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Abstract

An analysis of the relative motion and point feature model configurations leading to solution degeneracy is presented,
for the case of a Simultaneous Localization and Mapping system using multicamera clusters with non-overlapping
fields-of-view. The SLAM optimization system seeks to minimize image space reprojection error and is formulated for
a cluster containing any number of component cameras, observing any number of point features over two keyframes.
The measurement Jacobian is transformed to expose a reduced-dimension representation such that the degeneracy of
the system can be determined by the rank of a dense submatrix.A set of relative motions sufficient for degeneracy
are identified for certain cluster configurations, independent of target model geometry. Furthermore, it is shown that
increasing the number of cameras within the cluster and observing features across different cameras over the two
keyframes reduces the size of the degenerate motion sets significantly.

Keywords: SLAM, Computer vision, Multicamera cluster, Non-overlapping FOV, Degeneracy analysis, Critical
motions

1. Introduction

Precise robotic motion and manipulation tasks with
respect to unknown target environments and objects re-
quire an accurate, real-time measurement of the relative
position and orientation of the robot and target. Mul-
ticamera systems are often employed for robotic pose
and target model estimation, as each camera is an in-
expensive, light-weight, and passive device capable of
collecting a large amount of environment information at
high rates. Many researchers across different fields have
investigated the use of cameras for the purpose of esti-
mating motion and scene structure. As a result, many
techniques using a variety of camera types and configu-
rations have been detailed in the literature.

A camera cluster is composed of any number of sim-
ple perspective cameras mounted rigidly with respect to
each other, as shown in Figure 1, including configura-
tions in which their fields-of-view (FOV) are spatially
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disjoint [1]. This arrangement makes effective use of
the camera sensors to cover a large combined FOV with
high resolution, and in general, is able to overcome the
limitations of other camera configurations, such as scale
and translation-rotation motion ambiguities [2]. Addi-
tionally, by arranging the cameras to look in many di-
rections, the pose estimation is made more robust since
when certain cameras do not see any point features suit-
able for tracking, the other cameras in the cluster can
maintain the localization. In this scenario, camera ar-
rangements with a smaller collective FOV may become
lost causing the tracking operation to fail.

In order for any pose estimation system to operate
successfully, the current state must be uniquely recover-
able given the measurable outputs up to, and including
the current time step. In the context of a multicamera
cluster relative pose system, this means that the image
measurements must contain sufficient information to re-
cover the cluster motion and the target model parame-
ters, including the proper global scale metric. Further-
more, the solution must be unique since convergence to
a different configuration, which may also agree with the
measurements, would likely result in failure of percep-
tion and control operations.
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Figure 1: An example camera cluster in which the three
component cameras are rigidly-fixed with respect to
each other.

When the multicamera cluster is configured such
that there is little or no spatial FOV overlap between
the component cameras, the sensitivity of the image
measurements to the global scale of the reconstructed
model is low, particularly around specific motion pro-
files known as critical motions [3]. When the relative
motion of the cluster is at or near critical, the global
scale of the solution is extremely difficult, if not impos-
sible, to recover accurately. In the presence of measure-
ment noise, the solution will converge to an incorrect
scale value.

This work investigates the degenerate configurations
when estimating the Simultaneous Localization and
Mapping (SLAM) [4] system states for a calibrated mul-
ticamera cluster over two keyframes while observing a
set of point features in each camera and using an it-
erative optimization or recursive filter-based approach,
minimizing the image space reprojection error of point
feature measurements. This includes Bundle Adjust-
ment (BA) [5] schemes as well as recursive filters such
as an extended Kalman filter [6]. The main contribu-
tion is the identification of configurations of motion and
target model structure leading to non-unique SLAM so-
lutions.

Determining the system configurations leading to so-
lution degeneracy is closely related to the concept of
observability in control systems. In the study of observ-
ability for nonlinear systems, the local weak observabil-
ity of the system can be determined by calculating the
observability rank condition about any point in the state
space [7]. This involves checking the column rank of
a matrix containing the partial derivatives with respect
to the system states, for increasing orders of Lie deriva-
tives of the measurement model with respect the the sys-
tem dynamics. When the matrix has full column rank,
the system is locally weakly observable about that point.

For a SLAM system using only the visual measure-

ments from the cluster cameras and a non-stationary tar-
get, the system does not have a model of the dynamics
for the relative motion and therefore, only the zeroth-
order Lie derivatives are non-zero. In this case, eval-
uating the observability rank condition is equivalent to
checking the rank of the measurement Jacobian matrix,
as will be done here in the degeneracy analysis in Sec-
tion 4. If the system were to contain a model of the rel-
ative motion dynamics, and the extra information that
comes with it, the higher-order Lie derivatives of the
measurement model would contain non-zero terms and
the added matrix rows would only increase the likeli-
hood that the matrix has full column rank at any point
in the state space. However, in this analysis, no such as-
sumptions about the relative motion dynamics are made
and the degenerate configurations arising from only us-
ing image measurements for a set of point features over
two keyframes are identified.

The remainder of this paper is arranged as follows:
Section 2 contains a review of the previous analyses
for degenerate configurations of the multicamera cluster
relative pose system; Section 3 presents the multicam-
era cluster SLAM system; the degenerate configurations
of the pose estimation system are identified in Section
4; and finally, conclusions are drawn in Section 5.

2. Related Work

Previous analyses identifying cluster motions leading
to degenerate system solutions have assumed that the
five degrees of freedom describing relative orientation
and translation direction of the cluster are known using
the well-studied single camera ego-motion estimation
techniques (e.g. [5]). These include the work of Kimet
al. [8], and Clippet al. [3] for camera clusters with two
component cameras, as well as that of the authors [9]
for clusters with three component cameras. Of interest
are the conditions when the image measurements from
the camera cluster are able to allow for estimation of the
final degree of freedom, corresponding to the translation
magnitude and therefore, global system scale. The anal-
yses show that when each point feature is seen by only
one of the two cameras at both keyframes, the global
scale of the solution solution is recoverable only when
the relative translational and rotational motion are both
non-zero, and does not result in the optical centres of
each camera moving in concentric arcs on circles with
a common centre at the intersection of the baselines at
each keyframe [3]. When a third non-collinear camera
is added to the cluster, the set of degenerate motions is
reduced to those which result in all the three cameras
moving in parallel [9].
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Analyses of degeneracies of the full SLAM solution
for multicamera clusters have focused on those associ-
ated with solving the generalized camera relative pose
problem, either linearly using the Generalized Essential
Matrix (GEM) [2], or aligning imaging rays in space for
minimal cases of camera poses and points [10]. Sturm
[11], Steweniuset al. [10], and Mouragnonet al. [12]
discuss some degenerate cases, but Kim and Kanade
[13] provide the most complete analysis. They identify
the following degenerate configurations for generalized
cameras using the seventeen point method [2]:

1. All of the observation rays pass through one com-
mon point before and after the camera motion.

2. The camera centres are on a line before and after
the motion.

3. Each corresponding ray pair passes through the
same local point in the general camera frame be-
fore and after the motion.

For a camera cluster with non-overlapping FOV, it is
possible that each component camera observes its own
mutually exclusive set of feature points over the two
keyframes. In this case, the system satisfies condition
3 and the solution to the seventeen point algorithm is
always degenerate. However, it is known from pre-
vious results that in certain configurations, other solu-
tion methods are able to recover an accurate estimate
of the motion and structure. Consequently, the seven-
teen point algorithm does not always recover a solution
when one exists. This problem was noticed by Liet
al. [14], who have since modified the algorithm for use
with non-overlapping clusters, but the subsequent de-
generacy analysis has not been carried out. More impor-
tantly, the degenerate configurations are specific to the
linear method of estimation. In this work, the minimiza-
tion of image-space reprojection error is considered and
the configurations for which an optimization of this type
will fail are identified in the subsequent analysis.

3. Multicamera Cluster Pose Estimation

3.1. Projective Geometry

The projective spacePn (refer to Appendix A for a
brief introduction) provides a convenient way of rep-
resenting the camera measurement system in terms of
homogeneous transformations and points [5]. It will
sometimes be necessary to move between the respective
real and projective space representation of points, and
the following promotion and demotion operators are de-
fined. The projective promotion operator ˜ρ : Rn → P

n

maps a pointx in the real vector space to its representa-
tion in the projective space,

ρ̃ (x) =
[

x⊤ 1
]⊤
. (1)

The projective demotion operatorπn : Pn → R
n maps a

point x̃ in the projective space back to the corresponding
pointx the real vector space,

x = πn (x̃) (2)

=






undefined ifxn+1 = 0
[ x̃1

x̃n+1

x̃2

x̃n+1
. . .

x̃n

x̃n+1

]⊤

if xn+1 , 0.
(3)

Note that the result of this operator is undefined for
points at infinity.

In this work, unless it is ambiguous from the context,
the promotion and demotion operators will be implied
by the vector notation. The homogeneous coordinates
for a given vectorx ∈ R

n will simply be written as̃x ∈
P

n, but implicitly, x̃ ≡ ρ̃ (x), and likewise,x ≡ πn (x̃)
assuming ˜xn+1 , 0.

3.2. Pin-hole Camera Model

An individual component camera within the cluster
is modelled as a simple pin-hole imaging device, which
maps 3D points onto a 2D plane called the image plane
[15]. An example is shown in Figure 2. A 3D point

p̃Ci =

[

xCi yCi zCi 1
]⊤

, represented in the projec-

tive spaceP3, and expressed with respect to theith cam-
era coordinate frame,Ci , is projected onto the image
planeI i . The intersection of the point feature rayp̃Ci ,
through the optical centre,oi , with the image plane oc-

curs at the point,
[

u v
]⊤
∈ R2. It is assumed that each

camera has been intrinsically calibrated using one of the
many existing offline techniques [5], such that the mea-
surements are made to match the structure shown.

The camera projection matrix,κi , maps the point in
P

3 into P
2 on the image plane. It is assumed in this

work, without loss of generality, that the projection ma-
trices for all of the cameras have the form,

κi =





−1 0 0 0
0 −1 0 0
0 0 1 0




. (4)

The pointp̃Ci is projected intoP2 on the image plane,

p̃I i = κi p̃Ci , (5)

then subsequently mapped to the actual image plane co-
ordinates inR2 through the demotion functionπ2 for

3



optical axis

optical centre
image plane

Figure 2: A simple pin-hole camera measurement model is usedto relate the camera frame coordinates to the camera
image plane coordinates for a feature point.

P
2,

π2(p̃I i ) =

[

u
v

]

=





−xCi

zCi

−yCi

zCi





, zCi , 0. (6)

Each camera is assumed to have an FOV strictly less
than 180 degrees and therefore, is only able to observe
points in front of the lens so every point is constrained
to have a positive z-axis coordinate,

zCi > 0, (7)

which satisfies (6).

3.3. Calibrated Multicamera Cluster

Collectively, the calibrated camera cluster is mod-
elled as a set ofnc component pin-hole cameras
with known relative coordinate transformations be-
tween each camera coordinate frame. Accordingly, a
point p̃Ch in the camera frameCh, can be transformed
into any other camera frameCi by,

p̃Ci = TCi
Ch

p̃Ch (8)

whereTCi
Ch
∈ S E(3), ∀i, h ∈ {1, . . . , nc}, is a homoge-

neous transformation matrix inS E(3) [16]. Without
loss of generality, the coordinate frame for the camera
cluster is chosen to coincide with the first camera frame,
C1. The transformation from camerah to the cluster

frame can be written in shortened form asTCh ≡ TC1
Ch

,
where the cluster frameC1 is implied when the super-
script is neglected. The transformation is shown in Fig-
ure 3.

Figure 3: The relative position and orientation of each
camera is known relative to the cluster frame,C1 and
therefore, the position of points in any camera frame
can be found with respect to the cluster frame using the
known transformation,TCh.

3.4. Point Feature Target Object Model

The tracked target object or environment, henceforth
referred to simply as the target, is a rigid body which
contains a set of visible point features. A point feature
is a visually distinguishable point on the tracked phys-
ical target that corresponds to a unique 3D position in
a local target coordinate frameM, and is measurable in
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a set of camera images through a relative motion se-
quence. Image measurements of these point features
are extracted from the images using image processing
techniques, including feature extraction algorithms like
the FAST corner detector [17, 18], the Scale-Invariant
Feature Transform (SIFT) [19], or Speeded-Up Robust
Features (SURF) [20].

The target model point features are organized intonk

keyframes, each a six degree of freedom pose with re-
spect to the target model reference frameM, along with
thenc images from the cluster cameras captured at that
location, as in [21] for a single camera. The coordinate
frame of camerah at keyframek is denotedChKk.

Since the relative position and orientation of each
camera within the cluster is fixed at all times, thekth

keyframe pose is parameterized by the single homoge-
neous transformation for the cluster coordinate frame at
the keyframe,C1Kk, with respect to the target model
reference frame,M, resulting inTM

C1Kk
∈ S E(3). TheC1

andM frames are applied universally in this keyframe
pose definition, and therefore, the transformation will
be written simply asTKk ≡ TM

C1Kk
. The pose of camera

h at keyframek is easily found as,

TM
ChKk
= TKkTCh . (9)

The position of thejth point feature is parameterized
by the azimuth and altitude angles of the vector from the
origin of the anchor camera coordinate frame through
the feature,µ j = [φ j, θ j ]⊤ whereφ j , θ j ∈

(

− π2 ,
π
2

)

. The
depth along this bearing to the point feature, is the value
sj ∈ R

+. The bearing angles are used to form the unit
vector in the camera coordinate frame at the first key-
frame,

p̂h,1
j =





sinφ j cosθ j

− sinθ j

cosφ j cosθ j




, (10)

and the point feature position is along this bearing at the
distancesj ,

ph,1
j = sj p̂

h,1
j . (11)

An example system with a camera cluster composed
of nc = 2 cameras is shown in Figure 4. The cameras in
this example are arranged back-to-back with the optical
axes looking outwards along the green axes of the as-
sociated coordinate frames. Thejth point feature is an-
chored in the second camera at the first keyframe,C2K1,
and its position with respect to this coordinate frame is
represented asp2,1

j .

initial pose

and keyframe

second

keyframe

Figure 4: An example target object model with two key-
frames for a two-camera back-to-back cluster. The cam-
eras look outwards with the green arrows showing the
optical axes. The point featurej is anchored, and there-
fore, positioned within theC2K1 coordinate frame. The
relative pose of camera 2,TC2, is known from calibra-
tion, but the relative pose of keyframe 2,TK2, as well as
the position of the point features must be estimated.

The parameters representing the poses of the key-
frames, together with the positions of the point fea-
tures observed within them, compose the target model,
as well as the full system state. These parameters are
estimated using the point feature image measurements
within the cluster cameras.

3.5. Multicamera Cluster SLAM System

This work considers the motion and structure estima-
tion for a cluster ofnc cameras observing a set ofnf

point features over two keyframes. The cameras within
the cluster are arranged with little or no overlap in their
FOV where each point feature in the target model is vis-
ible in only one camera at the first keyframe. Without
loss of generality, the target model frame is chosen to
coincide with the pose of the first keyframeM ≡ C1K1.
This results in the keyframe transformation becoming
the identity,

TK1 = I4×4. (12)

Several further assumptions about the system are
made to facilitate the analysis in the subsequent sec-
tions:

Assumption 3.1. Each point feature is observed and
measured by only one of the component cameras at the
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first keyframe. The position of the point feature is ex-
pressed with respect to the coordinate frame for that
camera at the first keyframe. The coordinate frame in
which the point feature is parameterized is referred to
as the anchor keyframe and camera coordinate frame.

Assumption 3.2. Each point feature is observed and
measured by one or more of the component cameras at
the second keyframe. At least one of the observations is
by a camera for which its motion is not collinear with
the initial bearing to the point feature at the first key-
frame. The camera and keyframe in which the observa-
tion occurs is called the observing keyframe and camera
coordinate frame.

Assumption 3.3. The point feature positions and key-
frame poses are arranged such that if a camera observes
a point feature, the feature position expressed in the ob-
serving camera coordinate frame has a finite positive
non-zero z-axis component, 0< z< ∞.

For Assumption 3.1, the functionh : {1, . . . , nf } →

{1, . . . , nc} maps the point feature index to the anchor
camera index. As a result, the anchor camera for the
jth point feature is camerah( j). In the following, when
it is obvious from the context, the anchor camera index
will be written in the shortened-form by dropping the
argument,h ≡ h( j).

Similarly for Assumption 3.2, thejth point feature
is observed and measured byno( j) ∈ N

+ cameras at
the second keyframe. The indices of the observing
cameras are found using the functioni : {1, . . . , nf } ×

{1, . . . , no( j)} → {1, . . . , nc}, such that thekth obser-
vation of the jth point feature at the second keyframe
is measured by camerai( j, k). Once again, this will
be shortened to exclude the feature indexj and ob-
servation indexk when it is implied by the context,
i ≡ i(k) ≡ i( j, k).

The motion of the camera cluster between the two
keyframes is parameterized by six values describing
the relative translation and orientation of the first key-
frame with respect to the second keyframe. The transla-
tion parameters,tx, ty, tz, form the relative translation
vector, tK = [tx, ty, tz]⊤, and the rotation parameters,
ωK = [ωx, ωy, ωz]⊤, form the relative rotation matrix,
RK ∈ S O(3). Together, the rotation and translation form
the transformation,TK ∈ S E(3).

The resulting state vector,x ∈ Rn, wheren = 6+3nf ,
is composed of the parameters for thenf point features,
along with the relative translation and orientation states

for the cluster motion between the keyframes,

x =





x1

x2

x3




, (13)

where

x1 = [s1, . . . , snf ]
⊤ ∈ R

nf
+ , (14)

are the radial distances to the point features,

x2 = [tK
⊤,ωK

⊤]⊤ ∈ R6, (15)

are the relative position and orientation of the first key-
frame with respect to the second keyframe and,

x3 = [µ1
⊤, µ2

⊤, . . . , µnf

⊤]⊤ ∈ R2nf , (16)

are the bearings to the point features in their respective
anchor camera coordinate frames. This state order has
been specifically chosen in order to facilitate the analy-
sis of the degeneracies of the solution presented in Sec-
tion 4.

3.6. Camera Cluster Measurement Model

The system measurement vector,z ∈ R
m, is formed

by stacking the image plane coordinates of all of the
point feature observations in all cameras at both key-
frames, wherem= 2(nf +mo) with

mo =

nf∑

j=1

no( j), (17)

as the total number of observations of all of the point
features at the second keyframe.

The measurement model, relating the observed point
feature locations in the camera image planes, to the sys-
tem states, can be written as a series of coordinate trans-
formations. Suppose that thejth point feature, anchored
in the coordinate frameChK1, is measured by camerai
at Ci K2. An example of this chain of transformations
is shown for the simple back-to-back two-camera clus-
ter system in Figure 4. In this particular case, the point
featurej is anchored inC2K1 and observed inC2K2.

The point feature position parameters give the loca-
tion of the jth feature in its anchor keyframe and camera
frameChK1, resulting inph,1

j . This point feature is first
transformed into the target model coordinate frame by,

p̃M
j = TK1TChp̃h,1

j (18)

= TChp̃h,1
j , (19)
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which is the transformation provided by the known clus-
ter calibration.

The point feature position, with position estimate ex-
pressed in the target model reference frame, is trans-
formed into the coordinate frame of the observing key-
frame and cameraCi Kℓ using the relative keyframe pose
transformation,TKℓ , and the cluster calibration,

p̃i,ℓ
j =
[

xi,ℓ
j yi,ℓ

j zi,ℓ
j 1

]⊤
(20)

= (TCi )
−1(TKℓ )

−1p̃M
j (21)

= (TCi )
−1(TKℓ )

−1TChp̃h,1
j . (22)

Finally, the point is projected intoP2 and onto the
image plane of cameraCi using the corresponding pro-
jection matrix,κi ,

ũi,ℓ
j =
[

ux uy uz

]⊤
(23)

= κi p̃
i,ℓ
j (24)

=





−xi,ℓ
j

−yi,ℓ
j

zi,ℓ
j





, (25)

which leads to the resulting measurement vectorzi,ℓ
j ∈

R
2 and mappinggi,ℓ

j : Rn → R
2 for the observation of

point featurej in camerai at keyframeℓ,

zi,ℓ
j = gi,ℓ

j (x) = π2

(

ũi,ℓ
j

)

. (26)

Each of the intermediate transformations in (22) can
be represented by a rotation matrix and translation vec-
tor,

TCh =

[

RCh tCh

01×3 1

]

(27)

TKℓ =

[

RKℓ tKℓ
01×3 1

]

=






I4×4, ℓ = 1




R
⊤
K −R⊤KtK

01×3 1



 , ℓ = 2
(28)

TCi =

[

RCi tCi

01×3 1

]

. (29)

When (27)–(29) are substituted into (22) along with
(11), the coordinates of the point feature position inR

3

become,

pi,ℓ
j = sjR

⊤
Ci
R
⊤
KℓRChp̂h,1

j − R
⊤
Ci
R
⊤
Kℓ tKℓ + R

⊤
Ci
R
⊤
Kℓ tCh −R

⊤
Ci

tCi

(30)

= R
⊤
Ci

(

sjR
⊤
KℓRChp̂h,1

j −R
⊤
Kℓ tKℓ +R

⊤
Kℓ tCh − tCi

)

(31)

= R
⊤
Ci

qi,ℓ
j , (32)

where

qi,ℓ
j = sj â j,ℓ + bℓ + ch,ℓ + di (33)

with

â j,ℓ = R
⊤
KℓRChp̂h,1

j (34)

bℓ = −R⊤Kℓ tKℓ (35)

ch,ℓ = R
⊤
Kℓ tCh (36)

di = −tCi (37)

and

RCi =

[

n̂i,x n̂i,y n̂i,z

]

∈ S O(3), (38)

wheren̂i,x, n̂i,y, andn̂i,z are the orthonormal basis vec-
tors for the observing camerai frame with respect to the
camera 1 coordinate frame. An example system con-
sisting of the cameras observing point features over two
keyframes is shown in Figure 5 with the intermediate
variables labelled.

The set of camera observation vectors for point fea-
ture j is defined as the displacements between the an-
chor camera coordinate frame at the first keyframe,
ChK1, and the centres of each of the observing cam-
eras at the second keyframe,Ci(k)K2, ∀k ∈ {1, . . . , no( j)}.
The set of vectors are,

V = {vα,β ∈ R3|α, β ∈ N+, α ≤ nf andβ ≤ no(α)}. (39)

Therefore, if it is included in the setV, the camera ob-
servation vector can be written as,

vα,β = b2 + ch(α),2 + di(β). (40)

and is illustrated in the example system shown in Fig-
ure 6.

The image coordinates of each individual point fea-
ture observation measurements are then compiled into a
vector for point featurej containing all of the individual
observations of that feature at both keyframes,

z j =





zi(1),2
j
...

zi(no),2
j

zh,1
j





∈ R2+2no, (41)

whereno ≡ no( j) is the number of observations of the
jth point feature at the second keyframe.

The full system measurement vector is composed of
the observations of thenf point features at both key-
frames,

z =





z1
...

znf





∈ Rm. (42)
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Figure 5: An example three-camera cluster observing point features over two keyframes with intermediate vectors
labelled. Vectors are parameterized with reference to keyframeC1K2.

4. Degeneracy Analysis

4.1. Solution Degeneracies
Typical optimization methods attempt to minimize a

nonlinear cost function,c : Rn → R, and determine the
optimal state vector estimate,x̆∗ ∈ Rn, such that,

x̆∗ = arg min
x

c(x). (43)

The optimization proceeds iteratively, starting with an
initial state estimate,̆x0 ∈ R

n. Each iteration seeks to
update the current state estimate,x̆k, with a vectorδk ∈

R
n,

x̆k+1 = x̆k + δk, (44)

such that the sequence{x̆0, x̆1, x̆2, . . . } → x̆∗. In this
analysis, a cost function relating to sum of squared mea-
surement error is assumed,

c(x̆k) =
1
2

z̄⊤k z̄k, (45)

wherez̄k = z − g(x̆k) ∈ R
m is the measurement error

vector at iterationk. A commonly-used method for BA
is the Levenberg-Marquardt (LM) method [5], although
other optimization methods may be used such as Gauss-
Newton, gradient descent, or Newton step. Each of
these optimization methods can operate using the sum
of squared reprojection error and the parameter update
δk is defined as the solution to,

Nδk = J⊤z̄k (46)

whereN is the normal matrix, which varies by optimiza-
tion method, andJ is the measurement Jacobian such
that,

J =
∂g(x)
∂x

∣
∣
∣
∣
∣
x=x̆k

∈ Rm×n. (47)

Solving forδk, the solution becomes,

δk = N−1J⊤z̄k, (48)

8



Figure 6: An example two-camera cluster observing
three features. Each feature is observed in one cam-
era at the first keyframe, but some are seen by different
cameras at the second keyframe. The camera observa-
tion vectors,v1,1, v2,2, v3,1 link the cameras which see
the same feature at the different keyframes.

wherez̄k = z−g(x̆k) is the measurement error. A unique
δk can be found as long as the matrixN is invertible and
the Jacobian has full rank. Therefore, the system in (46)
is degenerate when,

rank(J) < n, (49)

and the solution is under-constrained. The cases where
the system becomes degenerate are the focus of this
work and are investigated in the next section.

4.2. Identification of Degenerate Configurations

This section identifies the configurations of the cam-
era cluster geometry, relative motion, and target model
structure, for which the JacobianJ falls below full col-
umn rank. It is shown that for the assumptions stated
previously, them × n measurement Jacobian matrixJ
has full rank if and only if amo × 6 matrix,M2 has full
rank.

To determine the rank of the Jacobian matrix, the
structure of the sub-blocks formed for the point feature
observations is investigated. Each point featurej is ob-
served by only one camera at the first keyframe. This

observation adds two rows to the Jacobian,

Jh,1
j =

∂gh,1
j (x)

∂x

∣
∣
∣
∣
∣
∣
∣
x=x̆

(50)

=




02×nf+6 02×2( j−1)

∂gh,1
j (x)

∂µ j

∣
∣
∣
∣
∣
∣
∣
x=x̆

02×2(nf − j)




,

(51)

where the only non-zero elements are in the 2× 2 block
relating the measurement coordinates to the point fea-
ture bearing states,

∂gh,1
j (x)

∂µ j

∣
∣
∣
∣
∣
∣
∣
x=x̆

=





− tan(φ j)2 − 1 0

tan(φ j) tan(θ j)

cos(φ j)
1

cos(φ j) cos(θ j)2





.

(52)

The non-zero element structure of these rows are shown
in Figure 7.

Figure 7: Structure of the Jacobian rows for the mea-
surement of the point featurej in its anchor camera at
the first keyframe. Non-zero elements are shown as the
shaded cells. The columns not related to featurej con-
tain only zeros and have been removed for conciseness.

Each point featurej is also observed and measured by
at least one camera at the second keyframe. The Jaco-
bian matrix rows corresponding to thekth observation of
point featurej in the second keyframe with camerai(k)
are the partial derivatives of the measurement equation
(26) with respect to the system states,

Ji(k),2
j =

∂gi(k),2
j (x)

∂x

∣
∣
∣
∣
∣
∣
∣
x=x̆

, (53)

=





∂π2

(

ũi(k),2
j

)

∂ũi(k),2
j

∣
∣
∣
∣
∣
∣
∣
∣
x=x̆









∂ũi(k),2
j

∂x

∣
∣
∣
∣
∣
∣
∣
x=x̆




, (54)

using the chain rule. Dropping the impliedx = x̆, the
first term evaluates to,

∂π2

(

ũi(k),2
j

)

∂ũi(k),2
j

=
1

(uz)2

[

uz 0 −ux

0 uz −uy

]

(55)

=
1

(

zi(k),2
j

)2

[

0 −1 0
1 0 0

]
[

ũi(k),2
j

]

×
, (56)
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where [a]× is the skew-symmetric matrix such that
[a]× b = a × b, ∀a, b ∈ R3.

Substituting (56) back into (54) and recognizing that,

ũi(k),2
j =





−1 0 0
0 −1 0
0 0 1




R
⊤
Ci(k)

qi(k),2
j , (57)

the Jacobian rows can be written as,

Ji(k),2
j =

1
(

zi(k),2
j

)2

[

0 1 0
−1 0 0

]
[

ũi(k),2
j

]

×

∂ũi(k),2
j

∂x
, (58)

=
1

(

zi(k),2
j

)2

[

0 −1 0
1 0 0

]

R
⊤
Ci(k)

[

qi(k),2
j

]

×

∂qi(k),2
j

∂x
,

(59)

=
1

(

zi(k),2
j

)2





−
(

n̂i(k),y × qi(k),2
j

)⊤

(

n̂i(k),x × qi(k),2
j

)⊤





∂qi(k),2
j

∂x
, (60)

where the partial derivatives of the point feature position
at the second keyframe with respect to the system states
are written,

∂qi(k),2
j

∂x
=



 03×( j−1)

∂qi(k),2
j

∂sj
03×(nf− j)

∂qi(k),2
j

∂tK

∂qi(k),2
j

∂ωK

03×2( j−1)

∂qi(k),2
j

∂µ j
03×2(nf− j)





(61)

with the position change with respect to the radial dis-
tance,

∂qi(k),2
j

∂sj
= â j,2, (62)

the translation between the keyframes,

∂qi(k),2
j

∂tK
= I3×3, (63)

the rotation between the keyframes,

∂qi(k),2
j

∂ωK
= −
[

sj â j,2 + ch,2

]

×
, (64)

and the initial bearings to the point feature,

∂qi(k),2
j

∂µ j
= sjRKRCh





cosφ j cosθ j − sinφ j sinθ j

0 − cosθ j

− sinφ j cosθ j − cosφ j sinθ j




.

(65)

Figure 8: Structure of the Jacobian rows for an observa-
tion of the point featurej at the second keyframe.

The structure of the Jacobian rows associated with the
observations of point featurej at the second keyframe
is shown in Figure 8.

The full measurement Jacobian is formed by stacking
all of the observations of all of the point features at both
keyframes,

J =









Ji(1,1),2
1
...

Ji(1,no(1)),2
1
Jh(1),1

1





...




Ji(nf ,1),2
nf

...

Ji(nf ,no(nf )),2
nf

Jh(nf ),1
nf









. (66)

The configurations for which this measurement Ja-
cobian possesses full rank can be identified by checking
the rank of a reduced-dimension matrix, as shown in the
following Lemma.

Lemma 4.1. For a multicamera cluster SLAM system
satisfying Assumptions 3.1, 3.2, and 3.3, the rank of the
measurement Jacobian matrixJ in (66) is full if and only
if the rank of the matrix,

M2 =









−â⊤1,2
[

v1,1
]

× â⊤1,2
[

v1,1
]

× [w1]×
...

...

−â⊤1,2
[

v1,no(1)
]

×
â⊤1,2
[

v1,no(1)
]

×
[w1]×





...




−â⊤nf ,2

[

vnf ,1

]

×
â⊤nf ,2

[

vnf ,1

]

×

[

wnf

]

×
...

...

−â⊤nf ,2

[

vnf ,no(nf )

]

×
â⊤nf ,2

[

vnf ,no(nf )

]

×

[

wnf

]

×









,

(67)

where

w j = sj â j,2 + ch( j),2,

is full.
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Proof. The strategy is to first show that the columns of
J corresponding to the point feature positions (sj , µ j)
have full rank. Consequently, the only way for the Jaco-
bian to have less than full rank is when the columns cor-
responding to the keyframe motion (tK , RK) have rank
less than six.

By Assumption 3.3, the position of thejth point fea-
ture in its anchor camera and keyframe ensures that
cos(φ j) > 0 and cos(θ j) > 0. As a result, the block (52)
always has a rank of 2 since the determinant is non-zero,

det





∂gh,1
j (x)

∂µ j

∣
∣
∣
∣
∣
∣
∣
x=x̆




=

−1
cos(φ j)3 cos(θ j)2

, 0. (68)

Therefore, it is possible to diagonalize the sub-block
using elementary row and column operations without
changing the rank of the matrix. After diagonalization,
the new matrix rows,Kh,1

j , have the structure shown in
Figure 9. As a result, the columns corresponding to the
bearing statesµ j have full rank for all of the point fea-
tures.

Figure 9: Structure of the Jacobian rows for the mea-
surement of the point featurej in the first keyframe after
diagonalizing the bearing sub-block.

Additionally, the columns associated with the point
feature radial depth parametersj for an observation at
the second keyframe contain only zeros when,

[

−n̂⊤i(k),y

n̂⊤i(k),x

]
[

v j,k

]

×
â j,2 = 02×1, (69)

the displacement between the anchor and observing
camera coordinate frames is collinear with the initial
bearing to the point feature in the anchor camera frame.
In this case, there is no information about the depth of
the feature within this measurement since the triangula-
tion baseline has zero length. However, by Assumptions
3.2 and 3.3, there exists an observationk ∈ {1, . . . , no( j)}
such that,

[

sx

sy

]

=

[

−n̂⊤i(k),y
n̂⊤i(k),x

]
[

v j,k

]

×
â j,2 , 02×1, (70)

and therefore, at least one non-zero element in the col-
umn. The matrix rowsJi(k),2

j are manipulated using the

row operations matrix,

Oi(k),2
j =










n̂⊤i(k),x

[

qi(k),2
j

]

×
â j,2 0

−n̂⊤i(k),x

[

qi(k),2
j

]

×
â j,2 −n̂⊤i(k),y

[

qi(k),2
j

]

×
â j,2



 , if sx, sy , 0





0 1

n̂⊤i(k),x

[

qi(k),2
j

]

×
â j,2 0



 , if sx = 0, sy , 0




1 0

0 −n̂⊤i(k),y

[

qi(k),2
j

]

×
â j,2



 , if sx , 0, sy = 0

I2×2, if sx, sy = 0,
(71)

in order to achieve the desired structureKi(k),2
j for the

Jacobian rows,

Ki(k),2
j = zi(k),2

j Oi(k),2
j Ji(k),2

j . (72)

which is shown in Figure 10.

Figure 10: Element structure of the modified Jacobian
rows associated with measuring point featurej at the
second keyframe.

The second row of the matrixKi(k),2
j , labelledki(k),2

j ,
becomes,

ki(k),2
j =

[

0 ksj 0 ktK kωK 0 kµ j
0
]

(73)

=
1

zi(k),2
j

(

n̂⊤i(k),zq
i(k),2
j

) (

qi(k),2
j × â j,2

)⊤ ∂q
i(k),2
j

∂x
(74)

=

([

b2 + ch,2 + di
]

× â j,2

)⊤ ∂q
i(k),2
j

∂x
. (75)

where the element associated with the radial distance
parameter is zero,

ksj =

([

b2 + ch,2 + di
]

× â j,2

)⊤
â j,2 (76)

=
(

b2 + ch,2 + di
)⊤
[

â j,2

]

×
â j,2 (77)

= 0, (78)

and the columns for the keyframe motion states are now,

ktK = −â⊤j,2
[

b2 + ch,2 + di(k)
]

×
(79)

= −â⊤j,2
[

v j,k

]

×
, (80)

and,

kωK = â⊤j,2
[
b2 + ch,2 + di(k)

]

×

[

sj â j,2 + ch,2

]

×
(81)

= â⊤j,2
[

v j,k

]

×

[

w j

]

×
. (82)
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All of the modified Jacobian matrix rows for the point
feature j observations at both keyframes are then com-
piled into a single block,

K j =





Ki(1),2
j
...

Ki(no),2
j

Kh,1
j





(83)

which maintains the same rank as the original Jacobian
block for the point feature,

J j =
∂g j(x)

∂x

∣
∣
∣
∣
∣
∣
x=x̆

, (84)

since the manipulations are performed by full rank el-
ementary row and column operations matrices. The
resulting matrix block has the structure shown in Fig-
ure 11.

Figure 11: Structure of the manipulated Jacobian block
for point feature j stacking all of the observations at
both keyframes.

It can be shown that the odd-numbered rows ofK j

may always be written as a linear combination of the re-
sulting even-numbered rows. Additionally, elementary
row operations can eliminate all but the last elements
in each of the columns associated with the point feature
bearing states,φ j andθ j . Finally, the non-zero element
in thesj column can be used to eliminate the remaining
non-zero elements in the first row. Subsequently, this
new matrix,L j has the same rank as the original Jaco-
bian blockJ j for this point feature and the structure is
shown in Figure 12.

The matrixM is formed by stacking and reordering
all of theL j matrices forj = 1 . . .nf and has the same
rank as the original JacobianJ. The structure of matrix
M is shown in Figure 13.

The matrixM is a block-diagonal matrix composed
of three sub-matrices:

• M1 ∈ R
nf×nf is diagonal,

Figure 12: Structure of the Jacobian blockL j for the
point featurej observations, resulting from manipula-
tions to the original Jacobian.

Figure 13: Structure of the matrixM, resulting from
stacking and reordering the rows of the matricesL j . The
sub-blocks ofM are shown and all must be full rank for
M, and thereforeJ, to be full rank.

• M2 ∈ R
mo×6,

• M3 ∈ R
2nf×2nf is diagonal.

As a result,M andJ are full rank if and only if all of the
following are satisfied,

• rank(M1) = nf ,
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• rank(M2) = 6, and

• rank(M3) = 2nf .

It is clear that bothM1 andM3 are full rank by con-
struction, and therefore,M and by extensionJ are full
rank if and only ifM2 is full rank, which concludes the
proof.

Therefore, determining if the measurement Jacobian
J is full rank is simplified to checking the rank of the
reduced-dimension matrixM2. It follows directly from
Lemma 4.1, that the degeneracy of the multicamera
cluster SLAM system can be determined by checking
the rank ofM2.

Corollary 4.2. For a multicamera cluster SLAM sys-
tem satisfying Assumptions 3.1, 3.2, and 3.3, the solu-
tion is degenerate and under-constrained, if and only if
rank(M2) < 6.

4.2.1. Rank ofM2

The matrixM2 is a densemo × 6 block with a sin-
gle row for each observation of the point features at the
second keyframe. Each row ofM2 in (67) specifies the
six Plücker coordinates for a line inR3 since each set
of coordinates satisfies the Grassmann-Plücker relation
[22],

([

v j,k

]

×
â j,2

)

·
([

w j

]

×

[

v j,k

]

×
â j,2

)

(85)

= −w j ·
([[

v j,i(k)

]

×
â j,2

]

×

([

v j,i(k)

]

×
â j,2

))

︸                                 ︷︷                                 ︸

= 03×1

(86)

= 0. (87)

The matrix M2 will not have full rank when themo

sets of coordinates are linearly-dependent. This is sim-
ilar to the problem of identifying motion singularities
for series-parallel mechanisms. However, the current
problem is more complex since the common connection
points which sometimes allow for the simplification of
the singularity condition in mechanisms are not present
in the cluster SLAM system.

4.3. Sufficient Conditions for Degeneracy

In this section, the structure of the matrixM2 from
(67) will be exploited to identify cluster configurations
and motions that are sufficient for degeneracy of the so-
lution, independent of the number of point features ob-
served and their constellation geometry.

It is immediately apparent that the system must in-
clude six point feature observations at the second key-
frame for the matrixM2 to possibly have full rank. The

first three columns inM2 are a stack of cross products
involving the camera observation vectors and the bear-
ings to the point features. When they all have a com-
mon collinear vector operand, the resulting row vectors
are all coplanar, with the normal defined by the collinear
vector operand.

As expected, the system will be degenerate if the
cluster consists of only one component camera since
the rows will all have a common camera observation
vector, consistent with how monocular vision systems
are unable to recover the six degrees of freedom motion
solution in a SLAM system. Additionally, the system
is degenerate when only one point feature is observed
by six cameras at the second keyframe since all of the
matrix rows will contain the common point feature unit
vector,â1,2, in the cross product term.

When the camera observation vectors are all parallel,
the SLAM solution is degenerate. Each camera observa-
tion vector can be written as a scalar multiple,∃γm,n ∈ R

such thatvm,n = γm,nv ∈ R3. In this case, the matrixM2

will have less than full rank since,

rank









−γ1,1â⊤1,2 [v]×
...

−γnf ,no(nf )â
⊤
nf ,2 [v]×









≤ 2 < 3, (88)

and rank(M2) < 6. This condition includes the previ-
ously known two-camera cluster concentric circle de-
generacies, since the motion causes the camera centres
to move in parallel. Adding more cameras to the cluster
reduces the configurations for which the relative motion
will lead to the camera observation vectors being par-
allel. Additionally, when point features are observed
across different cameras within the cluster at the two
keyframes, it becomes less likely that all of the camera
observation vectors are parallel. However, there do ex-
ist certain combinations of cluster motions for which the
camera observation vectors remain parallel regardless of
the feature point locations, and the camera cluster sys-
tem becomes degenerate. Some example configurations
are presented in Figure 14.

When the relative motion of the camera cluster is
such that a point feature which was observed in one
camera at the first keyframe is observed by a different
camera at the second keyframe, there is a camera obser-
vation vector between the positions of the two cameras
when they observed the particular point feature. This
can create a set of camera observation vectors which
are non-parallel even when the relative motion is a pure
translation. As a result, it is possible that the system
is non-degenerate and the solution can be found in this
case, depending on the rank of the matrixM2. Observ-
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(a) (b) (c) (d)

Figure 14: Examples of camera cluster motions sufficient for degeneracy. The black dots are the cameras at the first
keyframe connected by solid lines, white dots are the cameras at the second keyframe connected by dashed lines. The
dotted lines are the camera observation vectors which are all parallel. Motions include (a) pure translation with no
intercamera correspondence, (b) rotation axis in the planeof planar four-camera cluster, (c) 90 degrees rotation with
translation, (d) two-camera concentric circles motion.

ing common point features over multiple cameras is an
effective way of avoiding the set of camera observation
vectors becoming parallel and reducing the set of suffi-
cient motions for system degeneracy.

4.4. Necessary and Sufficient Conditions for Degener-
acy

In the case when the motion does not produce paral-
lel camera observation vectors, it is necessary to eval-
uate the rank of the matrixM2 before concluding that
the system is non-degenerate. The matrixM2 can be re-
garded as a set of motion constraints on a mechanism
where a non-full rank means that the framework is not
rigid and the configuration can change without violat-
ing the constraints. The full analysis of these singu-
lar configurations is beyond the scope of this work, but
this section presents a set of example configurations for
some general case systems to numerically demonstrate
the effect of adding additional cameras and point feature
observations on the degenerate configuration set.

Figures 15a and 15b show typical surface meshes for
the relative cluster translation,tK , leading toM2 los-
ing rank for example two and three-camera cluster sys-
tems observing six point features with no overlap in the
camera observations and non-zero relative rotation. The
surface is computed numerically as the locus of zero de-
terminant for the matrixM2 using a set of randomly-
positioned point features. A similar surface is generated
for any non-zero rotationRK .

As more point feature observations are added to the
system, the number of degeneracies is reduced. With
more than six point feature observations, the size of the
matrixM2 becomesmo×6, wheremo > 6 and therefore
the rank of the matrix cannot be checked by computing
the determinant directly. Instead, for the matrix to not be
full rank, all of themo choose 6 submatrices of size 6×6
formed by the rows ofM2 must have a zero determinant.
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(a) Two cameras
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(b) Three cameras

Figure 15: DegeneratetK for (a) two and (b) three-
camera clusters, observing six points with no overlap
and non-zero rotation.
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(b) 8 points

Figure 16: The loci of zero determinants for themo

choose 6 submatrices ofM2 at tz = 1 m in the three-
camera cluster case for (a)mo = 7 and (b)mo = 8
point features. The degenerate points are the intersec-
tions marked with black circles.

Each of the submatrices generates a surface as in Figure
15, and therefore,M2 has deficient rank at thetK where
all of the surfaces intersect.

A two-dimensional cross-section attz = 1 m is shown
in Figure 16 for the three-camera case observing 7 and
8 point features with no overlap and non-zero rotation.
The degenerate cluster translations correspond to the
points on the graph where all of the curves intersect and
are marked as black circles. These intersections are de-
termined numerically using the computed loci for the
determinants of the submatrices. If all of the loci in-
tersect with each other within a certain epsilon ball, the
location is selected as a degeneracy ofM2.

Notice that the number of degenerate motions is re-
duced from the curves of each colour for a subset of

six feature observations, to a small finite set of points at
any given cross-section. While the indicated degenerate
positions are subject to numerical precision considera-
tions, these examples are more informative in demon-
strating that the system is non-degenerate in almost all
configurations.

It is observed that the degenerate points in Figure 16a
connect as lines inR3 at different slices oftz. When
observing eight points in general position, Figure 16b
shows that there are no translations for which the system
is degenerate. While not exhaustive, numerical analysis
of the singular configurations ofM2 shows that the set
of degenerate motions in the cluster system has been
reduced from the previous surface withmo = 6, to a set
of lines withmo = 7 and the empty set formo = 8.

Adding point feature observations to the system is an
effective way to reduce the set of degenerate motions
for the camera cluster system; however, the sufficient
conditions in Section 4.3 remain no matter how many
point features are observed. Examples of these degen-
eracies are shown in Figure 17a for a two-camera cluster
and Figure 17b for a three-camera cluster with rotation
purely in the camera centre plane [9].

The indicated degeneracy corresponds to the motion
causing the camera observation vectors to move in par-
allel and extends along a line inR3. In order to eliminate
these motions, it is necessary to add more cameras to the
cluster, observe point features over different cameras, or
both, to ensure that not all of the camera observation
vectors are parallel.

Multiple cameras observing the same point feature
at the different keyframes adds extra camera observa-
tion vectors which are less likely to be parallel with
the rest of the vector set and produce a full-rankM2.
An example two-camera cluster observing eight point
features is shown in Figure 18. Camera 2 observes a
feature at the second keyframe that was measured by
camera 1 initially, and camera 1 observes a feature from
camera 2. Significantly, there is no relative rotation be-
tween the keyframes of this system, but the rank ofM2

is full nearly everywhere. This is an improvement on
the previous completely non-overlapping cluster con-
figurations which required non-zero rotation to have a
full-rank M2.

The example systems in this section demonstrate nu-
merically the effect of adding cameras and point feature
observations to the camera cluster SLAM solution. For
any algorithm, the overall strategy should be to reduce
the number of degenerate configurations by increasing
the number of point features observed on the target, and
then eliminating the remaining sufficient conditions for
degeneracy by adding cameras to the cluster, or observ-
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(b) Three cameras

Figure 17: The loci of zero determinants for the 8
choose 6 submatrices ofM2 at tz = 1 m in the (a)
two-camera and (b) three-camera cluster case with rota-
tion axis within the camera centre plane observing eight
point features

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

tx (m)

t y
(m

)

Figure 18: The loci of zero determinants for the 8
choose 6 submatrices ofM2 at tz = 1 m in the two-
camera cluster system with zero rotation between key-
frames, but two common features across cameras.

ing point features across cameras, such that it is im-
possible for all of the camera observation vectors to be
parallel through the motion. This will ensure a well-
constrained solution to the localization and mapping
problem.

5. Conclusions

This work presented a detailed analysis of the degen-
erate configurations of the calibrated non-overlapping
FOV multicamera cluster SLAM problem for an opti-
mization based on minimizing a least-squares cost func-
tion with respect to the image-plane reprojection error.
The system is reduced to a simple matrix rank test on
a matrix consisting of rows of Plücker coordinates for
lines in R

3. Sufficient configurations for solution de-
generacy caused by the relative motion were identified
for nc-camera clusters observing any number of point
features over two keyframes. This leads to the novel
general conclusion that if all of the camera observation
vectors, formed as the displacement between the pairs
of cameras observing a particular point feature, are par-
allel in a common coordinate frame, then the system is
degenerate. It is further shown for several example sys-
tems that with the addition of more cameras to the clus-
ter, more point feature observations, and observations
of the point features across different cameras, the set of
degenerate configurations is significantly reduced as it
becomes impossible for all of the identified vectors to
be parallel and the redundant observations prevent all of
the determinants of the submatrices from going to zero
concurrently.
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Future work will focus on fully characterizing the
necessary and sufficient conditions for the system to be-
come degenerate, including the degeneracies related to
the geometry of the point feature constellation from the
standpoint of geometric algebra techniques [23]. Ad-
ditionally, the results from this work will be used to
generate metrics for deciding when and where to add
keyframes in a real-time SLAM system to accurately
construct and constrain the generated target model and
avoid the degeneracies within the state space caused by
measurements from this type of sensor.
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Appendix A. Projective Geometry

The projective space,Pn, consists of the real vector
spaceRn, with the addition of points at infinity [5]. Only
a very brief description of the projective space is pre-
sented here and the reader is referred to [5] for a more
thorough introduction.

A point in the projective space is represented by the
n+ 1 homogeneous coordinates,

x̃ =
[

x̃1 x̃2 . . . x̃n+1

]⊤
∈ Pn. (A.1)

The points at infinity inRn are represented by those with
coordinatexn+1 = 0. For finite points inRn – when
xn+1 , 0 – the coordinates of the corresponding point
x ∈ Rn are determined by,

x =
[

x1 x2 . . . xn

]⊤
(A.2)

=

[ x̃1

x̃n+1

x̃2

x̃n+1
. . .

x̃n

x̃n+1

]⊤

. (A.3)

Note that there is no way of mapping a point at infinity
back toRn since it would require division by zero.

Each point along a ray in the projective space maps
to the same point in the real vector space. As a result,
the pointsx̃ andλx̃, for λ ∈ R, map to the same point
x ∈ R

n. Not surprisingly, there is an extra degree of
freedom in the projective vectors usingn+1 coordinates
to represent an-dimensional space. Finally, it is possi-
ble to represent any pointx ∈ R

n in the corresponding

projective spacePn simply by augmenting the coordi-
nates,

x̃ =
[

x⊤ 1
]⊤
. (A.4)

The projective spaces allow for projective and coor-
dinate transformations to be represented as linear matrix
operations.
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