On the Dynamic Time Warping of Cyclic Sequences
for Shape Retrieval

Vicente Palazén-Gonzalez, Andrés Marzal

Universitat Jaume I, Dept. Llenguatges i Sistemes Informatics and Institute of New Imaging
Technologies, Castellon de la Plana, Spain

Abstract

In the last years, in shape retrieval, methods based on Dynamic Time Warping and sequences where
each point of the contour is represented by elements of several dimensions have had a significant
presence. In this approach each point of the closed contour contains information with respect to
the other ones, this global information is very discriminant. The current state-of-the-art shape
retrieval is based on the analysis of these distances to learn better ones.

These methods are robust to noise and invariant to transformations, but, they obtain the
invariance to the starting point with a brute force cyclic alignment which has a high computational
time. In this work, we present the Cyclic Dynamic Time Warping. It can obtain the cyclic
alignment in O(n?*logn) time, where n is the size of both sequences. Experimental results show
that our proposal is a better alternative than the brute force cyclic alignment and other heuristics
for obtaining this invariance.

Keywords:

Cyclic sequences, cyclic strings, dynamic time warping, shape retrieval, shape recognition.

1. Introduction

Content-based image retrieval is being increasingly demanded in many applications: digital
libraries, broadcast media selection, multimedia editing, etc. [1]. The MPEG-7 standard, for
instance, is a specification for multimedia content description that defines visual feature descriptors
aimed at image retrieval based on their own visual content rather than text [2]. The shape of 2D

objects (written characters, trademarks, pre-segmented object contours, 2D /3D object boundaries,

Email addresses: palazon@lsi.uji.es (Vicente Palazén-Gonzalez), amarzal@lsi.uji.es (Andrés Marzal)

Preprint submitted to Image and Vision Computing June 14, 2013

10

15

20

25

30

etc.) usually provides a more powerful semantical clue for similarity matching rather than color
or texture: humans can recognize characteristic objects from their shape boundary.

Shapes can be represented by their contours using shape descriptors, which can be considered
as sequences. These shape descriptors can be formed by concatenation of Freeman codes, 2D
points, curvature, etc. Given two of these sequences, the comparison between them is a process
which measures how much they differ. Sometimes a natural alignment exists between the elements
of both sequences and we can compare them by using a simple distance, such as the Euclidean
distance. However, in most situations this does not happen because sequences can suffer some
kind of corruption. For this reason, it is necessary to find a correspondence over all possible
correspondences between the elements of the sequences. To achieve this there are efficient methods
based on dynamic programming [3] such as Edit Distance (ED) [4] and Dynamic Time Warping
(DTW) [5].

These (dis)similarity measures combined with shape descriptors must be robust to noise and
invariant to transformations such as translation, scaling, rotation, etc. Most of these distortions are
relatively easy to manage, but independently of the descriptor, there is a problem which has certain
difficulty: the election of the starting point to represent the closed contour as a sequence!. To
solve this there are two approaches: selecting a reference rotation or comparing both sequences by
considering every possible starting point. The idea of the selection of a reference rotation [7, 8, 9, 10]
consists of finding a canonical rotation for every shape and, from it, selecting a starting point with
a defined criteria. However, these techniques in certain situations fail and a good alignment is
crucial to achieve suitable results. We can obtain this correct alignment by measuring distances
between every possible starting point, that is to say, to do a cyclic alignment. From this the concept
of cyclic sequence arises. Cyclic sequences are sequences of values (or elements with several values
or dimensions) which have no beginning or end. A cyclic sequence models a set with every possible
cyclic shift of the sequence and measuring distances between two cyclic sequences is equivalent to
measuring distances between every possible starting of both sequences.

In the last years, in shape retrieval, methods based on DTW and sequences where each point of

'In this paper, we only consider closed contours with no occlusions, for a more general approach we refer the

reader to [6].

35

40

45

50

55

60

the contour is represented by elements of several dimensions have had a significant presence [11, 12,
13, 14, 15, 16]. In these methods each point of the closed contour contains information with respect
to the other ones. This global information is very discriminant as its results have shown. The
current state-of-the-art shape retrieval is based on the analysis of the distances that these methods
offer to produce other distances that increase the discriminability between different shape groups,
what is called context-sensitive learning [16, 17, 18, 19]. In general, all of these research accepts
that in order to obtain a good starting point there must be a cyclic alignment, but they use
brute force cyclic alignment which has a O(n?®) computational cost (where n is the size of both
sequences).

DTW has a high cost and if we have to compute it for every possible starting point, computa-
tional cost dramatically increases. Then it seems reasonable to speed up this cyclic alignment. In
the case of the ED, Maes proposed in [20] an O(n?logn) time procedure to compute the Cyclic Edit
Distance (CED), but, in spite of the similarities between the ED and DTW in their computation,
as we see in this paper, the use of this algorithm directly with DTW is not possible.

Keogh et al. [21] also proposed a solution to speed up the cyclic alignment using an indexing
approach, but it seems to be suitable just for sequences of one dimension and not, for instance, 96
dimensions as [14] needs.

In this paper, we present an algorithm inspired by [20], the Cyclic Dynamic Time Warping
(CDTW). It can obtain the cyclic alignment of DTW in O(n?logn) time and can deal with any
number of dimensions in the elements of the sequences. This algorithm significantly speeds up
shape retrieval tasks.

This paper is organized as follows. In Section 2, the Edit Distance and the Dynamic Time
Warping are revisited. In Section 3, the drawbacks of canonical shift methods are pointed out.
A CDTW procedure that provides starting point invariance when comparing sequences of shape
descriptors is presented in Section 4. In Section 5, final considerations to take into account in shape
retrieval with the proposed method are mentioned. In Section 6, experimental results on image
retrieval tasks for several databases compare the different methods. Finally, some conclusions are

presented in Section 7.

65

70

75

80

2. Sequence Comparison: Edit Distance and Dynamic Time Warping

Let A = agay . ..a,—1 and B = byb; ...b,_1 be two sequences in X*, where ¥* is the closure
under concatenation of a set X, and let A denote the empty sequence, that is to say, a sequence of
length 0.

An edit operation is a pair of sequences with a length less than or equal to 1, (u,v) # (A, A),
denoted by u — v. Edit operations are classified as deletions (u — M), insertions (A — v), and
substitutions (u — v), where u, v € 3. A sequence B results from another sequence A via the edit
operation u — v if there are two sequences C' and D such that A = CuD and B = CvD. An edit
sequence is a sequence of edit operations, e = ejes ... ey, that transforms A into B if B can be
obtained from A by successive application of the edit operations. Edit operations can have a cost
by means of a function 7 : (SU{A}) x (ZU{\}) — R=20 satisfying v(u — v)+y(v — 2) > v(u — 2).
The cost of an edit sequence e = ejey. .. ey is defined as y(e) = >, v(e:). An optimal edit
sequence from A to B is an edit sequence of minimum cost that transforms A into B. The Edit
Distance (ED) between A and B is denoted with ED(A, B) and is defined as the cost of an optimal
edit sequence from A to B.

Wagner and Fisher [4] showed that ED(A, B) = d(m,n), where

’

d(i —1,0) +vy(a;—1 — N), if i >0 and j =0;
d(0,7 — 1) +~v(A = bj_1), if i =0and j > 0;
i) =9 ’ \ M)

d(l - 17.]) + /}/(ai—l — A))

min ¢ d(i,j — 1) + (A = b;_1), otherwise.

k \ d(i—1,5 — 1) +y(a;i_y — bj_1),)

They also proposed a Dynamic Programming procedure to compute ED(A, B) in O(mn)
time [4] by computing the cost of an optimal path in a directed, acyclic graph: the so-called
edit graph. This graph is a grid of nodes (, j), where 0 < i < m and 0 < j < n, connected by hor-
izontal, vertical and diagonal arcs, as can be seen in Figure 1. The horizontal arc departing from
node (i, j) represents a; — A, the vertical arc represents A — b;, and the diagonal arc represents

a; — bj. BEach path from (0,0) to (m,n) is an edit path and its cost is the cost of its associated

4

85

90

Figure 1: Edit graph for A = 1001 and B = 01100, where 7(0 — 1) =1 and 7(0 — 0) = (1 — 1) = 0. The optimal

edit path is shown with thick arrows.

edit sequence.

Edit operations do not naturally arise in all sequence comparison problems. Optimal alignment
(also known as Dynamic Time Warping) leads to a better dissimilarity measure when we want to
model “elastic deformations”. An alignment between A and B is a sequence of pairs (ig, jo), (41, j1),

vy (fg—1,Jk—1) such that (a) 0 < i, <mand 0 < j, <nfor 0 </l < k; (b) 0 <ipq —ip <1 and
0 < Jerr —je < 1or 0 < £ <k—1;and (¢) (ig, je) # (iet1, Jesr) for 0 < £ <k —1. The pair (i, ji)
is said to align a;, with b;,. The cost of an alignment is defined as » ., 6(a;,,bj,), where § is
the local distance function. An optimal alignment is an alignment of minimum cost. Figure 2a
shows an optimal alignment between two sequences.

The Dynamic Time Warping (DTW) dissimilarity measure, DTW (A, B), is defined as the cost
of the optimal alignment between A and B, that is to say, DTW (A, B) = d'(m—1,n—1)[5], where

(

d(ag, bo), ifi=j=0;

d'(i —1,0) + 6(ay, by), ifi>0and j=0:

d' (0,7 — 1)+ d(ao, bj), if i =0and j > 0;

d'(i,5) = 4 , R 2)

d(i—1,5—1),

min ¢ (i — 1,), + 6(a;,b;), otherwise.
d(i,j—1)

\ \ Vs

This equation can be solved by Dynamic Programming in O(mn) time: the problem is reduced
to the computation of an optimal path in the warping graph, a weighted, acyclic graph with O(mn)

arcs. The warping graph is a grid of nodes (i, 7), where 0 < ¢ < m and 0 < j < n, connected by

5

95

100

horizontal, vertical and diagonal arcs as shown in Figure 2b. All arcs ending at node (i, j) have
the same cost, 0(a;, b;). Warping paths start at node (0,0) and end at node (m —1,n — 1).
Alignments of pairs of symbols in DTW can be assimilated to substitutions in edit distances,
but DTW allows for one-to-many correspondences, which makes it appropriate to model elastic
distortions. On the other hand, DTW alignments have no insertions or deletions and may seem

preferable to the Edit Distance when these operations do not naturally arise.

bs 0
ago ay ag as by 1
0 1 1 1
NN "
0 0 1 0 bo 0
0 1 1 1
b() bl b2 b3 ag aq as as

(a) (b)

Figure 2: (a) An optimal alignment between the sequences A = 0111 and B = 0010, where §(a;,b;) = |a; — bj].
(b) Warping graph underlying the solution procedure of the recursive equation (2). The thick line is the optimal

alignment associated to (a).

It is common to impose global restrictions to DTW in order to avoid an alignment too far away
from the diagonal of the graph. To achieve this we can use an alignment band that limits which
nodes can be visited. In Figure 3, there is an example of Sakoe band [22], the most widely used

band. Thus, we can add a fourth constraint (being m = n): (d) |i, — 51| < s for 0 < ¢ < k, where

105 s is the size of the band. In Figure 3, s = 2.

Figure 3: Sakoe band. White nodes can be visited.

110

115

120

There are two main reasons to use this heuristic. One of them is to speed up computation.
The execution of DTW , (DTW with a Sakoe band of size s) has a O(max(m, n)s) computational
cost. Second, to prevent pathological paths, that is to say, paths that are aligned with a small part
of one sequence to a big part of another. In certain fields of application that is not suitable.

There are also alternative definitions of the DTW with weights that affect the different arcs [23,

24]. We can use a function, w, that returns the weight for each type of arc, w = (w(1,0),w(1,1),w(0,1)).
The recursive equation for DTW (A, B) = d(m — 1,n — 1) is then:

.

w(1,1) - 6(ap, by), ifi=7=0;
d(i —1,0) +w(1,0) - 6(ay, by), if i >0 and j = 0;
d(0,7 —1) 4+ w(0,1) - §(ag, b;), if i=0and j > 0;
d(i,j) = (!) (3>

d(l —-1,5- 1) + w(]-) 1)) 5(ai7bj)7

min ¢ d(i —1,5) +w(1,0) - 6(a;, by), , otherwise.

\ \
If w=(1,1,1), DTW,(A,B) = DTW (A, B). These weights are particularly interesting for
giving more importance to some arcs and can be useful in normalization.

Sometimes normalization by the duration of sequences is necessary because of a high difference

between the size of the sequences. A possible definition of the normalized DTW (NDTW) is:

NDTWA B) = wmin im0 Wl g = gim) Slaisbi) (4)
(i0,50)-+- (ik—1,4k—1) Yoo Wi — tg—1, jo — Je-1)
where w(i, —i_1,70 —i-1) = w(1, 1).

If we want to calculate (4) with the computational cost of DTW, denominator cannot depend on
the alignment [25]. This happens, for example, with w = (1,2, 1), because in this case denominator
is m + n for any alignment. If denominator depends on the alignment we have to use [26].

Dynamic Time Warping does not provide invariance to changes in position, scale, orientation
of contours and selection of starting points in the compared shapes. Unless a proper description
of the shape is used, the DTW does not lead to good dissimilarity measures. Shape descriptors

such as [12, 13, 14] provide all these invariants except the selection of the starting point.

125

130

140

145

150

3. Canonical Methods

Before obtaining the shape descriptor from the sequence of points, A = agay...a,_1, we
can apply a heuristic method to select a starting point. The basic idea of this approach is
to find a canonical rotation, and in base of this rotation to choose a starting point. This ap-
proach is suitable in restricted domains where major axis is well defined. Shape orientation can
be determined by its axis of least second moment of inertia [7, 8, 27|, using the following area
based equation: tan(20) = 211 /(p20 — proz), being ppg = >, >, (x — T)P(y —)1 (z,y), where
I(z,y) is a binarized image obtained with the area of the shape defined by the contour A, and
T and gy are the centroids. Another possibility is to use Fourier Descriptors [8, 28, 9] (FDs).
The Discrete Fourier Transform of a sequence of points, A, is an ordered set of complex values
A = (a_myz, -y @1, Q0,00, ..., Qnya_1), Where o = D70 ape7¥Fi/m and j = /=1. These
coefficients are the FDs and model the contour of a shape as a composition of ellipses revolving at
different frequencies [28]. The main ellipse is centered at the contour centroid, ag, and translation
of the contour only affects this descriptor. Scaling the FDs by a factor scales the shape by the
same factor. Rotating the shape by an angle 0 yields a phase shift of # in the FDs. Changing the
starting point &£ symbols, that is to say, working on the cyclic shift agarys...am_1a0a;y ... a1,
produces a linear phase shift of 2wki/m to «;, for —m/2 < i < m/2. Invariance to rotation can be
obtained by substracting (0_; + 61)/2 (the orientation of the basic ellipse) to each 6;. Invariance
with respect to the starting point can be achieved by adding i(0_; — 0;)/2 to each 6;. The shape
can be reconstructed to a canonical form.

It should be noted that subtracting (0_; + 6;)/2 to the orientation of all FDs only provides
rotation invariance modulo 7 radians [28], there is an ambiguity. Anyway, let us consider that the
rotation ambiguity is not present. The basic idea of the FDs method is that, after normalization,
all shapes have a canonical version with a “standard” rotation and starting point, and thus, they
can be compared by means of the DTW dissimilarity measure. But invariance is only achieved
for different rotations, and starting points of the same shape. Different shapes (even similar ones)
may differ substantially in their canonical orientation and starting point. Figure 4 shows three
perceptually similar figures (in fact, the second and third ones have been obtained from the first
one by slightly compressing the horizontal axis) whose canonical versions are significantly different

in terms of orientation and starting point. This problem frequently appears in shapes whose

155

160

165

(0 0 Do

Figure 4: (a) Original shape and its canonical version using FDs. (b) The same shape compressed in the horizontal
axis and its canonical version, which has a different rotation and starting point. (c¢) A slightly more compressed

shape and its canonical version, which is also different.

s

(a) (b)

Figure 5: (a) Canonical version of an elephant with its trunk down. (a) Canonical version of an elephant with its

trunk raised. Both canonical versions have been obtained by the method of least second moment of inertia.

basic ellipse is almost a circle. Besides, shapes of the same category with little differences can
substantially alter the starting point selection. Figure 5 shows two elephants, one with its trunk
down and the other with its trunk raised, this fact and other little differences modify the canonical
rotation of the method of least second moment of inertia, and then, the selection of the starting
point.

Although in the bibliography there are other methods, all of them have these problems. There-

fore, invariance to starting point election should be provided by a different method.
4. Cyclic Sequence Comparison: Cyclic Edit Distance and Cyclic Dynamic Time
Warping

When two signatures have “equivalent” starting points, DTW provides a good dissimilarity

measure. However, considering that similar shapes can present very different starting points, it is

170

175

180

185

190

useful to consider the problem under the framework of cyclic sequences.

A cyclic shift o of a sequence A = apa;...a,,—1 is a mapping o : ¥* — ¥* defined as
o(apay ... am-1) = a1...am_1a9. Let o denote the composition of k cyclic shifts and let oV
denote the identity. Two sequences A and A’ are cyclically equivalent if A = o*(A’), for some k.
The equivalence class of A is [A] = {o"(A) : 0 < k < m}, denoted as cyclic sequence, and any of its
members is a representative (non-cyclic) sequence. For instance, let 1 and 0 be two elements from
the set X; the set {0111,1110,1101, 1011} is a cyclic sequence and 1101 —or any other sequence
in the set— can be taken as its representative.

The Cyclic Edit Distance (CED) between [A] and [B] is defined as

0<k<m \ 0<l<n

CED([A],[B]) = min (min ED(ak(A),a’f(B))). (5)
Maes [20] showed the following lemma:

Lemma 1 (Maes). CED([A],[B]) = CED([A], B) = min ED(c"(A), B). O

0<k<m

Since ED(c%(A), B) can be computed in O(mn) time, the value of CED([A],[B]) can be ob-
tained by computing m edit distances in O(m?n) time. Maes proposed a more efficient procedure
that computes m shortest paths in an extended edit graph, an edit graph where one of the sequences
is doubled (see Figure 6a). Let P(k) be a shortest path between nodes (k,0) and (k + m,n) in
the extended edit graph. The edit distance ED(c*(A), B) is the cost of P(k). When computing
ED(c*(A), B), one can take advantage of the non-crossing property of edit paths [20] (see Fig-
ure 6b):

Property 1 (non-crossing property, Maes). Let j, k, and | be three integers such that 0 <
Jj<k<l<m,andlet P(j) and P(l) be two non-crossing paths with minimum cost in the extended
edit graph. There is a shortest path P(k) from (k,0) to (k-+m,n) that lies between P(j) and P(l).

This property leads to a Divide and Conquer [3], recursive procedure: when P(j) and P(l)
are known, P((j +1)/2) is computed by only taking into account those nodes of the extended
edit graph lying between P(j) and P(l); then, optimal paths bounded by P(j) and P((j +1)/2)
and optimal paths bounded by P((j +1)/2) and P(l) can be recursively computed. The recursive
procedure starts after computing P(0) (by means of the standard Edit Distance) and P(m), which

10

195

200

Figure 6: (a) Extended edit graph for A = 0011 and B = 01100. The optimal path for the cyclic edit distance of
A and B is the optimal path among those ones starting and ending at nodes with the same colour. (b) P(j) is the
optimal edit path for 0/(A) and B, and P(I) is the optimal path for o!(A4) and B. Crossing paths can be avoided:
if the cost of ¢ is greater than the cost of ¢/, P(j) can be improved by taking ¢’ instead of g.

is P(0) shifted m positions to the right. Each recursive call generates up to two more recursive
calls and all the calls at the same recursion depth amount to O(mn) time. Total computation time
is, therefore, O(mnlogm).

A cyclic alignment between [A] and [B] is a sequence of pairs (ig, jo), (¢1,J1), - -5 (ik—1, Jr—1)
such that, for 0 </ <k, (a) 0 < iy <mand 0 < jy, < n; (b) 0 < (441) mod ks — %) mod m < 1
and 0 < (Jug1)moak — Je) mod n < 1; and (¢) (i7,7¢) 7 (4(64+1) mod ks J(¢+1) mod k). Lhe cost of a
cyclic alignment (io, jo), (i1, j1), -, (ix—1,Jk—1) is defined as Y, 0(ai,,bj,), where d is the
local dissimilarity function. An optimal cyclic alignment is a cyclic alignment of minimum cost.

The Cyclic Dynamic Time Warping (CDTW) dissimilarity measure CDTW ([A], [B]) is defined
as the cost of the optimal cyclic alignment between A and B. First, we show that the optimal
cyclic alignment can be defined in terms of alignments between non-cyclic sequences, i.e., in terms

of DTW (-,-); then, we present how to adapt the Maes’ algorithm to compute it.

Lemma 2. If m,n > 1 and (i, jo), (i1,71), ---, (ik—1,Jk—1) S an optimal alignment between

two sequences agay . .. Aym—1 and boby ... b,_1, there is at least one £ such that iy # t(41) mod k and

205 Jo 7 J(t+1) mod k-

Proof: Any alignment including (i, j¢), (i¢+1, j¢), and (ig+1, je+1) can be “improved” by removing

11

210

215

220

225

(i¢ + 1, js), since 6(a;,41,b;,) > 0. Analogously, any alignment including (i, j¢), (i, je + 1), and
(i¢ + 1, j, + 1) can be “improved” by removing (i, je + 1). O

Lemma 3. The CDTW dissimilarity between a cyclic sequence [A] of length m and a cyclic se-
quence [B] of length n, CDTW ([A],[B]), can be computed as:

CDTW ([A)],[B]) = min <min DTW(ak(A),of(B))). (6)

0<k<m \ 0<L<n

Proof: Trivial when m = 1 or n = 1. Let us consider that m,n > 1 and let (ig, jo), (¢1,71), - -,
(ik—1, Je—1) be an optimal alignment. Let ¢ be an index such that iy # #(¢41) mod & a0d jz 7 J(e41) mod &
(by Lemma 2). The cost of this cyclic alignment is DTW (o'« modk(A), gIe+n mod k(B)) which is

considered by the double minimization, since 0 < (1) modx < m and 0 < Jy1) mod & < 7. Il

According to Lemma 3, the value of CDTW ([A],[B]) can be trivially computed in O(m?n?)
time by performing all cyclic shifts on both sequences, solving mn recurrences like equation (2).
Now the question is: Is it possible to perform cyclic shifts on only one of the sequences when
computing the CDTW like Maes’ algorithm does for the CED? The answer is negative: in gen-
eral, CDTW ([A],[B]) is neither ming<j<,, DTW (c*(A), B) nor ming<;<, DTW (A, c'(B)), as the
following counter-example shows: being d(a;,b;) = |a; — b;|; the value of CDTW ([101],[010]) is
0, since DT'W(110,100) = 0, but DTW(101,010) = 2 and DTW (011,010) = DTW (110,010) =
DTW(101,100) = DTW(101,001) = 1. Therefore, an equivalent of Maes’ algorithm for the CED
computation cannot be directly applied to CDTW dissimilarity computation.

However, a significant speed-up can be achieved as a consequence of the next theorem:

Theorem 1. The CDTW dissimilarity between cyclic sequences [A] and [B] can be computed as:

CDTW ([A],[B]) = min (min(DTW(ak(A), B), DTW (¢*(A)ay, B))) : (7)

0<k<m

Proof: Each alignment induces a segmentation on A and a segmentation on B. All the values
in a segment are aligned with the same value of the other cyclic sequence (Lemma 2). There is
a problem when b,,_,_1b,_,...b,—1 and bob; ...b,, for some p, ¢ > 0, should belong to the same

segment of b. In that case, the optimal path cannot be obtained by simply shifting a, since b,,_;

12

230

235

240

must be aligned with the last value of 0*(A4) and by must be aligned with its first value, i.e., they
cannot belong to the same segment. The sequence o* (A)ay allows the alignment of b,_pb,—pi1 ... b,

and bgby . . . b, with the first value of o*(A), since aj, also appears at the end of o*(A)ay. O
Corollary 1. DTW (c*(A), B), for each k, can be obtained as a subproduct of the computation of
DTW (o*(A)ay, B).

Proof: The warping graph underlying DTW (c*(A), B) is a subgraph of the graph underlying
DTW (c%(A)ay, B). The optimal path in DTW (c*(A), B) is a path in DTW (¢*(A)ax, B). O

In Figure 7 we can see this fact. Besides, it depicts that now the counter-example is not.

ag ax as) ai a2 ao by 1
1 0 0 1 0 0 i1
1 0 1 1 0 1 by 1
1 0 0 1
b() b1 b2 b() bl b2 ag a a2 ao

(c)

Figure 7: Counter-example mentioned before where the minimum cost is obtained using the proposed solution. (a)
Optimal alignment between the sequences o*(A) = 100 and B = 101, where §(a;,b;) = |a; — b;|. (b) Optimal
alignment between the sequences o*(A)a;, = 1001 and B = 101. (c) The optimal paths of DTW (c*(A), B) and
DTW (a*(A)ay, B).

The value of DTW (6%(A), B) and DTW (¢*(A)ay, B), for each k, can be obtained by computing
shortest paths in an eztended warping graph similar to the extended edit graph defined by Maes [20]
(see Figure 8). Since the non-crossing property of edit paths also holds for alignment paths

(see Figure 6b), the divide-and-conquer approach proposed by Maes can be applied to CDTW.

Theorem 2. CDTW ([A],[B]) can be computed in time O(mnlogm) using the algorithm in Fig-

ure 9.

Proof: Tt should be taken into account that, unlike in Maes’ algorithm, the optimal path starting
at (k,0) can finish either at node (k +m — 1,n — 1) or (k + m,n — 1), in other words, we have
two paths for each starting node (see Figure 8). Which one should we take for the following

13

245

250

255

260

recurrences? In fact, it is indifferent. Due to the non-crossing property, the two new paths that
we have to compute in each recurrence cannot cross any of these paths. The divide-and-conquer
procedure only needs one path as a limit on both the left and the right, then for each starting
node we only need one of them and it does not matter which one. However, to follow a unified
criterion we take the path with the minimum cost.

The running time of this algorithm is O(mnlogm): each recursive step divides the search space
in two halves and all recursive operations at the same recursion level require total O(mn) time

(see Figure 10). O

Figure 8: Extended warping graph for A = 0011 and B = 1110, where 6(a;,b;) = |a; — bj|. Arcs ending at node
(4,7) have a cost d(a;,b;). The optimal alignment for [A] and [B] is the path with minimum cost starting from any
colored node in the lower row and ending at a node containing the same color in the upper row (all candidate paths

are shown with thick lines).

The divide-and-conquer procedure greatly reduces computation time. But, in the CED there
is another procedure that reduces even more this time [29]. In this approach, lower bounds based
on the cyclic shift of the sequences are used. The difference of the ED between two sequences and
the ED between one of these sequences and a cyclic shift of the other is bounded by an insertion

and a deletion:

|ED (0" (A), B) — ED(0"(A), B)| < v(A = v) + y(u —). (8)

As [29] explains, this Branch-and-Bound [3] procedure dismisses the calculation between two
optimal paths when the lower bound is greater than the minimum cost calculated so far, which for
the CED results in an extremely fast method. Nevertheless, this procedure cannot be applied to
CDTW. When we make a cyclic shift in a sequence the difference can not be bounded this way,

because a shift can completely disrupt the alignment and then the cost of it. It may be seen more

14

Figure 9: CDTW Algorithm.
Input: A, B: sequences
Output: d* : R
var P: vector [0..m] alignment paths

begin
d* = min(DTW (c°(A), B), DTW (6°(A) Ay, B))

Let P[0] be the optimal path of the alignment obtained in the previous calculation
Let P[m] be equal to P[0] but moved m nodes to the right

if m > 1 then
| d* = min(d*, NextStep(A- A, B, 0, m))
return d*

end

function NextStep(AA: sequence, B: sequence, [: N, r: N):R

begin

c=1+[7]

d=min(DTW (AAc.ctm, B), DTW (AAc.ct+m+1, B)) with P[l] and P[r| known

if [+ 1 < c then
| d =min(d, NextStep(AA, B, [, ¢))

if c+ 1 < r then
| d =min(d, NextStep(AA, B, ¢, r))
return d

end

15

s & .
/7 mﬁ-_-z-,m
b g b

Figure 10: Divide-and-conquer procedure to compute the CDTW dissimilarity between the sequences of Figure 8.
First, the optimal alignment (path) between A and B and between 0°(A)ag and B is computed. The first optimal
path is used as a left and right frontier in the extended graph: only the white region must be explored to compute
the optimal alignment between 0?(A) and B and between 02(A)ay and B. This idea is recursively applied to the
computation of the other optimal alignments, but using also the optimal alignment between 0?(A) and B as a new

left or right frontier.

16

265

270

275

280

clearly explained by the following example. Let A = 1110 e B = 0001 be two sequences, where
DTW (A, B) = DTW(1110,0001) = 3, being 6(a;, b;) = |a; — b;|. If we make a cyclic shift in A the
following happens, DTW (c*(A), B) = DTW (0111,0001) = 0. In DTW there are no deletions or
insertions, only alignments and to bound them with an operation, at least linear, does not seem
possible.

As we mention in Section 2, using global restrictions in DTW can speed up computation and/or

prevent pathological paths.

Theorem 3. CDTW with Sakoe band between a two cyclic sequences, [A] and [B] can be computed
with:
CDTW ,([A],[B]) = min <min(DTWs(ok(A),B), DTWS(ak(A)ak,B))). (9)

0<k<m

Proof: Trivial from the definition of the Sakoe band in Section 2 and Theorem 1. U

Theorem 4. The divide-and-conquer procedure can be used to obtain CDTW with Sakoe band in

time O(snlogm).

Proof: For each cyclic shift (or each recurrence of the algorithm) we use a band to the left that
we have to combine with the limit on the left. The same for the band and the limit on the right.
Combinations lead to new limits on the left and the right. Obviously, for the limit on the left we
take the position nearest to the right (path limit or band), the opposite for the limit on the right.
With these new determined limits we obtain the optimal path starting at (k,0) and finishing at
node (k+m—1,n—1) or (k+m,n—1). Computational time of this algorithm is finally O(snlogm).
O

Although the computational time is lower than the one of CDTW without the band, we are
not taking into account that there is an additional computation when we combine bands and paths
in each recurrence. Consequently, computational time is only reduced for small values of s. Thus,
Sakoe band is only useful, in this case, to prevent pathological paths.

Extensions for other weights in the arcs and normalization are shown in Appendix A and Ap-

pendix B.

17

290

295

300

305

310

315

5. Final Considerations to Speed Up Shape Retrieval

In order to speed up cyclic DTW comparisons between the shape descriptors that are mentioned
in [11, 12, 13, 14, 15, 16], we have to take into account the following.

As we mention before, these authors accept that the cyclic alignment is the best solution
but they use brute force to obtain it with an O(n?®) computational time, being n the size of the
sequences. Sequences have the same size due to an equidistant sampling, of usually 100 points.
With this sampling they avoid normalization and an intractable problem due to the high size of
contours.

In [14], the authors try to avoid brute force by means of another heuristic. They say that (with
their shape descriptor) it is often sufficient to try aligning a fixed number of & points, k is obtained
experimentally. Therefore, the time complexity is O(kn?) = O(n?). In their experiments, for a
sampling of 100 points, & = 8, and for a sampling of 128 points, k& = 16 (for different corpuses).
As we can see, there is a correspondence between n and k. Our proposal is superior, we achieve a
O(n?*logn), a better time complexity and always with the correct cyclic alignment.

In [21], the authors, using a method similar to their previous work with DTW [30], try to speed
up the cyclic alignment as well. They make clusters of sequences based on their similarity, treating
every possible starting point as a different sequence and using indexing methods with lower bounds
of these clusters. This solution seems to be suitable just for sequences with only one dimension
(such as the curvature) and not for much more dimensions [11, 12, 13, 14, 15, 16]. For instance,
in [14], 96 dimensions are required. Another problem is that it cannot use more sophisticated local
distances (in DTW between elements of the sequences) such as x? [14], due to their lower bound.
Our proposal can deal with any number of dimensions and these local distances.

Another important thing is the cost of the local distance. For these shape descriptors [11, 12,
13, 14, 15, 16], that have a high dimensionality in their elements, the local distance has a significant
cost in the computational time. It is not the same to compute a local distance between elements of
one dimension (such as the curvature) and to compute it between elements of 60 dimensions (such
as the Shape contexts [11]). For this reason, it is convenient to compute the n x n matrix of local
distances at the beginning and store it, in order to avoid repeating calculations. We can do this
both in brute force cyclic alignment and in CDTW. In the case of DTW with Sakoe band, the fact

that not visiting some nodes makes to not having to calculate the corresponding local distances,

18

320

325

330

335

340

that are out of the band (grey nodes in Figure 3). This is not possible in CDTW, there is no
way to avoid the computation of local distances with the Sakoe band. For instance, in Figure 8,
for a band with s = 1, when we compute the alignment starting at (0,0), we could think that we
can avoid calculating, d(ao, b2), d(a1,bs) and 6(a1,bs), in the left side of the band. But this is not
possible because we must compute those local distances in the other part of the extended graph
for other alignments.

Finally, to mention that in the context-sensitive learning methods [16, 17, 18, 19], in a shape
retrieval task, for a given query shape, in a first stage we need to compute the distances over
the entire database and then, based on these distances, we can obtain with these methods the
improved distances. Our algorithm can be used to speed up the computation of the distances in

this first stage.

6. Experiments

In order to test the presented algorithm, we performed comparative experiments on a shape

retrieval task using three publicly available databases:

e MPEG-7 CE-Shape-1 database part B (MPEG-7B). It contains 1400 shapes (see Figure 11)
divided in 70 categories, each category with 20 images [31].

e Silhouette database [32]. It contains 1070 silhouettes (see Figure 12). The shapes belong to

41 categories representing different objects.

e SQUID Demo database [33]. It consist of 1100 contours of marine species (see Figure 13).
The original database does not divide the contours into classes. We used the labels of [9],

they manually classified 252 images into 10 semantic categories.

All the outer closed contours of the images were extracted as sequences of points. A random
starting point in the sequences were also selected and 100 landmark points were sampled uniformly.

We used three well-known shape descriptors, given the sequence of landmark points:

e Curvature [34]. A descriptor with only one dimension for each point.

19

M. N P WP < Pk - P

i - @< « & 3»p Q O

Q
<
w >egms g -abe @« &K 4 — | =

“ > @ P @ =< gy

W e e @ e~ @

A O W WY e dpe -

W @ O @ @ e 4~ X

Wl dp P > o N~

345

350

355

360

365

e Beam angle statistics (BAS) [35]. A shape descriptor based on the curvature which in spite
of having only four dimensions, its results are very competitive. For each point all the

k-curvatures are obtained and four central moments are computed.

e Shape contexts [11]. For each point, a histogram of the relative coordinates of the remaining
points is computed, where bins are uniform divisions of log-polar space centred at that point.

As in [11], we used five distance bins and 12 angle bins, 60 dimensions.

We chose these shape descriptors to compare our proposal, CDTW, in the following ways.
First, to see the improvement of our algorithm in shape retrieval rates with respect to canonical
methods and also in time with respect to a brute force cyclic alignment and the canonical methods.
These shape descriptors are representative examples from the literature and their results can be
extrapolated to other similar methods [12, 13, 14, 15, 16], specially the results with the shape
contexts [11]. Second, for measuring the behaviour of the dimensionality, as we say in Section 5,
we have to take into account that it is not the same to compute a local distance between elements of
one dimension (curvature) and to compute it between elements of 60 dimensions (shape contexts).

With regard to DTW and CDTW, w = (1, 1, 1) was used and the local distance for the curvature
was 0(a;, bj) = \/m , being a; and b; two curvature values, the same local distance for BAS
but for a vector of four dimensions, and for the shape contexts 6(a;, b;) = x?(a;, b;), being a; and b;
vectors of 60 dimensions. The invariance to the mirror transformation was obtained by computing
another DTW or CDTW with the shape descriptor of the mirror shape.

In the following we present the shape retrieval results in terms of rates and time. All of them

has been obtained with leaving-one-out and an exhaustive search in corpuses.

6.1. Retrieval Rates

In Section 3 we comment two representative canonical methods to solve the problem of the
invariance to the starting point: least second moment of inertia [7, 8] and Fourier Descriptors [9]
(FDs). In this section we compare them with our proposal, in other words, we compare these
heuristics with DTW against CDTW. As a base experiment we also show results with DTW
without a method to obtain this invariance.

Performance of methods in the shape retrieval task is measured by:

22

370 e The bullseye test [2] (only for the MPEG-7 database). It consists in comparing each shape
to every other shapes in the database. The retrieval rate for the query object is measured
by counting the number of objects from the same category which are found in the first 40

most similar shapes.

e Mean Average Precision (MAP) [36]. For a set of images, MAP approximates the area under
375 the Precision-Recall curve [37]. It has demonstrated to be a measure of quality, with a good

discrimination and stability.

Table 1 shows the bullseye test results for the MPEG-7B corpus and Table 2 shows the MAP
results, in this case for the three corpuses. CDTW has the best results for all the shape descriptors
and corpuses.

380 Finally, to comment that if we use a context-sensitive learning approach, in particular [19], the

bullseye test for the shape contexts and CDTW arrives to 94.15.

Bullseye test

Descriptor Method Corpus
MPEG-7B
Curvature DTW 46.16
Moments+DTW 52.22
FDs+DTW 58.03
CDTW 66.70
BAS DTW 56.57
Moments+DTW 80.85
FDs+DTW 80.97
CDTW 82.85
Shape contexts DTW 65.66
Moments+DTW 84.65
FDs+DTW 85.05
CDTW 86.73

Table 1: Bullseye test to compare methods for obtaining the starting point with several shape descriptors. Bold

entries show the best results.

23

MAP

Descriptor Method Corpus
MPEG-7B Silhouette SQUID
Curvature DTW 36.30 33.54 22.34
Moments+DTW 42.34 41.86 20.45
FDs+DTW 49.15 45.18 28.89
CDTW 58.54 59.99 36.76
BAS DTW 48.46 41.57 31.19
Moments+DTW 75.57 72.54 49.30
FDs+DTW 75.64 72.61 50.15
CDTW 77.51 74.74 50.55
Shape contexts DTW 57.58 55.59 40.94
Moments+DTW 80.01 80.99 54.80
FDs+DTW 80.85 81.54 55.65
CDTW 82.63 83.97 56.12

Table 2: MAP to compare methods for obtaining the starting point with several corpuses and shape descriptors.

Bold entries show the best results.

24

385

390

395

400

405

410

6.2. Time

In this section, we also present time experiments. Times were measured on a 2.66GHz Intel
i7 running under Linux 2.6.32. The algorithms were implemented in C++ and we used the GNU
g++ compiler with -O2 optimizations.

Figures 14, 15 and 16 show the total relative time of: FDs+DTW (using FDs for obtaining the
starting point, but it can be applied to any canonical method with similar properties) and CDTW,
with respect to the brute force cyclic alignment time. The total times shown are for an exhaustive
search for all the shapes in the corpuses.

For all the shape descriptors the speed up of CDTW with respect to brute force is very high.
In the case of the shape contexts this speed up is a little lower due to the high cost over the
computational time of the matrix of local distances. We have to calculate a x? distance for each
element of 60 dimensions in the matrix n x n. To get a general idea, comparing with CDTW a
query shape against the 1399 remaining samples (MPEG-7B), takes an average time of 2 seconds
for the curvature, 2.2 seconds for BAS and 5.5 seconds for the shape contexts, approximately.
In the case of the brute force cyclic alignment and shape contexts this time is prohibitive, 16.3
seconds.

Because of the dimensionality, [12, 13, 14, 15, 16] will also have prohibitive times. CDTW will
significantly improve these times, as it happens with the shape contexts.

Regarding DTW and the canonical methods there is little improvement in time with respect

to CDTW.

7. Discussion and Future Work

In this work, we have studied the brute force cyclic alignment and canonical methods detecting
their drawbacks. As a better alternative we have defined the CDTW dissimilarity and an algorithm
to compute it in O(n?logn) for two sequences of length n has been presented.

It has been shown that the CED algorithm cannot be directly extended to CDTW: two conven-
tional DTW dissimilarities must be computed for each cyclic shift of one sequence. Fortunately,
one of these dissimilarities can be obtained as a subproduct of the computation of the other.
Thus a divide-and-conquer procedure is possible. Based on these problems, we have also defined

extensions for global restrictions, other weights in the arcs and normalization.

25

Curvature

e
m CDTW

© O FDs+DTW
© |

LQO

)

E

2 ©

s S

~

B

L o«

(&)

2

T o~

<

_ t t B
=

MPEG-7B Silhouette SQUID

Figure 14: Relative total time comparison with respect to brute force cyclic alignment for FDs+DTW and CDTW

methods with the curvature descriptor and several corpuses.

BAS

1.0

H CDTW
O FDs+DTW

0.8
1

Relative time w.r.t. brute force
0.2

N Bl =N =

MPEG-7B Silhouette SQUID

0.0

Figure 15: Relative total time comparison with respect to brute force cyclic alignment for FDs+DTW and CDTW

methods with the BAS descriptor and several corpuses.

26

415

420

Shape contexts

1.0

m CDTW
O FDs+DTW

0.8

0.6

Relative time w.r.t. brute force
0.4

0.2

0.0

MPEG-7B Silhouette SQUID

Figure 16: Relative total time comparison with respect to brute force cyclic alignment for FDs+DTW and CDTW

methods with the shape contexts descriptor and several corpuses.

Experiments which were performed on different corpuses show that our proposal drastically
speeds up the computation time with respect to the brute force, obviously, offering the same shape
retrieval rates. Experiments also show that canonical methods do not offer a significant speed-up
with respect to CDTW, in order to sacrifice this correct cyclic alignment.

Our algorithm can be used to significantly speed up the current state-of-the-art shape re-
trieval [11, 13, 14, 15, 16, 17, 18, 19].

In posterior work we aim to explore indexing methods with CDTW.

Appendix A. Other Weights in the Arcs: w = (1,1,1) and w # (1,1,1)

In Theorem 1, we exposed that there are only two possible cuts in the alignment with w =
(1,1,1), either we cut one of the segments of B (when we choose the cyclic shift) or we do not cut
it and the sequence is “cleanly” cut. In the case of other values of w, there are two more possible
cuts. In Figure A.17 there is an alignment that is also in Figure 2, but now with w = (1,2, 1).
As we can see in Figure A.17a, there is a difference that is the alignment between az and by. It

corresponds to a right angle in the alignment path (see Figure A.17b).

27

425

430

435

440

bs 0
ao ai a2 as

0 1 1 1

R

0 0 1 0 by 0
bo by bo b3

(a) (b)

by 1

Figure A.17: (a) An optimal alignment between the sequences A = 0111 and B = 0010, where 6(a;, b;) = |a; — b;|
and w = (1,2,1). A thick stroke is marking the new type of alignment. (b) Warping graph. The thick line represents

the optimal alignment that corresponds to (a).

Now, Lemma 2 is not followed (observe that w # (1,1,1)). In this case, the alignment includes
(2,2), (3,2) and (3,3), but we cannot remove (3,2) to obtain one of lower cost. If we cut B
between by and b3, one of these new types of cuts is produced. From now on, we call them N or V1
cut (for the similarities with the capital letter, and its mirror). As we can see in Figure A.17a, in
the alignment (2,2), (3,2) and (3, 3) there is an VI cut. For instance, there would be an N cut if
(2,2), (2,3) and (3, 3) were included in the alignment (the other right angle in the warping graph,
Figure A.17b).

These new cuts also invalidate Lemma 3, when w # (1, 1, 1), because shifting the sequences for
all the starting points does not provide a valid solution, as the following counter-example shows.
Suppose that we want to compute DT'W ,([02], [131]), being 6(a;, b;) = |a; — b;| and w = (1,3, 1).
If we cyclically shift both sequences: DTW ,(02,113) = DTW,(02,131) = DTW,(20,131) =
DTW,(20,311) = 4 and DTW,(02,311) = DTW,(20,113) = 6. But the correct result for
DTW ,([02],[131]) is 5 as Figure A.18 shows. In Figure A.18a the optimum alignment that is
supposedly the result of the cyclic alignment is depicted, however, this is not so because we do
not take into account weights in (3) for ¢ = 0 and j = 0. ag should appear aligned with by as in
Figure A.18b.

Nevertheless, to achieve this result we must consider how we leave the graph at node (m —
1,n — 1) to enter at node (0,0), in other words, we need to know with which weight we leave it.
This leads us to find another expression for the DTW. From now on we call this new expression

DTW?2, because we use it to express the brute force with a cyclic shift of both sequences.

28

445

0 2 0 2

RN 7N
Ve

13 1 13 1

bo b1 b2 bo b1 b2

Figure A.18: (a) Optimal alignment between the sequences A = 02 and B = 131, where 6(a;,b;) = |a; — b;| and
w = (1,3,1). (b) Optimal alignment between the cyclic sequences A = [02] and B = [131]. Dotted line indicates

the alignment that is not in (a) for being a correct cyclic alignment.

Lemma 4. The recursive equation for DTW2,(A, B) = d(m,n) is:

(O, ifi=7=0;
d(i—1,0) +w(1,0) - d(a;, by), ifi>0andj=0;
d(0,5 —1) 4+ w(0,1) - 6(ao, b;), ifi=0 and j > 0;
d(ii—1,7 — 1)+
d(i,j) = (w(1,1) - §(ag, by), (A1)
min , ifi=m and j =n;
| w(0,1) - d(ag, by 1) + w(1,0) - 5(ao, bo)
(dii—1,7—1)+w(1,1) - 6(ai, b;), \
min § d(i — 1, §) +w(1,0) - 6(as, b;), , otherwise.
| iy e0) dat)

CDTW for arbitrary weights between a cyclic sequence [A] with size m and a cyclic sequence [B]

with size n, CDTW ,,([A],[B]), can be computed with:

CDTW ,([A],[B]) = min (min DTW@w(ak(A),af(B))). (A.2)

0<k<m \ 0<fl<n

Proof: We can take into account N and VI cuts with the differences of (A.1) with respect to (3):
(i) the case where i = m and j = n, with it we obtain the suitable weight to enter at node (0, 0);

and (ii) the case where i = j = 0 that has as result 0 because we do not need to add here the local

0 distance that was added in the case (i). However, in the case (i) we only consider VI cuts (although

29

455

we could take N cuts), because it is not necessary to consider the other cut, as we can observe in

Figure A.19, for another of the cyclic alignments we can obtain an equivalent one. U
bo '
[]
:
fﬁ%‘) by -
- |
// | bU
b() bl ay ap ay
(a) (b)
bo
R ag ay by
e T\\\\J
N by
bO bl agp ay ag

Figure A.19: Example of alignment with N and VI cuts. Although we are only considering N or ¥ in each case,
alignments are equivalent. In (a) and (b), dotted lines correspond to the case where i = m and j = nin (A.1), in (¢)
and (d) they would also correspond to this case, supposing we had just considered the N cut instead of the ¥ cut.
Although we begin at (0,0), line does not appear in this node to indicate that there is a value 0 at the beginning.
(a) Alignment where there is an VI cut. (b) Warping graph that corresponds to the alignment in (a). (c¢) Alignment
where there is an N cut. (d) Warping graph that corresponds to the alignment in (c).

According to Lemma 4, CDTW ,([A],[B]) can be computed in O(m?n?) time with all the
cyclic shifts of both sequences. But we need to compute it with the cyclic shift of only one of the

sequences. Thus, we have to define DTW1.

30

460

465

Theorem 5. The recursive equation for DTW1 (A, B) = d(m,n) is:

(

0, ifi=j=0;
d(i—1,0) +w(1,0) - 6(ay, by), ifit>0andj=0;
d(0,5 —1) 4+ w(0,1) - 6(ao, b;), ifi=0and j > 0;
d<2 —-1,5— 1) + w(la 1) ’ 6(a07 b0>7

min , ifi=m and j =n;

L d<laj - 1) + w(l,()) ’ 6(a07b0))

(3

d(i, j) = d(i—1,5—1)+w(1,1) - d(ag, b;), (A.3)

min § d(i — 1,) +w(1,0) - §(ag, b;), , ifi=mand j #n;

d(l,j -].) + w(O,].) : (S(Clo, bj)
d(l —]_,] - 1) + UJ(].,].) . (S(Gi,bj),
min ¢ d(i —1,5) +w(1,0) - §(as, b;), , otherwise.

d(i,j — 1) +w(0,1) - §(a;, b))

\ \ Ve

CDTW for arbitrary weights between a cyclic sequence [A] and a cyclic sequence [B] can be com-

puted with:
CDTW ,([A],[B]) = min DTW1,(c"(A), B). (A.4)

0<k<m

Proof: In (A.3), (7) and (A.1) are unified. On one hand, in the case i = m and j # n, the
concatenation with the first element of the sequence is done (see (7)), that is to say, there is a new
column in the graph (see Figure 7c). On the other hand, in the case i = m and j = n, how we

enter at node (0,0) is considered. O

In Figure A.20 we can see the example of Figure A.18 with the solution using Lemma 4 and
Theorem 5.

The extension of the Divide-and-Conquer procedure with CDTW using arbitrary weights is not
complicated. We only translate to the extended graph the specific cases in which N and VI cuts
are treated (A.3), the case i = j = 0 and the case i = m and j = n, for each of the cyclic shifts.

In Figure A.21, an example is depicted.

31

bo 1 Yo 1 N
% @ by 1 v2 1

0 2
//4/N b 3 v 3 []

.7 I

1 3 1 bo 1 Yo 1]
0 2 0 0 20
bo b1 by aw o1 ao zo w1 | mp

Figure A.20: (a) Optimal alignment between cyclic sequences A = [02] and B = [131], where 6(a;,b;) = |a; — b;]|
and w = (1,3,1). (b) Warping graph corresponding to (a) that is obtained using (A.1). The graph corresponds to
the cyclic minimization of both sequences. Although we begin at (0,0), line does not appear in this node to indicate
that there is a value 0 at the beginning, as (A.1) indicates. (¢) Warping graph corresponding to (a) that is obtained

using (A.3). The graph corresponds to the cyclic minimization of the sequence A.

Figure A.21: Extended warping graph for arbitrary weights. With the cyclic sequences A = [0011] and B = [1110],
where d(a;,b;) = |a; — b;| and w = (1,1,1). The optimal alignment for [A] and [B] is the path with minimum cost
starting from any colored node in the lower row and ending at a node containing the same color in the upper row

(all candidate paths are shown with thick lines).

32

470

475

480

Appendix B. Normalization

Following [26] and using DTW1 (see Appendix A), we can define the normalized CDTW
(NCDTW), of [A] and [B] for arbitrary weights, w, as:

. - WD)
— k —
NCDTW ,([A],[B]) = [min NDTW1,(c"(A),B) = jlél[g] min) (B.1)
Thus, problems are:
Problem N.
oo Wip) P
d" = irell[i‘l] min)’ W,L:P; L(p) >0, VpeP. (B.2)
Problem N can be solved by means of Problem N(\):
Problem N()).
d*(A\) = min min(W(p) — A\L(p)), W,L:P; L(p)>0, Vpe P. (B.3)

A€[A] peP

Using the Divide-and-Conquer procedure the computational time is O(tmnlog(m)), being ¢

the number of iterations.

Acknowledgments

The authors wish to thank S. Abbasi, F. Mokhtarian, and J. Kittler for making the SQUID
database publicly available and to I. Bartolini, P. Ciaccia, and M. Patella for providing their
labeled version of the SQUID database.

Work partially supported by the Spanish Government (TIN2010-18958 and Consolider Ingenio
2010 CSD2007-00018), the Generalitat Valenciana (Prometeo/2010/028), and Fundacié Caiza
Castello-Bancaiza (P11B2009-48).

[1] T. Sikora, The MPEG-7 visual standard for content description — an overview, IEEE Trans-
actions on Circuits and Systems for Video Technology 11 (6) (2001) 696-702.

[2] M. Bober, MPEG-7 visual shape descriptors, IEEE Transactions on Circuits and Systems for
Video Technology 11 (6) (2001) 716-719.

33

485

490

495

500

505

3]

[11]

[12]

T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, The MIT Press Cambridge,
MA, 1990.

R. Wagner, M. Fisher, The string-to-string correction problem, Journal of the ACM 21 (1)
(1974) 168-173.

D. Sankoff, J. Kruskal (Eds.), Time Warps, String Edits, and Macromolecules: the Theory
and Practice of Sequence Comparison, Addison-Wesley, Reading, MA, 1983.

E. Petrakis, A. Diplaros, E. Milios, Matching and retrieval of distorted and occluded shapes
using dynamic programming, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 24 (11) (2002) 1501-1516.
B. Horn, Robot vision, The MIT Press, 1986.
R. Jain, R. Kasturi, B. Schunck, Machine vision, Vol. 5, McGraw-Hill New York, 1995.

I. Bartolini, P. Ciaccia, M. Patella, WARP: Accurate retrieval of shapes using phase of Fourier
descriptors and time warping distance, IEEE Transactions on Pattern Analysis and Machine

Intelligence 27 (1) (2005) 142-147.

J. Crespo, P. Aguiar, Revisiting complex moments for 2d shape representation and image

normalization, IEEE Transactions on Image Processing 20 (10) (2011) 2896-2911.

S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using shape contexts,

IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (4) (2002) 509-522.

T. Adamek, N. E. O’Connor, A multiscale representation method for nonrigid shapes with
a single closed contour, IEEE Transactions on Circuits and Systems for Video Technology

14 (5) (2004) 742-753.

N. Alajlan, I. E. Rube, M. S. Kamel, G. Freeman, Shape retrieval using triangle-area repre-

sentation and dynamic space warping, Pattern Recognition 40 (7) (2007) 1911-1920.

H. Ling, D. W. Jacobs, Shape classification using the inner-distance, IEEE Transactions on

Pattern Analysis and Machine Intelligence 29 (2) (2007) 286-299.

34

510

515

520

525

530

[15]

[16]

[17]

R. Gopalan, P. Turaga, R. Chellappa, Articulation-invariant representation of non-planar

shapes, in: European Conference on Computer Vision, 2010, pp. 286-299.

J. Wang, X. Bai, X. You, W. Liu, L. Latecki, Shape matching and classification using height
functions, Pattern Recognition Letters 33 (2) (2012) 133-143.

X. Bai, X. Yang, L. Latecki, W. Liu, Z. Tu, Learning context-sensitive shape similarity by
graph transduction, IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (5)
(2010) 861-874.

X. Yang, S. Koknar-Tezel, L. Latecki, Locally constrained diffusion process on locally densified
distance spaces with applications to shape retrieval, in: IEEE Conference on Computer Vision

and Pattern Recognition, 2009, pp. 357-364.

P. Kontschieder, M. Donoser, H. Bischof, Beyond pairwise shape similarity analysis, in: Asian

Conference on Computer Vision, 2010, pp. 655-666.

M. Maes, On a cyclic string-to-string correction problem, Information Processing Letters

35 (2) (1990) 73-78.

E. Keogh, L. Wei, X. Xi, M. Vlachos, S. Lee, P. Protopapas, Supporting exact indexing of
arbitrarily rotated shapes and periodic time series under Euclidean and warping distance

measures, The VLDB Journal 18 (3) (2009) 611-630.

H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spoken word recogni-

tion, IEEE Transactions on Acoustics, Speech and Signal Processing 26 (1) (1978) 43-49.

C. Myers, L. Rabiner, A. Rosenberg, Performance tradeoffs in dynamic time warping algo-
rithms for isolated word recognition, IEEE Transactions on Acoustics, Speech and Signal

Processing 28 (6) (1980) 623-635.
L. Rabiner, B.-H. Juang, Fundamentals of Speech Recognition, Prentice-Hall, 1993.

A. Marzal, E. Vidal, Computation of normalized edit distance and applications, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 15 (9) (1993) 926-932.

35

535

540

545

550

555

[20]

[27]

28]

[29]

[30]

[37]

E. Vidal, A. Marzal, P. Aibar, Fast computation of normalized edit distances, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 17 (9) (1995) 899-902.

R. Klette, A. Rosenfeld, Digital geometry: geometric methods for digital picture analysis,
Morgan Kaufmann, 2004.

A. Folkers, H. Samet, Content-based image retrieval using Fourier descriptors on a logo

database, in: International Conference on Pattern Recognition (3), 2002, pp. 521-524.

A. Marzal, S. Barrachina, Speeding up the computation of the edit distance for cyclic strings,

in: International Conference on Pattern Recognition, 2000, pp. 483-519.

E. J. Keogh, C. A. Ratanamahatana, Exact indexing of dynamic time warping, Knowledge

and Information Systems 7 (3) (2005) 358-386.

L. Latecki, R. Lakamper, U. Eckhardt, Shape descriptors for non-rigid shapes with a single
closed contour, in: IEEE Conference on Computer Vision and Pattern Recognition, 2000, pp.

424-429.

D. Sharvit, J. Chan, H. Tek, B. B. Kimia, Symmetry-based indexing of image databases, in:
Workshop on Content-Based Access of Image and Video Libraries, 1998, pp. 56-62.

F. Mokhtarian, J. Kittler, S. Abbasi, Shape queries using image databases,
http://www.ee.surrey.ac.uk /Research/VSSP /imagedb/demo.html.

F. Mokhtarian, A. K. Mackworth, A theory of multiscale, curvature-based shape representation
for planar curves, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (8) (1992)
789-805.

N. Arica, F. T. Yarman-Vural, BAS: a perceptual shape descriptor based on the beam angle statistics,
Pattern Recognition Letters 24 (9-10) (2003) 1627-1639.

C. D. Manning, P. Raghavan, H. Schtze, Introduction to Information Retrieval, Cambridge University
Press, New York, NY, USA, 2008.

C. J. Rijsbergen, Information Retrieval, London: Butterworth, 1979.

36

