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Abstract

This paper proposes a new method to perform real-time fase gstimation foe90° yaw rotations and under low light conditions.
The algorithm works on the basis of a completely automatetran-time incremental 3D face modelling. The model is @iiyi
made up upon a set of 3D points derived from stereo grey-stages. As new areas of the subject face appear to the cameras
new 3D points are automatically added to complete the mddehis way, we can estimate the pose for a wide range of ontati
angles, where typically 3D frontal points are occluded.

We propose a new feature re-registering technique whichbgwas views of both cameras of the stereo rig in a smart wagdero
to perform a fast and robust tracking for the full range of yatations. The Levenberg-Marquardt algorithm is used ¢tover the
pose and a RANSAC framework rejects incorrectly trackea{soi

The model is continuously optimised in a Bundle Adjustmeanicpss that reduces the accumulated error on the 3D regonstr
tion.

The intended application of this work is estimating the fofi attention of drivers in a simulator, which imposes aadiing
requirements. We validate our method on sequences recor@edaturalistic truck simulator, on driving exercisesigeed by a
team of psychologists.

Keywords: 3D Face pose estimation, face model, yaw rotation, feagiregistering, stereo vision

1. Introduction rate gaze estimation thus requires very precise and rohcst f
pose estimation.

Face pose estimation has been a very active field of researchDriving inattention is a major factor to tfiec crashes, which
for more than two decades. During this period, the techrsiquecost many lives and money every year, everywhere in the world
have evolved together with the increasing computational reThe latest available data (2009) report 34,500 deaths in the
sources of modern computers. Along with this evolution, theEU27 in trdfic accidents, as well as 1.5 million injured, with
objectives of face pose estimation systems have also beconagsociated costs representing 2% of the EU GDP. Data gdthere
more enterprising. Earlier works only aimed to detect a fewfor several decades have shown that inattention, whichdled
predefined poses, just enough to allow a coarse pose estimati drowsiness and distractions, is behind 80% of crasbge§][
Those systems would enable a machine to discriminate the idriving distraction is more diverse and implies a riskiectta
terlocutors of a conversation inside a room with a conteblle than drowsiness and it is present in over half of inatteniiien
light environment 1]. volved crashes?]. Increasing use of In-Vehicle Information

Nowadays, as the basic objective of getting fine pose estimé&ystems (IVIS) such as cell phones, GPS navigation systems,
tion is being met, new requirements can be imposed, depgndirDVDs and satellite radios and other on-board devices has ex-
on specific applications. Some modern pose estimators hawaeerbated the problem by introducing additional sourceksef
errors below 3[2, 3, 4], but new applications may require the traction B]. Enabling drivers to benefit from IVIS without di-
systems to work in real-time, wider rotations ranges, low an minishing safety is an important challenge.
variable lighting conditions, user independence or otlvai-s Most of the occurrence of distraction can be reflected thnoug
lar challenging requisites. These new challenges must be athe driver's face appearance and faeae activity. Focalisa-
dressed by future intelligent face pose estimation systéifis  tion obtained from face pose or gaze estimation canffez-e
ten, the pose estimation algorithm is just a necessaryqarsvi tive to infer parameters related to distractions. Driveratten-
step for a gaze estimation system. Gaze is actually whas giveion monitoring systems, developed for the automotive #du
the real information of the point of attention of a subjectcA-  try, provide very challenging scenarios for face pose esion

Preprint submitted to Elsevier September 23, 2012



methods. Moreover, inattention monitoring imposes ratpes accuracy makes those approaches unfeasible for gaze estima
such as real-time, accuracy and good integration. In auidii  tion. Generally, gaze is achieved by composing face pose est
consumer on-board application would require completeinser mation with eye directionl4]. Consequently, if the pose esti-
dependence, no matter age, gender or race, no calibragipn st mation is not precise enough, the gaze estimation will be-ina
and fast initialisation9]. Before these systems can be commer-curate as well.
cialized, they must be exhaustively tested in simulatorsvig- Focusing on fine output methods, one of the most used ap-
ing a system for distraction analysis and driver's behadbu proaches in the last years are dimensionality reductioh-tec
study inside a simulator adds new challenges. To date, naniques, such as PCA. It became very popular, specially in hy-
uralistic scenarios providing incidence data on distrectic-  brid architectures, used in conjunction with other appheac
tivities have been small-scale studied. Affioet is needed to such as flexible modeld b, 16] or more recently with tracking
study distraction problem using naturalistic situatio® the  methods 17, 18]. These dimensionality reduction methods re-
other hand, simulators usually present low light condiiém quire training and often manual labelling. Moreover, PCA is
increase the user immersion feeling. Systems must workrunde linear approach, and consequently is not well suited fer th
low lighting conditions and must be robust to wide head turnsnonlinear problem of wide 3D rotation appearance varigtion
partial occlusions, dierent users (with and without glasses) Some authors applied Kernel-PCA (KPCA) variatiodS][to
and slight illumination changes. address this problem. Manifold embedding techniques have
This paper presents face pose estimation and tracking techiso been proposed, but their main disadvantage in thdlityabi
niques able to work properly for a driver distraction monito to separate identity and pose estimation, as the numbeeds us
ing application inside a naturalistic simulator. In thetstaf  in the training dataset grows. This means that the pose @&stim
the art there are few publications about computer vision systion accuracy can vary for fierent users4q], if the training
tems under demanding real driving conditiod§][ There are  database is big enough. On the other hand, these methods are a
only some few commercial companiefasing their products good option for low resolution images, where the little tert
for face pose estimatiorl], 12). These products are able to information available is well exploited by the dimensidtal
work in both indoors and outdoors environments, and requirgeduction provided by the embedding.
some degree of training for each user. However, no technical The non-rigid models also present some problems. The pro-
information about their relying algorithms has been putgis  cess of calculating new modes for a deformable model is slow.
and they lack of methodological test validation. We focus ou If many modes are allowed, there is a chance that tracking er-
approach to a truck simulator, where ambient illuminatisn i rors of rotations are interpreted as deformation. But astime-
low. This limits the feature matching and tracking techeisju ber of allowed modes decreases, the system gradually lisses i
to be applied. We tested our proposed method in a motorizedon-rigid capability. Paladini et al2]l], for instance, saturate
simulator, under realistic driving conditions and with f@®  the number of modes to 10 in one video experiment showing an
sional drivers. actress talking and moving her head. Most of the deformation
The rest of the paper is structured as follows. Secflon is captured by few modes during the first minutes of operation
presents several state-of-the-art face pose estimatiokswe-  This avoids increasing execution times, but actually knite
lated to our approach. Secti@describes the general architec- learning process in time.
ture of our approach. Then, Sectiohsnd5 describe respec- Much faster algorithms may use flexible models, such Active
tively the automatic 3D face model creation and face pose efAppearance Models (AAM) or Active Shape Models (ASM).
timation with model correction. Sectighshows performance Flexible models require extensive manual labelling of face
evaluation and experimental results of our face estimgiion  landmarks. Using an extensive database, those methodssare u
posal. Finally, we present some conclusions and future work independent. In42], the authors showed that it is possible to
achieve very low computational cost using a patch clusgerin
approach. However, the main disadvantage is that they dre no
2. Related Work suitable for wide head rotations. Related works, such as the
ones described in23, 24], do not show rotations wider than
The huge number of works found in the literature shows thatt5°. In addition, models often tend to learn small rotations as
there is an intensiveffort by researchers working on this topic, deformations, not providing an accurate pose estimation.
who have developed a wide range of approaches. Despite this Tracking methods, whether only tracking or as part of hy-
effort, it is hard to find works focused in the study of drivers brid systems, provide better accuracy than previous appssa
distractions, which is the intended application of thisqgmsal.  This technique is user independent, and its implementation
Murphy-Chutorian and Trivedil[3] classified head pose es- can easily meet real-time requirements. Examples 26e2]
timation systems in eight fierent categories. Within them, the among others, which have errors belotv & recent publica-
more recent publications and more promising results are praion [26] presented an online learning model proposal, achiev-
vided by tracking methods, flexible models, and hybrid sysing 3.8 and 4.2 error for pitch and yaw rotations. However,
tems. their results were only evaluated in a range+df’ and +20°
There are many methods that produce a coarse output. Thesspectively. In the same wag4], while showing very good
have the advantages that do they not rely on face tracking, mi results, with an error as low a$ fr yaw rotations, only evalu-
imising the possibility of tracking losses. However, tHeiver  ates the systems for short sequences and small rotatioey. Th



create a static model at the initialisation step, so no widr-  and to build the 3D model of the face, just requiring the drive
tions are possible. It is not clear how well the system cah dedo look straight ahead keeping his head in vertical posi&bn
with the drifting problem for longer video sequences. SIET][ the initialisation frame.
or SIFT-like features have also been usgld However, the low In order to cope with feature appearance variations due to
lighting conditions in a simulator are not appropriate ftfF B rotation, a feature template selective re-registeringpriegie
like matching techniques, as we will show in our resultsisact is carried out using a novel mixed-views technique usindp bot
Using a 3D face model notably improves robustness, since itameras. In this way, one camera is used to anticipate wéat th
makes possible to detect tracking errors due to appearanee s other will see, whereas the other camera is used for tracking
ilarity of different parts of the face under some rotation. Someielding a more robust tracking against changes in appearan
authors have used generic face models, such as cylind2ijal [ and diferent viewpoints. During yaw rotations, the selective re-
or ellipsoidal R9] ones, and use face appearance mapping to theegistering chooses the frames in which pose uncertaintynis
model shape. However, the wider rotation ranges are prdvideimal to avoid the template drifting problem. For roll andapit
by sparse models formed from 3D points. rotations, a feature warping is performed to diminish tregqm-
Despite the variety of related works, the face tracking probtion variation. Incorrectly tracked points (outliers) aetected
lemis still open, and none of the detailed solutions dedithie  based on their Euclidean distance to the model point pliojest
problem of having at the same time a full-range, accurag, us after pose estimation, and discarded using a RANS#SC{ro-
independent, real-time and calibration free pose estimatys-  cess. In addition, a pose uncertainty can also be estimatztib
tem. Many of the model-based systems rely on generic modelsn the sum of this Euclidean distance for the inliers. 3D pese
which do not fully adapt to individual geometry. On the otherrecovered from the set of 2D points assuming weak camera pro-
hand, other methods, based on appearance and requiring trajection. Finally a BA optimisation is used to refine and cotre
ing, do not generalise well enough to be classified as user ind the model.
pendent. A dynamic 3D model can be fitted to any user and give Initially the model only contains features from a frontatda
an accurate estimation while being user independent. Henvev which will self-occlude under wide rotations. To increake t
it needs being updated undeffdrent user poses, both in ge- range of rotation, it is extended with the addition of new-fea
ometry and appearance, in order to maintain performance ares, when the number of nonoccluded ones falls bellow a
the full rotation range and illumination changes. minimum. Model extension is automatically performed when
In [30], Jimenez et al. presented a stereo camera system thidite algorithm requires it, and the conditions are approgfiar
automatically builds a 3D rigid model of the face. At the be-this. However, the 3D coordinates of a new added feature in-
ginning of a video sequence, salient features of the facdere herit the specific error related to the poses in which theufeat
tected and used to build the model. A modified SMA&T][was is being added. To correct this, a BA background process con-
used to model and track the texture around the feature pointstantly corrects the model 3D points at some key-framess Thi
independently on each camera. The system computed the 3ilows for accurate point addition to the model so the atbari
pose with POSIT32], and used RANSAC33] to remove out-  works reliably for the whole yaw rotation range9(® degrees.
liers. The system showed good results for rotations under 45  The main blocks of the system architecture are shown on Fig-
In this paper, we present a series of extensions to that workire 1 and can be summarised as follows:
In order to solve some of its weaknesses. We introduce a 3 a) Initially, a sparse 3D model is automatically built wita-
gotdhil ri)ggglsl/(\)/ﬂen;ettr?g?éu\:léhIrf)rt]a?gsnav\llgaimliiisE:fr\:\(ljIFe)O,I:é tures extracted from subject’s face using a stereo rig.
justment (BA) B4] to refine the modei during creating and ex- (b) From frame to frame, the moQgI pose is estimated from the
. - . ) features located. When conditions are met, a novel camera
tension, and prevent drifting. Feature point tracking hesnb ixed-vi _reqistering techniaue is anplied in order to
greatly improved using a new re-registering technique. Now mixed-view re reglsl g techniq PP
the model considers both the texture of the features ancethe r Improve next model pose es_t |ma.t|on.s.
) . . (c) At some key-frames, re-registering is performed. The 3D
ative face angle to the cameras. This data is used to advamce t . ;
. model might be extended to previously occluded parts of
texture of the patches as the face rotates. Finally, POS$T ha the face and corrected with BA
been replaced with the Levenberg-Marquardt (LM) algorithm '
[35], and the proposal has been widely validated. The face rotation at initialisation represents the posatiat
reference, and it is arbitrarily assigned a rotation of With
unitary vectord = (0,0, 1). Following rotation estimations are
relative to this reference.
The proposed face pose estimation approach is based on
track_ing methods, singe they obtain the best accuracy. ide s 4. Automatic 3D Face Model Creation
tem is based on tracking a set of features which are automati-
cally detected on the subject’s face, by using a calibrate@s Although the 3D model formation takes place during the
rig. The algorithm is designed to automatically extractitter- ~ whole execution of the algorithm, there is an initial model
est points and to build the 3D model of the face, just reqgirin which is automatically created during the first frames ofdhe
the driver to look straight ahead at the initialisation fearithe  gorithm. After initialisation, the model will continuoysbe im-
algorithm is designed to automatically extract the intepeits  proved with corrections and extended with new 3D points. The

3. General Architecture



At initialization:

@) Automatic 3D face model of features Stereo image acqwsﬂ@n
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Mixed-view tracking and Model pose estimation < )
L Y, Detection?
\ 4 L
(" 1\ ) .
© ~ Atsome key-frames: _ ‘ Interest points detection ‘ (p) V&J detection box (inner) and
Template re-registering and Model extension and correct|on widened feature search area (outer)
. y v
‘ Descriptors stereo matchinq

v

Features 3D reconstruction‘

v

‘ Geometrical constraints filteriﬁg

and to provide a reference from which the pose can be extracte

using 2D feature projections on the camera images. Fig(ae

depicts the dferent steps involved in the model creation. 3D Face mode
The model comprises the 3D coordinates of features and (%) Block diagram of the model creation  (c) Harris interest points

cluster of its appearance descriptors associated with @aeh
which are used for 2D tracking and later pose estimation. Figure 2: Model creation process.

Figure 1: Main blocks of the face pose estimation algorithm. ‘

purpose of this model is to track the user’s face in a robugt wa

4.1. Initial Features Detection and Stereo Matching

To create the model, features must be detected within the To obtain a featurds;, it is first necessary to obtain its 2D
bounds of the face. We detect a frontal face using the Viola &rojections on each camera, establish the correspondénge o
Jones algorithm (V&J)36] in the right and left initial frames.  to x| and then comput; by stereo recovery. These interest

At this step, the user is asked to look forward keeping higooints represent parts of the image which are likely to béyeas
head in vertical position, so the V&J can detect an almostatched to their counterpart interest point on the otherecam
frontal face in both images. This will be the only initialism  image, and on subsequent frames over time. Consequently, in
process the user will be asked to perform. V&J loops frame tderest points must be easilyfidirentiable from other parts of the
frame until the face is detected in both images. These framégage. If for any reason, an interest point can not be matched
are set as the initialisation image§and|'0. with any other from the other image, it is discarded.

Typically, V&J detects a bounding box that can leave outside
part of the face, e.g., ears, specially when the face eshéit 4.2, Multisize Matching Proposal
small yaw angle with respect to any of the cameras. Due to the
base line of the stereo cameras, this is sure to happen tfdeas
one of the cameras, if not for both. To avoid this, the detécte : .
V&J bounding box is widened 50 pixels to the left on the right the g_ene.ral case QT well defined opJects, fuI_I 9f corners amj :
camera image, and to the right for the left camera image. Thig1al lighting conditions. The low light conditions in the sim
value has been obtained experimentally. Fig(t8 depicts the '2ioF and the face smoothness force the use of correlatitn te
original V&J and widened detection box, and Fig@) the ~ Nidues. Classical invariant descriptor algorithms do movjole

extracted interest points. good results. . . . .
The next step is the feature extraction process. A feditige Feature matching performance is sensitive ftedént éfects

represented by its appearance template descrl'bi%h its 2D depending on the size of the patches used. If a feature change

position on both camera imageé’,’”, and its 3D coordinates, its appearance beca_use of prOJecyon, it works bettgr temat
small patches of the image, for which the changes will be more

"l . . _— .
X;. Eachx;"" is obtained from a set ofiterest pointsn the im- 1 5geneous than for bigger ones. On the other hand, if the
age, extracted using the Harris corner detec3af fithin the 546 is not well focused, using bigger patches is more ade-
detected face box. After 3D reconstruction, the 2D feato®-p 4 ate. in order to reduce the number of incorrect matches due
tion in the images could actually be computed as the prajesti repetitive texture patterns in the face.

of X; over each camera image as follows: As a convenient solution, we characterise each feature tex-
xi”’” = HtIX, (1) tureby three patches of the same scale afidreint size centred
on the feature, and add the correlation of the three patches.
whereH" is the projection matrix to the right cameraimage, and | et X = (U, V) be a feature candidate or interest point on
H' to the left one. The template descript(ﬁi,r’”, is extracted  the initial right image,l’, and QI(M) = Q(XI.sy) be a patch
from the patch on each camera image located arolﬂHd on Ij aroundx] of sizes;, € R?. To find its corresponding

Different authors have published comparatives on detectors
and image registration method3g] 39]. Most of them cover



4.3. 3D Face Model

The 3D coordinates of the features are recovered usingstere
equations and the calibration parameters of the stereo rig,
knowing its 2D projection points on the two camera images of
the stereo correspondences. After the stereo reconstmyete
obtain an initial set oft’ 3D points

{Xitizt.nr. %)

From the initial set of’ points, some correspondences may
be false alarms, that is, erroneous matched interest painds
(a)x! andx onl (b) X! onI{) ©)x onI{) rejected ~ Must be filtered out before generating the _model. Th_e filter-
ing process takes into account face geometrical consirdile
Figure 3: (a) Two feature candidate on image (b) Correct matching (c) shape and position to ensure the rejection of points outhiele
Incorrect matching. face bounds.

| . | , . 4.3.1. Cylinder Model Fitting and Feature Self-Occlusion
x; on imagel,, three patches of fferent sizes are defined, o
QI'(m) m = 1...3. Then, the three patches are matched One of the common problems to face pose estimation sys-
i (m), =1...3 ,

o & searchsre of ol producing matcring re. 1 2560 o1 Uk et i sefocduson, The fce
sultsri',m(u, V) respectively, all of them of the same size. Zero-

mean normalised cross-correlation was used to compare tli?'n angle, sa some of the model paints may not be visible. To

patches40Q]. The search aresearch and consequently the size ?tgcé t?itra]senf]e?jtulr?;t:n"ad\t/ia?]cel,za rr]:dfdetn—foznt pat;?;r:;s
of the correlation results, is defined as a region seven $>ixelae uring mode alisation. Each feature Is ass

wide around the epipolar line drg corresponding to the point ;Wu?n“erg'gogit'&;g& gle\:/.h\é\;lt?r;r;tpaecsee;r:gtlgi, ;hne ]Icsai‘iagtse;r the
xi, and it is independent of the sizg of the patch. The corre- imit les of ) .t it ‘dered to be hidd 9 ditdit
lation result is expressed as imit angles of a point, it is considered to be hidden an

used for tracking and pose estimation.
3 Figure4(a) shows the used 3D coordinate system. To create
ri'(U7 V) = Z ril,m(u’ V). (2)  the hidden-point pattern, a vertically oriented cylinderaid-
=1 justed to the(Xl}i-1. v feature coordinatestfl], as we show in
Figure4. The minimisation is implemented inside a RANSAC
The template matching problem can then be formulated as findoop to avoid fitting the cylinder to the most extreme points,
ing the location ¢, v) in the imagd, that maximises the objec- gych as those of the nose. The outliers threshejgrans acis

tive function chosen small enough so that nose points are outliers to ithe in
| | | tial minimisation. On each RANSAC iteratidna groupA®
X = (U, v) = argu(lnm(ri(u, V). (3)  of seven random points is generated, and a cylinder is @gjust
' to minimise the error function
To ensure the robustness of the feature and to minimise match
® — mi 2
ing error, candidate points which do not meet the condition & = mg'”kz;o Ed(0)”, ©6)
eN'
ri'!m(u, V) > htc, m=1... 3, (4) where
E0) = V(x=x)2+ (z—z)2 -t (7)

are rejected, wherby is the matching threshold, set tcb0at

the stereo matching step. This restriction helps redudieg t 'S the individual 3D point error function arl= (x zr) is the
number of false alarms. parameter list in the minimisation. These parameters sejite

Figure3 depicts the matching results for twafidirent inter- the centre in theX, Z) plane and the radius of the fitted cylinder.

est points (a). The three graphs in (b,c) represent the corré\ter €ach iteration, inliers are calculated as

lation result of the three patches along the epipolar lingb) O _ (x- o (2 - )

the correspondence is correctly detected and matcheds yehil I7= X807 <heyransac 1=1...0  (8)
depicts a failed matching because the smallest patch eerreland the best iteration is chosen to maximise the number of in-
tion result is below the threshold, and consequently thexést  |iers. After the RANSAC has found the largest set of inliéts
point is rejected. The three concentric boxes are the tha®hp  a new minimisation is executed using all these inliers to ied
sizes for the texture ori). Since we are looking for stereo cor- pest set of parametefis = (Xo, 2o, lo):

respondence, the search area is restricted to the epipudar |

(horizontal line in the images). The matching result is gibg 0, = arg minz E(6)? 9)
the maximum of the black circle marked line. The patch sizes O ker

ares; =21x 21,5 =41x41 andsz = 61x 61.
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X axis Top view of the model

(c) Partly occluded face

Figure 4: Circle fitted to the face to get the limit angles.

All the angles have anffset inherited from the initial model
rotation dfset. Each point of the model is considered hidden
when its angle with respect to the initial model rotationteec
Vo exceeds:60° degrees.

The proposed self-occluding model of the face has several
advantages. Although the exact occluding angle for each fea
ture is not known, since detailed geometry of the face is not
computed, the self-occluding model gives a prediction &bou
when this is likely to happen. This prediction allows to reelu
the number of erroneous feature matches at the tracking stag
caused by features that are occluded. Finally, the selfidiog
model also reduces the computational cost, since all therfesa
that are occluded are not processed.

4.3.2. Model Formation

Initially, n” correspondences were extracted, of which only a
set ofNg are correct and used to form the modd! The model
centre is set tang = (Xo, Yo, Z), Where &, z,) are obtained
from the cylindrical model fitting, ang, is set to

1
Yo = nc 2V (10)

After computingmo, those 3D points for which the distande
tomg is outside a given range are rejected, i.e., the points are fa
from the 3D cylinder surface, typically 50 mand; < 120 mm,
since these points are probably outliers.

The correct correspondences are sorted and translated from
camera coordinate frame to head coordinate frame reference
system to form the model.

XM = X; —mg (11)

Each model featurieis formed by the 3D point coordina)éM)

and a cluste€; of appearance descriptors obtained from the 2D
location of the interest points from which the feature was ex
tracted on each camera. Since correlation is being usedder f
ture tracking, following discussion in Sectid@n2, the appear-
ance descriptors which form the clusters are the biggestsiz
patches captured from the images, and will be catéedures
hereinafter, denoted a§{,T!}. Smaller sized patches can be
extracted by subsampling the biggest 2D image patch. These,
however, are not the only features which form the model,esinc
it expects new ones, up td, to be added during tracking to
reveal parts of the face initially occluded. Therefore,tineel

is formed as

Ci={TL T} (12)
M= (XM Ciyict no.ns (13)

whereM is the 3D face model armi(M) are the 3D points of the
model in the head coordinate frame. Initial head pointinggae
is defined a&/, = (0, 0, 1), with origin in the model centrmo,
and referenced to the right camera frame system.

The coordinates of the modgt ™"} are initially set rigidly,
and the distances between them are constant. However, meth-
ods to dynamically adjus'.b(i(M)} and{C;}, that is, model struc-
ture and appearance, and to extend the model will be presente
in sectionb.
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Figure 6: Schematic flow chart of the face tracking and posmatibn algo-
rithm.

5.2. Feature Re-Registering Proposal

As the head rotates, feature appearance changes to levels at

e which it is not possible to establish a correspondence dweer t
4 initially registered feature textures. Some algorithn/pd to
deal better with rotations than others, but none of themis ca
\MW pable of finding the correspondences under wide rotatioms if
extra information is provided by other means. As face fesgtur
(b) 3D face modeld = (X{*?)i—y. are not planar in shape, in general it is not a good solution to
try a template warping. Moreover, this process is costlg an
Figure 5: Feature projections and created 3D face model. often needs some priori information about the orientation of

the patch in the 3D space.
To deal with feature appearance changes because of 3D rota-
tions we have developed a neerregisteringtechnique based
on using dfferent view-angles of the face from the two cam-
eras. The idea is to capture new textures from feature patche
and to store them in the model when we know that the pose
5. Face Pose Estimation with Model Correction estimation error is the lowest possible. At the model cosati
step, images patches withfidirent view-points are captured
This section presents the frame to frame execution of the ak.om poth cameras, and stored in the model. Instead of using
gorithm, which involves the face tracking, pose estimatfea- gjsjointed appearance models for each camera, the stored te
ture templates updating and model corrections processgs. F yyres are grouped together for each feature in a clusteeAt t

Figure 5(a) depicts the projections}, over the camera im-
agesl!, and Figures(b) shows an example of an automatically
generated model.

ure6 depicts a flow chart of this process. tracking stage, some elements of the cluster are correiated
) the image, and the stored texture that gives a higher ctioela
5.1. Feature Tracking value is used for feature localisatio?d].

The matching technique that we have used for frame to frame Figure 7 depicts a comparison of the mean feature localisa-
feature tracking is the same used for stereo matching: the mution error using patches from one camera or from both. This
tisize patch correlation, described in sectib@. The only dif-  error is calculated as the mean of the localisation erraralfo
ference is a more restrictive correlation threshold to miseé  the features which are not hidden and that have been cagrrectl
tracking error and outliers. In Equatiod)( h is now set to  tracked, for a certain face rotation. The first curve shoves th
0.7. mean error using only the initial texture captured with came



era in the correlation step. The second curve shows the meanitial 3D model pose. The texturgo = Q;, from featurei is

error if we take the best correlation result of the initiadttees

captured on each of the cameras. As we can observe, the loc&tature to the left camera afg; =

isation error is drastically reduced and the tracking isrionpd

stored to the cluster. Similarlgy is the projection angle of the
o from |magel' is also
stored to the cluster. This process can be followed in Figure

by using a cluster that contains thefdrent textures captured @, which illustrates the re-registering mechanism.
from both cameras. The dashed vertical line shows the an- Now, let the face rotate to its left for a certain time after in
gle between the two cameras from a distance of approximatelalisation and model creation have finished. Pebe the pose

90 cm, at which the face is usually located. Localisatioworerr

at a timet; for which the projection angles;, of model point

has a minimum precisely at these rotation angles, becasse t; into the other (left) camera imagk; is similar toag, or more
view-point of the face from one camera is the same as the viewprecisely, lower than an error threshold

point from the other camera after a rotation of approxinyatel
15°. Figure7 shows that the optimal angle to perform re-regis-

Tracking using a cluster with the stored templates from both cameras
T v T T T v T

Matching textures from one camera

=—H— Matching textures from two cameras

= = = Approximate camera separation
T T

15+

10

a
T

Mean feature localisation error [px]

1
-10 0 10 20
Pose yaw rotation (variation from initial pose) [A°]

-20
Figure 7: Comparison of localisation error using the tex@drem one or the
two cameras in a cluster.

tering is equivalent to the camera separation, becauselhigth
yaw rotation the localisation error is minimal. At thesearot

€ > f1— ao. (16)

If this is the case, the patcﬂg' should be very similar to the
storedT o, previously captured from the other camera, since the
projection angles to the respective cameras are the sams, Th
now T can be used to track the new positionx{?{ on image

I'tl more accurately sincgjp has the same view-point th@j’l,

and we previously assumed that this texture is correctu(eig)

@)

At this time, the localisation error is expected to be mirlima
and consequently it is convenient to re-register the texair
featurei. A newTj3 = Q' is stored to the cluster, captured
from the left camera, WhICh should be very similafTtg.

The anglesyj andg; are not the same for all the features at a
certain frame. However, in practice they are very similacsi
the size of the face compared with the distance to the camera
is small. This means that the franbecan be chosen so that

tions, new textures from the feature patches on the image cagbndition in (L6) is met for all the features,

be captured and stored in the model, since it is at this otati
when the localisation error of these patches is likely to fre-m
imal.
tracking error can be kept very low under full range rotagion

Repeating this process all over the yaw rotation range

17

— il < €.

i=N
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i—0

Following this scheme, new feature appearances are stordzror plot on Figure7 shows that a pose,; exists which sat-

in clusters at certain angles, from both camera frames. Let
Ti; be a stored texture for featureand view-point angley;,

isfies this average minima in localisation error. A minimum i
average localisation error leads to a minimum in pose estima

no matter from which camera it was captured. For each featuréon error, at the cost of a slight higher error in the capdurg

pointi belonging to the model, a clust€r is stored with feature
textures from dferent view-pointsj, as

Ci ={(Tij.6)), ] > 0. (14)

The textureT i used for correlation at a certain frarmi® search
for the feature location in the tracking process will be

Tik . k= argAmir(Tij - Qi,t)- (15)
It is important to notice that the pose is estimated for all ro

tation angles. However, the re-registering technique cdy o

be performed for yaw rotations because the cameras aredplace

horizontally. Roll and pitch angles are also estimatethoaigh
face appearance templates are not updated for these natio

sincet; does not minimisel(6) for every single feature at a sin-
gle frame, but minimises the sum of all of them. This conditio
implies thatP, error is also minimal at; .

Although theP, error is not zero at framg, it is minimum,
so it is the best moment to register a texture from can@ra
The 2D posmorx' of the feature is translated to the right cam-
era frame systerm knowing P,. From this location inlj
another new textur&;, = Qr is also stored to the cluster.

Again, after some rotat|0n there is a timavith poseP, for
which Equation {7) is minimal,

i=N
to: > IBui— il < €, (18)
i=0

gles. However, these rotations are smaller compared to yawnd the last stored texture fro@}, T2, can be used to accu-

and consequently they are not a big issue in the re-regigteri
technique.

Let P, be the 3D model pose at= 0. From this pose, a
model pomtx. projects with view-point angleo atx; , on im-
agelg,. 0 is the patch around this point seen from right cam-
eraC,. We assume thd, is correct by definition, since it is the

8

rately search foR); , in imagel;, on cameraC; (Figure8 ®).

This process repeats over the whole yaw rotation range. If
the face is rotating to its left, the cametais mostly used for
tracking andC; to anticipate the view-point that, will have
-after a small further yaw rotation. Similarly, the process r
peats in the opposite direction, interchanging the fumstiof



C; andC,. This procedure generates a cluster as described imacking error derived from the previous tracking step ems\s

in Figure9. If the head is rotating left, the tracking and subse-
quent pose estimation is performed over the left image. When
the condition in Equation1() is met, the resulting pose is

. . . translated to the right camera, used to project the feaDes
where the anglé. is the average camera separation with respec

to the driver’s faced. ~ 15° for our camera layout.

Equation (4) of stored textures at discrete angles

aj =~ | X0, j=0,£1,+2,..., (29)
E)oints overl{ to accurate obtaitx{vl}, and the textures from the
patches aroungk; } in the image are re-registered. If the head
is moving randomly or it is static, pose is estimated fromhbot
frames, and the results are averaged.

Pose is estimated using the Levenberg-Marquardt (LM) algo-
rithm. The estimation is formulated as a nonlinear leasasggi
problem, minimising the following cost function considegi
the right camera as reference as

fum = arg minz X — proj(RXa + T)II%, (20)

RT) 5

where proj() is the camera projection function ang, ) are
the rotation and translation matrices to be estimated. @hees
minimization problem can be obtained considering the lfitc
era as the reference one.

Figure9 shows the evolution of the correlation results for the The posé = {R T} indicates the position of the central point
tracking ofx/, and x|, of a featureX; over the right and left Of the model regarding the camera coordinate system, and its
images when the face is rotating to the left. The graph showgotation from the initial model. The 3D face pose is computed

the correlation peaks produced f(?{ when re_registering takes |nd|V|dua”y for each camera frame in a RANSAC framework.

place, at steps of approximately°15As for the graph ok, In each RANSAC iteration, seven points are randomly sedecte
: from the model and used to calculate the pdRe(d T ma-

its minima represent the points at which the texture used fo

Figure 8: Re-registering process when the face is rotatinig teft.

tracking switches fronT; to Ty, j # k. This happens at7.5°
from the re-registering rotations. Similarly, if the facens
rotated to the right, figur@ would be symmetric, interchanging
the roles played by the cameras.

Correlation for a feature projection point in right and left images, when rotation left
T T T

Normalized correlation
© o o
S () o]

o
N

—a— X/

it
50
yaw rotation angle [°]

40 90

Figure 9: Correlation result of a feature patch for right Erftimages in a video
sequence in which the face rotates to the left after insi@ion. In the graph,
times advance as the rotation angle increases. The peaks nigtit image
graph represent the moments at which re-registering happéese peaks are
not exactly one because of driver's movement right after thieredion and
because not all the features meet the conditions to be rsteegyl.

5.3. Pose Estimation

trices) using LM. With thisR and T, all 3D visible points of
the model are projected over the image plane and the Eunlidea
distance from the tracking point to the corresponding juteje
point is calculated. If this distance is less than a thrathol
this point is considered to be correct, and marked as arm.inlie
RANSAC iterates until the mean reprojection error drops bel
low 3 pixels, or until it has been iterating for approximst&b

ms, so real time performance is not compromised. The ositlier
error threshold is set big enough to allow certain face aeéor
tion. In our case, it is set to 30 pixels.

This process is performed over the frame used to track the
points. In case both frames are used, the final pose estimatio
is calculated for each one, and the result given as the wazght
sum, according to the next expressions:

R - Iny R{"nr .
= . ifIng, Ing > Ing; 21
Inj+1In,  In +In, ' min (21)
T -In T -1In
r | | r .
= , it Ing, Inp > Ing 22
In+1In,  In +1In, r min (22)

whereln, andIn, are the number of inliers from the left and
right pose estimations, as determined with RANSR&nd T

After the position of the tracking points has been updated foare the resulting pose estimatioR. and T, are the pose es-
the left and right frames, the 3D face pose is estimated usinimation from the right camera, arf[§ and T are pose esti-

{r,l

the set of correspondences{? < x!') of each feature, i.e.

mation from the left one, translated to the right one usirgy th

the set of correspondences between the 3D points and their 2Brresponding stereo equations and calibration paraseter

projections over one or both of the camera images.

case the number of inliers of any of the images is lessrhg

Whether{x{,t}, {x}!t} or both will be used to extract the pose threshold, that estimation is discarded and the estimafitime
depends on the pose estimation uncertainty for each frache ammther camera is used.
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5.4. Model Extension and Correction for solving the full optimisation problem it is necessary to
The 3D model was created using the initial pair of stereo im{erform the inversion of several linear systems whose size i
ages of a frontal face. This model is incomplete and the pointproportional to the number of estimated parameters. To save
may contain noise. During the execution of the algorithris th on computational load, this stage is only applied at certain
model is extended and corrected adding new information thadteyframesty, when a minimum movement has been detected

can be extracted from successive pairs of stereo frames. in the pose, and only during certain time after model creatio

In the event of tracking loss, face detection is performed,The process is also executed after points have been added to
using V&J algorithm to find the presence and position of thethe model. Each keyframe’s pair of images are saved, along
driver's frontal face. When the face is found, we assume avith the 2D projectionx, ,x;, of the model points and the
frontal face and reproject the model points to the area wihere  €stimated pose,, .
face has been found. We search for the exact position of each The BA process refines the values of the 3D model points
feature using wider search areas for each feature thantisese  Xi (i =0...N) and the past pose estimates (j =0...w),

in the tracking stage. minimising the cost functiorf;, which is the sum of the re-
projection errors of the 3D model pointsand estimated poses
5.4.1. Model Extension with New Feature Points up to keyframet,. The error function to minimise in BA is

Self-occlusion is a drawback of creating the 3D model fromdefined as
a initial single pair of frames. For yaw rotations wider than ) g
+40° approximately, most of the initial points of the model are arg;nln Z Z [l&'[l, (23)
occluded. The accuracy of the pose estimation depends on the 7 Pye{Py. Py} XiEXo-Xn)
number of features, and thus a model extension procedure is
needed. New features from initially concealed face areas awhere ¢’ is the square of the Euclidean distance between
added to the model when all of the next conditions are met:  the estimated projections of the 3D model potthrough the
posePy, and the observed stereo measuremahjtsx!’tj from

1. New parts of the face are exposed to the cameras. h h q i th il
2. Pose estimation uncertainty at the current frame is low. the poseP;. The process extends until the re-projection egror
falls below a pre-defined threshold.

3. The Bundle Adjustment (BA) process has finished correct- Figure 10 shows the initial model and added points, and the

ing the 3D coordinates of previously added points. . . .
ng I previously pol corrections carried out to the model by BA. It can be noticed

4. The number of visible features is higher than a minimum . . ;
. how corrections are specially needed for the new addedgoint
to ensure algorithm robustness.
on the laterals of the face.

The same technique explained in SectoBis used to detect
and obtain the 3D coordinates of the new points to be added.

The 3D coordinates of the new points are referenced to the
camera coordinate system. They must first be converted to the
model reference system, which is now defined as its estimated
pose P;.

5.4.2. Model Correction Based on Bundle Adjustment
The 3D points taken during model creation and added later
are subject to error derived from stereo correspondenaes. |

addition, the newly added points to the model also inhest th AN S . »
error of the pose estimation at the frame of addition. In orde (] Added points ~ DEAconedions
to get a better fitting of the model to the face, a Bundle Adjust  (4) original and extended model (b) Corrected model

ment (BA) optimisation is used to refine the 3D model. This

corrects the 3D point coordinates of the model and the pdses gjgure 10: Initial 3D model, extended one, and BA optimisatithe red lines

which any point has been added. shows the corrections done by BA. It can be observed how teealapoints
Bundle Adjustment is a very popular and well-known tech-sufer bigger corrections. Points 39, 43 and 44 on the rightahethibit im-

nique used in computer vision, and in particular for Streetu portant corrections.

from Motion (SfM) problems 42, 43, 44]. BA provides an

iterative optimisation of the poses and 3D points involved i

the reconstruction. Roughly speaking, BA is a non-linease 6, Experimental Testsand Results of the Driver Distraction

squares problem_ an_d consists in the minimisation of_ thg sum  Monitoring Application

of squared reprojection errors. Furthermore, if the naisthé

image error is Gaussian, then BA is thaximum Likelihood The test environment is a naturalistic truck simulatoryamo
Estimatoryielding the optimal least squares solution. A com-in Figures11(a,b), which very accurately recreates day and
plete survey on BA methods can be found34][ night time driving conditions. The simulator itself is a fea

The main problem of BA-based methods is that their speedruck cabin, motorised with actuators to simulate driving-m
can be very low when the number of parameters is high, sincéon. Three wide projectors outside the cabin show the scene
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The two lateral rear mirrors are also screened, so the drarer of the distance to the camera and of the face size. The error
look at them to check the ftfizc behind. measurement can be expressed in millimetres (mm) as
The stereo cameras have a base line of 20 cm, and are located .

over the dashboard behind the driving wheel, at a distance of 21 _ o 7 wATIvZ_ W

between 60 to 100 cm to driver's head. Camera views cannot € n IZ; 4. di= ‘/(X‘ — X)X = X0, (24)

be parallel, but have a little convergence towards the eetur

point the driver’s face, making and angle of Iietween them.  whereX; = (X, Vi, z)! is the calculated GT position of featuire
andXiZ = (%, ¥, z) is its 3D coordinate assumirg = z. The

6.1. Ground-Truth conditionz = z must be applied sincg = (u;, v;) is estimated

The Ground-Truth (GT) data have been obtained for six dif-Over the camera image projection, and there isiriaforma-
ferent users, using video sequences more than ten minuigs lotion.
each. The sequences were recorded within a very high immer-
sion environment and simulating common driving disturteanc  6.4. Performance Analysis of the Multisize Matching
such as phone Ca”S, handling the GPS and takeovers, which re We have Compared the multisize matching proposai with a
sultin frequent head movements. classical multiscale matching with Harris detector andhwit

Two different methods have been used to generate the GSURF [50]. Figure 12(a)shows the tracking technique with-
data. In some of the videos, we obtain the GT using a lighbyt re-registering, while Figurt2(b)shows the same technique
pattern installed on a tiara, or a calibration pattern aedcto using the re_registering a|gorithm_ We use Squared pamhes
the head, as shown in figurdd(c,d). The GT is calculated sjze 21, 41 and 61 pixels. Although multisize shows slightly
using MATLAB®, and its output was estimated to have an erromigher error than multiscale for small rotations, the foriet-
below 0.5. In both cases, the pattern is adjusted to the headyerforms the second for wider rotations when re-registeisn
and treated as a disembodied rigid object. applied.

The GT does not provide data on local face features, so this As a drawback, mean matching error s||ght|y increases for
data has been extrapolated from the pose registered in thy GT rotations below & This mainly happens because of the influ-
model point reprojection. Variations of the face due togest  ence of the smallest patches in the less contrasted featiires

changes are treated as tracking errors. small patch contains very little texture information, vendl low
_ contrast feature also contains less information than thate
6.2. Hardware and Software Requirements better contrast. For wider rotations thiet is over passed

The capture system is formed by two synchronised BaslePy the sharpen correlation provided by the small patches. In
Scout family FireWiréM cameras and two pulsed IR illumina-
tors synchronised with the cameras. The captured videg¥s hi
resolution grey scale data at 30 frames per second. The face -© R e matching
size is around 30& 350 pixels. —@— Harris + Multiscale matching

The algorithm was tested in a IntelCoréM2 Quad®
Processor running Kubuntu 9.10, and equipped with an ATI
Radeon™ HD 4500 Series graphic unit from AMD. All code
is written in G++, and parallelised using threads. Most of
the specific vision operations have been programmed uséng th 0 5 10 15 20 25 30
OpenCYV library #5]. BA and LM algorithms are coded using (@ Rotaton angte. X1 ]
the libraries provided by Lourakis and Argyra] 47]. 0 Featurelocalzaion eror using RE-REGISTERING

In Section6.6, we show a timing evaluation of the proposed ~ 6 - SURF
face estimation algorithm with incremental 3D model creti [ ——— o
In this timing evaluation we show processing times of each of o
the main steps of the algorithm.

Feature localization error WITHOUT re-registering
T T T T T
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6.3. Pose Estimation Error Evaluation

The error calculation method used is the same proposed o . ‘ ‘ ‘
by [48] and [49]. They introduce a scaling factor in the mea- 0 * o) Rotation angle, [R1 " %
surements, which depends on some reference size of thd.objec

In their work, they use the distance in pixels between the 6§/€  Figure 12: comparison of tracking errors foffdrent feature tracking methods.
the person on the image when the face is frontal to the camerg) without re-registering (b) With re-registering.

This scaling factor compensates for the apparent variation

size when the person is closer or further away from the camershe comparison with SURF, interest points are extractewh fro
but do not take into account thefidirent size of the face of dif- the face from both camera’s images, and 64-dimensional de-
ferent subjects. We convert the localisation error to miflires  scriptors are calculated. The SURF tracking error rapidly i
using the stereo information, so the error figure is indepahd crease because it fails to extract the correct interestpais

11




(a) Inside the truck simulation cabin, (b) View of the road, cameras and GPS  (c) GT using a light tiara. (d) GT using a calibration pattern.
showing camera layout. from the driver’s position.

Figure 11: (a,b) Track simulator used to record the videoseces. (c,d) Ground-truth methods.

the face rotates. Figuds shows the stereo correspondences for
the face features obtained with SURF. Another import#ieice

) System accuracy comparison using BA, for LM and POSIT
5 T T T T T T T T
LM adn BA
POSIT and BA P

207 == LM without BA ’ i 1
— — POSIT without BA -

Mean pose estimation error, AR’ ]

N i i i i i i i
0 10 20 30 40 50 60 70 80 90
Face rotation angle, [R’[ []]

Figure 14: Pose estimation improvement applying the BA algoritThe error
results are shown using POSIT and LM.

Figure 13: Stereo correspondences of face features otitagieg SURF.

measurements on each frame), the influence of the most com-
that should be noted is that, despite the re-registeriragufe  mon poses errors would be higher in the final mean error. Note
localisation error is a monotonically increasing functidoe to  that other authors do not specify how they calculate thisrerr
the accumulated error. The feature tracking stage takemdro to take into account the fact that the face is most of the time

14 ms on average for a 30 points model. looking forward.
Because the re-registering technique can not be applied un-
6.5. Performance of the Pose Estimation der pitch variations, the system error is higher in thisatios,

nd it can be observed how it increase for anglggn > 30°.

till, the BA slightly improves the results. For roll rotatis a
patch warping technique is applied. Consequently, theerell
ror is lower than pitch error. It was not possible to evalub&e
error in a wider pitch and roll range because big pitch and rol
rotations are not typical nor natural while driving.
The face pose estimation system has a very low error thanks
the BA corrections. The error remains low for the full rang
that point, even when BA is used, because the addition of ne o0 of yaw rotatio_ns. Thgse results Sh°VY equal or lower errors

' ' \%an other works in the literature, but with more challeggin

points to the model also adds some error. scenarios (wide rotation range, low lighting conditions éast
In Tablel, we show the pose estimation errors for the three 9e ghting

. . movements). Figure$5 and 16 depict some results for small
angles of rotation, measured in degrees. Mean errors are com.

puted for each angle of rotation forftirent rotation ranges. pleces of vi_deos. Figurﬂz? depicts a cha!lenging sequence of
Pitch and roll angles exhibit a smaller rotation range tram f video in which the driver moves generating bright illumioat

yaw, since there are no pronounced head rotations for thnese aIn the face, and talks through a microphone to the instregtor

; - . neratin lusions and f formation.
gles in the driving experiments. In Tab® we compare the generating occlusions and face deformatio

performance of our proposal with the latest works in theestat . )
of the art. 6.6. Timing Evaluation

The last steps of the algorithm are the pose estimation an
model correction process. Figutd depicts the pose estima-
tion error after LM, with and without BA. POSIT3P] pose
estimation is provided to compare our results wg0][

Figure 14 shows the correctionfiect of the underlying BA
process. Corrections are especially visible for yaw rotei
over 30, as model extension takes place in that range of angle%
It can be observed in both graphs that error increases guatkl

In this case, mean errors in this table have been computed In Table3 we show average computation times per each of
as the average error as a function of face rotation. If thenmeathe main steps of the face pose estimation algorithm witb-aut
errors were averaged over time (average of all individuadrer matic 3D model creation. As we can observe, the algorithm can
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Rotation BA? a <15 a<30 a<45% a3>45° features of the face. A bundle adjustment algorithm has been
used to correct the model after point addition. The final ltesu

yaw no 1.92 2.44 6.72 12.83 is an accurate sparse 3D model

ya.aw BA 098 154 304 854 We found that the well-known and extensively used SURF
pitch no 3.82 7.86 8.59 - does not provide good results due to the lack of irregulari-
pitch BA 181 4.70° 6.34° - ties and corners in the face, and the low ambient illumina-
roll no 1.27 2.08 - - tion. Instead, we implementednaultisizematching technique,
roll BA 1.16° 1.75° - - based on Harris interest points and patch correlation. t€ats-

nique joins the goodness offtéirent patch sizes for correlation.
Table 1: Mean face pose estimation error. The error is dividedyaw, pitch Smaller patches give better performance under rotatiohie w
androll, and evaluated in ffierent ranges of the absolute rotation angle in the | . " . L .
ground truthy. being less sensitive to illumination changes. Bigger ooeshe
other hand, are more robust although less accurate. We-imple
mented a new re-registering technique which takes advantag
of the stereo cameras disposition. Using this techniqueame c
add new features to the model in a consistent way, no matter
Proposed work \ 3.8° 426° 1.71° +90° +45° +30° whether the driver is in a frontal position or not. This alkfer
a full range and very accurate face tracking from°-89+90°

Rotation mean error Rotation range
Proposal yaw pitch roll yaw pitch roll

RVM [5]] 41° 2.3 24 +80° +25° +10° yaw rotations.
3D model fl0] | 3.3%° 467 238 | +90° +45° +45° As face rotates, we use the forward camera in the direction
SIFT [2] 244 276> 2.86° +45° +45° +45° of rotation to capture new texture patches of the featunes, a
PF 25] 286° 234 087 LA £20° +10P the backward camera to track using the patches that were prev
ously captured. This means that a texture patch needs to be
Table 2: Face pose estimation error comparison with otheioagpes. tracked only for a range of£7.5°. For pitch and roll rota-

tion, where the developed re-registering technique carbaot
_ o ) applied, patch warping could be used in the future.
work under real-time restrictions (30 Hz approximatelyaF The system has been evaluated under challenging conditions
ture detection just takes place at the initialization ofshgtem. ;.4 has shown good performance. Results for the proposed

Then, once the model is created, we need to perform per framgq orithm show a mean yaw rotation error beldwidr rotations
feature tracking and pose estimation. The model corretjon , the +15° range, and 1.54in the +30° range, improving the
means of BA, is performed only at certain keyframes through;eqits of other works in the literature.

out the sequence and runs in a parallel processing thread tha
the tracking and pose estimation.
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