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Abstract

The problem of separation of style and content is an essential element of visual
perception, and is a fundamental mystery of perception. This problem appears ex-
tensively in different computer vision applications. The problem we address in
this paper is the separation of style and content when the content lies on a low
dimensional nonlinear manifold representing a dynamic object. We show that
such a setting appears in many human motion analysis problems. We introduce
a framework for learning parameterization of style and content in such settings.
Given a set of topologically equivalent manifolds, the Homeomorphic Manifold
Analysis (HMA) framework models the variation in their geometries in the space
of functions that maps between a topologically-equivalent common representation
and each of them. The framework is based on decomposing the style parameters
in the space of nonlinear functions that map between a unified embedded repre-
sentation of the content manifold and style-dependent visual observations. We
show the application of the framework in synthesis, recognition, and tracking of
certain human motions that follow this setting, such as gait and facial expressions.
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1. Introduction

The problem of separation of style and content is an essential element of visual
perception and is a fundamental mystery of perception [1, 2]. For example, we
are able to recognize faces and actions under wide variability in the visual stimuli.
While the role of manifold representations is still unclear in perception, it is clear
that images of the same object lie on a low-dimensional manifold in the visual
space defined by the retinal array. On the other hand, neurophysiologists have
found that neural population firing is typically a function of a small number of
variables, which implies that population activities also lie on low-dimensional
manifolds [1].

In this paper we consider the visual manifolds of biological motion. Despite
the high dimensionality of the configuration space, many human motions intrinsi-
cally lie on low-dimensional manifolds. This is true if we consider the kinematics
of the body, as well as the observed motion through image sequences. Let us con-
sider the observed motion. For example, the silhouette (occluding contour) of a
human walking or performing a gesture is an example of a dynamic shape, where
the shape deforms over time based on the action being performed. These defor-
mations are restricted by the physical body and the temporal constraints posed
by the action being performed. Given the spatial and the temporal constraints,
these silhouettes, as points in a high-dimensional visual input space, are expected
to lie on a low-dimensional manifold. Intuitively, the gait is a one-dimensional
manifold that is embedded in a high-dimensional visual space. This was also
shown in [3, 4]. Such a manifold can be twisted and even self-intersect in the
high-dimensional visual space. Similarly, the appearance of a face performing ex-
pressions is an example of a dynamic appearance that lies on a low-dimensional
manifold in the visual input space.

Although the intrinsic body configuration manifold might be very low in di-
mensionality, the resulting visual manifold (in terms of shape and/or appearance)
is challenging to model, given the various aspects that affect the appearance. Ex-
amples of such aspects include the body type (slim, big, tall etc.) of the person
performing the motion, clothing, viewpoint, and illumination. Such variability
makes the task of learning a visual manifold very challenging, because we are
dealing with data points that lie on multiple manifolds at the same time: body
configuration manifold, viewpoint manifold, body shape manifold, illumination
manifold, etc.

The main contribution of this is a novel computational framework for learning
a decomposable generative model that explicitly factorizes the intrinsic body con-
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Figure 1: Style and content factors. Content: gait motion or facial expression. Style:
different silhouette shapes or face appearance.

figuration (content) as a function of time from the appearance (style) factors. The
framework we present in this paper is based on decomposing the style parameters
in the space of nonlinear functions that maps between a unified representation of
the content manifold and style-dependent observations. Given a set of topologi-
cally equivalent manifolds, the Homeomorphic Manifold Analysis (HMA) frame-
work models the variation in their geometries in the space of functions that maps
between a topologically-equivalent common representation and each of them. The
common representation of the content manifold can be learned from the data or
can be enforced in a supervised way if the manifold topology is known. The
main assumption here is that the visual manifold is homeomorphic to the unified
content manifold representation, and that the mapping between that unified repre-
sentation and the visual space can be parameterized by different style factors. We
describe the motivations and contributions of the framework in more detail within
the context of the state-of-the-art in Section 2.

The learned models support tasks such as synthesis and body configuration
recovery, as well as the recovery of other aspects such as viewpoint, person pa-
rameters, etc. As direct and important applications of the introduced framework,
we consider the cases of gait and facial expressions. We show an application of the
framework to gait analysis where the model can generate walking silhouettes for
different people from different viewpoints. Given a single image or a sequence of
images, we can use the model to solve for the body configuration, viewpoint, and
person shape style parameters. We also show the application of the framework to
facial expressions as an example of a dynamic appearance. In this case, we learn a
generative model that generates different dynamic facial expressions for different



people. The model can successfully be used to recognize expressions performed
by different people who are not used in model training as well as identifying the
person performing the expression.

The paper organization is as follows, Section 2 discusses the relation between
the proposed framework and the state-of-the-art. Section 3 summarizes the frame-
work and its applications. Sections 4 describes different ways to obtain unified
content manifold representations in both unsupervised and supervised ways. Sec-
tion 5 describes the details for learning the factorized model. Section 6 describes
algorithms for solving for multiple factors. Section 7 shows experimental results
and examples of applying the model for dynamic shape and appearance manifolds,
for the analysis of gait and facial expressions.

2. Relation to State-of-the-Art

This section puts the contributions of the paper in the context of the state-of-
the-art in related areas.

2.1. Factorized Models: Linear, Bilinear, and Multi-linear Models

Linear models, such as PCA [5], have been widely used in appearance model-
ing to discover subspaces for appearance variations. For example, PCA has been
used extensively for face recognition, such as [6-9] and to model the appear-
ance and view manifolds for 3D object recognition, as in [10]. Such subspace
analysis can be further extended to decompose multiple orthogonal factors using
bilinear models and multilinear tensor analysis [11, 12]. The pioneering work
of Tenenbaum and Freeman [11] formulated the separation of style and content
using a bilinear model framework [13]. In that work, a bilinear model was used
to decompose face appearance into two factors: head pose and different people
as style and content interchangeably. They presented a computational framework
for model fitting using SVD. Bilinear models have been used earlier in other con-
texts [13, 14]. A bilinear model is a special case of a more general multilinear
model. In [12], multilinear tensor analysis was used to decompose face images
into orthogonal factors controlling the appearance of the face including geome-
try (people), expressions, head pose, and illumination using High Order Singular
Value Decomposition (HOSVD) [15]. Tensor representation of image data was
used in [16] for video compression, and in [17] for motion analysis and synthesis.
N-mode analysis of higher-order tensors was originally proposed and developed
in [13, 18, 19] and others. The applications of bilinear and multilinear models to



Figure 2: Twenty sample frames from a walking cycle from a side view. Each row represents
half a cycle. Notice the similarity between the two half cycles. The right part shows a plot of

the distance between the samples. The two dark lines parallel to the diagonal show the similarity
between the two half cycles.

decompose variations into orthogonal factors, as in [11, 12], are mainly for static
image ensembles.

The question we address in this paper is how to separate the style and content
on a manifold representing a dynamic object. Why don’t we just use a bilin-
ear model to decompose the style and content in our case, where certain body
poses can be denoted as content and different people as style? The answer is that
in the case of dynamic (e.g. articulated) objects, the resulting visual manifold
is nonlinear. This can be illustrated by considering the example walking cycle
in Fig. 2. In this case, the shape temporally undergoes deformations and self-
occlusion, which results a nonlinear manifold. The two shapes in the middle of
the two rows correspond to the farthest points in the walking cycle kinematically,
which are supposedly the farthest points on the manifold, in terms of the distance
along the manifold. In the Euclidean visual input space, these two points are very
close to each other, as can be noticed from the distance plot on the right of Fig. 2.
Because of such nonlinearity, PCA, bilinear, and multilinear models will not be
capable of discovering the underlying manifold and decomposing the orthogonal
factors. Linear models will not be able to interpolate intermediate poses and/or
intermediate styles.

The framework presented in this paper still utilizes bilinear and multilinear
analysis. However, we use such analysis in a different way. The content manifold
is explicitly represented using an embedded representation, which can be learned
from the data or enforced in a supervised way. Given such representation, the style
parameters are factorized in the space of nonlinear mapping functions between a
representation of the content manifold and the observations. The main advantage
of this approach is that, unlike bilinear and multilinear models [11, 12] that mainly
discretize the content space, the content in our case can be treated as a continuous
domain.



2.2. Manifold Representations

Embedding manifolds to low-dimensional spaces provides a way to explicitly
model such manifolds. Learning motion manifolds can be achieved through linear
subspace approximation (PCA), as in [20]. PCA has been widely used in appear-
ance modeling, to discover subspaces for appearance variations, and in modeling
view manifolds as in [6-8, 10]. Linear subspace analysis can achieve a linear
embedding of the motion manifold in a subspace. However, the dimensionality
of the subspace depends on the variations in the data, and not on the intrinsic
dimensionality of the manifold.

Nonlinear dimensionality reduction, such as isometric feature mapping (Isomap) [2],
Locally linear embedding (LLE) [21], Laplacian eigenmaps [22], Manifold Chart-
ing [23], Gaussian Process Latent Variable Models GPLVM [24], and others, can
achieve an embedding of a nonlinear manifold through changing the metric from
the original space to the embedding space, based on the local structure of the man-
ifold. Spectral methods in particular, such as [2, 21, 22], achieve this embeding
through constructing an affinity matrix between the data points, which reflects the
local manifold structure. Embedding is then obtained through solving an eigen-
value problem on such matrix. It was shown in [25, 26] that these approaches are
all instances of kernel-based learning, in particular kernel principle component
analysis KPCA[27]. Several approaches have been proposed to embed new data
points, denoted be out of sample embedding, e.g. [28].

Nonlinear dimensionality reduction methods are able to embed image ensem-
bles into low-dimensional spaces, where various orthogonal perceptual aspects
can be shown to correspond to certain directions or clusters in the embedding
space. In this sense, such methods present an alternative solution to the decom-
position problems. However, the application of such approaches is limited to
embedding of a single manifold, and it is not clear how to factorize orthogonal
factors in the embedding space. As we will show, when multiple manifolds exist
in the data (for example, corresponding to different people performing the same
activity), such methods tend to capture the intrinsic structure of each manifold
separately, without generalizing to capture the inter-manifold aspects. This is
because, typically, intra-manifold distances are much smaller than inter-manifold
distances. The framework we present in this paper can use nonlinear dimensional-
ity reduction to achieve an embedding of each individual manifold. However, our
framework extends such approaches to separate the inter-manifold style parame-
ters. We achieve a factorization of the style parameters in the space of nonlinear
mapping functions between the embedded mean manifold, or a other unified rep-
resentation, and the visual inputs. Another fundamental issue that we address in
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this paper is the nonlinearity between a perceptual space and its corresponding
high-dimensional observations. Since the manifold structure is not always recov-
erable from the observation, we introduce the notion of “Conceptual” manifold
representation, where we use our knowledge about the manifold topology. The
observations are assumed to lie on a nonlinearly deformed version of the concep-
tual representation of the manifold. Manifold learning in this case is learning such
deformation. Unlike traditional unsupervised manifold learning approaches, the
conceptual manifold representation is a supervised paradigm.

2.3. Manifold-based Models of Human Motion

Researchers have been trying to exploit the manifold structure as a constraint
in tasks such as tracking and activity recognition in an implicit way. Learning data
manifolds is typically performed in the visual input space, or through intermediate
representations. For example, exemplar-based approaches, such as [29], implic-
itly model nonlinear manifolds through points (exemplars) along the manifold.
Such exemplars are represented in the visual input space. Hidden Markov Models
(HMM) provide a probabilistic piecewise-linear approximation of observations.
In this sense, the hidden states can follow the manifold and, therefore, HMMs
model the observation manifolds in implicit ways, e.g. as in [30] and in [31].

In the last few years, there has been increasing interest in exploiting this fact
through using intermediate activity-based manifold representations [4, 31-38].
For example in [4], the visual manifold of human silhouette deformations, due
to motion, has been learned explicitly and used for recovering the 3D body con-
figuration from silhouettes in a closed-form. In that work, knowing the motion
provided a strong prior to constrain the mapping from the shape space to the 3D
body configuration space. In [33] learning the manifold was done on the body
configuration space to provide constraints for tracking. In both [4] and [33] learn-
ing an embedded manifold representation was decoupled from learning the dy-
namics, and from learning a regression function between the embedding space
and the input space. In [38], coupled learning of the representation and dynamics
was achieved using Gaussian Process Dynamic Model (GPDM) [39], in which a
nonlinear embedded representation and a nonlinear observation model were fitted
through an optimization process. GPDM is a very flexible model since both the
state dynamics and the observation model are nonlinear. The problem of simulta-
neously estimating a latent-state representation coupled with a nonlinear dynamic
model was earlier addressed in [40]. Similarly, in [37], models that coupled learn-
ing the dynamics with embedding were introduced. It was also shown in [36] that
learning motion manifolds provides ways to establish correspondences between
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subjects observed from different cameras. In contrast to learning motion mani-
folds, as in [4, 33, 35], learning the shape manifold, as in [41], provides a way to
constrain the recovery of body pose from visual input.

Manifold-based representations of the motion can be learned from kinematic
data, or from visual data, e.g., silhouettes. The former is suitable for generative
model-based approaches and provides better dynamic-modeling for tracking, e.g.,
[33, 35]. Learning motion manifolds from visual data, as in [4, 36, 42], provides
useful representations for recovery and tracking of body configurations from vi-
sual input without the need for explicit body models. The approach introduced
in [43] learns a representation for both the visual manifold and the kinematic
manifold. Learning a representation of the visual motion manifold can be used
in a generative manner as in [4] or as a way to constrain the solution space for
discriminative approaches as in [41].

3. Factorized Generative Models

This section summarizes the framework and shows some of its applications in
the context of human motion. Our objective is to learn a representation for the
shape and/or the appearance of dynamic objects that supports tasks such as syn-
thesis, pose estimation, viewpoint estimation, input reconstruction, and tracking.
Such a representation will serve as a factorized generative model for dynamic
appearance, where we can think of the image appearance (similar argument for
shape) of a dynamic object as instances driven from the model.

To illustrate the point, we start with a single factor model, and then move to
the general case. Given a set of image sequences, similar to the ones in Fig. 1,
representing a motion (such as gesture, facial expression, or activity) where each
sequence is performed by one subject, we aim at learning a generative model that
explicitly factorizes the following two factors:

1. Content (body pose): A representation of the intrinsic body configuration
through the motion as a function of time invariant to the person, i.e., the
content characterizes the motion or the activity.

2. Style (people) : A time-invariant person variable that characterizes the per-
son appearance or shape.

Fig. 1 shows an example of such data, where different people perform the same
activity The content in these cases is the gait motion or the smile motion, while
the style is a person’s shape or face appearance respectively. On the other hand,
given an observation of a certain person at a certain body pose, and given the
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Figure 3: Multiple views and multiple people generative model for gait. a) examples of training
data from different views. b) examples of training data for multiple people from the side view.

learned generative model, we aim at solveing for both the body configuration
representation (content) and the person shape parameter (style).

In general, the appearance of a dynamic object is a function of the intrin-
sic body configuration, as well as other factors, such as the object appearance, the
viewpoint, illumination, etc. In this paper, we refer to the intrinsic body configura-
tion as the content and all other factors as style factors. The combined appearance
manifold, given all these factors, is very challenging to model. Therefore, the so-
lution we use here utilizes the fact that the underline motion manifold, invariant
to all other factors, is low in dimensionality. Therefore, the motion manifold can
be explicitly modeled, while all the other factors are approximated with subspace
models. For example, for the data in Fig. 1, we do not know the dimensionality
of the shape manifold of all people, while we know that gait is a one-dimensional
manifold motion.

We describe the model for the general case of factorizing multiple style factors
given a content manifold. Let y, € R? be the appearance of the object at time
instance t, represented as a point in a d-dimensional space. This instance of the
appearance is driven from a generative model in the form

-, b, a), (1)

where the function y(-) is a mapping function that maps from a representation of
body configuration, x, (content), at time ¢ into the image space given variables
b,,---,b, each representing a style factor. Such factors are conceptually orthog-
onal, independent of the body configuration, and can be time variant or invariant.
a represents the model parameters.

Y = y(xtablab27"



The data of a particular person’s motion at a particular style setting lie on a
manifold in the visual space. Let us denote this manifold by 9°. Here, a style
setting is a discrete combination of style values. Suppose that we can learn a uni-
fied, style-invariant, embedded representation of the motion manifold (content)
M in a low-dimensional Euclidean embedding space, R¢, where such manifold is
topologically equivalent, i.e., homeomorphic, to each date manifold O°. There-
fore, each data manifold P* is a deformed version of M. We can learn a style-
dependent nonlinear mapping functions from M to each input manifold D*. Let
us denote such mappings by the functions y,(-) : R* — R? that maps from embed-
ding space of M into the input space (observation) with dimensionality d for each
style setting s. Each of these mapping functions represents a homeomorphism
between M and D*3.

In this model, the relation between body configuration and the input is non-
linear. Therefore, the use of nonlinear mapping is essential since the embedding
of the configuration manifold is nonlinearly related to the input. Such functions
admit a representation in the form of linear combination of basis function [44] and
can be written as

Y =7s(x) =C" - ¢(x1) 2)
where C° is a d X N,, linear mapping and ¥(-) : R* — R™ is a nonlinear kernel
map from a representation of the body configuration to a kernel induced space
with dimensionality N,. In the mapping in Eq. 2 the style variability is encoded in
the coefficient matrix C*. Therefore, the mapping provides a parameterization of
all the data manifolds, °, in the space of the matrices C*, where each manifold
is a point in that space. Given a set of style-dependent functions in the form of
Eq. 2, the style variables can be factorized in the linear mapping coeflicient space
using multilinear analysis of the coefficient tensor. Therefore, the general form
for the mapping function y(-) that we use is

v(x,b1,by, - bsa) = AX by XX, b, - Y(x;) (3)

where each b; € R™ is a vector representing a parameterization of the ith style
factor. A is a core tensor of order r+2 and of dimensionality d Xn; X - -Xn, X N.
The product operator X; is mode-i tensor product as defined in [15].

3A function f : X — Y between two topological spaces is called a homeomorphism if it is
a bijection, continuous, and its inverse is continuous. In our case the existence of the inverse is
assumed but not required for computation, i.e., we do not need the inverse for recovering the body
configuration or the style parameters. We mainly care about the mapping in a generative manner
from M to D°.
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Since the model is generative (from embedding to visual input) and a nonlinear
mapping is used, any representation can be used to model the content manifold as
long as it is homeomorphic to the actual manifold. Of course the visual manifold
can be degenerate in some cases or it can be self intersecting, because of the
projection from 3D to 2D. In such cases the homeomorphic assumption does not
hold, however the mapping from M to D still exists. In such cases the recovery
of body configuration and style variables might be ambiguous from a single frame.
However, this ambiguity can be overcome if we considered the temporal aspect of
the motion.

The model in Eq. 3 can be seen as a hybrid model that uses a mix of nonlinear
and multilinear factors. In the model in Eq. 3, the relation between body config-
uration and the input is nonlinear where other factors are approximated linearly
through high-order tensor analysis. The use of nonlinear mapping is essential
since the embedding of the configuration manifold is nonlinearly related to the
input. The main motivation behind the hybrid model is: The motion itself lies on
a low-dimensional manifold, which can be explicitly modeled, while it might not
be possible to model the other factors explicitly using nonlinear manifolds. For
example, the shapes of different people, although might lie on a manifold; how-
ever, we do not know the dimensionality of that manifold and/or we might not
have enough data to model it. The best choice is to represent it as a subspace.
Therefore, the model in Eq. 3 gives a tool that combines manifold-based models,
where manifolds are explicitly embedded, with subspace models for style factors
if no better models are available. The framework also allows modeling any style
factor on a manifold in its corresponding subspace, since the data can lie naturally
on a manifold in that subspace. This feature of the model was further developed
in [43], the view manifold of a motion was modeled in the subspace defined by
the factorization above.

To achieve the decomposition in Eq 3, we need to learn a unified style-invariant
embedded representation of the motion manifold. Several approaches can be used
to achieve such a representation, as will be described in Section 4. Nonlinear
dimensionality reduction can used to obtain manifold embeddings in an unsuper-
vised manner, and then a mean manifold can be computed as a unified represen-
tation through nonlinear warping of the embedded manifold points. Alternatively,
supervised conceptual representations can be used as well if the topology of the
manifold is known.

For learning the models in this paper, since the goal is to model the manifold
of the intrinsic motion due to body configuration changes, we assume there is no
large global transformation between images in the training data. All the images
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are roughly aligned. The learned models can then be used with actual image data
with global transformations, where such transformations can be estimated [45].

In the following, we show some examples of the model in the context of human
motion analysis with different roles of the style factors. In the following sections
we describe the details for fitting such models and estimation of the parameters.
Section 4 describes different ways to obtain a unified nonlinear embedding of
the motion manifold for style analysis. Sections 5 describes learning the model.
Section 6 describes using the model for solving for multiple factors.

3.1. Example 1: A Single Style Factor Model

Here we give an example of the model with a single style factor. Fig. 1 shows
an example of such data, where different people are performing the same activity.
The content in this case is the gait motion or the smile motion, while the style
is the person shape or face appearance, respectively. The style is a time-invariant
variable in this case. The generative model in Eq. 3 reduces to a model in the form

Y, =y, b%a) = Axo b X3 y(x)) “4)

where the image, y,, at time ¢ is a function of body configuration x{ (content) at
time ¢ and style variable b’ that is time invariant parameterization of the different
motion manifolds. In this case the content is a continuous domain while style is
represented by the discrete style classes that exist in the training data. The model
parameter is the a third order core tensor, A, with dimensionality d X J X N,,
where J is the dimensionality of the style vector b*, which is the subspace of the
different people shapes factored out in the space of the style dependent functions
in Eq. 2.

3.2. Example 2: Multifactor Gait Model

As an example of a two-style-factor model, we consider the gait case, with
multiple views and multiple people (as shown in Fig. 3). The data set has three
components: personalized shape style, viewpoint, and the body configuration.
A generative model for silhouettes of different people walking, observed from
different viewpoints will be in the form

Y, =Y(x,v,850) = AXv, X s XY(x,), (5)

where v, is a parameterization of the view, which is independent of the body con-
figuration but can change over time, and also independent of the person’s shape.
§ 1s a time-invariant parameterization of the shape style of the person performing
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the walk, independent of the body configuration and the viewpoint. The body
configuration x, evolves along a representation of the gait manifold. In such case
the tensor A is a 4™ order tensor with dimensionality d X n, X n, X N,, where n, is
the dimensionality of the view subspace and #; is the dimensionality of the shape
style subspace.

3.3. Example 3: Multifactor Facial Expressions

Another example is modeling the manifolds of facial expression. Take dy-
namic facial expressions, such as sad, surprised, happy, etc., where each expres-
sion starts from a neutral pose and evolves to a peak expression; each of these
motions evolves along a one-dimensional manifold. However, the manifold will
be different for each person and for each expression. Therefore, we can use a gen-
erative model to generate different people faces and different expressions using a
model in the form

Y. =vy(x,e fra) = AxeX fXxXiy(x,) (6)

where e is an expression vector (joy, sadness, etc.) that is time-invariant and
person-invariant, i.e., it only describes the expression type. Similarly, f is a vector
describing a person’s facial appearance, which is time-invariant and expression-
invariant. The motion content is described by x, which denotes the motion phase
of the expression, i.e., starts from neutral and evolves to a peak expression de-
pending on the expression vector, e.

4. Content Manifold Embedding

In order to model the manifold of the body configuration though the motion ac-
cording to our framework, an embedded representation of that manifold is needed.
There are several ways such an embedding can be achieved. The discussion in this
section highlights the requirements for that embedding. There are three ways that
can be used to achieve such an embedding:

1. Nonlinear Dimensionality Reduction from Visual Data: Such techniques
assume the data itself, in the observation space, lies on a low-dimensional
manifold that is recoverable from the visual data. This might not be always
true with the existence of many factors affecting the visual data. This also
depends on the representation of the input. This approach, its applicability,
and limitations are discussed in Section 4.1.
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2. Supervised Conceptual Embedding: In many cases the topology of the body
configuration manifold is known. While the actual manifold might not be
recoverable from the data itself, our conceptual knowledge about the motion
manifold allows us to model the data as lying on a distorted or deformed
manifold, whose original topology is known. This can be achieved using a
conceptual representation of the manifold and using nonlinear mapping to
model the deformation of that manifold to fit the data. This approach, its
applicability, and limitations are discussed in Section 4.2.

3. Embedding from Auxiliary Data: In many cases, both motion capture data
as well as visual data are available. The motion capture data (kinematics)
can be used to achieve an embedding of the configuration manifold invariant
of the aspects affecting the visual observations (viewpoint, style, etc.). The
visual data is assumed to be lying on deformed manifolds that are homeo-
morphic to the configuration manifold. We do not discuss this approach in
this paper, we refer the reader to [43] for details.

4.1. Unsupervised Data-driven Manifold Embedding
4.1.1. Nonlinear Dimensionality Reduction

There are a variety of nonlinear dimensionality reduction techniques that can
be used to achieve an embedding of the configuration manifold; e.g., LLE [21],
Isomap [2], GPLVM [24], etc. All these approaches are unsupervised, where the
goal is to achieve a low-dimensional embedded representation of the data, which is
presumed to lie on low-dimensional manifolds. Such approaches have been used
to achieve embedded representations for tracking and pose estimation, as in [4,
33, 35, 41], etc. These approaches provide a latent variable representation that is
nonlinearly related to the data. An important point that we need to emphasize is
that the choice of the embedding technique is not fundamental to the approach we
introduce here. We mainly assume that an embedding of the data, which preserves
local structure of the manifold, can be achieved in a Euclidean space.

Given style-dependent sequences of the same motion under different style set-
ting, an embedding of each sequence can be achieved using nonlinear dimension-
ality reduction. Since each sequence corresponds to a single style setting (e.g. a
certain view and a certain person) the sequence is expected to only show the in-
trinsic motion manifold. For example, for the case of gait, it was shown in [4, 46]
that an embedded representation can be achieved, from visual data, in a three-
dimensional Euclidian space using LLE and Isomap. Fig. 4-a shows an example
of embedding a walking cycle with 300 frames from a side view. We use a three-
dimensional embedding since this is the least-dimensional embedding that can
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Figure 4: Embedding the Gait Manifold. Left: Embedded gait manifold for a side view of the
walker. Sample frames from a walking cycle along the manifold with the frame numbers shown to
indicate the order. Ten walking cycles are shown (300 frames). Right: Embedded gait manifolds
from five different viewpoints of the walker.

discriminate the different body poses through the cycle. As can be noticed, the
embedding can discriminate the two half cycles despite the similarity (e.g., no-
tice that frames 25 and 39 are embedded as the farthest points on the manifold
despite the visual similarity between these two instances). One point that need
to be emphasized is that we do not use the temporal relation to achieve such an
embedding, since the goal is to obtain an embedding that preserves the geometry
of the manifold. Temporal relation can be used to determine the neighborhood of
each shape but that can lead to erroneous, artificial embedding. This is because it
enforces temporally-local neighborhood structure over actual geometric structure
(e.g across different cycles). Temporal information can be used to learn dynamics
as was shown in [37].

4.1.2. Embedding Multiple Manifolds

Given sequences for different style settings, e.g., different people, different
viewpoints, we need to obtain a unified embedding for the underlying body con-
figuration manifold. Nonlinear dimensionality reduction cannot directly obtain a
useful embedding with multiple style settings existing in the data (because such
data itself will not exhibit the manifold structure that we expect to capture). Non-
linear dimensionality reduction techniques cannot directly embed multiple peo-
ple’s manifolds simultaneously in a way that yield a useful representation. Al-
though such approaches try to capture the manifold geometry, typically, the intra-
manifold distances are much smaller compared to the inter-manifold distances.
An example is shown in Fig. 5-a where LLE is used to embed three people’s man-
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Figure 5: a) Embedding obtained by LLE for three people data with two different K values. Inter-
manifold distance dominates the embedding. b) Separate embedding of three manifolds for three
people data. ¢) Unified manifold embedding X*

ifolds where all the inputs are spatially registered. As a result, the embedding
shows separate manifolds (e.g., in the left figure one manifold is degenerate to
a point because the embedding is dominated by the manifold with largest intra-
manifold distance.) Even if we force LLE to include corresponding points on dif-
ferent manifolds to each point’s neighbors, this results in superficial embedding
that does not capture the manifold geometry. This is an instance of the prob-
lem know as manifold alignment. Another fundamental problem is that different
people will have different manifolds because their appearance (shape) is different,
which imposes different twists to the manifolds and, therefore, different geometry.
This can be noticed in Fig. 11-b.

To achieve a unified embedding of a certain activity manifold from multi-
ple people data, each person’s manifold is embedded separately using LLE. Each
manifold is represented as a parametric curve. Given the embedded manifold X*
for person k, a cubic spline m*(¢) is fitted to the manifold as a function of time,
ie., mi(t) : R —» R°, where t = 0 — 1 is a time variable. The manifold for person
k is sampled at N uniform time instances m#*(t;), where i = 1 - - - N. For the case of
periodic motion, such as gait, each cycle on the manifold is time mapped from 0
to 1 given a corresponding origin point on the manifold, where the cycles can be
computed from the geodesic distances to the origin.

Given multiple manifolds, a mean manifold Z(z;) is learned by warping m*(t;)
using non-rigid transformation using an approach similar to [47]. We solve for
a mean manifold Z(#;) and a set of regularized non-rigid transformations f(.; ;)
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Figure 6: Data-driven view and body configuration manifolds:(a) Examples of sample data with
view and configuration variations. Rows: body pose at 0, %T, %T, %T, ‘5—‘T, where T is a
walking cycle period. Cols:view 0, 30, 60, --- ,330. (b) Intrinsic configuration manifold
when view angle is 0, 60, 120, 180, and240. (c) View manifold for five different fixed body
pose. (d) () Combined view and body configuration manifold by LLE and Isomap.

where the objective is to minimize the energy function

E(f) = > > I12(t) = fm@); a)l + AILSIP (7)
k i

where A is a regularization parameter and ||Lf][> is a smoothness term. In par-
ticular thin-plate spline (TPS) is used for the nonrigid transformation. Given the
transformation parameters «;, the whole data sets are warped to obtain a unified
embedding Xk for the k£ manifolds, where Xk = f(Xk; ay),k = 1---K. Fig. 5-b,c
shows an example of three different manifolds and their warping into a unified
manifold embedding. In general, we found that this warping solution is suitable
for a single factor model. In multiple factor models the deformations can be quite
large among the multiple manifolds representing the different variant factors. In
such case, a conceptual embedding is preferred. Alternative solution for embed-
ding multiple manifolds by modifying spectral nonlinear dimensionality reduction
techniques to capture both the inter- and intra- manifold geometry was proposed
in [48].

4.2. Supervised Conceptual Manifold Embedding

One essential limitation of using nonlinear dimensionality reduction to achieve
an embedding of the visual manifold is that the data itself might not lie on a man-
ifold in the visual space, as we think it should, due to different reasons includ-
ing noise, image representations, existence of other sources of variability that are
not counted for, etc. In contrast to unsupervised learning of the content mani-
fold representation described above, if the topology of the manifold is known, a
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conceptual topologically-equivalent representation of the manifold can be directly
used. By topologically-equivalent, we mean equivalent to our notion of the un-
derlying motion manifold. The actual data is a deformed version of that manifold,
where such deformation is captured through the nonlinear mapping in Eq. 2 in a
generative way. Here, we explain our motivation behind this approach.

The general model in Eq. 3 requires a unified representation of the content
manifold. However, since the visual manifolds twist very differently given each
factor (different people or different views, etc.), it is not possible to achieve a uni-
fied configuration manifold representation independent of other factors. This is
shown in Fig. 6, which shows examples of embedding gait manifold of different
views and embedding of both the gait and view manifold. These limitations mo-
tivate the use of a conceptual unified representation of the configuration manifold
that is invariant to all other factors. This unified representation would allow the
model in Eq. 3 to generalize to as many factors as desired.

For example for the gait case in Eq. 5, the body configuration x, evolves along
a representation of the manifold, which is supposed to be homeomorphic to the
actual gait manifold. The question is, what conceptual representation of the man-
ifold can we use? Since the gait is a one-dimensional closed manifold embedded
in the input space, we can think of it as a unit circle twisted and stretched in the
space based on the shape and the appearance of the person under consideration,
or based on the viewpoint. In general, all closed 1D manifolds are topologically
homeomorphic to a unit circle. So, we can use a unit circle as a unified represen-
tation of all gait cycles for all people for all views. Given that all the manifolds
under consideration are homeomorphic to the unit circle, the actual data is used
to learn nonlinear warping between the conceptual representation and the actual
data manifold.

One important thing to notice is since the mapping in Eq. 2 is from the repre-
sentation to the data, it will always be a function. Therefore, even if the manifold
in the observation space might have a different topology, e.g. self-intersecting or
collapsing, this will not be a problem in learning the manifold deformation. Such
conceptual representation of the manifold was successfully used to model image
translations and rotations in [49]. Other topologies can also be used to model
more complex manifolds [50].
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5. Generalized Style factorization

5.1. Style Setting

To fit the model in Eq. 3 we need image sequences at each combination of
style factors, all representing the same motion (content). The input sequences do
not have to be of the same length. Each style factor is represented by a set of
discrete samples in the training data, i.e., a set of discrete views, discrete shape
styles, discrete expressions, etc. We denote the set of discrete samples for the
ith style factor by B; and the number of these samples by N; = |B;|. A certain
combination of style factors is denoted by an r-tuple s € B; X --- X B,. We call
such a tuple “a style setting.” Overall, the training data needed to fit the model is
of size Ny X --- X N, sequences.

5.2. Learning Style Dependent Mappings

Let the sets of input image sequences be Y* = {yf e RY i=1,---,n,} where
s is the style setting index(as defined above), n; is the length of the sequence,
and d is the input dimensionality. Let the corresponding points on the unified
embedding space be X* = {x] eR?, i=1,---,n}, where e is the dimensionality
of the embedding space.

We consider the case for sth sequence. We will drop the index s when it is
implied from the context for simplicity. Given a style-specific sequence Y* and its
embedding coordinates X*, we learn a style-dependent nonlinear mapping func-
tion from the embedding space into the input space, i.e., a function y(-) : R® —
R? that maps from embedding space into the input space (observation). We can
learn a nonlinear mapping function y,(-) that satisfies y} = y,(x),i = 1 ---n, and
minimizes a regularized risk criteria. From the representer theorem [44], such a
function admits a representation of the form of linear combination of basis func-
tions around arbitrary points z; € R, j = 1--- N on the manifold. In particular we
use a semi-parametric form for the function y(-). Therefore, for the /-th dimension
of the input (I-th pixel), the function y/(-) is an RBF interpolant from R¢ into R in
the form

N
Yx) = plex) + D whedlx - z)), 8)

i=1
where ¢(-) is a real-valued basic function, w; are real coeflicients, |- | is the second
norm on R (the embedding space). The choice of the centers is arbitrary (not

necessarily data points). Therefore, This is a form of Generalized Radial Basis
Function (GRBF) [51].

19



Typical choices for the basis (kernel) function include thin-plate spline (¢(«) =
u*log(u)), the multiquadric (¢(u) = Vu? + a?), Gaussian (¢(u) = e~ bihar-
monic (¢(«) = u) and triharmonic (¢(u) = u?) splines*. p' is a linear polynomial
with coefficients ¢, i.e., p'(x) = [1 x7]-c".

The whole mapping can be written in a matrix form as

Ys(x) = C° - Y (x), ©)

where C* is a d X (N+e+1) dimensional matrix with the I-th row [w! ---wh ¢'].
The vector y/(x) represents a nonlinear kernel map from from the embedded repre-
sentation of the body configuration (content manifold) to a kernel induced space,
i.e., from R¢ to R™. The kernel map () is defined by the points z; as

Y(x) =[x —z1) - - p(lx —zy) T x7]". (10)

In this case the dimensionality of induced kernel space is N, = N + e + 1. The
matrix C* represents the coefficients for d different nonlinear mappings for style
setting s, each from a low-dimension embedding space into real numbers.

To insure orthogonality and to make the problem well posed, the following
side condition constraints are imposed: ¥, w;p i(x;)=0,j=1,--- ,m where p;
are the linear basis of p. Therefore the solution for C* can be obtained by directly
solving the linear systems

A+ P Y
X Cs‘r — Ky , 11
( P/ O+ Dx(er1) )s ( Oce+1)xa ) an

where A, P,, P, are defined for the s-th style setting as: A is n; X N matrix with
Ajj=¢(x —zj), i=1---n,j=1---N, P,isan; X (e+ 1) matrix with i-th
row [1 x]7], P;isa N X (e + 1) matrix with i-th row [1 z[]. ¥ is (n, X d) matrix
containing the input images for style setting s, i.e., ¥ = [y] -- -y, ]". Solution for
C’ is guaranteed under certain conditions on the basic functions used.

5.3. Style Factorization

Given the learned nonlinear mapping coefficients C* for all style settings s €
B; X --- X B,, the style parameters can be factorized by fitting a multilinear

4The polynomial part is needed for positive semi-definite kernels to span the null space in
the corresponding RKHS. The polynomial part is essential regularizer with the choice of specific
basis functions such as Thin-plate spline kernel. A Gaussian kernel does not need a polynomial
part. [52]
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model [12, 15] to the coeflicients’ tensor. Higher-order tensor analysis decom-
poses multiple orthogonal factors, as an extension of principal component anal-
ysis (PCA) (one factor), and bilinear model (two orthogonal factors). Singular
value decomposition (SVD) can be used for PCA analysis and iterative SVD with
vector transpose for bilinear analysis [11]. Higher-order tensor analysis can be
achieved by higher-order singular value decomposition (HOSVD) with matrix un-
folding, which is a generalization of SVD [15]°

Each of the coefficient matrices C*, with dimensionality d X N, can be rep-
resented as a coeflicient vector ¢® by column stacking, i.e., ¢*isan N. = d - N,
dimensional vector. All the coefficient vectors can then be arranged in an order
r + 1 coefficient tensor C with dimensionality N, X Ny X --- X N,. The coefficient
tensor is then factorized using HOSVD as

C:j)xlBl XszX"'XrBrXH.]F,

where B; is the mode-i basis of C, which represents the orthogonal basis for the
space for the i-th style factor. F represents the basis for the mapping coefficient
space. The dimensionality of each of the B; matrices is N;xN;. The dimensionality
of the matrix F is N.xN.,. D is a core tensor, with dimensionality Ny X- - XN, XN,,
which governs the interactions (the correlation) among the different mode basis
matrices.

Similar to PCA, it is desired to reduce the dimensionality for each of the or-
thogonal spaces to retain a subspace representation. This can be achieved by
applying higher-order orthogonal iteration for dimensionality reduction [53]. The
reduced subspace representation is

C=DDx B x---%X,B. %X,/ F, (12)

where the reduced dimensionality for D is n; X - -- X n, X n., for B; is N; X n;, and
for F is N, X n., where ny, - - -, n,, and n, are the number of basis retained for each
factor respectively. Since the basis for the mapping coeflicients, F is not used in
the analysis, we can combine it with the core tensor using tensor multiplication to
obtain coefficient eigenmodes, which is a new core tensor formed by Z = DX, | F

SMatrix unfolding is an operation to reshape high order tensor array into matrix form. Given
an r-order tensor A with dimensions N; X N, X --- X N,, the mode-n matrix unfolding, denoted
by Ay = unfolding(A, n), is flattening A into a matrix whose column vectors are the mode-n
vectors [15]. Therefore, the dimension of the unfolded matrix A is N, X (N} X Ny X -+ N,_1 X
Nn+l X Nr)
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with dimensionality n; X - -- X n, X N.. Therefore, Eq. 12 can be rewritten as
C=2Zx1B; x---X,B,. (13)

The columns of the matrices By, - - , B, represent orthogonal basis for each
style factor’s subspace respectively. Any style setting s can be represented by
a set of style vectors b; € R™,--- b, € R™ for each of the style factors. The
corresponding coefficient matrix C can then be generated by unstacking the vector
¢ obtained by the tensor product

c=2Z X by xX---X.b,.

Therefore, we can generate any specific instant of the motion by specifying the
body configuration parameter x, through the kernel map defined in Eq. 10. The
whole model for generating image y; can be expressed as

y; = unstacking(Z X, by X - X, b,) - - y(x,)

This can be expressed abstractly also by arranging the tensor Z into a order r + 2
tensor A with dimensionality d X n; X- - -Xn, X N,. The results in the factorization
in the form of Eq. 3, i.e.,

y;:ﬂxlblx"'xrbr"'lp(xl)'

6. Solving for Multiple Factors

Given a multi-factor model fitted as described in the previous section, and
given a new image or a sequence of images, it is desired to efficiently solve for
each of the style factors, as well as the body configuration. We discriminate here
between two cases: 1) The input is a whole motion cycle, 2) The input is a single
image. For the first case, since we have a whole motion manifold, we can obtain
a closed-form analytical solution for each of the factors by aligning the input
sequence manifold to the model manifold representation. For the second case, we
introduce an iterative deterministic annealing solution. Alternatively, sampling
methods such as MCMC and Particle Filter can be used for inferring the body
configuration and style parameters from a single image, or through a temporal
sequence of frames, e.g. [43, 50].

22



6.1. Solving for Style Factors Given a Whole Sequence

Given a sequence of images, representing a whole motion cycle, we can solve
for the different style factors iteratively. First the sequence is embedded and
aligned to the embedded content manifold. Then, the mapping coefficient matrix
C is learned from the aligned embedding to the input. Given such coefficients, we
need to find the optimal by, - - -, b, factors, which can generate such coefficients,
1.e., minimizes the error

Ey,---.b)=llc=Z X1 by X3+ X, b, (14)

where c is the column stacking of C. If all the style vectors are known except the
ith factor’s vector, then we can obtain a closed-form solution for b;. This can be
achieved by evaluating the product

G=2ZXib X X1 bi_y Xjs1 biyy X -+ X, b,

to obtain a tensor G. Solution for b; can be obtained by solving the system ¢ =
G %, b; for b;, which can be written as a typical linear system by unfolding G as
a matrix. Therefore, estimate of b; can be obtained by

bi = (Gy)'c (15)

where G, is the matrix obtained by mode-2 unfolding of G and ¥ denotes the
pseudo-inverse using SVD. Similarly, we can analytically solve for all other style
factors. We start with a mean style estimate for each of the style factors, since the
style vectors are not known at the beginning. Iterative estimation of each of the
style factors using Eq. 15 would lead to a local minima for the error in Eq. 14.

6.2. Solving for Body Configuration and Style Factors from a Single Image

In this case the input is a single image y € R?, and it is required to find the
body configuration, (i.e., the corresponding embedding coordinates x € R¢ on the
manifold) and the style factors by, - - - , b,. These parameters should minimize the
reconstruction error defined as

E(x, bl, T abr) = ”y -A X1 bl X Xy br Xrt1 'l’(x)”z (16)

Instead of the second norm, we can also use a robust error metric and, in both
cases, we end up with a nonlinear optimization problem.

One challenge is that not every point in a style subspace is a valid style vector.
For example, if we consider a shape stye factor, we do not have enough data to
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model the manifold of all human shapes in this space. Training data, typically, is
just a very sparse sampling of this manifold. To overcome this, we assume, for all
style factors, that the optimal style can be written as a convex linear combination
of the style classes in the training data. This assumption is necessary to constrain
the solution space. Better constraints can be achieved with sufficient training data.
For example, we can model the viewpoint manifold in the view factor subspace
given sufficient sampled viewpoints.

For the i-th style factor, let the mean vectors of the style classes in the training
data denoted be l_)f,k = 1,---,K;, where K; is the number of classes and k is
the class index. Such classes can be obtained by clustering the style vectors for
each style factor in its subspace. Given such classes, we need to solve for linear
regression weights a;; such that

If all the style factors are known, then Eq. 16 reduces to a one-dimensional
search problem for the body configuration x on the embedded manifold represen-
tation that minimizes the error. On the other hand, if the body configuration and
all style factors are known except the i-th factor, we can obtain the conditional
class probabilities p(kly, x, s,5,), which is proportional to observation likelihood
p(y | x, 85, k). Here, we use the notation s;, to denote the style factors exclud-
ing the i-th factor. This likelihood can be estimated assuming a Gaussian density

centered around A X; by X - - - X; l_)f‘< X -+ X, b, X y(x) with covariance X, i.e.,
PO | X, 88, k) & N(A Xy by X -+ X; B X -+ X, by X (%), Zyp).

Given view class probabilities, the weights are set to @y = p(k | y, x,s/5,). This
setting favors an iterative procedure for solving for x, by, - - - , b,. However, wrong
estimation of any of the factors would lead to wrong estimation of the others,
then leading to a local minima. For example, in the gait model in section 3.2,
a wrong estimation of the view factor would lead to a totally wrong estimate of
body configuration, and a wrong estimate for shape style. To avoid this we use
a deterministic annealing-like procedure, where at the beginning the weights for
all the style factors are forced to be close to uniform to avoid hard decisions.
The weights gradually become discriminative thereafter. To achieve this, we use
variable class variances, which are uniform to all classes and are defined as X; =
T oI for the i-th factor. The temperature parameter T starts with a large value and
gradually reduced in each step and a new body configuration estimate is computed.
We summarize the solution framework in Fig. 7.
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Figure 7: Iterative Estimation of Style Factors

Input: image y, style classes’ means I;f, for all style factors i = 1, cdots, r, core tensor
A
Initialization: e initialize T
e initialize aj to uniform weights, i.e., o = 1/K;, Vi, k

e Compute initial b; = Z/I:;] a/,-ka-{, Vi

Iterate: e Compute coefficient C = A X by X --- X b,

o Estimate body configuration: 1-D search for x that minimizes E(x) = ||y —
Cy)ll
e For style factori = 1,-- -, r, estimate a new style factor vector b;
- Vk=1,---K; Compute p(y|x, s/p,, k)
— Vk Update the weights @ = p(kly, x, s/,)
— Estimate new factor vector as b; = Zf;l a/l-kbi.‘
e Reduce T

7. Applications and Results

In this section we illustrate several examples of the proposed model in dif-
ferent settings. In parallel to section 3, we describe results for the three examples
introduced earlier for 1) a single style factor model for gait, 2) a multifactor model
for gait, 3) a multifactor model for facial expressions.

For all the experiments reported here on gait, we used CMU Mobo gait data
set [54], which contains walking people from multiple synchronized views. The
CMU Mobo gait data set contains 25 people (about 8 to 11 walking cycles) cap-
tured from six different viewpoints. Each subject walks on a treadmill to capture
gait sequences with consistent views using fixed cameras. The shape is repre-
sented using implicit function representations as mentioned earlier. All silhou-
ettes used for training are extracted using background subtraction. We also eval-
uated the performance of different variants of the model using the HumanEva
dataset [55], which is a benchmark for quantitative evaluation of pose estima-
tion algorithms. For the experiments reported on facial expressions, we used the
CMU-Cohen-Kanada AU facial expression dataset [56].
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7.1. Representation:

One essential challenge when modeling visual data manifolds is the issue of
image representation. While in principal the data is expected to lie on a low-
dimensional manifold, the actual image representation might not exhibit that. The
manifold might not be recoverable from the data, if the representation does not
exhibit smooth transitions between images that are supposed to be neighboring
points on the manifold. In this paper we are dealing with two types of image rep-
resentations: shapes and appearances. Here, we describe the used representations.

Shape Representation: We represent each shape instance as an implicit func-
tion y(x) at each pixel x such that y(x) = 0 on the contour, y(x) > 0 inside the
contour, and y(x) < 0 outside the contour. We use a signed-distance function for
this purpose. Such a representation imposes smoothness on the distance between
shapes. Given such a representation, an input shape is a point in R, where d is
the dimensionality of the input space. Implicit function representation is typically
used in level-set methods.

Appearance Representation: Appearance is represented directly in a vector
form of raw pixel intensities, i.e., each instance of appearance is represented as
point in RY where d is the dimensionality of the input space.

7.2. A Single Factor Model for Gait

In this section we describe several experiments for the single style-factor model,
as described in section 3.1, and as illustrated in Fig. 1, for gait where the content
is the motion and the style is the person shape.

7.2.1. Experiment I - Style Dependent Shape Interpolation

The point of this experiment is to show that the model in Eq. 4 can be used to
interpolate new shapes at intermediate body configurations with different people
shape style, even with a very small number of training samples. We fitted the
model in Eq. 4 using three people’s silhouettes during a half walking cycle to
separate the style (person’s shape) from the content (body pose). The input is
three sequences containing only 10, 11, and 9 frames respectively. The input
silhouettes are shown in Fig. 8-a. Note that the three sequences are not of equal
length and the body poses are not necessarily in correspondence. Since the input
size in this case is too small to be able to discover the manifold geometry, we
embed the data points on a unit circle as a topologically homeomorphic manifold
(as an approximation of the manifold of half a cycle) where each sequence is
equally spaced along the circle. Embedding is shown in Fig. 8-b. We selected 8
RBF centers at 8 quadrics on the circle. The model is then fitted to the data in
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the form of Eq. 4 using TPS kernels. Fig. 8-d shows the RBF coefficients for the
three people (one in each row), where the last three columns are the polynomial
coeflicients. Fig. 8-c shows the style coefficients for the three people and Fig. 8-e
shows the content bases.

Given the fitted model we can show some interesting results. First, we can
interpolate intermediate silhouettes for each of the three people’s styles. This is
shown in Fig. 9, where 16 intermediate poses were rendered. Notice that the input
contained only 9 to 11 data points for each person. A closer look at the rendered
silhouettes shows that model can really interpolate intermediate silhouettes that
were never seen as inputs (e.g., person 1 column 4 and person 3 columns 5, 15).
We can also interpolate half walking cycles in new styles. This is shown in Fig. 9
where intermediate styles intermediate contents were used.
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Figure 8: Learning shape style and motion content for a gait example

7.2.2. Experiment 2- Style-Preserving Pose-Preserving Reconstruction

We can use the learned model to reconstruct noisy and corrupted input in-
stances in a way that preserves both the body pose and the person style. Given an
input silhouette, we solve for both the embedding coordinate and the style, and
then use the model to reconstruct a corrected silhouette given the recovered pose
and person parameters. Fig. 9 shows such reconstruction, where we used 48 noisy
input silhouettes from CMU Mobogait database (16 for each person shown at each
row). The noise in the silhouettes is typical fragmentation and holes resulting from
background subtraction. The resulting people’s probabilities are shown in Fig. 9-c
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Figure 9: Left: Interpolated walks at different people shape styles. Right: Reconstruction example.
a) input noisy silhouettes. b) pose-preserving style-preserving reconstruction. c¢) estimated style
probabilities.

and the resulting reconstructions are shown in Fig. 9-b in the same order. Notice
that the reconstruction preserves both the correct body pose as well as the correct
person shape. Only two errors can be spotted, which are for inputs number 33, 34
(last row, columns 2,3) where the probability for person 2 was higher than person
3, and therefore the reconstruction preserved the second person’s style. Fig. 10
shows another reconstruction example, where the learned model was used to re-
construct corrupted inputs for person 3. The reconstruction preserves the person
style, as well as the body pose.

7.2.3. Experiment 3 Shape and Gait Interpolation

In this experiment we fit the single style factor model in Eq. 4 with a larger data
set. We used five sequences for five different people, each containing about 300
frames, which are noisy (extracted using background subtraction). The learned
manifolds are shown in Fig. 11-a, which shows a different manifold for each per-
son. The learned unified manifold is also shown in Fig. 11-b. Fig. 11-c shows in-
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Figure 10: Pose and style preserving reconstruction. Right: style probabilities for each input

terpolated walking sequences for the five people generated by the learned model.
The figure also shows the learned style vectors. We evaluated style classifications
using 40 frames for each person and the results are shown in the figure with correct
classification rate of 92%. We also used the learned model to interpolate walks
in new styles. Fig. 12 shows interpolation between person 1 (big man) and per-
son 4 (slim woman). We used linear interpolation in the style (shape) space and
rendered the resulting silhouettes at different phases of the gait cycle. The interpo-
lations successfully exhibit walking figures at intermediate shape styles between
person 1 and 4.

7.3. A Multifactor Model for Gait

In this section we show experiments on fitting a multifactor model for gait, as
described earlier in Section 3.2, and as illustrated in Fig. 3. The model decom-
poses the viewpoint and the shape as two style factors, while the gait motion is
the content.

7.3.1. Evaluation on CMU MoboGait Dataset

We used five people, five cycles each, from four different views, from the
CMU MoboGait dataset [54], i.e., the total number of cycles for training is 100 =
5 people x 5 cycles X 4 views. The number of frames in each cycle is different
within the same person’s cycles, as well as across different people. Fig. 3 shows
examples of the sequences with different views (only half cycles are shown in the
figure). The silhouette data used is noisy, as typically the result from background
subtraction.

We learned the model in Eq. 5 using the collected 100 sequences. Images are
normalized to 60 x 100 (width X height) i.e., d = 6000. In this experiment, a unit
circle is used as a conceptual model for the gait manifold invariant to shape and
view.

Each cycle is considered to be a style by itself, i.e., there are 25 styles and 4
views. 18 equidistant points on the unit circle were used to obtain the nonlinear
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Figure 11: a- the learned manifolds for each of the five subjects. b- the learned unified content
manifold. c- interpolated walks at each person style. d- Shape style vectors. e- shape style
classification results - 40 frames used each row corresponds to one of the five subjects.

mapping defined in Eq. 9. After coefficient decomposition and dimensionality
reduction, as in Eq. 12, the dimensions for core tensor D is 5 X 4 X 120. The
dimensions for the basis matrices are 25 X 5, 4 x 4, and (18 x 6000) x 120 for
shape, view, and coeflicient basis respectively. Fig. 13-b shows an example of a
unit circle embedding of three cycles after alignment of cycles. Fig. 13-a shows
the obtained style subspace, where each of the 25 points corresponding to one
of the 25 cycles used. An important result to notice, is that the style vectors are
clustered in the subspace such that each person’s style vectors (corresponding to
different cycles of the same person) are clustered together ?which indicates that
the model preserves the similarity in the shape style between different cycles of the
same person. Fig. 13-c shows the mean style vector for each of the five clusters.
Fig. 13-d shows the four view vectors.

Gait Pose, Style, and View Estimation: In this experiment, we used the learned
model to evaluate the recovery of body configuration, view, and person shape
style. We used two new test cycles for each of the five people used in training
from the four views, i.e., 40 cycles with a total of 1344 frames in all the test se-
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quences. If we use a whole cycle for recovery of view and person style parameter
as described in 6.1, we obtain 100% correct view classification. For style classi-
fication, we get 36 out of 40 correct classification using nearest style mean and
40 out of 40 using nearest neighbor classifier. If we use individual frames for
recovery, as described in Section 6.2, we get 7 frame errors amongst the 1344
test frames for body configuration and style estimation, i.e., 99.5% accuracy with
100% correct view estimation. In our experiment, a body configuration is consid-
ered an error if the angle between the correct and estimated embedding is more
than 7r/8, which is about 2 to 4 frame difference in the original sequence.

Fig. 13-Right shows examples of using the model to recover the pose, view-
point, and shape style. The figure shows samples of one full cycle and the recov-
ered body configuration at each frame. Notice that despite the similarities between
the first half and the second half of a cycle, the model exploits the subtle differ-
ences to recover the correct pose. The recovery of 3D joint angles is achieved by
learning a mapping from the manifold embedding and 3D joint angle from motion
captured data using GRBF in a way similar to Eq. 8. Fig. 14-a,b show the recov-
ered style weights (class probabilities) and view weights respectively for each
frame of the cycle which shows correct person and view classification. Fig. 14-c
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Figure 13: Left: Learned style and view vector. a) Style subspace: each person cycles have the
same label. b) Unit circle embedding for three cycles. c) Mean style vectors for each person’s
cluster. d) Viewpoint vectors. Right. Example pose recovery. From top to bottom: input shapes,
implicit function, and recovered 3D pose.

visualizes the progress of the error, style weights, and view weights, through the
iterations used to obtain the results for frame 5. As can be noticed, the weights
start uniformly and then smoothly converge into the correct style and view as the
error is reduced and the correct body configuration is recovered.

Generalization to New Subjects: In this experiment we used the learned model
to evaluate the recovery of body configuration and view, using test data for new
subjects. We used 8 people sequences, 2 cycles each, from 4 views, where none
of them were used in the training. Overall, there are 2476 frames in the test se-
quences. The recovery of the parameters was done on a single frame basis, as
described in section 6.2. We obtained 111 errors in the recovery of the body
configuration, i.e., body configuration accuracy is 95.52%. Error in body config-
uration is measured in the embedding space using the same way described earlier.
For view estimation we get 7 frame errors, i.e., view estimation accuracy 99.72%.
Fig. 15 shows examples of recovery of the 3D pose and viewpoint.

7.3.2. Evaluation on HumanEva Dataset
We evaluated the multifactor gait model on the HumanEva dataset [55], which
is a commonly used benchmark for evaluating pose estimation algorithms. The
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Figure 14: Estimated weights during a cycle a) Style weights. b) View weights. c) Iterative style
and view estimations for each frame. Left: Error. Center: style weights. Right: View weights

dataset consists of two subsets: HumanEva-I, which contains sequences of four
subjects performing six actions; and HumanEva-II, which contains sequences of
two subjects performing combination of actions. The dataset contains videos from
four to seven cameras, as well as motion-captured ground truth data. HumanEva-I
contains data for training, validation, and testing; while Human-Eva-II contains
two sequences for testing only. HumanEva-II video data is hardware synchro-
nized, therefore approaches that use multiple cameras typically prefer to test on
HumanEva-II. For details we refer the reader to [55].

As mentioned in Section 4, there are different ways to achieve the content
embedding. We evaluated two variants of the model with two different content
embedding: 1) using supervised conceptual embedding on a unit circle, 2) using
embedding from kinematic data (auxiliary data). We used synthetic walking se-
quence captured from 12 viewpoints to train the models. The factorized viewpoint
variable, in Eq 5, is used fit a one-dimensional spline curve representing the view-
point manifold in the factorized view subspace. For evaluation of the 3D recon-
struction accuracy, we learn a nonlinear mapping from the content embedding to
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Figure 15: Examples of pose recovery and view classification for three people.

the 3D motion-captured joint locations. One cycle of the training motion-captured
data in HumanEva-I dataset is used to learn that mapping for each subject.

For testing, we used background subtraction to segment the subject’s silhou-
ettes. For continuous tracking, a particle filter was used to solve the inference
problem. Once the configuration variable x; is recovered, the mapping from the
content embedding to the 3D joint location space is used to recover the 3D pose.
The mean-squared error between the estimated joint locations (relative to a body
centric coordinate system) and the ground truth is used to evaluate the perfor-
mance.

We used subjects S1 and S2 from HumanEva-I subset for the evaluation. We
used the same number of particles, same initialization, and the same dynamic
model on the content manifold for all the compared realizations of the model. We
tested using sequences from a single camera (camera 2). Table 1 illustrates the re-
sults for the two realizations of the model. The results of the two realizations are
comparable, with the unit circle embedding giving slightly better estimation. This
is expected since the unit-circle embedding provides a more stronger prior than the
kinematic embedding for the case of walking motion. Figure 16 shows sample of
the input silhouettes, the reconstructed shapes (after estimating the pose and view-
point), and the estimated 3D pose; using the unit-circle embedding. Figure 17-a
shows the errors in estimation per-frame for subject S1 for each realization. Fig-
ure 17-b shows an example of the estimated joint angle location (X-axis of the
lower left leg distal) compared to the ground truth.

Table 2 shows the results of several pose estimation approaches on HumanEva
dataset, in comparison to the proposed framework. We mainly selected the ap-
proaches that reported results on walking sequences of the HumanEva datasets.
It is very hard to compare reported results in HumanEva dataset since different
authors use different subsets, different sequences, different parts of the sequences,
different number of cameras, and even different error metrics in their evaluation.
Since the metric used is the average error per frame, we report the average error
for each approach over the different used subsets, and we also report the subsets
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Figure 16: Sample from walking sequence S| HUMANEVA-I: (a) Input silhouettes. (b) Synthe-

sized silhouettes after viewpoint and body configuration estimation. (c) Reconstructed 3D pos-
tures.

used. As can be seen from the table, the proposed approach gives the best pose es-
timation results from a single camera. The error in pose estimation is even better
than most approaches that use multiple cameras.

7.4. A Multifactor model for Facial Expression Analysis

7.4.1. Facial Expression Synthesis and Recognition

We learned and evaluated the model in Eq 6 using different datasets. Here we
report results using the Cohn-Kanade AU coded facial expression database [56].
We used eight subjects with all six basic emotions (anger, disgust, fear, joy, sad-
ness, surprise), that is 48 expression sequences with varying number of frames per
sequence (between 11 and 33) . Each sequence represents an expression starting
from neutral to expression peak. We used a unit circle as the motion manifold

Table 1: Average mean squared errors the 3D body joint position estimation (relative to a body-
centered coordinate system) for HumanEva I dataset from a single camera

Subject || Start | End | Duration | Cycles | Kinematic | Conceptual Unit Circle
Embedding Embedding
S1 76 534 459 6 28.37 mm 23.84 mm
S2 21 436 416 5 26.68 mm 26.81 mm
Average 407.6 5.5 27.53 mm 25.33 mm
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Figure 17: Results from HumanEva I-S1 (a) Joint location error in each frame in mm. (b) Details
of lower left leg distal reconstruction(X axis).

representation®. Sequences were spatially aligned based on eye and nose template
alignment. Eight equidistant centers were used in learning GRBF with thin-plate
spline basis. We used the full dimensions to represent each style (8) and expres-
sion (6). Fig. 18 shows representation of expression vectors and personal style
vectors (facial appearance) after learning the model. It is interesting to notice that
the anger, fear, disgust, and sadness expression vectors are close to each other in
the expression space, while the surprise and smile are further away. Fig 20 shows
the use of the learned model to generate faces of different people (along the rows)
with different expressions (along the columns).

Sequence-based expression recognition: The performance of person indepen-
dent facial expression recognition is tested by leave-one-out cross-validation. For

®The sequences were embedded to half a unit circle and the reverse of the sequences were
embedded to the other half of the circle.
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Table 2: Comparison to stat-of-the-art approaches using HumanEva dataset

Approach \ Number of Cameras | Average Error (mm) \ Sequences used
baseline [55] 1 520.5¢ I1-S2, 11-S4
Xuetal. [57] 1 148.67 " I-S1, 1-S2, I-S3

Andriluka et al [58] 1 104 7% II-S2
Brubaker et al [59] 1 70.75 "% 1I-S2, 11-S4
Elgammal et al. [50] 1 31.36" I-S1, I-S2 I-S3
HMA- Kinematic 1 27.53" I-S1, I-S2
HMA- Unit Circle 1 2533 " I-S1, I-S2
baseline [55] 2 135.5¢ II-S2, 11-S4
baseline [55] 3 69.5¢ II-S2, 11-S4
baseline [55] 4 68.0 ¢ II-S2, 11-S4
Gall et al. [60] 4 3475 " 11-S2, 11-S4 *
Raskin et al. [61] 4 7544 I-S1
Corazza et al. [62] 4 75.5 4m 11-S2, 11-S4
Cheng et al [63] 4 1557 I1-S2, 11-S4 *

¢ Absolute joint locations are used in measuring the error. " Relative joint locations,
w.r.t. to a body centered coordinate system, are used. I Average of two results from
two different cameras. ™ First 150 frames were used. * Results for walking only are
considered.

this purpose we learned the model using 42 sequences of seven subjects, and tested
on the six sequences of the eighth subject. After solving for the expression and
facial appearance factors using the procedure described in Sec 6.1, the estimated
expression vector is used for classification using a nearest neighbor classifier. Ta-
ble 3 shows the confusion matrix for the 48 test sequences.

Frame-based expression recognition: Using the learned generative model as de-
scribed above, we can estimate person face and expression parameters from each
single frame using the deterministic annealing procedure described in Sec. 6.2.
We used 16 additional subjects (not used for training) from the same dataset with
five expressions each. The expressions for each subject varies. Fig. 19 shows
the expression weight values @’s of every frame in two different sequences. The
weights become more discriminative as the frames get closer to the peak of the
expressions. The expression with the maximum weight is used as the classifica-
tion result. Table 4 shows recognition results using the estimated weights at the
last frame of each sequence.
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Figure 18: Facial expression analysis for Cohn-Kanade Dataset for 8 subjects with 6 expressions
and their 3D space plotting

Table 3: Confusion matrix for Sequence-based facial expression recognition.
Emotion Joy Surprise | Sadness | Anger | Disgust Fear
Joy 25%(2) 0 0 25%(2) | 25%(2) 25%(2)
Surprise | 12.5%(1) | 62.5%(5) | 12.5%(1) 0 0 12.5%(1)
Sadness 0 0 37.5%3) | 25%(2) | 12.5%(1) | 25%(2)
Anger | 12.5%(1) 0 37.5%(3) | 50%(4) 0 0
Disgust | 12.5%(1) | 12.5%(1) | 12.5%(1) | 25%(2) | 12.5%(1) | 25%(2)
Fear 0 0 0 50%(4) 0 50%(4)

7.5. Facial Expression Synthesis

The generative model can be used to render facial animations by controlling
the different variables (motion phase, expression variable, face appearance vari-
able). Convex linear combination between learned facial appearance styles and
different facial expressions can be used to interpolate between the faces and ex-
pressions. Although linear interpolation is used in the space of each variable, the
resulting animation will show nonlinear facial deformations because of the non-
linear manifold mapping. Fig. 21 shows different examples of facial synthesis,
including transition between expressions during a motion cycle, transition be-
tween faces during an expression, and transition between faces and expressions
simultaneously (see caption for details).
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Figure 19: Estimated expression weights using frame-based estimation.

Table 4: Confusion matrix for frame-based recognition: classification only at last frame (peak)

Emotion Joy Surprise Sadness Anger Disgust Fear
Joy 93.3%(14) 0 0 0 0 6.7%(1)
Surprise 0 100%(16) 0 0 0 0
Sadness 0 7.1%(1) | 28.6%(4) | 7.1%(1) | 35.7%(5) | 21.4%(3)
Anger 9.1%(1) 0 18.2%(2) | 27.3%(3) | 45.4% (5) 0
Disgust 9.1%(1) 0 9.1%(1) | 18.2%(2) | 63.6%(7) 0
Fear 24.9%(3) 0 8.3%(1) 0 8.3%(1) | 58.3%(7)

8. Conclusions and Discussion

We introduced a framework for separating style and content on manifolds rep-
resenting dynamic objects. The framework is based on factorizing style variables
in the space of nonlinear functions that maps between a unified nonlinear em-
bedding of the content manifold and style-dependent observations in the visual
input space. We introduced three different methodologies to obtain a unified con-
tent manifold embedding: 1) through unsupervised nonlinear dimensionality of
visual data and manifold warping, 2) through supervised conceptual embedded
representation of the manifold; 3) through nonlinear dimensionality reduction of
auxiliary data (e.g. motion-captured data) that is invariant to the visual variability.
As mention in [21], an interesting and important question is how to learn a para-
metric mapping between the observation and nonlinear embedding spaces. We
addressed this question in this paper. The proposed framework is not tied to a
specific embedding approach. Any nonlinear dimensionality reduction approach
can be used to obtain manifold embeddings, which can be then used to learn the
model.

The proposed framework was shown to be able to separate content and mul-
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Figure 20: Factorized Facial Expression Model: using the learned model to generate faces of
different people (along the rows) with different expressions (along the columns). Only four ex-
pressions are shown (Happy, Surprise, Sadness, Disgust). Moving along the unit-circle manifold
represent the motion phase of all expressions, from neutral to peak to neutral. Two phases are
shown, neutral and peak

tiple style factors for the gait and facial expression manifolds. We showed three
applications of the framework: 1) a single factor model for gait or individual
facial expressions, 2) a multifactor model for gait, 3) a multifactor model for fa-
cial expressions. For all the cases, experiments showed the applicability of the
model, and very good results for synthesis and parameter recovery. We achieved
the state-of-the-art results for posture estimation for walking motion, evaluated on
the HumanEva [55] benchmark dataset from a single camera.

One of the features of the proposed framework is that the separation of style
is within a generative model. The use of a generative model is tied to the use
of a manifold embedding, since the mapping from the manifold representation
to the input space will be well-defined. This is in contrast to a discriminative
mapping from the visual input to an embedded manifold representation, which
is not necessarily a function. Since the framework is generative, it is suitable
for the Bayesian tracking framework and it provides separate low-dimensional
representations for each of the modeled factors. Moreover, a dynamic model for
body configuration can be defined on the manifold representation. We investigated
the use of the model with Bayesian tracking in [43, 45, 50].

We introduced an optimization framework to solve for the various factors, such
as body configuration, view, and shape style. We showed that we can solve for
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Figure 21: Facial expression synthesis: First row: Transition between expressions: a) from neutral
to 50-50% smile-surprise to 100% surprise (at peak). b) From peak with100% surprise to 50-50
surprise-anger to neutral. Second row (c,d) : Transition between faces during smile expressions.
Third row: simultaneous transition of facial expression and person faces.

all these factors given a single input image or a whole motion cycle. Therefore,
the framework provides a way to initialize a tracker by inferring the body config-
uration, viewpoint, and body shape style from a single or a sequence of images.
Since the model is generative, various sampling techniques, such as MCMC and
Particle Filters, can be also used for inferring the different variables. We showed
results using different inference approaches.

The framework presented in this paper was applied to one-dimensional motion
manifolds such as gait and facial expressions. One-dimensional manifolds can be
explicitly modeled in a straightforward way. We envision that a complex motion
can always be segmented into short motions that are restricted to one-dimensional
manifolds. However, there is no theoretical restriction that prevents the framework
from dealing with more complicated manifolds. In [43] we used the framework to
model more complex actions, such as ballet motions, aerobic dance, etc.

In this paper, we primarily modeled the motion explicitly as a manifold, while
all appearance variability are modeled using multilinear subspace analysis. A style
factor can also be modeled as a manifold in its factorized subspace, if dense sam-
ples are available. In the experiment with the HumanEva dataset, the viewpoint
manifold was parameterized as a configuration-invariant manifold in the subspace
resulting from the factorization. This way we model both the configuration and
viewpoint manifolds explicitly.

Modeling data lying on a combination of manifolds can also be achieved us-
ing the proposed framework if the combined manifold topology is known. The
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idea of using a supervised conceptual model for complex manifolds was further
developed in [50], to model both the body configuration and viewpoint manifolds
simultaneously for gait motion using a torus manifold.

The framework presented in this paper assumes that the inputs are represented
in a Euclidean space. We mainly used shapes and appearances represented as
vectors. It is very interesting and challenging to carry this framework to other in-
put representations such as sparse features, e.g., SIFT [64] features. The problem
in this case is how to represent such sparse features in a Euclidian space. The
framework presented here is orthogonal to such a representation issue. In [65] we
introduced an approach for learning image manifolds from sparse local features
that takes into consideration both the feature appearance and their spatial arrange-
ment. Such an approach can be used in conjunction with the proposed framework
to learn a generative model for sparse features.
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