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1. Introduction

This article refers to a new group of cameras using the principle of Time
of Flight (TOF). They belong to the class of so-called range cameras, that add
depth information to 2D images. Two types of TOF cameras are currently
used. A first group uses a modulation wave of a near infrared light source (NIR
wavelength = about 1 pum). For such systems each pixel on the TOF sensor is
able to measure the distance D to a single world point by means of a phase shift
calculation. In contrast, a second group of TOF cameras is directly based on
the time needed for a light pulse to travel back and forth to a world point at a
distance D.

Both TOF camera types satisfy the same geometric model: every pixel pro-
vides a measurement of a distance D (in world units) to the detected world
point, with an actual accuracy (expressed as 60) of about 15 mm/m (Figure 1).
Unfortunately, most current TOF cameras suffer from a low resolution, dis-
turbing the possibility for sharp feature detection. Recently, some high spatial
resolution types appeared on the market (up to 1024 by 1280), but still these
can be considered as exceptional. Furthermore, the cost for a higher pixel den-
sity is often a reduction of the accuracy of the depth measurements, due to
e.g. multipath errors and light correlation or “wiggling” errors ([1, 17]. For an
overview of the state of art of these range cameras we refer to [16].

Due to the availability of depth information, much simpler procedures arise
for computations regarding 3D structure and reconstruction. Typical issues
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sensor plane Y

Figure 1: TOF cameras provide range information in the sense that for each pixel capturing
the image of a scene point P we are given the distance (in world units) between P and the
camera centre C.

of classical stereo vision, as there are feature detection, the correspondence
problem, the epipolar geometry, etc...might disappear in the future when the
technology delivers more accurate range cameras. Of course, there is no such
a thing as a free lunch, and the former stereo vision procedures are replaced
by new challenges, e.g. the problem of depth calibration. Indeed, the distance
measurements that are provided by a TOF camera are affected by errors from
different causes. - We refer to [17] for an extensive description of the nature
of these distance errors. Several calibration techniques have been proposed to
remove the systematic TOF errors ([12]), often in concordance with the choice of
a specific error model. For example, in [13] the distance errors are approximated
by B-splines, in [11] look-up tables have been used, while [5] and [6] determine
parameters in a polynomial error model.

But the main share of the intrinsic calibration is the task to map the camera
pixels into a spatial reference frame (relative to the camera). This is called
lateral calibration for range cameras, and it is the subject of this article. Lateral
calibration is a necessary step for obtaining accurate 3D information from the
TOF depth measurements and is analogous to the classical intrinsic calibration
of optical cameras: removing nonlinear lens distortion and determining the
intrinsic parameters (principal point, focal length, aspect ratio). Since most
authors tend to use the classical pinhole model for TOF cameras, the lateral
calibration is commonly done by known techniques in the spirit of [21] (see e.g.
[10, 13]). The current lateral calibration methods for TOF cameras, even if they
use the provided depth information, stick to the traditional calibration grid or
chess pattern (implying corner detection etc.) (e.g. [2, 15]). Several publications



use a parallel setting that combines an accurately calibrated 2D-camera with
a TOF camera, which offers us besides data fusion also the opportunity to
calibrate the TOF camera ([7, 14, 20]).

However, there are two important drawbacks for using the classical chess
patterns for calibrating TOF cameras.

1. The detection of corners is not reliable for low resolution sensors, especially
for slanted or distant positions of the calibration board ([8]).

2. Feature extraction in TOF images is very difficult and unstable for certain
materials, certainly when the amount of reflected light is small and the
contrast is bad ([9]).

This article has two main purposes:

1. We prove that the lateral calibration of a TOF camera can be done without
feature detection and without preparing calibration objects, only using
images of flat surfaces. In [19] the same conclusion has been obtained,
albeit by a different calibration algorithm. In this article we present an
efficient probabilistic optimization (section 6.2) that can be validated and
that can compete with state-of-the-art calibration methods (section 7.2).
Furthermore, we obtain the theoretical result that provides deterministic
formulas for the intrinsic (pinhole) parameters by means of one or two
depth images of a flat surface (section 4 and section 6.1).

2. We suggest to replace the pinhole model and its calibration matrix K
by a parameter-free pixel map, the internal radial distance map (IRD)
(Figure 2). In principle, this IRD represents the depths of the sensor pixels
w.r.t. the camera centre, but they also have the potential to compensate
errors (such as lens distortions or structural depth errors). Up to a global
factor the IRD can be computed by means of a system of linear equations
and it is the key of our theoretical calibration results (section 4). As
a motivation for our proposal, we show in section 5.3 how to perform
planar segmentation of depth images by means of this IRD (up to scaling),
without determining the calibration matrix K.

In section 2 we introduce the IRD d that attributes to each each pixel (u,v)
the internal distance d(u,v) between the camera centre C' and the sensor point
Puv associated with (u,v). Section 2 elaborates the relation between the IRD
d and the classical calibration parameters of the pinhole model. In addition, in
section 3 we show conversely how the calibration matrix K can be computed
from the IRD d, even in case this pixel map d is only known up to a global
scale factor. As a matter of fact, the internal distance map d represents the
intrinsic calibration of a TOF camera in a more natural way than the traditional
calibration matrix K does. Indeed, given a TOF image with depth D(u,v) in
each pixel (u,v), the ratios d/D can be seen as a scale factor between the
homogeneous camera coordinates of the image point p and the 3D-coordinates
of the world point P. Besides their importance in reconstruction tasks, the
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Figure 2: Internal radial distances associated with the pixels of a camera sensor.

d/D-ratios appear to be the key values in other applications such as in image
segmentation ([18]) or in the computation of surface normals ([16]).

Due to the coplanarity constraint as presented in [18], we obtain an inter-
esting theoretical result stating that the lateral calibration of a TOF camera
(finding the IRD d up to a global factor) can be done by a linear deterministic
method using two images of a plane (section 4) or a quadratic deterministic
method using only one image of a plane (section 6.1).

In the synthetic experiments of section 5 we simulate the linear method for
computing the calibration matrix K of a pinhole TOF camera. The accuracy
and precision of the obtained intrinsic parameters increases with the number of
considered images of flat surfaces (as expected) but also with decreasing camera
resolution. The good performance of our method for TOF cameras with low
resolution is interesting, because exactly in these cases the classical calibration
techniques using feature detection are less successful. Furthermore, we observed
that the determination of the global scale factor of the IRD d is a sensitive step in
our calibration procedure. On the other hand, this global factor may be needed
for finding the calibration matrix K, but is not necessary in certain applications.
We illustrate this in section 5.3 where we use the coplanarity constraints of
section 4 in two experiments for planar segmentation, one with simulated and
one with real data. In these experiments we obtained the IRD d (up to a global
factor) directly as solution of our linear method, without computing K. We
refer to [18] for the presentation of a planar segmentation algorithm that relies
on the same coplanarity constraints, but assuming an initially calibrated TOF
camera such that the IRD d was obtained by means of the available matrix K.



Regardless of the philosophy of this article viewing the lateral calibration
of a TOF camera as determining a (homogeneous) IRD d, there still might be
interest for determining the classical calibration matrix K anyway. The method
of section 4 provides a linear deterministic method using at least two images of
a plane, while section 6.1 provides a quadratic deterministic method using at
least one image. Predicted by our simulations, these deterministic methods are
not very precise yet and have limited practical use. Only the linear method,
applied for a low resolution camera (65 x 50, section 5.2), and in combination
with a non-linear optimization, could deliver an effective calibration result.

Finally, in section 6.2 we design a numerical optimization for determining
simultaneously the intrinsic parameters and the extrinsic plane equation (of the
viewed flat surface) by means of a Mazimum Likelihood Estimation (MLE).
Simulations as well as experiments with real images (after removing distortion)
prove that this method is both accurate and stable (section 7). Furthermore, it
stands comparison with state-of-the-art calibration methods.

2. Internal Radial Distances versus the Calibration Matrix

Let C be the centre of a Time-of-Flight camera. In other words, the TOF
sensor provides range information that can be presented as the distance D(u, v)
between this (virtual) point C' and the world point P that is observed in the
pixel associated with image coordinates (u,v). Now we introduce the internal
radial distance map (IRD) d ([16, 18]). This map provides the distances from the
centre C' to the pixels of the TOF sensor in pixel units!. It can be represented
as a function on the pixel grid (Figure 2):

d(u,v) = [|C = pu| (1)

where p,,,, is the pixel with coordinates (u,v). Notice that the IRD function d is
an intrinsic property of the TOF camera, independent from its position in the
world, and independent from the received signal as reflected by the environment.

If P is a world point that is recorded by a TOF sensor in a pixel associated
with the image point p,, = (u,v), the TOF mesurement D(u,v) and the IRD
d(u,v) can be easily combined to recover P from p,,. We perform this recon-
struction in the standard camera reference system with origin in the centre C,
having Z equal to the focal axis, while X and Y are parallel to the pixel image
axes U and V, using world units. If P = (z,y, 2) and pu, = (2p, Yp, 2p) in this
coordinate system then (Figure 3):

X X

D p
vil=Z1 W (2)
A Zp

In case the aspect ratio of the sensor differs from 1, we agree to measure d(u,v) in
horizontal pixel units.



On the other hand, in the classical pinhole model (neglecting lens distortions)
the intrinsic camera parameters are given by the calibration matrix K:

fs w
K=\ 0 7f v (3)
0 0 1

with focal length f in horizontal pixel units, aspect ratio 7, skewness s and
pixel coordinates (ug,vg) for the principal point. Observe that for each pixel
point p,, on the sensor the 3D coordinates in the camera reference frame can
be computed by

Ty U
Yp =f- K| v (4)
Zp 1

So, both the IRD d and the calibration matrix K represent the intrinsic
camera settings, and they are related by the following formula:

u
du,v) = f-||K7 | v (5)
1
Puv ®
D(u,v)
u -
' U
: >
v ) puu; Z
d(u,v) \‘~>~ .
,55 f
c X

Figure 3: The values for u,uo, f and d(u,v) are measured in horizontal pixel units (hpu), the
values v and vg in 7Xxhpu, and D(u,v) in world units (used in the XY Z-reference).

From now on we assume rectangular pixels (s = 0). In this case Eqn.5 is
simplified as (Figure 3)

o) = (=2 + L1 g ©
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and Eqn. 2 can be written as

vV — 1

) (7)

Puv: (U_UOa
v

The presentation of Eqn.5 serves perfectly well to compute the IRD d from a
given calibration matrix K. So, the lateral calibration of a TOF camera provides
the IRD d, which in its turn is useful for reconstruction purposes (Eqn.2) or other
applications (e.g. image segmentation in [18]).

In section 3 we will show how to obtain the pinhole calibration K once
we know the IRD d. The equivalence between K and d suggests that lateral
calibration can be alternatively accomplished by the direct computation of the
IRD d, without first determining the calibration matrix K. Actually, we will
present such a method in this article. \But why should we bother to search
for the individual internal distances d(u,v), which comes down to computing
H x B values (corresponding to the camera resolution, one value for each pixel)?
The classical pinhole calibration only needs 3 to 5 parameters and generates the
whole IRD (Eqn. 5). But yet, we have some motivations to compute the d(u, v)
in Eqn.7 by a direct procedure instead of by means of Eqn.6.

1. Because a TOF camera is a device that both transmits as receives signals,
the pinhole model might be less adequate. The IRD might be generated
by another model. In fact, this map of pixel distances can be regarded
as a parameter-free calibration, providing more accurate reconstructions
when it is directly obtained from measurements, rather than generated by
the calibration matrix K.

2. The IRD might compensate other effects that are not taken into account
by K, such as radial distortion, or the systematic “wiggling” errors that
are known to be present in TOF measurements ([1]). In this way, the IRD
could be used as a parameter-free model in the spirit of [3, 4] , generalized
to a model covering both lateral as depth calibration.

3. From our simulations and real experiments we observed that in many
cases we succeed to determine the internal distances d only up to a global
scale factor, which we will refer to as a homogeneous IRD (HIRD). In
these cases, the estimation of the intrinsics (especially the principal point)
appear to become inaccurate. However, some applications do not need
the exact scale factor, and only need the HIRD. For example, applications
that are supported by the planarity test of section 4 ([18]).

3. Obtaining the calibration matrix K from the IRD

Since we assumed rectangular pixels (s = 0), the squared IRD turns out to
satisfy a simple relation for three equidistant pixels on a horizontal or verti-
cal line. Indeed, using Eqn. 6, we can consider three equidistant pixels on a
horizontal line, (uy,v), (u2,v) and (us,v), and write down the following three



expressions for the squares of d; = d(u;,v):

(w1 —u)? + (v —w)*/m? + 2 = d& (8)
(uz —uo)® + (v —wo)?/T* + f* = di (9)
(uz —ug)* + (v —wo)? /T2 + f2 = d3 (10)

Next, if we combine these equations as follows: (8) = 2-(9) + (10) then, with
U3 — Ug = U — U = Au:

B2+ & =8 — 23 + B 2(Au) (1)

only depends on the space between these equidistant horizontal pixels, and
not on their absolute positions. In particular, if we consider three consecutive
horizontal pixels (Au = 1):

di —2-dj+d3 =2 (12)

In a similar way, we can consider three equidistant vertical pixels: (u,wv1),
(u,v2) and (u,v3), with v —ve = vy —v1 = Av. Here we observe (d; = d(u, v;)):

2 (d? — 2 d3 +d3) = v? — 203 + 03 = 2(Av)? (13)
which simplifies for consecutive pixels (Av = 1):

di —2-ds+d5 =2/(1?) (14)

In section 2 we observed that, if wanted, the knowledge of the IRD enables
us to obtain the calibration matrix K in the classical pinhole model. Now, under
the restriction of rectangular pixels (s = 0), the previously obtained quadratic
relations give rise to explicit formulas for the intrinsic parameters of the TOF
camera, even if IRD is only determined up to global factor: a homogeneous IRD
(HIRD).

Indeed, let 0 be a given HIRD. So, the exact IRD d is proportional to d:
d = ad. Then we can proceed as follows

1. Determine the global IRD factor a from three consecutive horizontal pix-

els: 5
2
== 15
2200+ (15)
Consequently, from now on the IRD d is known to us.
2. Determine the aspect ratio 7 from three consecutive vertical pixels:
2
e (16)

d?—2-d3+d3



3. Determine the first coordinate uq of the principal point from two horizontal
pixels, (u1,v) and (usz,v). This can be done by subtracting Eq.8 from Eq.9:

ui —ud — upAu = di — d3 (17)

4. Determine the second coordinate vg of the principal point from two vertical
pixels, (u,v1) and (u,vq):

v% — v% — 200Av = 72(d§ — d%) (18)

5. Finally, the focal length f can be obtained from any pixel (u,v), with
d=d(u,v):
fP=d = (u—up)® + (v —vo)*/7° (19)

4. A linear method for determining the HIRD: theoretical

Because the IRD map represents the distances from a virtual camera centre
to the sensor plane, the rescalings HIRD represent the radial distances to arbi-
trary frontal planes (perpendicular to the focal axis). In this section we assume
the availability of TOF images obtained from the reflection by one or more flat
surfaces (e.g. walls). We will prove that two such images (of non-parallel planes)
enable us to compute the (synthetic) TOF images of these frontal planes by solv-
ing a system of linear equations. From this HIRD we can obtain the intrinsic
camera parameters, at least theoretically (section 3).

To achieve this goal, we will compose a system of homogeneous linear equa-
tions in the unknowns d(u,v). If the image of this planar object does not
occupy the whole sensor, then our equations will only contain the unknowns
d(u,v) for the pixels p,, that are covered by this image part, yielding only
a partial HIRD. We use linear equations of the d/D-ratios for coplanar and
collinear point sets. For generalizations and proofs of these equations we refer
to [18]. Let Py, P2, P, Py be points on a flat surface, observed by a TOF sensor
with distances Dy, Do, D3, D4, and with internal radial distances dy,ds, d3, dy
for the corresponding pixels p1, po, p3, ps respectively. Then, if these four pixels
make a rectangle in the image (ordering py,...,ps in counterclockwise sense):

G -
Dy Dy Ds Dy
In case py, p2, p3 are three equidistant collinear points in the image (with py the
midpoint), then:

— 2= 4 = =0 (21)

A domino is a collection of 6 pixels, arranged in two rows of three pixels:

P1 = (’LL,’U) P2 = (U+1,U) p3 = (U-I—Q,’U) (22)
pa=(u,v+1) ps=w+1l,v+1) ps=(u+2,v+1)



If the six pixels of such a domino receive the reflected signal of a flat surface
then we can apply the coplanarity constraint 20 of section 4. More precisely,
for each choice of 15 possible 4-tuples out of 6, we have

Lemma 1. The 15 coplanarity equations of a domino have rank 3, and are
generated by

dy ds ds
Rt Wi BT A
D, °D, "D, 0
d d d
24925 L T6

D, D, D, D

This lemma describes a special case of a general procedure to generate all
coplanarity conditions of a pixel grid by one rectangular coplanarity constraint
(Eqn.20) and some well-chosen midpoint collinearity constraints (Eqn.21). If
the complete set of H x B pixels has been covered by the image of a plane, then
we can write down (H4B ) coplanarity constraints. However, this system of linear
equations appears to suffer from many duplicates and redundant equations.
More precisely:

Proposition 2. The system of homogeneous linear coplanarity equations for
the IRD d of a sensor of H - B pizels has rank equal to H - B — 3.

Proof. First notice that every arbitrary plane o can be used to construct a
solution of this system of equations, not only the sensor plane. Indeed, if d(u, v)
is equal to the distance from the camera centre C to the point of intersection
of the central ray through this pixel p,, with the plane «, then the coplanarity
constraints are also valid for this d. In particular, we can choose a equal to the
plane determined by the flat object that has been photographed, yielding the
solution d(u,v) = D(u,v).

This means that the solution space of the homogeneous linear system con-
tains the subspace corresponding to all choices for o. Because each such plane
is determined by the arbitrary choice of three radial distances di,ds,ds, this
subspace has dimension 3. As the number of unknowns equals B - H, the rank
of the system is at most H - B — 3.

In order to prove the proposition it suffices to find H - B — 3 linearly in-
dependent coplanarity constraints. To this end we start with a rectangular
constraint associated with the four pixels located at the left top of the image
(pixels (0,0),(1,0),(0,1),(1,1)). Next, for each row v (0 < v < H — 1), let us
consider B — 2 midpoint constraints associated with consecutive triples of pixels
(u,v), (u+ 1,v), (u+2,v), with 0 <« < B — 3. Furthermore, for the first two
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columns we consider H — 2 midpoint constraints as well, using three vertical
consecutive pixels: (i,v), (i,v + 1), (i,v+2), withi=0,1and 0 < v < H — 3.
In total, we considered 1 square condition and H(B —2)+ 2(H —2) = HB — 4
midpoints constraints. These HB — 3 equations can be easily seen to be lin-
early independent, because they span the whole pixel grid in a shellable fashion.
A system of equations is called “shellable” if there is at least one unknown
that occurs in exactly one equation and if this property recursively holds after
deleting the involved equation. Indeed, in our case, the pixels in the rightmost
column are covered by just one midpoint constraint. So, we can “shell off” the
pixels column per column, from right to left, until we are left with the first two
columns. Finally, the pixels of the first two columns are shellable from bottom
to top. Observe that a shellable system of equations is linearly independent.

|

So, one image of a wall or other flat surface is not sufficient to determine the
HIRD of our TOF camera. More “plane images” do not improve this situation
if the planes are parallel to each other. Indeed, if the plane-camera position in
the second image is parallel to the first image, then the second TOF distances
D’ are proportional to the first one: D’(u,v) = k- D(u,v), for a constant k.
Consequently, the coplanarity constraints set up for D’ are equivalent to those
set up for D. On the other hand, the coplanarity constraints for a non-parallel
image always increase the rank of the system by 2. We conclude in:

Proposition 3. The system of homogeneous linear equations for the IRD d of
a sensor of H - B pixels, that is obtained from the planarity constraints of two
1mages of a flat surface covering the whole pizel grid has rank equal to

e H - B —3, if both planes or camera positions are parallel.

e H-B —1, if both planes or camera positions are not parallel.

Remark: The system of linear equations of Proposition 3, combined with
the closed formulas of section 3, provides a theoretical procedure for calibrating
a distortionless, noise-free pinhole model of a TOF camera by means of two
images of non-parallel planes.

5. A linear method for determining the HIRD: practical

5.1. Simulating the linear method

In this section, a simulation of the linear method presented in section 4 is
performed. We simulate a TOF cameras with resolutions 12 x 10 pixels (dif-
ferented resolutions have been investigated as well). We construct 8 images
of non-parallel planes intersected by the focal axis at a distance in the range
between 3 m and 5 m, and compute the HIRD using 2, 4, 6 or 8 planes. The

11



angles of view for the simulated cameras are kept identical for the different reso-
lutions to guarantee that the same area of the observed planes is covered by the
different cameras. Once we obtained the HIRD from the system of equations
as described in section 4, we compute the pinhole intrinsics by the procedure of
section 3.

The radial distances D of the TOF image are simulated by disturbing the exact
values by Gaussian noise. This noise is gradually increased by letting the stan-
dard deviation o vary from 0 mm to 5 mm. In order to achieve the restricted
noise level of 0 = 5 mm for a distance of about 4 m it is assumed that the
used TOF image is the result of the mean or the median of a shoot of 50 to 100
images.

The results for the 12 x 10 sensor are shown in Figure 4 as the average
percentage errors between the obtained calibrations and the true values, over
100 trials. The standard deviations are also shown. Note that the results are
given in logarithmic scale, meaning that a value of 0 corresponds to 1% error
and a value of 1 corresponds to 10%.
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Figure 4: Percentage errors obtained for varying noise levels and number of calibration planes,
for a simulated 12 x 10 sensor.
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Observations:

e As expected, higher levels of noise lead to worse results. Also, more cali-
bration planes improve the results.

e The estimation of the principal point is more sensitive to noisy measure-
ments than the estimations of both the focal length and the aspect ratio.
These present errors below 10% when using more than two planes in a
12 x 10 TOF sensor, even for the highest noise level.

e For the highest noise level, the estimation of the principal point in a 12x 10
TOF sensor is inaccurate even when using 8 calibration planes.

e The previous observations have also been made in the experiments with
different sensor resolutions (8x6, 12x10, 24 x20, 65x50). Furthermore, we
observed a clear drop of accuracy of the estimated calibration parameters
for increasing resolution. For the highest resolution, acceptable results
were obtained only when ¢ < 1 mm, and this relative to a simulation
distance of 3 to 5 m. We believe that the reason for this is that the relative
errors on the radial distances with respect to the inner pixel distances
increases with the resolution.

The noise level and resolution of the simulation show the practical limitation
of our linear method for calibrating a TOF camera. Therefore we introduce two
actions that improve the procedure. First, for higher resolutions, we can use
a subgrid of the sensor pixels. This enlarges the distances between the points
that are combined in the same equation (in space as well as on the sensor),
decreasing the impact on errors on radial distances. In table 1 we give the
results of a simulated 65 x 50 sensor, where we used non-consecutive pixels in
Eqn.20 and Eqn.21 (skipping 10 pixels, in vertical and horizontal direction).
We selected 4 planes from the previous simulation (at a distance in the range
between 3 m and 5 m), and assumed a known aspect ratio (7 = 1). Due to
this subgrid idea, a noise level up to o = 0.5 cm seems to be tractable for
this resolution if we wish a reliable computation of the principal point, and up
to 0 = 1.5 cm as far as the focal length is concerned. This performance is
comparable with the observations for the low resolution sensor of Figure 4.

Furthermore, we can improve the linear method by an additional numeri-
cal (non-linear) optimization. The goal is to minimize the error between the
estimated IRD, cz, and the IRD computed using Eqn.6, d:

{40, 0,7, f} = min <d}2 - <(uj —up)? + %;7;’“)2 + f2>)2. (23)

UQ,v0,T, f “=
J

An initialization can be provided by the quadratic equations of section 3. As
shown in table 2, due to this optimization we can significantly increase the
feasible noise level for the simulated 64 x 50 sensor (using the same noisy images
of the 4 virtual planes as in the experiment without optimization), and the gain
in precision is most striking in the computation of the principal point.
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f

Noise Level H up Vo
0 80+0 25+0 32+0
0.002 80.25 +0.58 24.85 £+ 0.78 31.44 + 2.86
0.004 80.05 £1.17 | 24.21 £01.32 | 31.59£5.78
0.006 79.82 +1.87 | 24.54 +£02.59 | 31.84 +7.84
0.0080 80.42 4+ 2.65 23.05£3.26 | 31.11 £11.51
0.010 80.15 £ 2.72 21.49 £4.71 | 31.71 £ 15.98
0.012 77.32+£7.14 | 22.39+£5.06 | 31.74 £ 27.68
0.014 78.40 £ 5.91 18.21 +8.79 | 31.74 £ 26.65
0.016 71.61 £57.03 | 18.27+9.05 | 51.51 +54.78
0.018 76.80 £9.02 | 13.84 +14.25 | 22.78 + 30.02
0.020 62.67+£72.34 | 6.79+ 13.64 | 20.90 + 83.86

Table 1: The lo-intervals for ug, vo and f by simulating a 65 x 50 TOF sensor with increasing
levels of Gaussian noise (o in world unit), by means of a run of 30 trials, using the linear

method on a subgrid with gaps of 10 pixels.

’ Noise Level H f ug Vo
0 80+0 25+0 32+0
0.002 80.30 £0.63 | 23.99+1.20 | 31.66 £+ 2.43
0.004 80.29 £1.18 | 22.32£01.21 | 31.03 £2.80
0.006 80.31 £1.99 | 21.72£01.34 | 30.70 £ 2.58
0.0080 81.31 £2.48 | 20.70+0.85 | 30.28 +2.30
0.010 81.77£2.73 | 20.25+£0.91 | 29.87£3.16
0.012 82.21£4.74 | 20.31+£0.84 | 30.44 +4.58
0.014 83.14 £4.86 | 19.97+£1.04 | 30.17 £ 3.46
0.016 74.13 +£21.56 | 19.75+0.99 | 31.29 +2.27
0.018 84.11£7.48 | 19.62+£1.23 | 29.56 £ 2.06
0.020 69.24 +£27.97 | 19.024+1.19 | 30.63 £ 3.61

Table 2: The lo-intervals for ug, vg and f by simulating a 65 X 50 TOF sensor with increasing
levels of Gaussian noise (o in world unit), by means of a run of 30 trials, using the linear
method on a subgrid with gaps of 10 pixels, followed by the non-linear optimization given by
Eqn.23.
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5.2. Real calibration experiments by means of the linear method

If our concern is the computation of the pinhole calibration parameters then
the simulations of section 5.1 already proved that the linear method is not
precise nor accurate for realistic noise levels (o equal to 1% of average TOF
measurements). Furthermore, we observed that the results get worse for higher
sensor resolutions, on account of the decreasing inner pixel distances. The only
reasonable calibration result that we obtained in practice, was for the TOF
camera in our lab with the lowest resolution (IFM 64 x 50). By means of the
strategy given by table 2, leaving a gap of 10 between consecutively processed
pixels and adding a non-linear optimization, we computed that uy = 23.92,
vg = 31.36 and f = 79.35, using 7 distance images of a wall, assuming 7 = 1.
Notice that we did not remove any lens distortion in this experiment, which
seemed to be not necessary, probably due to the low resolution and small FOV.
The manufacturer of this camera type claims a focal length equal to 80, pretty
close to our computed value. Also note that it was not possible to compare
with state-of-the-art calibration techniques like in [21] on account of the low
resolution of this camera, making the corner detection in the luminance image
highly inaccurate, producing absurd values for the intrinsics.

We were not able to repeat this success of the linear method for TOF cameras
with higher resolution, even if we removed radial distortion, even if we used a
sparse subgrid. We conclude that in general, the linear method will only be of
practical use provided at least one of the following conditions:

e The TOF sensors become more accurate.
e We find a more stable method to compute the HIRD.
e We find a more stable method for deriving the intrinsics from the HIRD.

Remark: In section 6.2 we will give an alternative lateral calibration method,
also using the TOF image of a flat surface, also avoiding feature detection, but
without computing the IRD, completely based on a non-linear optimization.
This method will be validated as an accurate calibration procedure, also for
high sensor resolutions (section 7.2).

5.3. Planar segmentation experiments

A major bottleneck in the use of the linear method as a pinhole calibration
tool is due to the scaling of HIRD to IRD. The computation of the scale factor is
unstable, because it depends on the squared inverse of the HIRD. But for some
applications we do not have to go the whole way in calibrating the camera,
as the HIRD seems to be sufficient. For example, the HIRD may be used for
segmenting planar surfaces in TOF images, using the coplanarity condition in
Eqn.20 because it is valid for any scale factor. This idea of segmentation was
explored in [18], but using an alternative calibration method. In this section,
we perform a simulation in the segmentation of planar surfaces using the linear
calibration method presented in section 4.
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The segmentation is performed by computing the coplanarity error using
Eqn.20, and afterwards thresholding the obtained values, as in [18]. The con-
nected regions are identified and each region is assigned a different label, corre-
sponding to a planar surface.

5.8.1. Synthetic data

i 2 3 4 5 8 7 8 8 10

(a) Noise o = 0mm (b) Noise o = 1lmm

X1 X1
1
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1z 3 4 5 8 71 8 iz 3 4 5 8 71 48

(d) Noise o = 0mm (e) Noise ¢ = lmm (f) Noise o = 5mm

Figure 5: Planar segmentation results obtained with a TOF sensor of resolution 12 x 10
pixels. The first row depicts the plane labeling, while the second shows the coplanarity errors
computed for each of the non-boundary pixels.

A test image containing four planar regions is generated by selecting four
planes and computing the radial distances for each plane. For each pixel, the vis-
ible plane is the one that yields the smallest distance. Calibration is performed
using 8 planes, for TOF sensors of different resolutions. For each simulated
TOF sensor, Gaussian noise is added both to the calibration measurements and
the final test image.

We started simulating a TOF sensor with resolution 12 x 10 pixels and
perform the segmentation after injecting different levels of noise. Results are
shown in Figure 5, where both the coplanarity errors and the final labeling are
shown. It can be seen that even for the highest noise level, the segmentation is
nearly perfect. Note that the pixels that yield a coplanarity error higher than a
specified threshold, are not considered for the labeling. This means that, when
noise is considered, these pixels are not labelled as belonging to a plane. In
Figure 6 they are shown in dark blue.

After increasing the sensor resolution, we observed a degrading of the ob-
tained labeling. This is coherent with our previous observation that higher
sensor resolution leads to poorer calibration results (section 5.1). However, for
a 24 x 20 TOF sensor, even at the highest noise level, the method was able to
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correctly identify the four planes. At the highest resolution (36 x 30) of our
simulation, it was possible to segment the planar regions only with a noise level
up to 3 mm. However, given the fact that even for a 24 x 20 TOF sensor the
estimation of the intrinsic parameters is poor under realistic noise levels (sec-
tion 5.1), the segmentation results that we obtained by means of the HIRD are
satisfactory. Consequently, these observations confirm that the HIRD is more
accurately estimated than the intrinsic parameters.

5.3.2. Real data
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(a) Intensity image
(b) Coplanarity error (c) Labeling

20
40
6O

&0

100 . - .
20 40 B0 60 100 120 140

(d) Intensity image

(e) Coplanarity error (f) Labeling

Figure 6: Experiments performed with real data. The coplanarity errors (b) and (e) are used
for computing the labelings (c) and (f), respectively. Pixels in blue represent the absence of
labels.

We used a 110 x 150 PMD nano TOF sensor for performing the real ex-
periments. We acquired 11 images of a flat wall in different viewing angles for
computing the HIRD and tested the planar segmentation on two different im-
ages of a setup with 3 planes. Since computing the HIRD for all the 110 x 150
pixels would have excessive computational costs, we selected pixels in a regular
grid and performed the computation for those. The labeling for the whole image
is obtained using the neighboring pixel labels.

Figure 6 shows the results for the two test images. In Figures 6a and 6d
the intensity images are shown for the same setup observed from two different
views. The coplanarity error is computed for the sampled pixels (Figures 6b and
6e) where it can be seen that higher errors are obtained in areas corresponding
to the plane transitions. This result allows to obtain the labeling in Figures 6¢
and 6f, that show the correct identification of the planes observed by the sensor.

Note that if the sampling of pixels is very sparse, small planar segments
may be missed. However, for TOF sensors with low resolution, this method is
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perfectly adequate.

6. Calibrating a TOF camera by means of one image of a flat surface

In section 4 we saw how to determine the internal radial distances up to a
global scalar (HIRD) by means of a homogeneous linear system composed by
coplanarity equations for at least two plane images. We also showed how the
HIRD yields the pinhole parameters (section 3). In this section we explore the
possibility to carry out the lateral calibration of a TOF camera by means of
only one image of a flat surface. We present two solutions. The first one is a
deterministic procedure, providing formulas for the intrinsic calibration param-
eters (ug,vo, T, f) of a TOF camera using the quadratic equations of section 3.
Although this can be considered as an interesting theoretical result, we observed
a poor performance of this solution in simulations and real experiments. The
second solution uses a maximum likelihood estimation, implying a numerical
optimization. This method appears to be more robust and performs well in
simulations and real experiments.

6.1. Deterministic calibration formulas
Consider four consecutive pixels on a horizontal line:

b1 = ('I.L,’U), b2 = (u+ 170)7 pP3 = (u+2,v), Pa = (’UJ+37U) (24)

with distances D; = D(p;) as measured by the TOF image of a flat surface.
From section 4 we find two linear midpoint equations in the unknown IRD
d; = d(p;). Furthermore, if we assume zero skewness, section 3 provides us from
two quadratic equations. Summing up:

dy dy dy

D—172D—2+D—3 =0 (25)

dy _dy  dy

2 92 4L % 2

Dy D3+D4 0 (26)
di —2d3+d; = 2 (27)
d3—2d3+d; = 2 (28)

Remark. In principle, these four pixels do not need to be consecutive or
lie on a horizontal line, as long as they are equidistant. However, in this case
the relations become a little more complicated, taking the distance r between
the subsequent pixels into account, expressed moreover in u-pixel units, which
might involve the use of the aspect ratio 7.

If we combine Eqn.25 with 27, and 26 with 28 respectively, then we get:

dy ds\? B g2
22 _ 3 ) = 92 _ 3, % 29
(Dz Dg> D2 D! D2 (29)
ds  dz\? d d3 2
2% 22} = 932y o 30
(D3 Dz> DI D2 D? (30)
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Noise Level H € €vp er ey
0.01% 0.30 = 0.25 0.53 +0.46 1.30+1.14 | 0.04 £0.03
0.05% 2.31 +1.40 3.75+ 3.14 6.78 = 5.29 0.44 +0.24

0.1% 10.39 +4.69 | 22.94 +95.52 | 33.18 +97.36 | 1.90 +0.80

Table 3: Percentage errors in ug, vg, 7 and f obtained for varying levels of noise. The noise
levels are a percentage of the average measurements D.

Finally, subtracting these equations from one another gives a straightforward
relation between d3 and d3. In combination with equations 27 and 28, we also
find expressions for d? and d7 in function of d3:

3 2 1 6 3 3 6 6
————— B = (== -2 )R+ —] 61
(D% D2 D2>1 (D% D2 Dz) “(Dg Dz) (81
2 2
=) (32
(D% Dz) (32)
3 2 1 6 3 3 6 6
77777 d? = — = )2 —
(D% D7 DZ) 1 <D§ D? Dg) 3*(195 D%) (33)

One can check that these three relations satisfy the subtraction of the squares
of equations 25 and 26, implying that the original system with equations 25,...,28
suffers from redundancy and can be reduced to an equivalent system with three
equations.

If we consider the next pixel on this horizontal row, ps = (u + 4, v), with
measured world distance D5 and unknown internal distance ds, then we can add
another midpoint and quadratic relation for the triple (ps,ps,ps). These can
be combined to obtain five expressions for the squared IRD, d?,d3,d3, d3, d%, in
terms of the measurements D1, ..., Ds.

In order to obtain an estimation of the intrinsic parameters that uses infor-
mation from the whole IRD, the optimization scheme defined in Eqn.23 is used.
Initialization is obtained by the quadratic equations of section 3.

6.1.1. Synthetic experimental results

Experiments were performed using a simulated TOF sensor with resolution
65 x 50 pixels, principal point (ug,v9) = (30,27), zero skewness (s = 0), focal
length f = 80 pixels and an aspect ratio of 7 = 1.2. We computed the radial
distances D to a pre-defined plane, to which zero-mean Gaussian noise with
different standard deviations was added. We started by using consecutive pix-
els but found the results to be very unstable. Increasing the relative distance
between pixels lead to improved estimations and Table 3 shows the results ob-
tained for the maximum possible horizontal displacement between pixels. As
expected, results degrade with increasing noise. The fact that the estimation
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of vy and 7 is consistently worse may be explained by the occurrence of a mu-
tual compensation. On the other hand, the focal length seems to be accurately
estimated even for the highest considered noise level. At thislevel, the other es-
timations become very inaccurate, suggesting that this method cannot be used
with real images. Indeed, we performed some tests with a real dataset but did
not succeed in obtaining acceptable results.

We observed that increasing the number of calibration images did not provide
better results. Also, for the lowest level of noise, we noticed that even if the
initial estimation is poor, the optimization step leads to the convergence to a
good solution.

6.2. Estimating both the plane and the intrinsic parameters

The method devised in section 6.1 relies on equations whose terms depend
on the squared inverse of the measurements D;. This is the reason why the es-
timation is extremely sensitive to measurement noise, as shown in the synthetic
experiments.

In this section, we propose an alternative method for estimating the intrin-
sic parameter matrix K by means of one image of a flat surface. Rather than
deterministic formulas, the procedure in this section makes use of a numerical
optimization. The main idea is to maximize the probability that the recon-
structed points belong to a planar surface. Besides computing the intrinsic
parameters, the method implicitly estimates the equation of the plane that is
observed by the sensor.

Suppose we have the noisy measurements D; = X; + n;, where X; are the
true unknown values for the radial distances and n; is Gaussian additive noise.
A probability function can be defined as

—5 ZN_ (Xi—D;)?

P(Dla"'vDN):e 27n =t ) (34)
where o2 is the noise variance. The constraint is that the points reconstructed
using X; and the true intrinsics belong to the 3D plane viewed by the sensor.
Defining a plane by Il = [a b ¢ 1]7, it is known that a 3D point (z,v, 2)
belongs to II if it satisfies

ax +by+cz+1=0. (35)

Knowing that a point is reconstructed as in Eqn.7, the plane equation can be
written as

(a(uiuo)+b(vi_v0) +cf> %H:o, (36)

T i, v;)
which can be rearranged as
d(ug, i)

Xi:_(a(ui—uo)—l—b(v’:vo)—l—cf)'

(37)
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If we define a parameter vector as § = [a b ¢ ug vy 7T f], a proba-
bility function can be defined as

2
722\7:1 < d(uiezzl/u ) X Dz)
P(D1,...,Dy|0) = ¢ (ocs =0y 0 202 ) . (39)
and d(u;,v;) is computed as in Eqn.6.
We wish to find the set of parameters 6 under which the data {D;} are most
likely, which can be done using the Maximum Likelihood (ML) method:

é:argmguxP(Dl,...,DNW). (39)

In case there are more calibration images, a similar approach can be consid-
ered. For each added image, 3 extra parameters related to the plane equation
must be estimated. Thus, if we define the parameter vector corresponding to the
calibration image j as 0; = [a; bj ¢; wo vy 7 f], and considering that
the probabilities corresponding to each image are independent, we can redefine
Eqn.39 to include a product of probabilities for all M calibration images:

M
9:argméaxHP(D{,...,D'?VwJ‘), (40)
J

where D{ __y are the measurements corresponding to image j and 6 is now
defined as 6 = [ay b1 e az by co ... ay by ey ug vy T f].

The following section reports a set of experiments using synthetic and real
data that are useful for assessing the proposed calibration method.

7. Experimental Results for the MLE

Two different experiments were conducted in order to assess the precision
and accuracy of the proposed method. The first one is a simulation of a TOF
sensor observing a 3D plane, and the calibration is performed after injecting
different levels of noise in the measurements. Since our intent is to analize the
performance of the method under different noise levels, we perform experiments
using only one calibration image. The second experiment is the calibration of
two real TOF sensors with that acquire several sets of images, each correspond-
ing to a different position of the blank calibration board. We also acquired
images of a checkerboard pattern in order to compare for these TOF cameras
the calibration by Zhang’s method [21].

7.1. Synthetic data

A similar TOF sensor as the one in section 6.1.1 was simulated. The ra-
dial distance D(u,v) from the camera center to the plane II = [1, 1,1, —300]"
was computed for each pixel (u,v), being this the only measurement used for
calibrating the sensor.
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Figure 7: Synthetic validation of the method proposed in Section 6.2. Error distributions
obtained in the estimation of the plane equation and intrinsics over 50 trials for different levels
of noise. The central mark is the median and the whiskers extend to the most extreme data
points the algorithm considers to be not outliers. Errors are given in percentage, computed by
x;giT, where z is the estimated value and zg7 is the ground truth value. As an example,
a value of 0.01 corresponds to 1%.
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The Maximum Likelihood method requires an initialization of the parameter
vector, 0; = [a; b; ¢ wpi vo; T; fi]. The intrinsic parameters (ug;, vo;, %)
were initialized by setting the principal point to the geometric center of the
sensor and the aspect ratio to 1. The initialization f; for the focal length is
computed by a simplified version of the calibration algorithm presented in [19].
More precisely, since the sensor is observing a plane, a reconstructed line of
pixels must originate a set of collinear 3D points. Thus, the focal length f; is
computed by reconstructing the horizontal middle row of image pixels using all
integer values for f; between 50 and 300. The value of f; corresponding to the
set of points that yields the smallest collinearity error is considered for initial-
ization. Using these initial intrinsic parameters, the 3D points are reconstructed
and a 3D plane is fitted using a standard fitting algorithm. The parameters of
this estimated plane are used as initialization values for a;, b; and ¢;.

Gaussian noise with zero mean was added to the measurements D, with a
standard deviation equal to 0.01%, 0.1%, 1% and 5% of the average distances
D. The error distributions of 50 independent runs of the method for each noise
level are shown in Figure 7. Note that the first two graphics in the top row
correspond to the plane, where the first is the percentage error between the
norms of the estimated and the original plane, and the second is the angular
error between the normal vectors. The remaining errors are percentage errors
computed between the estimated and the original intrinsics.

It can be seen that with the lowest level of noise, the method is able to very
accurately recover the plane equation and the intrinsic parameters, leading to
negligible errors. For higher noise levels, the method is still able to produce
accurate results, presenting average errors below 2% for a noise level of 1%.

7.2. Real data

We tested our calibration method with real data acquired by two different
MESA SR4000 TOF cameras: one with a field-of-view (FOV) of 44 x 35°, which
we refer to Cy, and the other with a 69 x 55° FOV (C3). We acquired 15 images
of a checkerboard pattern for calibration using Zhang’s method [21] and 13
depth images of a planar surface in different orientations (varying from —30° to
30°, with a step of 5°) and distances for calibration using your method, with
each camera. For C we also acquired a set of 6 validation images. Note that for
each position, 50 images were acquired and the median values were considered.
We decided to work with the median depth image in favour of the mean of
the acquired images because it is generally assumed that the nature of TOF
measurement errors is not Gaussian, including sporadic outliers ([12, 17]).

Although the theoretical minimum of required images is 1, with the intent
to assess the performance of the method when more data is provided, we tested
it with an increasing number of calibration images, up to 13, for both cameras.
For each possible number of images, at most 50 calibration sets were randomly
selected and the results are shown in Figures 8 and 9 for cameras C; and Cs,
respectively. Remark that the initialization step was performed as described in
the previous synthetic experiment using one of the images in the calibration set.
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Figure 8: Average computed values (y-axis) and respective standard deviations obtained for
ug in (a), vo in (b), 7 in (c) and f in (d), for a varying number of calibration images acquired
with C7. With Zhangs method the obtained solution is ug = 69.82, v9 = 90.37, 7 = 1.0006, f =
250.6.

Also, prior to calibration, we undistorted the depth images according to a
simple 1-parameter model for radial distortion: R = r(1 + k-r?), such that our
calibration method can compete with one of the available chess board calibra-
tion tools that automatically remove lens distortion. In order to determine the
distortion parameter k for both camera’s we used images of plumb lines as a
reference.

Finally, because depth noise increases with distance, a normalization was
performed by dividing the terms of the sum in Eqn.38 by the corresponding D;,
serving as a weighting parameter that favors less noisy estimates.

Figures 8 and 9 show that increasing the number of calibration images lead to
smaller standard deviations, meaning that the algorithm’s precision increases.
Moreover, varying the number of calibration images produces similar results,
suggesting that there is consistency in the data and the point of convergence is
a well-defined minimum.

We also calibrated both Cy and Cs with a state-of-the-art method [21] that
requires images of a checkerboard pattern with known dimensions. In order to
compare both methods, we used the obtained calibrations for reconstructing the
3D points as in Eqn.7, and, with a standard fitting algorithm, finding the plane
that best fits to the point cloud. For each reconstructed point, the geometric
distance to the fitted plane is computed and a median of all the distances ob-
tained for each image provides an error metric. For each calibration set, the
images that are not part of it are used for computing this error. Then, the
average error is computed for all sets corresponding to the same number of cal-
ibration images. These average errors are shown as a function of the number of
calibration images, both for our and Zhang’s method in Figure 10. For the set
of 6 validation images acquired for C; we performed similarly, and included the
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Figure 9: Results obtained for C shown as in Figure 8. The result obtained with Zhang’s
method is ug = 70.36,v9 = 88.19, 7 = 1.0001, f = 145.9.
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Figure 10: Average distances (in mm) of the reconstructed points to the best fitted plane
computed for all remaining images that were not used in the calibration. Results are shown
for a varying number of calibration images.

results in Figure 10a. It can be seen that increasing the number of images leads
to smaller average errors, indicating that the accuracy of the method increases.
Also, using our method with more than 2 images consistently originates smaller
errors than Zhang’s method, that used 15 calibration images.

The results show that the camera with the narrowest FOV originated the
smaller errors. This can lead to the conclusion that its calibration was more
accurate, which can be explained by the fact that it is less affected by radial
distortion, and thus its removal is more effective.

Another comment is that we empirically found out that calibrating using
the original images (without distortion removal) lead to much higher standard
deviations, indicating that the results are less precise. Thus, the quality of
the calibration obtained with this algorithm highly depends on the amount
of distortion present in the images. Notice that the linear method tested in
Section 5 makes use of the IRD-model, decreasing the need to remove radial
distortion, because this non-linear effect is partially compensated by the model.

As a final remark, we observed that providing initial values that are con-
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siderably distant from the real initialization still resulted in the convergence to
the same point, meaning that the probability function is locally convex and not
affected by local minima.
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Figure 11: Average results obtained for C1, for a varying number of calibration images, using
two smaller sets: one containing images with angles up to 10° and the other with angles larger
than 20°, w.r.t. the observed plane surface. The y-axis indicates the computed values in the
same metric as the corresponding parameter.

The last experiment was performed with the intent to analyze how different
surface angles affect the algorithm accuracy. We divided the calibration dataset
acquired with camera C; into two sets of images, one containing images with
angles up to 10° and the other with angles starting at 20°. For all possible
sets, calibration was performed and the distance to the best fitted plane of the
validation images was computed. Results in Figure 11 show that although the
results do not vary significantly, using images acquired with higher angles w.r.t.
the plane surface provide a smaller average error. This can be explained by the
fact that acquiring images with close to fronto-parallel surfaces may affect the
sensor’s depth measurements due to the reflection of light.

8. Conclusion and further research

In this work, we presented advances in the calibration of TOF cameras by
means of images of a flat surface, without performing feature extraction. More
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precisely, we presented a deterministic lateral calibration by solving a system
of linear equations by means of two images of a plane, or by solving a system
of quadratic equations by means of one image of a plane, and a probabilistic
method with numerical optimization that requires only one image.

We observed that the deterministic linear method is too unstable for the
moment with respect to the practical error margins of the current TOF sensors.
The computation of the IRD for obtaining the intrinsic pinhole parameters is not
sufficiently accurate yet, except for very low resolutions, in addition with a non-
linear optimization. However, we discovered that the HIRD is more accurately
recovered, that is, the IRD up to a global scale factor. This HIRD appears to
be suitable for the segmentation of planar surfaces in the scene. Synthetic and
real experiments prove that good segmentation results can be obtained.

We further investigated calibration procedures for TOF cameras by means
of one image, and derived non-linear equations that allow the computation of
the intrinsic parameters. However, these equations show that the computation
of the IRD depends on the squared inverse of the measured radial distances, be-
ing extremely sensitive to noise and inadequate for performing the calibration.
In order to tackle this problem, we came up with a method based on the idea
of maximizing the probability that the reconstructed points belong to a planar
surface. This is solved using a Maximum Likelihood Estimation approach, lead-
ing to the computation of both the intrinsic parameters and the observed plane
equation. Synthetic experiments suggested that this method was robust, pro-
viding good results for significant error levels. Also, real experiments showed
that the method’s precision increases with the inclusion of extra calibration
images. Despite being slightly different from the estimations computed using
a state-of-the-art method, our results seem to be more accurate since smaller
errors were achieved. More precisely, the method of section 6.2 yields a calibra-
tion that proves to be more accurate than Zhang’s method when applied with
more than two images, as validated in section 7. This method has moreover the
significant advantage of not requiring feature extraction which can be a problem
with certain materials and in certain types of environment with low illumination
([9]). We observed that the quality of the calibration highly depends on prior
distortion removal.

As future work, the algorithm should include distortion estimation, avoiding
the need for a pre-processing step. A possible way to achieve this is to design
stable procedures for computing a general parameter-free IRD, compensating
lens distortions as well as systematic errors of the TOF measurements.

The main contributions of this work are the introduction of the IRD, leading
to two theoretical calibration results (deterministic procedures by 1 or 2 feature-
less images), but also offering a useful planar segmentation algorithm, and the
general study on calibration methods using only images of flat surfaces and no
feature extraction. The proposed methods are innovative, simple and provide
acceptable calibration results, which could be used in alternative to methods
that require feature extraction.
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Abstract

We propose to represent a Time-of-Flight (TOF) camera by the map of "internal radial distances"
(IRD), associating an intrinsic distance to each pixel, as an alternative for the classic pinhole model.
This representation is more general than the perspective model and appears to be a natural concept
for 3D-reconstruction and other applications of TOF cameras. In this new framework, calibrating a ToF
camera comes down to the determination of this IRD-map. We show how this can be accompished by
images of flat surfaces, without performing any feature detection.

We prove deterministic calibration formulas, using one or more plane images. We also offer a
numerical optimization method that in principle needs only one image of a flat surface.



Highlights

We introduce a parameter-free calibration model for a TOF camera (IRD map).
This model partially compensates certain aberrations from the pinhole model.
The IRD is computed by 1 or 2 depth images of a flat surface.

Introducing featureless calibration procedures for TOF sensors (blank planes).
Satisfying calibration for low resolution sensors.



