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Abstract

Accurate reconstruction of 3D geometrical shape from a set of calibrated 2D multiview images is 

an active yet challenging task in computer vision. The existing multiview stereo methods usually 

perform poorly in recovering deeply concave and thinly protruding structures, and suffer from 

several common problems like slow convergence, sensitivity to initial conditions, and high 

memory requirements. To address these issues, we propose a two-phase optimization method for 

generalized reprojection error minimization (TwGREM), where a generalized framework of 

reprojection error is proposed to integrate stereo and silhouette cues into a unified energy function. 

For the minimization of the function, we first introduce a convex relaxation on 3D volumetric 

grids which can be efficiently solved using variable splitting and Chambolle projection. Then, the 

resulting surface is parameterized as a triangle mesh and refined using surface evolution to obtain 

a high-quality 3D reconstruction. Our comparative experiments with several state-of-the-art 

methods show that the performance of TwGREM based 3D reconstruction is among the highest 

with respect to accuracy and efficiency, especially for data with smooth texture and sparsely 

sampled viewpoints.
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1. Introduction

Accurate reconstruction of a 3D geometrical shape from a sequence of calibrated 2D images 

has many real world applications, such as augmented and mixed reality [1,45], urban 

reconstruction [2,46], object detection [3,47] and object recognition [4,48]. 3D 
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reconstruction based on multiple images is an active field of research in computer vision 

[5,6,42] and has attracted considerable recent interest [40,41,43,44], due to its capability to 

produce high-quality reconstruction for indoor and outdoor scenes and drastically decreased 

cost in image acquisition by digital cameras and cellphones.

There are several image cues that can be utilized for multi-image based 3D reconstruction 

[7], such as texture, defocus, shading, stereo, and silhouette. Among them, stereo cues are 

the most common ones. The reconstruction based on stereo cues is also known as shape 

from stereo and multiview stereo. Based on the Lambertian reflectance model of illuminated 

surface [8], multiview stereo methods can infer a 3D shape by finding local correspondences 

among the input 2D images. However, due to noise, illumination variation, inaccurate 

camera calibration and/or lack of texture on the object, correspondences are often 

misidentified, resulting in degraded 3D reconstruction accuracy and sometimes unpleasant 

visual effect. Although the introduction of neighbor [9–11] or non-local information [12] 

may alleviate this problem, these remedies are inadequate in finding reliable 

correspondences for objects which do not contain sufficient textures. To solve this problem, 

energy minimization techniques based on weighted area function [13, 14] have been 

proposed by adding surface smoothness as a regularization term. These techniques lead to 

compact and smooth surfaces and thus reduce outliers. However, regularization techniques 

lead to over-smoothed surfaces and thus generate artifacts in certain cases, such as objects 

with thin or protruding structures.

Another commonly used cue for 3D reconstruction is silhouette. The methods that use 

silhouette cues to recover 3D surfaces are called shape from silhouette. These methods [15–

17] aim at reconstructing a visual hull by using multiple silhouette images. The visual hull is 

the intersection of the visual cones associated with all image silhouettes. For any 3D point 

inside the visual hull, its projected point in each 2D image is expected to be enclosed by the 

silhouette. Since the projections of thin or protruding structures are generally located on 

boundaries of silhouettes, such structures can be recovered in the boundaries of the visual 

hull. The quality of the visual hull is directly affected by the segmentation quality of the 

silhouettes. With recent advances in image segmentation methods, visual hull reconstruction 

has become increasingly accurate and robust. However, there are still problems using this 

approach, e.g., concavities in a shape cannot be reconstructed from the visual hull at all.

To recover deep concave, thin and protruding structures, we plan to take advantages of both 

stereo and silhouette-based techniques by integrating these cues in the process of 

reconstruction. The accuracy of 3D reconstruction not only depends on how the objective 

function is designed, but also depends on how the surface is represented. Volumetric based 

methods are capable of freely changing topology of surface and efficient for optimization, 

but the drawback is their high cost in memory for large volume data. The mesh based 

methods can represent high-resolution surface without large memory requirements, 

however, most of them are limited in handling topology changes and sensitive to initial 

condition. It is thus important to integrate the advantages of volumetric and mesh based 

methods. In this paper, we present an effective and accurate multiview reconstruction 

method based on a two-phase optimization for generalized reprojection error minimization 

(TwGREM). A generalized reprojection error is formulated to integrate stereo and silhouette 
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consistencies into an energy function, which allows the recovery of concavities while 

preventing over-smoothing of protruding structures. By utilizing the advantages of the 

implicit and explicit representations of surfaces, a two-phase optimization method is used to 

minimize this function. In the first phase, with the implicit representation of surface on 3D 

volumetric grids and the convex relaxation technology, the method is robust against initial 

conditions and can be efficiently solved using variable splitting and Chambolle projection 

with freely changing surface topology. In the second phase, the result is further 

parameterized and refined on a triangle mesh to produce the high-quality reconstruction 

output.

The rest of the paper is organized as follows: the related work is reviewed in Section 2. The 

proposed TwGREM method is presented in Section 3, which includes main concepts of the 

method, formulation of an energy function, and energy optimization. Experimental results 

are analyzed in Section 4 before the paper is concluded in Section 5.

2. Related work

In some existing studies, the visual hull was used as an initial surface for optimization, and 

the constant balloon term was added to the energy function so as to penalize the over-

smoothing of the surface [18,19]. However, the preference of large shape volumes of this 

method makes it difficult to reconstruct deep concavities. This problem can be addressed by 

replacing the constant balloon term with depth maps [20]. The stereo based method is used 

to compute depth maps on highly textured regions while the silhouette based method is used 

to compute depth maps on textureless and occluded regions. Then, these depth maps are 

merged into an energy function on 3D volumetric grids to optimize the final surface. The 

reconstruction process of this method is thus split into two sub-problems: computing depth 

maps and optimizing the energy function on the volumetric grids. However, noise and 

outliers in depth maps could be propagated to the final result. Liu et al. [39] proposed a 

depth map estimation and fusion method which uses both silhouette and epipolar geometry 

to constrain the search for admissible solutions. In particular, in their depth map estimation 

process, multiple starting points are selected for high-quality multi-scale variational depth 

estimation. However, the final models need to be generated via meshing point clouds using 

surface reconstruction algorithm. This may lead to an over-smoothing effect in some thinly 

protruding structures. Sinha et al. [21] proposed to use a graph cut framework to integrate 

both silhouette and stereo cues into in a single optimization formulation. Due to the 

reconstruction being computed on the volumetric grids, memory requirements increase 

rapidly as the grid resolution increases. The high memory requirements limit the utility of 

this method. Alternatively, one can dynamically integrate silhouette-aligning forces in each 

optimization step of stereo reconstruction. Kolev et al. [22] used a regional term on 

volumetric grids to enforce the silhouette constraint, which is similar to the Chan-Vese 

model in 2D/3D image segmentation [23,24]. This regional term can be updated during 

energy optimization, so the occluded regions can be determined based on currently 

estimated surface. Hernandez et al. [25] first used silhouette-aligning forces on the triangle 

mesh based deformable surface to provide a robust way to recover protruding structures with 

lower memory requirement. Since triangle mesh based surface representation may be 

trapped in local minima, the method needs a good initial condition which may not be 
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attainable. Cremers and Kolev et al. [26,27] reformulated a weighted area function model 

with silhouette constraints as a constrained convex optimization problem, which solves a 

convex function in the admissible convex domain. In order to implement the silhouette-

aligning constraint, this method needs to compute the first and last voxels for ray-volume 

intersection along a visual ray in the preprocessing step and store them in lists. As a result, 

the size of such data structure and memory requirements grows significantly as the increase 

of the image resolution. By taking advantage of visibility variation in the derivatives of the 

reprojection error [28,29], stereo and silhouette consistencies can be naturally integrated. 

However, since these methods need to consider the variation of surface visibility, the 

models’ complexity makes the optimization procedure susceptible to the local minimum 

problem.

3. Methods

Inferring a 3D shape can be considered as an inverse problem of imaging. The aim of this 

problem is to reconstruct an object surface S from multiple 2D images observed in different 

views. In order to assess the quality of reconstruction, the observed images are reprojected 

via S to generate predicted images. The reprojection error between the observed and 

predicted images thus provides an effective measure of reconstruction quality and naturally 

formulates the reconstruction as a minimization problem. It has been shown [29] that this 

formulation with additional prior information of the surface, e.g., local smoothness, 

corresponds to the following Bayesian formulation:

(1)

where S is the estimated surface and D is the set of observed images. P(D) only affects P(S|

D) up to a scale, and Eq. (1) can thus be reformulated as: log(P(S|D)) ∝ log(P(D|S)) + 

log(P(S)). The log-likelihood term log(P(D|S)) measures the reprojection error, while log-

prior term log(P(S)) is the regularization term reflecting the smoothness of the surface.

3.1. Concepts of the TwGREM

In the two-phase optimization method for generalized reprojection error minimization 

(TwGREM), we maximize the consistency between the original and predicted images by 

utilizing both stereo and silhouette information. Based on this concept, we redefine the 

reprojection error as a combination of two error components: a stereo reprojection error 

component and a silhouette reprojection error component.

As shown in Fig. 1(a), the stereo reprojection error is the same as the traditional 

reprojection error. The predicted image of an observed image is estimated by first projecting 

one of neighboring images to the reconstructed surface and then projecting back to the 

image space of this observed image. We refer to this set of projection operations as stereo 

reprojection, and this predicted image as stereo predicted image. The stereo reprojection 

error measures the inconsistency between the stereo predicted and the observed images.
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Additionally, a set of predicted images are generated by projecting each image to the 3D 

scene and then projecting back to the same image space, as shown in Fig. 1(b). We refer to 

this set of projection operations as silhouette reprojection, and this predicted image as 

silhouette predicted image. The comparison between the silhouette predicted image and the 

silhouette image of the observed image define a different form of the reprojection error. The 

depth information cannot be estimated from this reprojection error, since no variation in 

viewpoints is presented. However, it can measure the consistency of reconstructed surface 

and silhouette images, indicating whether the reconstructed surface is over-smoothed, as 

shown in Fig. 2. So, we define this reprojection error as silhouette reprojection error.

Introducing the silhouette reprojection error generalizes the traditional definition of 

reprojection error which is only defined on stereo image pairs. The generalized reprojection 

error is thus stereo reprojection error + silhouette reprojection error. Ideally, the minimum 

of generalized reprojection error can be reached if the estimated surface is the best-

consistent with all stereo image pairs and silhouette images. The minimization of the 

generalized reprojection error can be cast as an energy minimization problem. First, an 

energy function is constructed based on the generalized reprojection error. Second, this 

energy function is minimized using a two-phase optimization procedure. Overall, the 

proposed TwGREM method is illustrated in Fig. 3.

3.2. Construction of the energy function

In this section, we define the stereo reprojection and silhouette reprojection errors and 

integrate them over all observed images to form a complete energy function.

3.2.1. Stereo reprojection error—The stereo reprojection error is defined between 

image stereo pairs. Let the 3D scene include both the target object and background. The 

background is assumed to be located at infinity, and ideally its radiance is totally black. Let 

the surfaces  and  be the ground truth and the reconstructed surface, 

respectively. Let  be the observed image captured by camera i, where m = 

1 for grayscale images, and m = 3 for color images. Let  be a projection from 3D 

points x to 2D pixel p. Let  be an inverse projection. Let  be the 

visible part of S with respect to image Ii. As illustrated in Fig. 4(a), for a pair of neighboring 

images Ii and Ij, the visible surfaces are Si and Sj, respectively, and their shared visible part 

is . For each 3D point x on S, we define a visible image subset Vx in which 

visual rays connecting camera centers and x are not occluded by other parts of S (Fig. 4(b)).

Assuming Ii is a reference image and Ij is a neighboring image, a predicted image Îi,j,S of Ii 

is generated by first projecting Ij to S, and then reprojecting onto Ii. Obviously, the valid 

definition domain of predicted image is , which are the image projections of 

shared visible surface Sij.

Let δ(p) be the Kronecker delta that returns 1 for pixel p in the region πi(Sij) and 0 

otherwise. Let  measures color consistency of reference image Ii and a predicted 
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image Îi,j,S with respect to a square window centered at pixel p. The energy function that 

measures stereo reprojection error can thus be written as:

(2)

where d p is the area measure in the image plane,  measures the consistency of 

reconstructed 3D surface with respect to the observed image in the image pairs. When Sm + 1 

is closer to the ground truth surface than Sm, we have the inequality 

.

3.2.2. Silhouette reprojection error—The silhouette image Hi : Ωi → {0, 1} is a binary 

image whose value is assigned to 1 inside and on the silhouette and 0 otherwise. The 

predicted image  is obtained using silhouette reprojection as follows: visual rays 

emitted from camera center i is back-projected to the scene using πi
–1. These visual rays 

may intersect either S or the background at infinity. If the ray intersects S, S will be colored 

by using image Ii. If the ray intersects the background, radiance of background is black by 

definition. Then, the projection from the scene to image Ii generates the predicted image Îi.

(3)

The silhouette Ĥi, a binary image, is defined as:

(4)

Let τ : Ωi → {0, 1} be a binary function measuring the difference between the silhouette 

image Hi and predicted silhouette image Ĥi, 1 for Hi(p) ≠ Ĥi(p), and 0 for Hi(p) = Ĥi(p). 

The new energy term that measures silhouette reprojection error for image Ii is thus 

expressed as:

(5)

Minimizing Eq. (5) forces the surface towards silhouette consistency since it has lower 

energy when the surface approximates the visual hull. One may notice that Ĥi can also be 

obtained by directly projecting all surface points to the image instead of silhouette 

reprojection. However, such direct projection scheme would be inefficient, since it needs the 

surface to be uniformly discretized and each image projection of surface points has to be 

considered. Fortunately, our silhouette reprojection can be very efficiently implemented by 

rendering the surface using graphics processing unit (GPU), as shown in Section 3.3.
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3.2.3. Objective energy function—By integrating the energy terms for stereo 

reprojection error and the silhouette reprojection error on all observed images, the 

complete objective energy function becomes:

(6)

where λ is a tradeoff parameter to adjust the weight of the silhouette reprojection error. To 

simplify Eq. (6), we define Ψ1 as all the image domains for stereo reprojection error, Ψ2 as 

all the image domains for the silhouette reprojection error, 

, and . To ensure smoothness of 

the surface, a regularization term is added as an integral of surface area unit dσ. This 

regularization term prefers a smooth and compact surface, and is effective in improving the 

robustness against noises and outliers. The proposed energy function is formulated as:

(7)

where κ is a regularization parameter.

Intuitively, the optimal surface has the maximum of stereo and silhouette consistencies and 

corresponds to the minimum of energy defined in Eq. (7). However, the first two energy 

terms in Eq. (7) are integrals over the image domain and the third energy term is an integral 

over the surface. So its optimization is difficult and the process is easily trapped in a local 

minimum. It is thus desirable to define an energy criterion in the 3D domain, where 

extensive study has been conducted to solve the optimization problem.

3.3. Energy minimization

We proposed a two-phase coarse-to-fine method to optimize the energy function in Eq. (7). 

First, we represent the surface using a characteristic function and reformulate (Eq. (7)) into a 

new function defined in the 3D space domain. The new function has a form of TVg + L1 

norm [24]. TVg is a weighted total variation, where weights represent stereo consistency. 

The total variation (TV) is well known for its edge-preserving smoothness effect in image 

restoration. TVg has the smoothness effect like TV regularization and its weights are set 

based on whether surface edges should be smoothed or preserved. Ideally, 3D points on the 

true 3D surface have minimal reprojection errors, and thus TVg prefers to preserve these 

points because that does not increase the energy of TVg. In summary, TVg can preserve the 

points on the true 3D surface while suppressing noises. The second term is a constraint for 

silhouette consistency, where L1 is well known for its robust performance against outliers, 

and thus is adopted to robustly measure the silhouette reprojection error. Attributed to the 

recent development of the convex relaxation technique, TVg + L1 can be solved using 

variable splitting and Chambolle projection. To further improve the quality of the result, we 

refine the optimized surface based on triangle mesh to obtain a high-quality estimate. We 

assume that all the silhouette images are available via image segmentation algorithm [33], 

and thus the visual hull can be used as the initial surface for this two phase optimization.
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3.3.1. First phase optimization: optimization on volumetric grids

3.3.1.1. TVg + L1 norm representation: For a Nx × Ny × Nz bounding box B, 

 be a characteristic function with value, 1 for the 3D points inside/on the 

visual hull and 0 otherwise. Let  be another characteristic function, which 

equals 1 for the 3D point inside/on the surface and 0 otherwise.

For a 3D point x, its stereo reprojection error is the summation of stereo reprojection errors 

over all the image projections in visible image subset:

(8)

Similarly, the silhouette reprojection error of x is:

(9)

Based on Eqs. (8) and (9), and the fact that  [28], Eq. (7), which is defined in 

image domain, can be rewritten as an integral over the volume:

(10)

where , and xx, xy, xz are three components of 3D point 

x in the X, Y and Z axes, D is the gradient operator, n is the unit normal of x, and ||·||1 is L1 

norm. Let , and . The minimization of E(u) can 

be represented as:

(11)

Eq. (11) has a form of TVg + L1. Since the TV model inherently enforces the regularization, 

an explicit smoothness term is unnecessary.

3.3.1.2. Minimization of TVg + L1: The energy criterion E(u) is defined in a non-convex 

set function because the characteristic function  is defined in a non-convex set, i.e., binary 

set. The optimization for non-convex function is easily trapped in a local minimum. The 

principle of convex relaxation is to relax u from a non-convex set {0, 1} to a continuous 

interval [0, 1] which is a convex set, and thus the corresponding function  becomes a 

convex function:

(12)
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Because of the non-smoothness property of |∇u|, direct optimization of  is not trivial. 

According to the Chambolle projection method [24, 32],  can be reformulated with an 

auxiliary variable v by using variable splitting approach as:

(13)

where the parameter θ(θ > 0) is set to be a small value, and so that 1/2θ is sufficiently large 

in order to constrain φ close to u + v. Since  is convex, its minimizer can be 

computed by minimizing  with respect to u and v separately. The process is 

iteratively performed until convergence. Thus, the following minimization procedure is 

utilized:

1. Searching for optimal u when v is fixed by:

(14)

2. Searching for optimal v when u is fixed by:

(15)

Eq. (14) can be optimized using Chambolle projection with convergence rate O(1/n2), and 

Eq. (15) can be solved point-wise for v. After convex optimization on relaxed convex set, 

the output uc is projected to binary set {0, 1}, which can be implemented by using a constant 

threshold μ ∈ (0, 1):

(16)

where ub approximates a minimizer of non-convex energy function in Eq. (11) and labels 

each x ∈ B, 1 for a point inside surface, 0 for a point outside surface. The calculations of g̃ 

and f̃ depends on the consistency measure of observed and predicted images via 

reconstructed surface S, respectively, so they should be updated after generating the newly 

reconstructed surface. After g̃ and f̃ are updated, the above optimization is again performed 

to update the reconstructed surface. Overall, we alternatively update g ̃, f̃ and S until the 

optimization converges.

In order to generate predicted images, the stereo reprojection and silhouette reprojection are 

used as shown in Fig. 1. To implement these projection operations, a triangle mesh is 

extracted from the zero level set of ub to represent the reconstructed surface. In our study, 

we use an efficient GPU-based marching cubes algorithm [34] to extract the triangle mesh. 

Then, these projection operations are performed efficiently by rendering the triangle mesh 

using projective texture mapping on the GPU [35]. However, for x ∉ S, we cannot use this 

method to generate the stereo predicted image. Instead, a small planar patch P is generated 
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which intersects at x. The normal and visible image subset of patch P is set the same to its 

nearest point on S. Then, for any image pairs in visible image subset, we set one as the 

reference image. The stereo predicted image for a small patch in the reference image is 

generated by projecting another image to 3D patch P and then to the reference image. In the 

implementation, we update the g ̃ and f̃ in each 500 and 10 iterations, respectively.

The computational procedure of first phase optimization of the TwGREM is provided as 

follows:

3.3.2. Second phase optimization: optimization on triangle mesh—For the first 

phase optimization, in order to generate a high-resolution and high-quality model, it is 

necessary to use high-resolution volumetric grids, which lead to a large memory 

requirements. In contrast, the triangle mesh based explicit representation can provide a high-

resolution estimate with fine details and low memory requirements, since only the 

parameterized surface is stored in the memory.

Let S be parameterized to a triangle mesh M, with a set of indexes 

representing n vertices, and a set of triangular faces  connecting them, 

. The geometric embedding of a triangle mesh into  is specified by 

associating a 3D position xvi to each vertex . The evolution equation for surface 

refinement on the triangle mesh is given as1:

(17)

with

(18)

(19)

where  is a vertex in the neighborhood of vertex vi on the triangle mesh M, nvi is 

the surface normal of vertex vi, ξvi is the derivative of the stereo reprojection error for 

vertex vi,  minimizes the weighted sum of the differences over ξvi within the 

neighborhood of vertex vi, Wvj is the weight for each vertex , γ is the parameter 

to adjust the influence of weight, ωvi is a discrete Laplace-Beltrami operator for surface 

regularization, and βvi is the term considering the silhouette reprojection error. Eq. (18) can 

be easily and exactly solved by weighted median filtering [36]. In order to generate 

predicted images for the calculation of stereo and silhouette reprojection error, the triangle 

mesh M is first rendered by the stereo reprojection operation and then by the silhouette 

1We have put the details of deriving evolution equation in the Appendix A of the paper.
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reprojection operation using projective texture mapping on GPU. Because we do not 

consider the points outside the surface, the patch-based projection operation for stereo 

predicted image (as illustrated in first phase optimization) do not need to be performed. 

Thus, the total process for generating predicted images is very efficient. The derivative of 

stereo reprojection error ξvi is calculated according to [30,31].

The evolution of the triangle mesh is conducted based on Eq. (17) by using gradient decent 

with a small time step t. The advantages of Eq. (17) are: 1) the integration of a silhouette 

term that penalizes the vertex which violates the constraint of the silhouette consistency; 2) 

the enforcement of a smoother surface by considering the entire vertexes in the 

neighborhood of vertex vi, 3) the robustness of L1 norm to noise and outliers. In practice, the 

neighborhood  can be set as a first or second order ring of the triangular faces around 

the vertex in the triangle mesh.

The computational procedure of the second phase optimization of the TwGREM is listed 

below:

3.3.3. Complexity analysis—In the first phase optimization, the convex relaxation of 

TVg + L1 energy function is adopted. With abuse of the notation, denote the size of the 

volume, i.e. the number of the volumetric grids, by N = Nx × Ny × Nz, the number of input 

images by M. Due to capability to handle the illumination discrepancy problem, the 

Normalized Cross Correlation (NCC) was used to measure the stereo reprojection error. 

Suppose that the computation of NCC is proportional to the window size w, and each voxel 

is visible on V image pairs in average. As illustrated in Algorithm-1, there are at most three 

steps per iteration:

1. Minimization of Eq. (11): This step involves three operations, i.e., Chambolle 

projection, soft-thresholding, and projection to binary set. The complexity of each 

operation are O(N), and thus the total complexity of this step is O(N).

2. Marching cubes: In the worst-case, the complexity of marching cubes algorithm is 

O(N) for iso-surface extraction. Note that we adopt a GPU-based parallel 

implementation [34] in our experiments, which makes the running time of this step 

is negligible while compared with the other steps.

3. Generation of predicted images: The main complexity of this step is from the 

computation of silhouette reprojection error and stereo reprojection error, which 

are O(NM) and O(NVMw2), respectively. It should be noted that, in our 

implementation, stereo reprojection error is updated after each Cs = 500 iterations, 

and silhouette reprojection error is updated after each Ch = 10 iterations.

Denote the number of iterations of Algorithm-1 by n1. Taking these three steps into account, 

the overall complexity of Algorithm 1 is O(n1(N + NM/Ch + NVMw2/Cs)).

In the second phase optimization, a triangle mesh based surface evolution algorithm is 

adopted to refine the reconstructed model. Denote the size of triangle mesh by T, i.e. the 

number of vertices, and the resolution of images by R. Suppose that each vertex on the 
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triangle mesh is visible on U image pairs in average. As illustrated in Algorithm-2, there are 

two steps per iteration:

1. Evolve the triangle mesh with a small time step: This step involves two 

operations, i.e., deforming each vertex of triangle mesh to a new position according 

to a speed v and a small time step t, and smoothing the triangle mesh using discrete 

Laplace-Beltrami operator. The complexity of each operation are O(T), and thus the 

total complexity of this step is O(T).

2. Generation of predicted images: The main complexity of this step is from the 

computation of silhouette reprojection error and stereo reprojection error, which 

are O(TM) and O(TUMR), respectively. In particular, the calculation of NCC for 

the stereo reprojection error can be independent to window size w by using image 

integral technology.

Denote the number of iterations of Algorithm-2 by n2. Taking these two steps into account, 

the overall complexity of Algorithm-2 is O(n2(TM + TUMR)).

For the image data used in the experiments, n1 is typically set to 2000 for first phase 

optimization and n2 is typically set to 200 for the second phase optimization.

4. Experimental results

To evaluate the performance of the TwGREM method, we implemented our algorithm using 

C++ with OpenGL, OpenCV and CGAL libraries and tested this method using the 

Middlebury multiview stereo benchmark [5] and several other public datasets.

For each test data, Table 1 lists the number of images, image resolution and running times of 

algorithm. The window size for calculating NCC was set to 5 × 5 pixels. The visibility of 3D 

points at the surface was determined using the Z-buffer of OpenGL. The λ is used to balance 

the weight of stereo and silhouette reprojection. In all experiments in the paper, we have 

fixed the λ to 0.4 in the first phase optimization and fixed it to 0.2 × le for the second phase 

optimization, where le is the average edge length of triangle mesh. The κ is used to control 

the weight of smoothness term. Because the TV norm has implicit smoothness effect, the 

explicit smoothness term is not necessary for the first phase optimization. And in the second 

phase optimization, the value of κ is set to 0.2 for all the datasets in the experiments. For the 

first phase optimization, the resolution of volumetric grids was first set to 64 × 64 × 64 and 

then increased to 128 × 128 × 128. The output of optimization on the low resolution setting 

was used as initial points for the optimization on the high resolution setting. The second 

phase optimization was performed on the resulting surface from the first phase. The running 

times of TwGREM for these datasets on a laptop computer with Intel Core i7 2.40 GHz 

CPU are between 40 and 150 min depending on the size of datasets and the image 

resolution.

4.1. Middlebury datasets

The Middlebury benchmark consists of two objects: a dinosaur and a temple, as shown in 

Fig. 5. The dinosaur dataset is characterized by smooth and low texture surfaces while the 

temple dataset composes of high texture surfaces. According to the number of images 
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sampled around the object, the standard benchmark datasets can be divided into sparse ring, 

ring, and full datasets. We tested our algorithm on the dino sparse ring, the dino ring, the 

temple sparse ring, and the temple ring datasets, respectively. The ground truth data of the 

two objects were obtained using a high-accuracy laser scanner.

The intermediate and final results for dino sparse ring are illustrated in Fig. 6. The visual 

hull was set as the initial point (Fig. 6(a)). The resulting surface from the first phase 

optimization with resolution 64 × 64 × 64 is shown in Fig. 6(b). It was a coarse 

approximation of the object's actual surface. Further optimization on the 128 × 128 × 128 

volumetric grids generated a more accurate result as shown in Fig. 6(c). The resulting 

surface was further refined by the second phase optimization on triangle mesh as shown in 

Fig. 6(d). The same intermediate and final results for the temple sparse ring dataset are 

illustrated in Fig. 7.

For dino ring and temple ring datasets, the reconstruction procedure is similar to that for 

dino sparse ring and temple sparse ring. Due to limited space of the paper, only final results 

for these two datasets are shown in Fig. 8.

The proposed method was also quantitatively evaluated based on two performance 

indicators: accuracy and completeness. These two indicators are used to describe how close 

the reconstructed surface S is to the ground truth of surface, and how much of the ground 

truth is modeled by S, respectively. The accuracy threshold was set to 1.25 mm and 

completeness threshold was set to 90% in these evaluations. The accuracy and completeness 

of our results for temple ring, dino ring, temple sparse ring, and dino sparse ring data sets 

are listed in Table 2. All these evaluation results are available publicly on the Middlebury 

evaluation page [37]. We also compared the proposed method with a variety of methods2 

listed in evaluation page. Due to the limited space, we only show the results for dino sparse 

ring and dino ring in Fig. 9. The good performance of dinosaur dataset demonstrated our 

method is suitable for objects with low and smooth textures. Furthermore, we selected 

stereo-silhouette based methods in the evaluation list and compared them with our method 

as shown in Table 2. Since some reconstruction results were not reported by authors on 

certain datasets, we labeled them as ‘×’. From the comparison results, it can be seen that the 

proposed method achieves good performance on accuracy and completeness among all the 

datasets. For dino sparse ring and temple sparse ring datasets, the proposed method 

outperforms other methods. As shown in Table 2, more observed images can generate more 

accurate reconstruction. Thus, the accurate 3D reconstruction using dino sparse ring and 

temple sparse ring dataset are more challenging. The high ranks of our method on the dino 

sparse ring and temple sparse ring datasets indicate that this method is very competitive in 

3D reconstruction using datasets with sparsely sampled viewpoints.

To demonstrate the influence of the silhouette reprojection error, we removed the energy 

term of silhouette reprojection error from the energy function for the two phases of the 

optimization by setting λ to 0, respectively. For the first phase optimization, we assumed 

that the initial surface was the visual hull. As shown in Fig. 10, with the increase of iteration 

2These methods that we used in the experiment were reported in the evaluation website by the time of this paper submission.
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steps, the surface was obviously over-smoothed. For the second phase optimization, we 

assumed that a good initial surface had already been obtained from the first phase 

optimization. The reconstructed results were compared with the results which includes 

energy term of silhouette reprojection error in the optimization procedure, as shown in Fig. 

11.

4.2. Other datasets

To further evaluate the proposed method, we applied our algorithm to several other public 

datasets: twins [25], Beethoven [38], bunny [38], bird [38] and captain [20]. The final 

experimental results with these datasets are illustrated in Fig. 12. Groundtruths for these 

datasets were not available, and thus qualitative evaluation of appearance of the 

reconstruction results was adopted in the experiments.

Each of the twins and captain datasets include 36 high resolution images of a compact, 

smooth and low textured object which was captured by using a fixed camera and a turntable 

where the object was posed. The experimental results in Fig. 12(a) and (b) indicate that the 

depth concavity and small protrusion on the objects have been well recovered. The 

Beethoven, bunny and bird datasets include 35, 36, 21 images, respectively. They were 

captured by a set of synchronized cameras. The Beethoven dataset presents textureless 

surface, and the bunny dataset presents homogenous/smooth surface. The results on these 

two datasets are shown in Fig. 12(c-d). The proposed method integrates surface 

regularization in the energy function, and thus is able to handle noise and outliers 

effectively, even for the textureless cases. The bird dataset includes only 21 images of 

highly textured images (Fig. 12(e)). The small protrusion such as the wings, claws and head 

of bird model affect the border of predicted silhouette images, and thus the silhouette 

reprojection error prevents them from being over-smoothed. On the contrary, some details 

of feathers were not kept. The reason may be that these small details do not affect the 

consistency of silhouette thus minimizing the silhouette reprojection error cannot prevent 

them from being smoothed.

4.3. Limitations and future work

There are some limitations of the TwGREM. First, the main assumption of TwGREM is that 

silhouettes have been accurately segmented. However, for some scenes, such as outdoor 

scenes, it is probably difficult to accurately segment silhouettes based on images. The 

inaccuracy of silhouettes will affect the quality of reconstruction. In the future, we will put 

the algorithms of silhouette segmentation and 3D reconstruction into one unified framework. 

In other words, we use the reconstructed 3D model to guide the segmentation of silhouettes 

and then use the refined silhouettes for better 3D reconstruction. Second, the main time 

consume of the algorithm is on the second phase optimization. To refine a high-resolution 

model, the each evolution step should be small and thus convergence of algorithm is slow. 

For dino ring, TwGREM takes 20 minutes on the first phase optimization and takes about 70 

minutes on the second phase optimization. Because the computation step for each vertex is 

independent, it is feasible to perform the computation of each vertex on GPU kernels using 

CUDA parallel strategy.
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5. Conclusion

In this paper, we proposed a two-phase optimization method for generalized reprojection 

error minimization (TwGREM). First, a new energy function is formulated based on 

minimizing the generalized reprojection error, which integrates both stereo and silhouette 

cues. This function can be effectively minimized using a convex relaxation of the model on 

3D volumetric grids, and then refined using surface evolution on a triangle mesh. TwGREM 

can reconstruct regions with concavities and protrusions, and is robust against initialization. 

When compared with the state-of-the-art methods, TwGREM is especially competitive in 

data with smooth textures and sparsely sampled views. Moreover, due to both implicit and 

explicit representations of surface are used in the optimization procedure, TwGREM is able 

to produce high-resolution and high-quality 3D reconstruction effectively, adaptive to 

surface topology and suitable for GPU implementation with a low memory requirements.
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Appendix A

A.1. Deriving evolution equation defined in Eq (17)

The surface estimated from the first phase optimization of TwGREM is still a coarse 

approximation of the true surface of 3D object. This is because of the limitation of 

volumetric method. It has a large memory requirements for the high-quality surface 

reconstruction. On the contrary, mesh-based method can reconstruct the coarse surface in a 

high-quality with much less memory requirements, and is ideal for surface refinement. The 

purpose of our evolution equation is to iteratively deform the current surface to the true 3D 

surface. The deformation of surface can be implemented by minimizing the generalized 

reprojection errors in gradient decent manner. In this process, we first estimate the derivative 

of the energy function (Eq. (7)) with respect to 3D surface point x:

Then based on the Euler-Lagrange equation, the evolution equation can be derived as:

where μ, β and ω are derivative of stereo reprojection error term, silhouette reprojection 

error term and smoothness term, respectively. Because the surface S is represented using 

triangle mesh M, the evolution equation can be rewritten as:
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where xvi is the vertex of triangle mesh M. To add the stability of evolution, we replace the 

μvi with , which is defined in Eq. (18).

where  is a vertex in the neighborhood of vertex vi on the triangle mesh M. Wvj 

is the weight for each vertex . Eq. (18) is a weighted L1 minimization problem 

which can be efficiently estimated by weighted median.
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Highlights

• A generalized reprojection error is proposed to fuse stereo and silhouette cues.

• The method composes of convex optimization and mesh-based surface 

refinement.

• Insensitive to initialization and scalable for high-resolution reconstruction

• Good performance for data with smooth texture and sparsely sampled 

viewpoints
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Fig. 1. 
Definition of generalized reprojection error. (a) Reprojection error defined using different 

viewpoints (stereo reprojection error). (b) Reprojection error defined using a single 

viewpoint. (silhouette reprojection error).
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Fig. 2. 
Illustration of silhouette reprojection error. (a) Observed image. (b) Predicted image 

generated by projecting (a) to an over-smoothed surface. (c) Silhouette image of (a) via 

image segmentation. (d) Binarized image of (b). The main difference between (a) and (b) 

can be observed on the boundary regions of 3D surface projection. The comparison between 

(c) and (d) shows a significant inconsistency of (a) and (b).
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Fig. 3. 
Overview of TwGREM.
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Fig. 4. 
Illustration of surface visibility. (a) Visible parts of surface for each image: Si for image Ii 

and Sj for image Ij.  is the shared visible part for image Ii and Ij. (b) One particular 

part of the object (e.g., P1) can only be seen by some of the cameras (e.g., C5, C6, C7) due to 

occlusion.
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Fig. 5. 
Middlebury benchmark: dinosaur and temple.
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Fig. 6. 
Experimental results on the dino sparse ring. (a) The visual hull. (b) First phase 

optimization on a 64 × 64 × 64 volumetric grids. (c) First phase optimization on a 128 × 128 

× 128 volumetric grids. (d) Second phase optimization on triangle mesh.
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Fig. 7. 
Experimental results on the temple sparse ring. (a) The visual hull. (b) First phase 

optimization on a 64 × 64 × 64 volumetric grids. (c) First phase optimization on a 128 × 128 

× 128 volumetric grids. (d) Second phase optimization on triangle mesh.
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Fig. 8. 
Reconstruction results on dino ring and temple ring.
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Fig. 9. 
Comparison of accuracy (acc.) and completeness (comp.) with methods listed on the 

Middlebury evaluation page (until April, 2014) for dino sparse ring (a-b), dino ring (c-d), 

respectively.
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Fig. 10. 
Influence of silhouette reprojection error in the first phase optimization. The energy term of 

silhouette reprojection error was removed by setting λ to 0. With the visual hull as an initial 

surface, the surface was over-smoothed while the number of iteration m increases. (a-d) are 

the reconstructed surface of dino sparse ring when m = 500, 1000, 2000, 4000, respectively.
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Fig. 11. 
Influence of silhouette reprojection error in the second phase optimization. (a) is the 

reconstruction result of dino sparse ring by including the silhouette reprojection error in the 

energy function. (b) is the reconstruction result of dino sparse ring without using the term of 

silhouette reprojection error by setting λ to 0. (c) One of silhouette images in 16 viewpoints. 

(d) Predicted silhouette image generated via surface (a). (e) Predicted silhouette image 

generated via the surface (b). (f) The inconsistent regions of (d) and (c). (g) The inconsistent 

regions of (e) and (c).
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Fig. 12. 
Images and 3D reconstruction results of several public datasets: (a) twins, (b) captain, (c) 

Beethoven, (d) bunny, and (e) bird.
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Algorithm 1

First phase optimization of TwGREM.

Input: a set of observed images and silhouette images.

Output: the reconstructed surface.

Initialization: u ← φ, n, g̃ and f̃ are calculated according to the visual hull.

        Do

    1. Minimize Eq. (11), according to Eqs. (14)-(16)

    2. Extract a triangle mesh to represent reconstructed surface using GPU-based marching cubes algorithm.

    3. Generate predicted images according to reconstructed surface, and update g̃ and f̃.

    While |E(Sm + 1) – E(Sm)| < ε, where ε is a small positive threshold.
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Algorithm 2

Second phase optimization of TwGREM.

Input: a set ofobserved images and silhouette images, an initial surface from estimate of first phase optimization.

Output: the reconstructed surface.

Initialization: nvi, μvi

min
 and βvi are calculated according to initial surface.

        Do

    1. Evolve the triangle mesh with a small time step t according to Eqs. (17)-(19).

    2. Generate predicted images according to reconstructed surface, and update nvi, μvi

min
 and βvi for each vertex of triangle mesh.

    While |E(Sm + 1) – E(Sm)| < ε, where ε is a small positive threshold.
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Table 1

Datasets used in experiment.

Dataset Number of images Resolution Time (minute)

Dino sparse ring 16 640 × 480 41

Temple sparse ring 16 640 × 480 49

Dino ring 48 640 × 480 90

Temple ring 47 640 × 480 113

Twins 36 2008 × 3040 140

Beethoven 33 1024 × 768 75

Bunny 36 1024 × 768 75

Bird 21 1024 × 768 63

Captain 36 3088 × 2056 150
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Table 2

Quantitative comparison with the related methods on Middlebury datasets.

Methods Datasets Dino sparse ring Dino ring Temple sparse ring Temple ring

Acc.(mm) Comp. (%) Acc.(mm) Comp. (%) Acc.(mm) Comp. (%) Acc.(mm) Comp. (%)

TwGREM 0.45 (1st) 98.5 (2nd) 0.39 (2nd) 99.1 (4th) 0.68 (1st) 94.7 (3rd) 0.66 (3rd) 98.0 (4th)

Hernandez [25] 0.6 98.5 0.45 97.9 0.75 95.3 0.52 99.5

Song [20] 0.54 95.5 0.38 99.4 × × 0.61 98.3

Gargallo [28] 0.76 90.7 0.6 92.9 1.05 81.9 0.88 84.3

Delaunoy [29] 0.89 93.9 × × 0.73 95.9 × ×

Vogiatzis [18] 1.18 90.8 0.49 96.7 2.77 79.4 0.76 96.2

Kolev2 [22] 0.53 98.3 0.43 99.4 1.04 91.8 0.72 97.8

Kolev3 [27] 0.48 98.6 0.42 99.5 0.97 92.7 0.7 98.3

Sinha [21] × × 0.79 94.9 × × 0.69 97.2
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