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Abstract

Robust high-dimensional data processing has witnessed an exciting develop-
ment in recent years. Theoretical results have shown that it is possible using
convex programming to optimize data fit to a low-rank component plus a
sparse outlier component. This problem is also known as Robust PCA, and
it has found application in many areas of computer vision. In image and
video processing and face recognition, the opportunity to process massive
image databases is emerging as people upload photo and video data online
in unprecedented volumes. However, data quality and consistency is not
controlled in any way, and the massiveness of the data poses a serious com-
putational challenge. In this paper we present t-GRASTA, or “Transformed
GRASTA (Grassmannian Robust Adaptive Subspace Tracking Algorithm)”.
t-GRASTA iteratively performs incremental gradient descent constrained to
the Grassmann manifold of subspaces in order to simultaneously estimate
three components of a decomposition of a collection of images: a low-rank
subspace, a sparse part of occlusions and foreground objects, and a transfor-
mation such as rotation or translation of the image. We show that t-GRASTA
is 4x faster than state-of-the-art algorithms, has half the memory require-
ment, and can achieve alignment for face images as well as jittered camera
surveillance images.
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1. INTRODUCTION

With the explosion of image and video capture, both for surveillance and
personal enjoyment, and the ease of putting these data online, we are seeing
photo databases grow at unprecedented rates. On record we know that in
July 2010, Facebook had 100 million photo uploads per day [1] and Insta-
gram had a database of 400 million photos as of the end of 2011, with 60
uploads per second [2]; since then both of these databases have certainly
grown immensely. In 2010, there were an estimated minimum 10,000 surveil-
lance cameras in the city of Chicago and in 2002 an estimated 500,000 in
London [3, [4].

These enormous collections pose both an opportunity and a challenge for
image processing and face recognition: The opportunity is that with so much
data, it should be possible to assist users in tagging photos, searching the
image database, and detecting unusual activity or anomalies. The challenge
is that the data are not controlled in any way so as to ensure data quality and
consistency across photos, and the massiveness of the data poses a serious
computational challenge.

In video surveillance, many recently proposed algorithms model the fore-
ground and background separation problem as one of “Robust PCA”— de-
composing the scene as the sum of a low-rank matrix of background, which
represents the global appearance and illumination of the scene, and a sparse
matrix of moving foreground objects [5] 6] [7, 8, ©]. These popular algorithms
and models work very well for a stationary camera. However, in the case of
camera jitter, the background is no longer low-rank, and this is problematic
for Robust PCA methods [10, 11, 12]. Robustly and efficiently detecting
moving objects from an unstable camera is a challenging problem, since we
need to accurately estimate both the background and the transformation of
each frame. Fig. [1] shows that for a video sequence generated by a simu-
lated unstable camera, GRASTA [13| 6] (Grassmannian Robust Adaptive
Subspace Tracking Algorithm) fails to do the separation, but the approach
we propose here, t-GRASTA, can successfully separate the background and
moving objects despite camera jitter.

Further recent work has extended the Robust PCA model to that of
the “Transformed Low-Rank + Sparse” model for face images with occlu-



Figure 1: Video background and foreground separation by t-GRASTA despite camera
jitter. 1% row: misaligned video frames by simulating camera jitters; 2" row: images
aligned by t-GRASTA; 3"¢ row: background recovered by t-GRASTA:; 4" row: foreground
separated by t-GRASTA; 5" row: background recovered by GRASTA; 6! row: foreground
separated by GRASTA.

sions that have come under transformations such as translations and rota-
tions [14], 15, 16, 17]. Without the transformations, this can be posed as
a convex optimization problem and therefore convex programming methods
can be used to tackle such a problem. In RASL [I5] (Robust Alignment by
Sparse and Low-Rank decomposition), the authors posed the problem with
transformations as well, and though it is no longer convex it can be linearized
in each iteration and proven to reach a local minimum.

Though the convex programming methods used in [I5] are polynomial
in the size of the problem, that complexity can still be too demanding for
very large databases of images. We propose Transformed GRASTA, or t-
GRASTA for short, to tackle this optimization with an incremental or online
optimization technique. The benefit of this approach is three-fold: First,
it will improve speeds of image alignment both in batch mode or in online
mode, as we show in Section Second, the memory requirement is small,
which makes alignment for very large databases realistic, since t-GRASTA
only needs to maintain low-rank subspaces throughout the alignment process.
Finally, the proposed online version of t-GRASTA allows for alignment and
occlusion removal on images as they are uploaded to the database, which is
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especially useful in video processing scenarios.

1.1. Robust Image Alignment

The problem of robust image alignment arises regularly in real data, as
large illumination variations and gross pixel corruptions or partial occlusions
often occur, such as sunglasses or a scarf for a human subject. The clas-
sic batch image alignment approaches, such as congealing [I8| [19] or least
squares congealing algorithms [20, 21] cannot simultaneously handle such
severe conditions, causing the alignment task to fail.

With the breakthrough of convex relaxation theory applied to decompos-
ing matrices into a sum of low-rank and sparse matrices [22} [5], the recently
proposed algorithm “Robust Alignment by Sparse and Low-rank decompo-
sition,” or RASL [15], poses the robust image alignment problem as a trans-
formed version of Robust PCA. The transformed batch of images can be
decomposed as the sum of a low-rank matrix of recovered aligned images
and a sparse matrix of errors. RASL seeks the optimal domain transfor-
mations while trying to minimize the rank of the matrix of the vectorized
and stacked aligned images and while keeping the gross errors sparse. While
the rank minimization and ¢° minimization can be relaxed to their convex
surrogates— minimize the corresponding nuclear norm |||, and ¢! norm ||||;—
the relaxed problem is still highly non-linear due to the complicated do-
main transformation.

min |All« + A|E|1 st. DoT=A+E (1)

Here, D € R™¥ represents the data (n pixels per each of N images),
A € R™V is the low-rank component, £ € R™¥ is the sparse additive
component, and 7 are the transformations. RASL proposes to tackle this
difficult optimization problem by iteratively locally linearizing the non-linear
image transformation Do (1 4+ A7)~ Do+ > 1" | Ji/Anel, where J; is the
Jacobian of image ¢ with respect to transformation ¢; then in each iteration
the linearized problem is convex. The authors have shown that RASL works
perfectly well for batch aligning the linearly correlated images despite large
illumination variations and occlusions.

In order to improve the scalability of robust image alignment for massive
image datasets, [23] proposes an efficient ALM-based (Augmented Lagrange
Multiplier-based) iterative convex optimization algorithm ORIA (Online Ro-
bust Image Alignment) for online alignment of the input images. Though the
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proposed approach can scale to large image datasets, it requires the subspace
of the aligned images as a prior, and for this it uses RASL to train the initial
aligned subspace. Once the input images cannot be well aligned by the cur-
rent subspace, the authors use an heuristic method to update the basis. In
contrast, with t-GRASTA we include the subspace in the cost function, and
update the subspace using a gradient geodesic step on the Grassmannian, as
in |6, 24]. We discuss this in more detail in the next section.

1.2. Online Robust Subspace Learning

Subspace learning has been an area important to signal processing for a
few decades. There are many applications in which one must track signal and
noise subspaces, from computer vision to communications and radar, and a
survey of the related work can be found in [25], 26].

The GROUSE algorithm, or “Grassmannian Rank-One Update Subspace
Estimation,” is an online subspace estimation algorithm that can track chang-
ing subspaces in the presence of Gaussian noise and missing entries [24].
GROUSE was developed as an online variant of low-rank matrix completion
algorithms. It uses incremental gradient methods that have been receiving
extensive attention in the optimization community [27]. However, GROUSE
is not robust to gross outliers, and the follow-up algorithm GRASTA [13] 0],
can estimate a changing low-rank subspace as well as identify and subtract
outliers. Still problematic is that, as we showed in Fig. [I] even GRASTA
cannot handle camera jitter. Our algorithm includes the estimation of trans-
formations in order to align frames first before separating foreground and
background.

2. ROBUST IMAGE ALIGNMENT VIA ITERATIVE ONLINE
SUBSPACE LEARNING

2.1. Model

2.1.1. Batch mode

In order to robustly align the set of linearly correlated images despite
sparse outliers, we consider the following matrix factorization model
where the low-rank matrix U has orthonormal columns that span the low-
dimensional subspace of the well-aligned images.



Jmin - [IE], (2)

s.t. Dor=UW4+E
Ueg(dn)

We have replaced the variable A with the product of two smaller matrices
UW, and the orthonormal columns of U € R™*¢ span the low-rank subspace
of the images. The set of all subspaces of R” of fixed dimension d is called the
Grassmannian, which is a compact Riemannian manifold and is denoted by
G(d,n). In this optimization model, U is constrained to the Grassmannian
G(d,n). Though problem can not be directly solved [15] due to the
nonlinearity of image transformation, if the misalignments are not too large,
by locally linearly approximating the image transformation D o (7 + A7) =~
Dot + Zf\il JiAT;el, the iterative model can work well as a practical
approach.

i E 3
o min IE]l: (3)

N
s.t. DOTk—FZJfATiQT: U'W + E
i=1

U" € G(d*,n)

At algorithm iteration k, 7% = [7F|,...,|7¥] are the current estimated trans-
formations at iteration k, JF is the Jacobian of the i-th image with respect
to the transformation 77, and {¢;} denotes the standard basis for R". Note,
at different iterations the subspace may have different dimensions, i.e. U* is
constrained on different Grassmannian G(d*, n).

At each iteration of the iterative model , we consider this optimization
problem as the subspace learning problem. That is, our goal is to robustly
estimate the low-dimensional subspace U* which best represents the locally
transformed images D o 7% + Zf\il JE/T; despite sparse outliers E. In order
to solve this subspace learning problem both efficiently with regards to both
computation and memory, we propose to learn U* at each iteration k in
model via the online robust subspace learning approach [6].



2.1.2. Online mode

In order to perform online video processing tasks, for example video stabi-
lization, it is desirable to design an efficient approach that can handle image
misalignment frame by frame. As in the previous discussion regarding batch
mode processing, for each video frame I, we may model the ¢! minimization
problem as follows:

min el ()
s.t. Tor=Uw+e

Ueg(d,n)

Note that with the constraint [ o 7 = Uw + e in the above minimization
problem, we suppose for each frame the transformed image is well aligned to
the low-rank subspace U. However, due to the nonlinear geometric transform
I o 7, directly exploiting online subspace learning techniques [24] [6] is not
possible.

Here we approach this as a manifold learning problem, supposing that
the low-dimensional image subspace under nonlinear transformations forms
a nonlinear manifold. We propose to learn the manifold approximately using
a union of subspaces model U¢, ¢ = 1,..., L. The basic idea is illustrated in
Fig. , and the locally linearized model for the nonlinear problem is as
follows:

Join - lefls (5)
s.t. Tort+ J'AT=Uw+e.

Ut e G(d',n)

Intuitively, from Fig. [2] it is reasonable to think that the initial misaligned
image sequence should be high rank; then after iteratively approximating
the nonlinear transform with a locally linear approximation, the rank of
the new subspaces U’, ¢ = 1,...,L, should be decreasing as the images
become more and more aligned. Then for each misaligned image I and the
unknown transformation 7, we iteratively update the union of subspaces U*,
¢=1,...,L, and estimate the transformation 7. Details of the online mode

of t-GRASTA will be discussed in Section 2.4.2]
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Figure 2: The illustration of iteratively approximating the nonlinear image manifold
using a union of subspaces.

The use of a union of subspaces U’, ¢ = 1,...,L, to approximate the
nonlinear manifold is a crucial innovation for this fully online model. Though
we use the symbols U* and U’ in both the batch mode and the online mode,
they have two different interpretations. For batch mode, U* is the iteratively
learned aligned subspace in each iteration; while for online mode, U*, ¢ =
1,...,L, is a collection of subspaces which are used for approximating the
nonlinear transform, and they are updated iteratively for each video frame.

2.2. ADMM Solver for the Locally Linearized Problem

Whether operating in batch mode or online mode, the key problem is how
to quantify the subspace error robustly for the locally linearized problem.
Considering batch mode, at iteration k, given the i-th image I;, its estimate
of transformation 7¥, the Jacobian JF, and the current estimate of UF, we
use the ¢! norm as follows:



F(S5t,k) = min [Ufw — (I o 7" + JEAT) | (6)

With UF known (or estimated, but fixed), this ¢! minimization problem
is a variation of the least absolute deviations problem, which can be solved
efficiently by ADMM (Alternating Direction Method of Multipliers) [28].
We rewrite the right hand of @ as the equivalent constrained problem by
introducing a sparse outlier vector e:

min e[|, (7)

w,e,\T

st.  LotF+ J'AT=Ufw+e.

The augmented Lagrangian of problem is

L w.e, 7,0 = el + Ah(w,e, A7)
1
+ Llhw,e, A3 (5)

where h(w,e, A1) = Ufw +e — I;o7F — JFAT, and A € R" is the Lagrange
multiplier or dual vector.

Given the current estimated subspace UF, transformation parameter 75,
and the Jacobian matrix J¥ with respect to the i-th image I;, the optimal

(w*, e*, AT*, \*) can be computed by the ADMM approach as follows:

(

AT = (JETED) LI (UFwr 4 er — To 7F 4 L)
WPt = (UFUF ) \UF (I o 7F 4 JEATPH — ep — L))

'up
eP™t =S (I; o 7F + JFATPTY — UkyPt! — #/\p) 9)
M
)\Z’*i = N + pPh(wPtt Pt APty
[ pP = pu?

where S1 is the elementwise soft thresholding operator [29], and p > 1 is the

ADMM Mpenalty constant enforcing {y?} to be a monotonically increasing
positive sequence. The iteration @ indeed converges to the optimal solution
of the problem (7)) [30]. We summarize this ADMM solver as Algorithm [2]in
Section 2.4]



2.3. Subspace Update

Whether identifying the best U*" in the batch mode () or estimating the
union of subspaces U*, ¢/ = 1,..., L, in the online mode , optimizing the
orthonormal matrix U along the geodesic of Grassmannian is our key tech-
nique. For clarity of exposition in this section, we remove the superscript k
or { from U, as the core gradient step along the geodesic of the Grassman-
nian for both batch mode and online mode is the same. We seek a sequence
{U;} € G(d,n) such that Uy — U* (as t — o0). We now face the choice
of an effective subspace loss function. Regarding U as the variable, the loss
function @ is not differentiable everywhere. Therefore, we choose to instead
use the augmented Lagrangian as the subspace loss function once we have
estimated (w*,e*, AT*, \*) by ADMM (9) from the previous U; [13] [6].

In order to take a gradient step along the geodesic of the Grassmannian,
according to [26], we first need to derive the gradient formula of the real-
valued loss function (8) £ : G(d,n) — R. The gradient VL can be determined
from the derivative of £ with respect to the components of U:

ac

e * * o* AT T 1
%~ (e, AT w (10)
Then the gradient is VL = (I — UUT)4% [26]. From Step @ of Algorithm

, we have that VL = I'w*’ (see the definition of I' in Alg. . It is easy
to verify that VL is rank one since I' is a n x 1 vector and w* is a d x 1
weight vector. The following derivation of geodesic gradient step is similar
to GROUSE [24] and GRASTA [I3], [6]. We rewrite the important steps of
the derivation here for completeness.

The sole non-zero singular value is o = ||T'||||w*||, and the correspond-
ing left and right singular vectors are ﬁ and ﬁ respectively. Then we
can write the SVD of the gradient explicitly by adding the orthonormal set
Zo,...,xq orthogonal to I' as left singular vectors and the orthonormal set
Yo, - - -, Yq orthogonal to w* as right singular vectors as follows:

r .
VL = W Ty ... xq| %X diag(o,0,...,0)
* T
w
X |:—* Yz ... yd:| .
[Jw]]

Finally, following Equation (2.65) in [20], a geodesic gradient step of length
7 in the direction —V L is given by

10



* «T
Uw; w;

Umn)=U + (cos(no)—1)

] Tk

I w’
— si —_— 11
T o] (1)

2.4. Algorithms

2.4.1. Batch Mode

From the discussion of of Sections and [2.3] given the batch of un-
aligned images D, their estimate of transformation 7% and their Jacobian
J* at iteration k, we can robustly identify the subspace U*" by incremen-
tally updating U along the geodesic of Grassmannian G(d*,n) (11). When
UF — U (as t — o0), the estimate of A7; for each initially aligned image
I; o 7F also approaches its optimal value A7. Once the subspace U* is ac-
curately learned, we will update the estimate of the transformation for each
image using Tf“ = 7F + A77. Then in the next iteration, the new subspace
U*+1 can also be learned from D o 751 and the algorithm iterates until we
reach the stopping criterion, e.g. if ““f;"'; < € or we reach the maximum
iteration K.

We summarize our algorithms as follows. Algorithm [I]is the batch image
alignment approach via iterative online robust subspace learning. For Step
[7, there are many ways to pick the step-size. For some examples, you may
consider the diminishing and constant step-sizes adopted in GROUSE [24], or
the multi-level adaptive step-size used for fast convergence in GRASTA [13].

Algorithm [2| is the ADMM solver for the locally linearized problem .
From our extensive experiments, if we set the ADMM penalty parameter
p = 2 and the tolerance €' = 107", Algorithm [2| has always converged in
fewer than 20 iterations.

2.4.2. Online Mode

In Section [2.1.2] we propose to tackle the difficult nonlinear online sub-
space learning problem by iteratively learning online a union of subspaces
Ut, ¢ =1,...,L. For a sequence of video frames I;,i = 1,..., N, the union
of subspaces U are updated iteratively as illustrated in Fig.

Specifically, at i-th frame I;, for the locally approximated subspace U} at
the first iteration, given the initial roughly estimated transformation 7., the
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Algorithm 1 Transformed GRASTA - batch mode

Require: An initial n x d° orthogonal matrices U". A sequence of unaligned
images [; and the corresponding initial transformation parameters 77, i =
1,..., N. The maximum iteration K.

Return: The estimated well-aligned subspace U*" for the well-aligned im-

ages. The transformation parameters 77 for each well-aligned image.

1: while not converged and k£ < K do
2:  Update the Jacobian matrix of each image :

Jk — a([i o C)

i a—C|C:Tik (Zle)

3:  Update the wrapped and normalized images:

Liork vec(I; o 7F)
lvec(I; o 7F)||2
for j=1— N,..., until converged do
5: Estimate the Welght vector w , the sparse outliers e , the locally lin-

earized transformation parameters ATJ and the dual vector )\k via
the ADMM algorithm I 2| from I;07F | JF, and the current estlmated
subspace UF

(wh, e AT )xk) =arg min L(UF,w,e, \)

Jrg

w,e,AT,\
6: Compute the gradient VL as follows:
Fl—)\k—i—uh(u;],e?,AT ), i
I'=(I-UFUF Iy, VL = Fw;?
7: Compute step-size 7;.

Update subspace:
Ut = UE + ((cos(ma) = 1)Us

\’??‘

'w-»

Fllw H
L

kT
— sin(mo) ) g where o = [ uf]| -

9: end for
10:  Update the transformation parameters:

Tl =rF L ATF (i=1...N)

11: end while
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Algorithm 2 ADMM Solver for the Locally Linearized Problem
Require: An n x d orthogonal matrix U, a wrapped and normalized image
I o1 € R" | the corresponding Jacobian matrix J, and a structure OPTS
which holds four parameters for ADMM: ADMM penalty constant p, the
tolerance €/, and ADMM maximum iteration K.
Return: weight vector w* € RY; sparse outliers e* € R"; locally linearized
transformation parameters A7* ; and dual vector \* € R™.

1: Initialize w, e, AT, \,and p: et = 0wl =0,A7t =0, N1 =0, p=1

2: Cache P = (UTU)"'UT and F = (JTJ)~tJT

3: fork=1— K do

4. Update A7: ArFH = F(UwF +e* —ToT + i/\k)
Update weights: w**' = P(I o7+ JATM! — b — 1AF)
Update sparse outliers:
et =S (Tor + JATF — Ukt — i)\k)

n
7. Update dual: Nt = \F + ph(whtt bt Arktl)
8 Update pu: p = pu
9: if ||[h(w*TL, ek AT |, < € then

5:
6:

10: Converge and break the loop.
11:  end if
12: end for

13: w* = whtl ef = ef L At = ATkt )\ = yFF!
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ADMM solver Algorithm [2| gives us the locally estimated A7}, and the up-
dated subspace U}, is obtained by taking a gradient step along the geodesic
of the Grassmannian G(d*,n) as discussed in Section The transforma-
tion 7! of the next iteration is updated by 7} = 72 + A7!. Then for the next
locally approximated subspace U?, we also estimate /A7? and update the sub-
space along the geodesic of the Grassmannian G(d?,n) to U?,. Repeatedly,
we will update Uf in the same way to get U/, and the new transformation
4= Tf‘l + A7f . After completing the update for all L subspaces, the union
of subspaces Ufﬂ(ﬁ =1,..., L) will be used for approximating the nonlinear
transform of the next video frame I;,;.

We summarize the above statements as Algorithm [3| and we call this
approach the fully online mode of t-GRASTA.

Locally iterative subspace update

! Online subspace learning

Figure 3: The diagram of the fully online mode of t-GRASTA.

2.4.3. Discussion of Online Image Alignment
If the subspace U* of the well-aligned images is known as a prior, for
example if U* is trained by Algorithm [1|from a “well selected” dataset of one
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Algorithm 3 Transformed GRASTA - Fully Online Mode

Require: The initial L n x d* orthonormal matrices U* spanning the corre-
sponding subspace 8%, ¢ = 1,...,L. A sequence of unaligned images I; and
the corresponding initial transformation parameters 70, i =1,..., N.
Return: The estimated iteratively approximated subspaces U, £ =1,..., L,
after processing image I;. The transformation parameters 7 for each well-
aligned image.

1: for unaligned image I;,i =1,..., N do
2. for the iterative approximated subspace U, ¢ =1,...,L do
3: Update the Jacobian matrix of image I;:
d(I; 0 ()
0 2
Ji = 8—§’<sz

4: Update the wrapped and normalized images:

Lort— vee(I; o 1)

! |vec(I; o 7F)||2

5: Estimate the weight vector wf, the sparse outliers ef, the locally
linearized transformation parameters Atf, and the dual vector M via
the ADMM algorithm I 2| from I; o 7f Je and the current estimated
subspace U

(wf,ef, ATE M) = arg min L(Uf,w, e, \)

RS

w,e, AT\

6: Compute the gradient VL as follows:

[ =M+ ,uh(wl,ef, AT,

r— (v, ve =Tl
7: Compute step-size nyt.
8: Update subspace:

)T
Uz—i—l - UZ <(COS(77§ ) - 1)Utﬁ - Sin(nfa)”TFH> ﬁilﬁ”v

where o = ||T||||wf| .

9: Update the transformation parameters:

T =t Ar!

10: end for
11: end for
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category, we can simply use U” to align the rest of the unaligned images of the
same category. Here “well selected” means the training dataset should cover
enough of the global appearance of the object, such as different illuminations,
which can be represented by the low-dimensional subspace structure. By
category, we mean a particular object of interest or a particular background
scene in the video surveillance data.

For massive image processing tasks, it is easy to collect such good training
datasets by simply randomly sampling a small fraction of the whole image
set. Once U* is learned from the training set, we can use a variation of
Algorithm [I] to align each unaligned image I without updating the subspace,
since we have the assumption that the remaining images also lie in the trained
subspace. We call Algorithm [4] the trained online mode.

However, we note that for a very large streaming dataset such as is typ-
ical in real-time video processing, the trained online mode may be less well-
defined, as the subspace of the streaming video data may change over time.
For this scenario, our fully online mode for t-GRASTA could gradually adapt
to the changing subspace and then accurately estimate the transformation 7.

2.5. Discussion of Memory Usage

We compare the memory usage of our fully online mode of t-GRASTA
to that of RASL. RASL requires storage of A, E, a Lagrange multiplier
matrix Y, the data D, and D o 7, each of which require storage of the size
nN. To compare fairly to t-GRASTA, which assumes a d-dimensional model,
we suppose RASL uses a thin singular value decomposition of size d, which
requires nd + Nd + d? memory elements. Finally for the Jacobian per image,
RASL needs nNp, and for 7 RASL needs Np, but we will assume p is a small
constant independent of dimension and ignore it. Therefore RASL’s total
memory usage is 6nN +nd + Nd + d*> + N.

t-GRASTA must also store the Jacobian, 7, and the data as well as
the data with transformation, using memory size 3nN + N. Otherwise, t-
GRASTA needs to store the union of subspaces U*, ¢ = 1,..., L matrices
of size Lnd(L <« N), and the vectors e, A\, I', and w for 3n + d memory
elements. Thus t-GRASTA’s memory total is 3nN + Lnd + 3n+d+ N.

For a problem size of 100 images, each with 100x 100 pixels, and assuming
d =10, L = 10, t-GRASTA uses 66.1% of the memory of RASL. For 10000
mega-pixel images, t-GRASTA uses 50.1% of the memory of RASL. The
scaling remains about half throughout mid-range to large problem sizes.
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Algorithm 4 Trained Online Mode of Image Alignment

Require: A well-trained n x d orthogonal matrix U. An unaligned image [
and the corresponding initial transformation parameters 7°. The maximum
iteration K.

Return: The transformation parameters 7% for the well-aligned image.

1: while not converged and k < K do
2:  Update the Jacobian matrix :
p_ 0 0Q)

J' = a—c|<:7_k

3:  Update the wrapped and normalized image:

Tork vec(I o 7F)

ot = —————
|lvec(I o 7F)||2

4:  Estimate the weight vector w*, the sparse outliers ¥, the locally lin-

earized transformation parameters A7*, and the dual vector A* via the

ADMM algorithm 2| from I o 7% | J*, and the well-trained subspace U

(w”, ¥, ATE NF) = arg min L(U,w, e, \)

w,e,AT,\

o

Update the transformation parameters:

Rl = 7k L AP

6: end while
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3. PERFORMANCE EVALUATION

In this section, we conduct comprehensive experiments on a variety of
alignment tasks to verify the efficiency and superiority of our algorithm. We
first demonstrate the ability of the proposed approach to cope with occlusion
and illumination variation during the alignment process. After that, we
further demonstrate the robustness and generality of our approach by testing
it on handwritten digits and face images taken from the Labeled Faces in the
Wild database [31]. Finally, we apply our approach to dealing with video
jitters and solving the interesting background foreground separation problem.

3.1. Occlusion and illumination variation

We first test our approach on the dataset ‘dummy’ described in [15].
Here, we want to verify the ability of our approach to effectively align the
images despite occlusion and illumination variation. The dataset contains
100 images of a dummy head taken under varying illumination and with
artificially generated occlusions created by adding a square patch at a random
location of the image. Fig. 4] shows 10 misaligned images of the dummy. We
align these images by Algorithm (1] (the batch mode of t-GRASTA). The
canonical frame is chosen to be 49 x 49 pixels and the subspace dimension
is set to 5. Here and in the rest of our experiments, for simplicity we set d*
of Algorithm I to a fixed d in every iteration. The last three rows of Fig.
show the results of alignment, from which we can see that our approach is
successful at aligning the misaligned images while removing the occlusion at
the same time.

3.2. Robustness

In order to further demonstrate the robustness of our approach, we ap-
ply it on more realistic images taken from the Labeled Faces in the Wild
database [31]. The LFW contains more severely misaligned images, for it
also includes remarkable variations in pose and expression aside from illumi-
nation and occlusion, which can be seen in Fig. (c) We chose 16 subjects
from LEW, each of them with 35 images. Each image is aligned to an 80 x 60
canonical frame using 7 which are from the group of affine transformations
G = Aff(2), as in [15]; these are translations, rotations, and scale trans-
formations. For each subject, we set the subspace dimension = 15 and use
Algorithm[I]to align each image. In this example, we demonstrate the robust-
ness of our approach by comparing the average face of each subject before
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Figure 4: The first row shows the original misaligned images with occlusions and illumi-
nation variation; the second row shows the images aligned by t-GRASTA; the third row
shows the recovered aligned images without occlusion; and the bottom row is the occlusion
removed by our approach.

and after alignment, which are shown in Fig. [f[(a)-(b). We can see that the
average faces after alignment are much clearer than those before alignment.
Fig. [f|(c)-(d) provides more detailed information, showing the unaligned and
aligned images of John Ashcroft (marked by red boxes in Fig. [f|(a)-(b)).

3.3. Generality

The previous experiments have demonstrated the effectiveness and ro-
bustness of t-GRASTA. Here we wish to show the generality of t-GRASTA
by applying it to aligning a different type of images — handwritten digits
taken from MINST database. For this experiment, we again use Algorithm
to align 100 images of a handwritten “3” to a 29 x 29 canonical frame size.
We use Euclidean transformation G = FE(2) and set the dimension of the
subspace to be 5.

Fig. [ shows that t-GRASTA can successfully align the misaligned digits
and learn the low dimensional subspace, even though the original digits have
significant variation. We can see that the outliers separated by t-GRASTA
are generated by variations in the digits that are not consistent with the
global appearance. The outliers (d) would be even more sparse if the subspace
representation in (c) were to capture more of this variation; If desired, we
could achieve this tradeoff by increasing the dimension of the subspace.
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(b)

(d)

Figure 5: (a) Average of 16 misaligned subjects randomly selected from LFW database;
(b) average of each subject aligned by t-GRASTA; (c) initial images of John Ashcroft
(marked by red boxs in (a) and (b)); (d) images aligned by t-GRASTA.

3.4. Video Jitter

In this section, we apply t-GRASTA to separation problems made difficult
by video jitter. Here we apply both the fully online mode Algorithm [3] and
the trained online mode Algorithm [ to different datasets. We show the
superiority of t-GRASTA regarding both the speed and memory requirement
of the algorithms.
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(a) 100 misaligned digits; (b) digits aligned by t-GRASTA; (c) subspace repre-

sentation of corresponding digits; (d) outliers.

Figure 6:

3.4.1. Hall

Here we apply t-GRASTA to the task of separating moving objects from
static background in the video footage recorded by an unstable camera. We

the authors simulate a virtual panning camera to show

I

6

[

note that in
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that GRASTA can quickly track sudden changes in the background subspace
caused by a moving camera. Their low-rank subspace tracking model is
well-defined, as the camera after panning is still stationary, and thus the
recorded video frames are accurately pixelwise aligned. However, for an
unstable camera, the recorded frames are no longer aligned; the background
cannot be well represented by a low-rank subspace unless the jittered frames
are first aligned. In order to show that t-GRASTA can tackle this separation
task, we consider a highly jittered video sequence generated by a simulated
unstable camera. To simulate the unstable camera, we randomly translate
the original well-aligned video frames in x- / y- axis and rotate them in the
plane.

In this experiment, we compare t-GRASTA with RASL and GRASTA.
We use the first 200 frames of the “Hall” dataset[l] each 144 x 176 pixels. We
first perturb each frame artificially to simulate camera jitter. The rotation of
each frame is random, uniformly distributed within the range of [—6y/2, 6, /2],
and the ranges of x- and y-translations are limited to [—z(/2,20/2] and
[—v0/2,90/2]. In this example, we set the perturbation size parameters
[20,Y0,00] with the values of [ 20,20,10°].

For comparing with RASL, unlike [23], we just let RASL run its original
batch model without forcing it into an online algorithm framework. The
task we give to RASL and t-GRASTA is to align each frame to a 62 x 75
canonical frame, again using G = Af f(2). The dimension of the subspace in
t-GRASTA is set to be 10. We first randomly select 30 frames of the total
200 frames to train the subspace by Algorithm |1 and then align the rest
using the trained online mode. The visual comparison between RASL and
t-GRASTA are shown in Fig.[7] Table[I]illustrates the numerical comparison
of RASL and t-GRASTA, for which we ran each algorithm 10 times to get
the statistics. From Table [I] and Fig. 7| we can see that the two algorithms
achieve a very similiar effect, but t-GRASTA runs much faster than RASL:
On a PC with Intel P9300 2.27GHz CPU and 2 GB of RAM, the average
time for aligning a newly arrived frame is 1.1 second, while RASL needs
more than 800 seconds to align the total batch of images, or 4 seconds per
frame. Moreover, our approach is also superior to RASL regarding memory
efficiency. These superiorities become more dramatic as one increases the

'Find these along with the videos at http://perception.i2r.a-star.edu.sg/bk_
model/bk_index.html.
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size of the image database.

Table 1: Statistics of errors in two pixels P; and P, selected from the original video frames
and traced through the jitter simulation process to the RASL and t-GRASTA output
frames. Max error and mean error are calculated as the distances from the estimated P
and P to their statistical center E(P;) and E(P,). Std are calculated as the standard
deviation of four coordinate value (X7,Y7) for P; and (Xa,Ys) for P, across all frames.

Max | Mean | XIstd | Y1std [ X2std | Y2 std
error error

Initial misalignment | 11.24 5.07 3.35 3.01 3.34 4.17
RASL 2.96 1.73 0.56 0.71 0.90 1.54
t-GRASTA 6.62 0.84 0.48 1.11 0.57 0.74

Figure 7: Comparison between t-GRASTA and RASL. (a) Average of initial misaligned
images; (b) average of images aligned by t-GRASTA; (c)average of background recov-
ered by t-GRASTA; (d) average of images aligned by RASL; (e) average of background
recovered by RASL.

In order to compare with GRASTA, we use 200 perturbed images to re-
cover the background and separate the moving objects for both algorithms;
Fig. |§]illustrates the comparison. For both GRASTA and t-GRASTA, we set
the subspace rank = 10 and randomly selected 30 images to train the sub-
space first. For t-GRASTA, we use the affine transformation G = Af f(2).
From Fig. 8] we can see that our approach successfully separates the fore-
ground and the background and simultaneously align the perturbed images.
But GRASTA fails to learn a proper subspace, thus, the separation of back-
ground and foreground is poor. Although GRASTA has been demonstrated
to successfully track a dynamic subspace, e.g. the panning camera, the dy-
namics of an unstable camera are too fast and unpredictable for the GRASTA
subspace tracking model to succeed in this context without pre-alignment of
the video frames.
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Figure 8: Video background and foreground separation with jittered video. 1% row: 8
misaligned video frames randomly selected from artificially perturbed images; 2"¢ row:
images aligned by t-GRASTA; 3"¢ row: background recovered by t-GRASTA; 4" row:
foreground separated by t-GRASTA; 5" row: background recovered by GRASTA; 6"
row: foreground separated by GRASTA.
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3.4.2. Gore

In this example, we show the capability of t-GRASTA for video stabi-
lization applied to the dataset “Gore” described in [15]. In [I5], the original
face images are obtained by a face detector, and the jitters are caused by the
inherent imprecision of the detector. In contrast, for t-GRASTA, we simply
crop the face from each image by a constant rectangle with size 68 x 44,
which has the same position parameters for all frames. So in our case, the
jitters are caused by the differences between the motion and pose variation
of the target and the stabilization of the constant rectangle.
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Figure 9: The first row shows the original misaligned images; the second row shows the
images aligned by t-GRASTA; the third row shows the recovered aligned images without
outliers; and the bottom row shows the outliers removed by our approach.

For this experiment, the dimension of the subspace is set to be 10, and
we again choose the affine transformation G = Aff(2). We first use the
Algorithm [1] to train an initial subspace by 20 images randomly selected
from the whole set of 140 images. We then use the fully online mode to align
the rest of the images. Fig. [0 show the results. t-GRASTA did well for this
dataset with better speed than RASL: On a PC with Intel P9300 2.27GHz
CPU and 2 GB of RAM, t-GRASTA aligned these images at 5 frames per
second. This is 5 times faster than RASL and 3 times faster than ORIA as
described in [23].

Although t-GRASTA was not designed as a face detector, the experimen-
tal results suggest that t-GRASTA can be transformed into a face detector,
or more generally target tracker, if the variation of pose of the target is lim-
ited in a certain range (usually 45°). In this case, we can further improve the
efficiency of t-GRASTA by choosing a tight frame for the canonical image.
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3.4.3. Sidewalk

In the last experiment, we use misaligned frames caused by real camera
jitter to test t-GRASTA. Here we align all 1200 frames of “Sidewalk” datasetf]
to 50 x 78 canonical frames, again using G = Af f(2) and subspace dimension
5. We also use the first 20 frames to train the initial subspace using the batch
mode Algorithm [I] and then use the fully online mode to align the rest of
the frames. Here we can see that aligning the total 1200 frames is a heavy
task for RASL — for our PC with Intel P9300 2.27GHz CPU and 2 GB of
RAM, it was necessary to divide the dataset into four parts each containing
300 frames. We then let RASL separately run on each sub-dataset. The
total time needed by RASL was around 1000 seconds for 1.2 frames per
second, while t-GRASTA achieved more than 4 frames per second without
partitioning the data.

Compared to the trained online mode, the fully online mode can track
changes of the subspace over time. This is an important asset of the fully
online mode, especially when it comes to large streaming datasets contain-
ing considerable variations. We see that we usually need no more than 20
frames for fully online mode to adapt to the changes of the subspace, such
as illumination changes or dynamic background caused by the motion of the
subspace. Moreover, if the changes are slow, i.e the natural illumination
changes from daylight or the camera moving slowly, then t-GRASTA needs
no extra frames to track such changes; it incorporates such information with
each iteration during the slowly changing process.

4. CONCLUSIONS AND FUTURE WORK

4.1. Conclusions

In this paper we have presented an iterative Grassmannian optimization
approach to simultaneously identify an optimal set of image domain transfor-
mations for image alignment and the low-rank subspace matching the aligned
images. These are such that the vector of each transformed image can be
decomposed as the sum of a low-rank part of the recovered aligned image and
a sparse part of errors. This approach can be regarded as an extension of
GRASTA and RASL: We extend GRASTA to transformations, and extend

2Find it along with other datasets containing misaligned frames caused by real video
jitters at http://wordpress-jodoin.dmi.usherb.ca/dataset.

26


http://wordpress-jodoin.dmi.usherb.ca/dataset

Figure 10: Video background and foreground separation with jittered video. 1% row: 8
original misaligned video frames caused by video jitter; 2"? row: images aligned by t-
GRASTA; 3" row: background recovered by t-GRASTA; 4! row: foreground separated
by t-GRASTA.

RASL to the incremental gradient optimization framework. Our approach
is faster than RASL and more robust to alignment than GRASTA. We can
effectively and computationally efficiently learn the low-rank subspace from
misaligned images, which is very practical for computer vision applications.

4.2. Future Work

Though this work presents an approach for robust image alignment more
computationally efficient than state-of-the-art, a foremost remaining problem
is how to scale the proposed approach to a very large streaming dataset
such as is typical in real-time video processing. The fully online t-GRASTA
algorithm presented here is a first step towards a truly large-scale real-time
algorithm, but several practical implementation questions remain, including
online parameter selection and error performance cross-validation. Another
question of interest is regarding the estimation of d* for the subspace update.
Though we fix the rank d in this paper, estimating d* and switching between
Grassmannians is a very interesting future direction.

While preparing the conference version of this work [32], we noticed an
interesting alignment approach proposed in [33]. Though the two approaches
of ours and [33] are both obtained via optimization over a manifold, they
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perform alignment for very different scenarios. For example, the approach
in [33] focuses on semantically meaningful videos or signals, and then it
can successfully align the videos of the same object from different views; t-
GRASTA manipulates the set of misaligned images or the video of unstable
camera to robustly identify the low-rank subspace, and then it can align these
images according to the subspace. An intriguing future direction would be
to merge these two approaches.

A final direction of future work is toward applications which require more
aggressive background tracking than is possible by a GRASTA-type algo-
rithm. For example, if a camera is following an object around different
parts of a single scene, even though the background may be quickly varying
from frame to frame, the camera will get multiple shots of different pieces
of the background. Therefore, it may be possible to still build a model for
the entire background scene using low-dimensional modeling. Incorporating
camera movement parameters and a dynamical model into GRASTA would
be a natural way to solve this problem, merging classical adaptive filtering
algorithms with modern manifold optimization.
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