massage feet 
mutual face contact 
mutual face kiss 
mutual lip kiss 
nudge 
palpate stomach 
pass both hands suitcase 
back 
pass both hands suitcase 
front 
pass both hands suitcase 
sideways 
pass one hand box back 
horizontal 
pass one hand box back 
pass one hand box front 
vertical 
pass one hand box front 
pass one hand box 
sideways vertical 
pass one hand box 
sideways 
pass one hand suitcase 
back static 
pass one hand suitcase 
back 
pass one hand suitcase 
front static 
pass one hand suitcase 
front 
pass one hand suitcase 
sideways exaggerated 
pass one hand suitcase 
sideways static 
pass one hand suitcase 
sideways 
pick up together box 
pick up together luggage 
pick up together sofa chair 
pick up together table 
piggyback ride 
poke 
pour water into glass from 
bottle 
pour water into glass from 
jar  

 
 
pressing noses 
pull back 
pull chair to sit 
pull front one hand 
pull front 
pull hair 
pull side  
push back 
push front 
push side 
push wheelchair 
raise put chair 
right hand to upper body 
touch  
rock paper scissors 
shake 
slap on back 
slap 
slip keys 
soccer 
spin around chair 
spin rope 
sponge bath 
spoon food 
stab both hand down up 
front 
stab both hand sideways 
front 
stab both hand up down 
front 
stab both hands down up 
back 
stab both hands down up 
defence 
stab both hands sideways 
back 
stab both hands sideways 
defence 
stab both hands up down 
back 
stab both hands up down 
defence 
stab one hand down up 
back 
stab one hand down up 
front defence 
stab one hand down up 
front 
stab one hand sideways 
back left 
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stab one hand sideways 
back 
stab one hand sideways 
defence 
stab one hand sideways 
front 
stab one hand up down 
back 
stab one hand up down 
front defence 
stab one hand up down 
front 
stand on push back 
stand on push side 
stand on push 
sword fight 
throw catch ball one hand 
up 
throw catch ball one hand 
throw catch ball 
throw catch box one hand 
throw catch box 
tickle 
tug war 
turn on push 
volleyball 
walk hand in hand 
walk hug 
wheelbarrow 
whip far 
whip short 
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