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Abstract—A method to obtain accurate hand gesture classifi-
cation and fingertip localization from depth images is proposed.
The Oriented Radial Distribution feature is utilized, exploiting
its ability to globally describe hand poses, but also to locally
detect likely fingertip positions. Hence, hand gesture and fingertip
locations are characterized with a single feature calculation. We
propose to divide the difficult problem of locating fingertips into
two more tractable problems, taking advantage of hand gesture as
an auxiliary variable. Besides, the ColorTip dataset is proposed,
a dataset for hand gesture recognition and fingertip classification
on depth data. ColorTip allows automatic fingertip annotation
through a wieldy and not costly footage. The proposed method is
evaluated against recent works and datasets, achieving promising
results in both gesture classification and fingertip localization.

Index Terms—hand gesture recognition, fingertip classification,
range camera, interactivity, dataset

I. INTRODUCTION

NTIL recent years, interaction between humans and com-

puter systems has been driven through specific devices
(i.e. mouse, keyboard). A great effort has been put into improv-
ing the user experience when interacting with such devices.
Recent successful examples are Apple’s Trackpad [1] or multi-
touch devices, that allow interaction by combining simple
movements with finger configurations. However, device-based
interaction is always limited, since the user must be fouching
the device.

Touch-less interaction is an interesting way to provide a
more immersive and intuitive experience. Inspired by the
way to interact with currently available multi-touch devices,
we propose a touch-less interactive paradigm where hand
gestures and fingertip configurations are combined with simple
movements. This is very convenient since gestures are easy
to memorize and performed with one hand, while allowing
a large combination of interaction possibilities. In order to
provide a similar usability, a precise and real-time detection
of fingertip locations is required.

Detection of fingers or hand gestures is a complex task,
given the high number of degrees-of-freedom of a hand,
the usual presence of self-occlusions and the large amount
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of possible gestures. During the last years, new consumer
oriented cameras have appeared in the market, providing pixel-
wise depth information in real-time (i.e. Kinect). Such depth
cameras open the door to new research directions in the
field of touch-less interactivity, enabling more precise and
fast approaches to make novel interactive paradigms come
true. However, few works have achieved performant fingertip
detection results using Kinect [2]-[5] (see Section II), mostly
due to resolution problems and noisy depth estimations around
fingers.

The objective of this work is to locate fingertips in real-
time, that is, to know where fingers are placed, and also
classify them to know which finger is each. Instead of facing
the problem from raw data, as could be done with a similar
approach to [6], we propose to use an intermediate step to
restrict the search space. We exploit the statistical correlation
between gestures and fingertip locations to perform such a
restriction. This is very intuitive, since fingertip locations are
conditioned by hand gestures, and at the same time allows a
highly efficient fingertip inference. We choose to use the hand
gesture as a discriminative auxiliary variable in this intermedi-
ate step. Indeed, there exists a real necessity of detecting hand
gestures, so we discard using other auxiliary variables without
any semantic meaning. We remark that algorithmic decisions
are strongly motivated by efficiency, since real-time is a strong
objective for any interactive system.

In a second step, we infer the most probable fingertip loca-
tions conditioned on the obtained hand gesture. We propose
a specific graph matching approach, which exploits fingertip
structure, to undertake the fingertip localization task. Thus,
both fingertip locations and hand gesture are obtained from
the proposed overall scheme.

We propose a novel usage of the Oriented Radial Distri-
bution (ORD) feature, presented in [7]. The ORD feature
characterizes a point cloud in such a way that its end-effectors
are given a high ORD value, providing a high contrast between
flat and extremal zones. Therefore, ORD is suitable to both
globally characterize the structure of a hand gesture and to
locally locate its end-effectors. Such ORD property nicely fits
in the above mentioned two-step method. We propose to use
the overall ORD structure for the gesture classification task,
and to use local ORD extrema to feed the graph matching
step. Therefore, a single ORD calculation is enough for both
tasks.

The proposed method is evaluated with a recent 3D feature
benchmark, revealing the convenience of using ORD. Fur-
thermore, the gesture classification step is assessed with the



ASL database provided by [8]. Fingertip localization results
are successfully compared to a state-of-the-art Random Forest
(RF) approach.

Despite the revolution that commercial depth cameras have
brought, their recent irrupution supposes a lack of public
datasets. Ganapathi et al. [9] provide a body pose estimation
dataset using a Time-of-Flight (TOF) camera. Pugeault and
Bowden [8] propose a hand gesture dataset using Kinect,
which is intended for American Sign Language (ASL) pur-
poses.

We propose ColorTip [10], a depth-based dataset consisting
of 7 subjects performing 9 different hand gestures (Fig. 2,1).
Ground-truth annotations for hand positions, hand gestures,
fingertip locations and finger labels are also provided. Finger
positions are obtained using a colored glove during capture,
enabling a non-costly color-wise segmentation. Furthermore,
each subject performs two sequences (Set A and Set B),
with increased intra-gesture variability in the latter. Up to
the authors knowledge, there does not exist any depth-based
dataset for hand gesturing containing such information variety.

Summarizing, in this work we propose the following main
contributions:

o A practical touch-less interaction concept, combining fin-
ger configurations, hand gesture and simple movements.

o A real-time method to obtain locations and labels, as well
as hand gestures, using Kinect. We propose to exploit the
statistical correlation between hand gestures and fingertip
locations.

¢ A novel use of the Oriented Radial Distribution feature,
exploiting its global structure for hand gesture character-
ization and its local values for fingertip detection.

e ColorTip, a public dataset intended for hand gesture
classification and fingertip localization.

II. RELATED WORK

Within the touch-less interactivity field, depth cameras are
being used for many purposes, ranging from full body pose
estimation [6], [9], [11], [12] to hand gesture classification and
fingertip localization. Obtaining hand gestures with Nearest
Neighbors (NN) classification has proven to be a promising
approach when dealing with depth data [13]-[15]. However,
most recent works use features that are not specifically de-
signed for depth data.

Many authors have explored how to control a virtual en-
vironment with hands (i.e. PC desktop, 3D model). In this
direction, Soutschek et al. [13] propose a user interface for
the navigation through 3D datasets using a Time-of-Flight
(TOF) camera. They perform a polar crop of the hand over
a distance threshold to the centroid, and a subsequent NN
classification into five hand gestures. With a similar objective,
Van den Berg and Van Gool [16] improve their work in [17] by
combining RGB and depth to construct classification vectors.
Their alphabet consists of four gestures that enable selecting,
rotating, panning and zooming of a 3D model on a screen.
Hackenberg et al. [2] estimate hand pose by identifying palm
and finger candidates, after a pixel-wise classification into tips
and pipes. The final hand structure is obtained with optical

flow techniques. Ren ef al. [14] segment the hand under some
restrictive assumptions and adapt the Earth Movers Distance
to a finger signature, finding the NN according to this metric.

Other works have focused on finger-spelling using the
American Sign Language (ASL). While still being an alphabet,
the ASL contains 26 gestures and their accurate classification
becomes a challenging task. Kollorz et al. [15] obtain a fast
NN classification using simple feature projection on two axis,
which they apply to the first 12 letters of the ASL. Uebersax
et al. [18] perform an iterative hand segmentation by optimiz-
ing the center, orientation and size of the hand. They smartly
aggregate three classifiers that take shape and orientation into
account. Pugeault and Bowden [8] propose a multi-resolution
Gabor filtering of the hand patch to train a Random Forest
classifier. In their work, they provide a complete dataset of
24 American Sign Language (ASL) gestures captured with the
Kinect sensor, with both color and depth information available.
Their dataset contains patches roughly centered at the hand
centroid.

Fewer works have tackled the fingertip localization problem.
In [2], fingertips are detected but not labeled, as well as in [3]
where also the palm and fingers orientation are estimated. Both
approaches exploit geometrical features to detect fingertips on
the hand point cloud. The body part classification approach
proposed by Shotton et al. in [6] is applied to hand parts by
Keskin et al. [4], obtaining full hand poses at the expense of
a costly training. Recently, Oikonomidis et al. [5] formulate
the hand pose recovery problem as an optimization approach,
measuring the discrepancy between a model and the observed
hand. Full hand pose is provided (including fingertips), requir-
ing initialization at a known initial pose. On the other hand,
their cost function relies on color information, reducing the
performance to controlled scenarios.

Fig. 1.  Sample of the annotated gestures in the ColorTip dataset. Two
examples per gesture are shown (columns). These examples are extracted from
a Set B sequence, with a high intra-gesture variation. Note the rotations and
translations. Label O corresponds to no gesture (i.e. other gestures, transitions).

Fig. 2.

Snapshot of the ColorTip dataset content. From left to right: depth
image, color image (remark the colored glove), segmented fingertips (colors
are directly finger labels, and centroids are finger positions) and a similar
gesture in a test sequence.



III. THE COLORTIP DATASET
A. Description

ColorTip [10] is a public dataset for hand gesture recogni-
tion and fingertip localization captured with Kinect the sensor,
which consists of a set of recordings and annotations with
a two-fold objective. To provide a benchmark against which
further research works may be assessed. But also, to enable
novel interactive applications involving hand gesturing and
fingertip localization.

In order to ease experimental setups, the ColorTip dataset
is divided into folders according to:

o Subject: N subjects performing gestures like those shown
in Fig. 1, ensuring intra user variability. Four of them
are untrained users, which learned how to perform the
gestures with a single and short explanation.

o Challenge: We consider that a given gesture may vary
in orientation and translation. Therefore, raising 4 fingers
is assumed as gesture number 4, but also moving these
4 fingers towards the camera, side views and hand ro-
tations (Fig. 1). The amount of intra-gesture variability
determines how challenging a given sequence is. The
Set A sequences contain limited intra-gesture variation,
which mainly consists in hand rotations on the vertical
plane. On the other hand, the Set B sequences contain
a higher intra-gesture variability, with free rotations and
finger movement (as shown in Fig. 1).

In total, ColorTip contains a set of (7 subjects x 2 chal-
lenges) = 14 sequences of between 600 and 2000 frames each.

B. Annotations

Inspired by the work of Wang and Popovi¢ [19], a black
glove with colored fingertips is used to capture the training
sequences (see Fig. 2). In this way, we obtain a dataset
together with a fingertip annotation in a single footage without
requiring expensive motion capture systems, like those used
in [4], [6]. Furthermore, one can easily record additional data
to update the dataset. Actual fingertip locations are obtained
by first segmenting the Kinect color images with a color-based
Binary Partition Tree [20] (see Fig. 2) and then computing the
region centroids. Color labels have an associated numerical
label 1.

Hand gestures are manually annotated among the 1-9 ges-
tures, plus an extra label O for those frames with an unknown
gesture. Also, a hand location annotation in image coordinates
is provided.

IV. THE ORIENTED RADIAL DISTRIBUTION FEATURE

We propose to characterize hands using the Oriented Radial
Distribution feature, extending our previous work in [7]. ORD
is a feature for the detection of end-effectors on depth camera
captures. Such captures are considered as 3D point clouds
which represent a sampling of the 3D surfaces in a scene.

ORD characterizes point clouds with an oriented 2D disk
which is divided into sectors. The orientation of the disk
is given by the surface normals on the point cloud. The
average radius of the inlying points in each sector is used

Fig. 3. ORD calculation, extracted from [7]. In (a), which corresponds to
a flat zone, a low value of ORD is obtained, since the crosses barely differ
from the central circle. On the other hand, a high ORD value is obtained in
(b), most of the crosses being far from the central circle.

as a measure of the curvature and extremeness of the different
parts of the point cloud. In Fig. 3, the bold crosses indicate
the average radius of a sector’s points, while the % p central
circle indicates the value of such radius for flat zones. Thus,
the more far away the crosses are located from this circle, the
more extremal a point is. In the example, the point (a) belongs
to a flat zone, while (b) belongs to an extremal zone.

Parameter p is called ORD scale, and allows selecting the
size of the extrema to be found. Selecting a scale of about
the hand size (p =~ 12 ¢m) will result in high ORD values at
extrema of a similar scale. We propose to exploit this multi-
resolution feature of ORD for the characterization of hands
and fingers, by selecting the appropriate scales. In [7], the
possibility of parameterizing ORD with a given radius was
mentioned. However, since all the experiments were focused
on detecting extremities, only a single scale was used.

ORD gives a representation of a depth-captured object,
highlighting its end-effectors and curved parts (Fig. 4.c), but
also characterizes flat zones with low values. We propose to
use the global description ability of ORD to represent hand
gestures for further classification; and to exploit the ORD
multi-resolution extrema detection to locally detect hands and
fingers, by choosing appropriate p scales (Fig. 4.b,c).

Fig. 4. Example of the use of ORD. From left to right, depth input data,
ORD at hand scale on the whole body point cloud and ORD at finger scale
on the segmented hand point cloud. In the latter, ORD maxima are marked
with circles.

Contrarily to other features or descriptors that are defined
on the image domain, the ORD scale is defined in the 3D
space and thus ORD responses at different scales correspond
to the actual size of objects, and not to the apparent size. This
allows us to use a strong prior information on the multi-scale
analysis, provided that we know the approximate sizes of body



parts. Our approach efficiently exploits these ORD descriptor
properties to jointly address three different tasks (Fig. 5):

« Hand detection and segmentation, with a simple threshold
on the hand scale ORD as done in [7].

o Characterization global hand pose for hand gesture recog-
nition (Section V-B)

o Characterization local hand parts for fingertip localization
(Section V-C)

V. FINGERTIP LOCATIONS CONDITIONED ON HAND
GESTURE CLASSIFICATION

A. Method Overview
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Fig. 5. General scheme of the proposed method. Fingertip locations are
obtained (2) through an intermediate step, where the hand gesture is obtained
as auxiliary variable (1).

The scheme in Fig. 5 summarizes the main blocks involved
in the proposed method. In a preliminary step, we perform a
body segmentation by means of background subtraction with
depth data. Then, we detect and segment the hand by using
the ORD at hand scale (in this work R = 12 cm).

Next, a two-step approach is proposed. We compute the
ORD at finger scale (R = 3 cm) on a small patch containing
the segmented hand, thus obtaining high ORD responses
at fingertips and eventually at knuckles (see Fig. 4). The
objective of this finger scale ORD is two-fold:

1) On the one hand, we use the ORD values to select
the most likely hand poses (gestures) by computing
distances between feature vectors, obtaining a subspace
of likely hands from the ColorTip (Section V-B). We
note this step as gesture recognition.

2) On the other hand, higher ORD responses are used
as sparse fingertip candidates, and serve us to infer
fingertip locations (fingertip localization) conditioned on
the previously selected subspace. A structured inference
framework is proposed, formulated as a graph matching
problem (Section V-C).

The whole framework is based on the ORD feature data.
We consider ORD a strong enough representation for this task,
which, in addition, may be fast computed enabling real-time
applications.

We introduce some notation hereafter, describing some of
the variables handled in the proposed method. Training patches
Z = {z1,...,2;...,2N} are squared patches of different
sizes containing depth data of the segmented hand. We start
by computing the ORD(z;) at finger scale on each training
patch. Then, we resample into a regular grid of m x m blocks

to characterize the training patches (Fig. 6). Each block gets
the mean ORD value of the pixels inside it, obtaining a set of
m?2-dimensional feature vectors X = {x1,...,X;,...,Xn}.
Besides, let r; € R?*® denote the ground truth fingertip
locations (in pixel coordinates) corresponding to the i-th
training sample, denoting r;[m] € R? with m = 1,...,5
each fingertip location (used in Section V-C). Additionally,
let y; be gesture labels. Then, training templates are defined
as h; = {x;,r;,y;}, and the complete training dataset H.

Given a test patch z, the objective is to locate fingertip
positions in it, that is p(r|z). Remark that our method is
solely based on ORD information, thus one may replace z
by ORD(z).

We propose to break the problem of obtaining fingertips
from data p(r|z) into two more tractable problems, that can
be efficiently solved. In order to do so, we introduce the hand
gesture y as auxiliary variable. By doing so, the problem of
inferring fingertip locations from data can be posed as:

p(r|z) = p(rly,z) - p(ylz) (1)

However, the marginalization of gestures implies a time
consuming summation. Since real-time is a requirement, we
approximate the problem in Equation (1) by firstly maximizing
p(y|z), obtaining the best candidate h € . Secondly, we infer
fingertip locations from the best template obtained after this
maximization. The problem results as posed in Equation (2):

p(r|z) ~ p(r|f1, z) with {fl EH|g= argmax{p(y|z)}} 2)
y

We propose to solve the gesture recognition problem p(y|z)
using a k-Nearest Neighbors (k-NN) classifier. k-NN tech-
niques are strongly sensitive to the data nature. Thus, an
inappropriate feature selection could lead to a bad k-NN
classification. Choosing a k-NN classifier helps to test the
suitability of the ORD feature, as well as providing a fast
classification taking advantage of a kd-tree [21] structure.

Concerning the fingertip localization problem p(r|y,z), we
propose to solve it using a graph matching algorithm with a
structure-based cost on edges. Such step is conditioned on the
search space subspace obtained from the p(y|z) problem.

B. Hand Gesture Recognition

In pattern recognition problems, the accuracy of a method
ultimately depends on the distance metrics on the feature
space, i.e., whether classes in the feature space appear separate
enough to learn a robust classification rule. In this work, we
propose a feature space solely based on the ORD descriptor.
Feature vectors obtained by computing the ORD descriptor
on the input data provide a representation of salient regions of
the hand. In other words, ORD-feature vectors of hand poses
can be seen as distribution of important parts of the hand and
even interpreted as where the knuckles and fingers lay within
the patch. For that reason, an ORD-based feature space is a
suitable space for matching hand poses.



We choose to use a k-NN classifier for pose and gesture
recognition. In this way, we show that even by simple match-
ing techniques, the ORD feature space is adequate for hand
analysis.

Fig. 6. Examples of feature vectors at various m resampling values. From
left to right, m = {4, 6, 8,10, 14, full ORD patch}

To use a k-NN classifier on a large set of instances, we
use a m?2-dimensional kd-tree [22] that efficiently organizes
feature vectors, allowing fast NN queries. The Lo norm is
used in this work, after an empirical trade-off between speed
and performance.

For a test patch, the k-NN search returns a set of k
training templates %* = {hy,..., h;,...h;} with associated
distances to the test patch § : H* — R. Let ®,(#*) be the
distribution of gestures obtained from #H*.

We note h the k-NN best match by majority, as specified
in Eq. (3). The obtention of h is conditioned on the gesture
which maximizes ®,(#*). Therefore, maximizing ®,(H*)
solves the p(y|x) problem posed in Equation (1). Remark that
one may refer to 1-NN best match, which is the first nearest
neighbor in the training dataset.

h=h; € #* | j=argmin{d(h;) | y; = argmax(®,(H")}} ©)
J Y

The k-NN search may deliver false detections, resulting in
a noisy gesture recognition. We propose hereafter to apply
human dynamics restrictions to smooth the result of Eq. (3).

1) Dynamically Constrained k-NN: In many cases, we
are subject to analyze video sequences, which intrinsically
have a temporal consistency over consecutive frames. Hand
dynamics are smooth, hence we assume that hand gestures are
not instantly changing, but are maintained during a minimal
number of frames.

In order to exploit such video consistency, we propose
to keep a trace of the last () predicted gestures SA/Q =
{Gt-q,--,91—1}, obtained from the gesture labels of H? =
{hy_¢,...,hy_1}. Let jjo = argmax{®,(H?)} be the statis-

Yy

tical mode of the last gestures }A’Q, and let y; be the predicted
gesture at time instant ¢, which is obtained as detailed in
Equation (3).

Such approach helps smoothing gesture transitions, as well
as de-noising intra-gesture false detections. In practice, we
consider that a gesture will not change during time interval
of less than 0.5 s (15 frames at 30 fps), and we set Q = 15,
k =50 and m ~ 12 after experimental results.

C. Fingertip Localization

We address the problem of fingertip location by making use
of the ORD descriptor in a structured inference framework.
Maxima of the ORD of the input patch are likely to represent

Section 1 Dynamically Constrained k-NN search
1: Input:
2 H*={hy,...,h;,...h;} = k-NN set at time ¢
3: o = mode of the last predicted gestures YQ
4 § = predicted gesture at t or argmax{ f,}
y

5: Output: h = best k-NN

6: if g = Yo then

7 h = k-NN by majority (Eq. (3))
8

9

. else .
: ifﬂijYQ | y; = Yo then
10: h=h; e H* | j=argmin{d(h)) | y; =Jo}
11: else
12: h = 1-NN
13: end if
14: end if

fingertip locations. However, as mentioned before, for some
hand poses these maxima may correspond to other salient
points of the hand. But, even if all the maxima correspond to
finger locations, one should be able to classify which finger
belongs to each maximum. Consequently, there is a need to
exploit the global hand structure to overcome these issues.

maximum
common

subgraph

fingertip localization

Fig. 7. Fingertip localization scheme. Fingertip locations are inferred from
the ground-truth graph GG}, by computing the Maximum Common Subgraph
with respect to the test graph G..

Fingertip localization on test patches takes advantage of
the pose recognition scheme presented in Section V-B. Let
us recall that, in the training phase, we define templates
h; = {x;,r;,y;} comprising the feature vectors, ground truth
fingertip locations and gesture labels, respectively. Our method
exploits the geometric structure of the ground truth fingertip
locations T of the best template match h provided by the k-NN
pose recognition block. The objective is to infer which ORD
maxima of the test patch correspond to fingertip locations,
and which are their finger classes. Let G, = (Vj, Ej) be
a fully connected graph where vertices v, € V} correspond
to the available fingertip coordinates in h, which we denote
as rvp] € R? (if a fingertip is not visible, such vertex is
not considered). Let G, = (V,, E.) be the fully connected
graph where vertices v, € V, correspond to the ORD maxima
s of the test patch z;, namely s[v,] € R2 We obtain a
correspondence between vertices in G, and vertices in G,
by computing the maximum common subgraph [23] (Fig. 7).
This process consists in obtaining the graph G with the
maximum number of vertices such that there exist subgraph



isomorphisms' from G to G}, and from G to G,. Note that
in general there exists more than one maximum common
subgraph. From the set of maximum common subgraphs we
choose the one that best satisfies a geometric constraint defined
on its edges. Let us denote G5 = (V', E’) a graph from the
set of maximum common subgraphs of G and G, which
involves the mappings f : V' — V, and f, : V' — V,.
Then, for each edge (u,v) € E’ we can obtain the vectors
ep, = r[fn(u)] —r[fn(v)] and e, = s[f.(u)] — s[f.(v)] which
characterize geometrically the graphs G, and GG,. We propose
to select the maximum common subgraph that minimizes the

cost:
€ - e,

llenl fle-|l

C= Y len—e+1- 4)

(u,v)EE’

The measure in Eq. (4) combines a cost proportional to
the difference of relative distances between fingertips with a
cost that penalizes matchings with distinct relative orientation
between fingertips. In this manner, we take account of the
geometrical structure of the whole fingertips set, of both the
test and template match, which allow matching even in case
of misses or false fingertip detections.

ORD maxima are found by clustering pixels depending on
their thresholded (> ¢y) ORD values into, at most, 5 clusters of
a given minimal size sy. For clustering, connectivity between
pixels is verified, but also depth connectivity, thus we are
subject to work with 3D data. For this purpose, we use the 3D
Euclidean clustering proposed by Rusu in [24]. Remark that
ty and sy are parameters of the finger localization method.
Summarizing, the method proceeds as follows:

1) The test feature vector x; is processed by the k-NN
pose gesture recognition block. As a result, we match
a template h and build the graph Gy, using the ground
truth finger coordinates 7.

2) Coordinates of ORD maxima s are computed using the
clustering method and the graph G is built.

3) The maximum common subgraph G that minimizes the
cost C in Eq. (4) is obtained, which defines the fingertips
matching between the test patch and the template match.

4) Missing fingers in the test patch with respect to the
template match are copied from the latter according to
the average displacement between both sets of fingertip
coordinates.

VI. EXPERIMENTAL RESULTS

A. ASL gesture results

The ASL dataset provided by [8] in [25] is used in the
following experiment. Such dataset contains annotated hand
patches of 5 subjects recorded with the Kinect camera, per-
forming 24 ASL alphabet gestures. Accuracy is used as a
measure to be able to compare with other reference methods.

As in [8], the dataset is randomly split into equally sized
training and test subsets. Doing so is advantageous for a k-NN
strategy, since the probability of having a consecutive frame

'A graph isomorphism of graphs G' and H is a bijection f between the
vertex sets of G and H such that any two vertices v and v of GG are adjacent
in G if and only if f(u) and f(v) are adjacent in H.

(very similar) in the training subset is very high. Such effect
is reflected in the Random column of Table I, achieving an
accuracy of 98% against a 73% of [8] on the same dataset.

A leave-one-subject-out-cross-validation (LOSOCV) is also
carried out. In that case, we achieve an accuracy of 74%, still
25 points higher than [8] (49%, results provided in [25]).
Although methods are not directly comparable, since [18]
results are obtained in a different dataset, our method achieves
a similar performance with the advantage of not assuming that
the hand is the closest connected component.

It should be remarked that both [8] and [18] are strictly
gesture recognition methods. The proposed method uses the
same ORD feature calculation to additionally provide fingertip
localization.

Method Random LOSOCV
[18]* 0.88 0.76
[8] 0.73 0.49
Proposed 0.98 0.74
TABLE I

COMPARATIVE ASL HAND GESTURE RECOGNITION AVERAGE ACCURACY
*Evaluated on a different dataset.

B. ColorTip Experimental Setup

The ColorTip dataset, consisting of a total of 14 sequences
(Section III), is used for evaluation in the following experi-
ments. We distinguish between Set A and Set B sequences in
the results, given the considerable difference of intra-gesture
variation.

Results are obtained considering a LOSOCYV strategy. Thus,
results for subject-i are obtained using as training dataset
the remaining subjects’ sequences. Remark that if we are
considering the subject-i Set A, the sequence subject-i Set B
is not used for training, and viceversa.

C. Gesture Recognition results

The suitability of using the ORD feature for gesture
recognition is evaluated. With this purpose, we compare
the results obtained with ORD against a benchmark of 3D
features. Also, we provide a comparison with state-of-the-art
gesture recognition methods using the challenging ASL
alphabet.

1) ORD vs. Benchmark: A benchmark consisting of various
3D features is considered in order to evaluate the performance
of ORD regarding the classification task. We note P the 3D
point cloud of the segmented hand, and p(p) the neighborhood
of radius p of a point p. The proposed benchmark consists of:

o Depth Computed with respect to the average depth of P.

¢ Curvature Computed as m, where \; are the

eigenvalues of the eigendecomposition of p(p).

o 3DSC 3D Shape Context, Frome et al. in [26].

« VFH Viewpoint Feature Histogram, Rusu et al. in [27].

o SHOT Signature of Histograms of OrienTations, Tombari

et al. in [28]



The 3DSC and SHOT features provide pixel-wise his-
tograms. As proposed in [29], to obtain scalar values per pixel,
we compute the Kullback-Leibler divergence between each
histogram and the average histogram. Then, the same m x m
subsampling as in Section V-B is performed, obtaining m?
sized feature vectors. The depth and curvature features provide
a scalar values per pixel, and the VFH feature already delivers
a feature vector of size 308, which is used untouched.

In order to compare ORD against the benchmark, a k-
NN by majority classification is performed with every feature
(see Eq. (3)). For this experiment, we use our 14 training
sequences, with a LOSOCV strategy. We present in Fig. 8
the average F-Measure of the 14 tested sequences (about
18000 frames). The F-Measure is calculated as 21.31:1}%%’ where
P = precision and R = recall. Results obtained with Dy-
namically Constrained (DC) k-NN classification using ORD
(Section V-B1) are also included.
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Fig. 8. Comparison between using a 3D feature benchmark and ORD. All
the experiments are obtained with k-NN classification by majority.

The ORD feature outperforms the benchmark, with an
average F-Measure of 0.75. The fact that ORD is focused on
characterizing 3D surfaces (by adapting orientation locally)
helps achieving such results, since P is indeed a 3D surface.
The best features in the benchmark are depth with an average
F-Measure of 0.67 and VFH with 0.50. The benchmark
features do not take into account the 3D surface nature of
P, and analyze it as it was a 3D point cloud.

Note that the DC k-NN search proposed in Section V-Bl
helps increasing the F-Measure from 0.75 to 0.86 by
exploiting video temporal consistency of gestures.

2) Influence of the feature vector size: The dimension m X
m of the feature vectors {x;} has a noticeable impact on the
hand gesture recognition results. In order to assess such effect,
and with the objective of selecting an optimal value for m, we
extract hand gesture recognition results for various values of
m (Fig. 9). We recall that a feature vector consists of the re-
sampling of an ORD patch to an m x m grid.

Experiments show that low m ~ 4 values lead to feature
vectors which are not representative enough to distinguish
between gestures. On the other hand, large m > 14 values
lead to an overfitting problem, since feature vectors become
too related to data (usually noisy). In such case, the predictive
performance degrades. Thus, values of m ~ 12 provide the
best results in terms of hand gesture recognition.

3) Influence of the dataset size: The size of training datasets
may suppose the bottleneck of a classification system. Design-
ing scalable methods is crucial, allowing further incorporation
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Fig. 9. Effect of the resampling factor m on the hand gesture classification.
We observe how resamplings to m = 12 provide the best results.

of new training data if required. Furthermore, memory access
and capacity problems may also occur due to large datasets.

We analyze in this experiment how the proposed method
behaves with small training datasets. A basic clustering by
Euclidean distance is performed to reduce the original training
dataset ‘H, taking advantage of the already built k-d tree. More
precisely, a template h; € H is randomly selected, grouping
all those templates h; at a certain distance ||x; —x;|| < D into
a new average training template l_lj. Such step is repeated until
all the original templates are checked, obtaining the reduced
dataset H = {h;}. We note Fy; = 2t as reduction factor.

In Fig. 10 we present the F-Measure degradation as H is
reduced, using a LOSOCYV strategy. The original experiment
at (Fy, = 100%) consists of an average of 15200 training
templates.

F-Measure
F-Measure

20 50 100

10 20 50 100 5
(F%) — % of the original dataset

5
(F%) - % of the original dataset

Fig. 10. F-Measure degradation for various reduction factors of the training
dataset. Remark that the k-NN search degrades slower than k-NN DC.
However, the latter performs better with the complete dataset, as already
shown in Fig. 8. Such effect is more visible in the Ser B sequence.

The proposed method successfully tolerates drastic reduc-
tions of the training dataset. Such scalable behavior allows
reducing the training dataset until Fv;, = 20% (3040 templates)
with a degradation of less than 5%.

The k-NN DC search performs better with the complete
dataset, even if in the case of Ser A sequences such effect is
barely visible given the good performance of the stand-alone
k-NN. We remark that, in the case of Setr A, the performance
without DC is already close to the annotation error due to
transitions between gestures. However, we note that k-NN DC
degrades faster.

In the Ser B case, at Fy, ~ 35% the stand-alone k-NN
search already outperforms the DC version, since the number
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Fig. 11. Fingertip classification results using the RF baseline approach. 50
different detection thresholds are used. Note that RF using the stand-alone
ORD values obtain the best results.

of erroneous gestures being smoothed grows.

In our case, a training template h; = {x;,r;,y;} occupies
12-12-4+410-4 + 1 = 587 bytes. Thus, at Fy, = 20%, the
reduced dataset only occupies about 3040 - 587 ~ 1.78 Mb.
Scalability is achieved taking advantage of the robustness
against drastic reductions of the dataset, allowing the
incorporation of new training sequences at low memory cost.

D. Fingertip Localization results

We conduct several experiments to evaluate the ORD and
the proposed framework in the fingertip localization task.
First, we compare the proposed fingertip inference method
(Section V), with a state-of-the-art fingertip detector based
on Random Forests (RF). The RF method is also used to
demonstrate the suitability of the ORD feature for hand
analysis tasks. Then, we show the computational performance
of the proposed method.

The fingertip evaluation protocol consists in a LOSOCV.
We consider that a finger has been correctly localized if the
estimated location and the ground-truth location are within a
distance of 10 pixels.

Fig. 12. Fingertip localization results (columns). The upper row contains the
k-NN selected patch h from the database, which intrinsically represents the
recognized gesture. In the middle row, we show the ORD maxima to which
fingers T of h are matched. The resulting fingertip localization on the testing
hand is shown in the bottom row. Two erroneous examples are shown in the
farthest right columns.

RF(Depth) RF(ORD) RF(ORD+Depth) Ours
finger 1 0.62 0.61 0.59 0.67
finger 2 0.64 0.69 0.64 0.66
finger 3 0.68 0.67 0.67 0.68
finger 4 0.46 0.49 0.46 0.54
finger 5 0.21 0.24 0.21 0.54
average 0.52 0.54 0.51 0.62
TABLE II
SET A SEQUENCES - COMPARATIVE FINGERTIP LOCALIZATION
F-MEASURE.

RF(Depth) RF(ORD) RF(ORD+Depth) Ours

finger 1 0.53 0.51 0.52 0.59
finger 2 0.47 0.50 0.46 0.57
finger 3 0.42 0.41 0.42 0.51
finger 4 0.27 0.29 0.26 0.34
finger 5 0.13 0.17 0.14 0.37
average 0.37 0.38 0.36 0.48

TABLE IIT
SET B SEQUENCES - COMPARATIVE FINGERTIP LOCALIZATION
F-MEASURE.

1) RF Fingertip Localization: In order to evaluate the
proposed algorithm, we implement a fingertip localization
method using Random Forests (RF) [30]. The RF localization
method is based on the successful system for detecting body
parts from range data proposed by Shotton et al. [6]. We use
very similar depth-invariant features, but in addition to depth
data, we include the ORD feature.

We employ RFs comprising 10 trees of maximum depth
15. Three baselines are trained: one using depth information
exclusively, another using ORD exclusively and a baseline
combining both features. The precision and recall performance
of the RF approach is evaluated with 50 different detection
thresholds (Fig. 11). The experiments reveal that RF trained
with the stand-alone ORD values provide the best results (in
red in Fig. 11), showing that ORD is also a suitable feature
to locally describe parts of an object.

Our approach is evaluated with 3 different ¢; and 8 different
sy parameters, obtaining the best results with £y = 0.3 and
s¢ = 0.8 cm?. Some visual results are provided in Fig. 12.

Comparative results between our approach and the best RF
baseline are presented in Table II (Ser A) and Table III (Set
B). The proposed method consistently outperforms all the RF
baseline configurations. The main reason is the ability of our
method to infer fingertip locations using structured inference
given a template pose. First, hand pose matching allows to
robustly locate fingertips under several hand rotations, which
is the main limitation of the RF approach. Second, the global
structure of the hand pose helps to robustly detect fingertips
even when there is weak evidence of a finger location. In
contrast, the RF approach requires each finger to have strong
evidence (votes) in order to be robustly detected.

The RF baseline results also show the suitability of the ORD
for the fingertip localization task, in terms of F-Measure. Best
RF performance is achieved when binary tests exclusively



use the ORD descriptor. Interestingly, the ORD contributes to
a significant increase in the index finger localization (finger 2).

E. Computational Performance

The above experiments are carried out on an Intel Core2
Duo CPU E7400 @ 2.80GHz. To calculate the ORD feature,
we have coded a parallel implementation on a NVIDIA
GeForce GTX 295 GPU, performing about 70 — 140x faster
than the implementation in [7].Our approach performs in real-
time, at a frame-rate of about 15 — 17 fps. A frame-rate of
16 fps is achieved by [18]. Remark that our proposal delivers
fingertip positions in addition to hand gestures. Moreover, a
176 x 144 camera is used in [18], with a smaller resolution
than Kinect. Real-time is also attained by [8] for gesture
recognition, using a state-of-the-art body tracker to detect
hands.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a joint method for gesture
recognition and fingertip localization. To do so, we have
proposed a two-fold exploitation of the ORD feature. Firstly,
we utilize ORD to globally describe hand gestures for further
classification purposes. Secondly, we take advantage of the
multi-scale local description ability of ORD to robustly detect
hands and fingertip locations.

More precisely, we have proposed a method to infer fin-
gertip locations by including hand gesture as an auxiliary
variable in the problem. Doing so, fingertips are obtained on a
search space that is conditioned on the obtained hand gesture.
Experiments showed that our method is robust, scalable and
runs in real-time.

For gesture recognition, we conducted experiments on a
publicly available ASL dataset and on our own hand gesture
dataset. In both datasets, our method shows state-of-the-art
performance, with the added value of providing fingertip
positions. Furthermore, ORD has proven to be more effective
than other 3D features for classification tasks

For fingertip localization, we compared our method with
a state-of-the-art approach based on Random Forests. Our
experiments show the superior performance of the proposed
approach due to the ability to perform structured inference on
robustly recognized hand poses.

A new dataset for hand gesture recognition and fingertip
localization on depth data has been proposed, called ColorTip.
In the near future, more sequences at various depth levels will
be publicly available within the ColorTip dataset.
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