
Action recognition using saliency learned from recorded
human gaze

Daria Stefic and Ioannis Patras

School of Electronic Engineering and Computer Science
Queen Mary, University of London

London, E1 4NS

Abstract

This paper addresses the problem of recognition and localization of actions in

image sequences, by utilizing, in the training phase only, gaze tracking data

of people watching videos depicting the actions in question. First, we learn

discriminative action features at the areas of gaze fixation and train a Convo-

lutional Network that predicts areas of fixation (i.e. salient regions) from raw

image data. Second, we propose a Support Vector Machine-based recognition

method for joint recognition and localization, in which the bounding box of the

action in question is considered as a latent variable. In our formulation the op-

timization attempts to both minimize the classification cost and maximize the

saliency within the bounding box. We show that the results obtained with the

optimization where saliency within the bounding box is maximized outperform

the results obtained when saliency within the bounding box is not maximized,

i.e. when only classification cost is minimized. Furthermore, the results that we

obtain outperform the state-of-the-art results on the UCF Sports dataset.

Keywords: action recognition, saliency, Support Vector Machine (SVM),

latent variable, 3D Convolutional Neural Network (3D CNN)

1. Introduction

Action recognition in unsegmented images sequences can greatly benefit from

attention mechanisms that reduce the influence of background clutter. Early
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works on action recognition in this direction, such as the pioneering work of [1],

used for this purpose spatiotemporal interest point (STIP) detectors. However,5

such detectors were designed and not learned. The human visual system on the

other hand has built-in attention mechanisms. While their internal workings

are not fully understood and transparent, their output, i.e. where human look,

can be measured by gaze trackers.

In this paper, following recent works that utilize gaze information as side10

information for several Computer Vision tasks [2, 3, 4, 5, 6], we address the

problem of action recognition and localization using, in the training phase only,

gaze information. First, we learn a fixation prediction model, that is a model

that learns how to predict where people look when presented with image se-

quences. We treat this is a supervised binary classification problem, and train15

a Convolutional Neural Network that takes as input a local 3D spatiotemporal

cuboid and returns as an output a (soft) label that could be interpreted as a

saliency measure for the cuboid in question. We then learn features by training

in a supervised way a 3D convolutional neural network that extracts compact

features on local cuboids. Given that humans tend to look at the important20

and discriminative parts of the action video[7, 8], we train our network only on

cuboids extracted around recorded gaze fixations. In order to show that the

proposed saliency prediction model and the extracted features can be useful for

the problem of action recognition, we use them in a simple action recognition

scheme in which local cuboids are classified to one of the action classes inde-25

pendently and the video class is decided according to a majority voting scheme.

That is a test video is assigned to the class to which most of its cuboids have

been classified to.

Finally, we propose a novel SVM scheme for joint recognition and localization

of actions. In our proposed SVM model we are introducing as latent variables30

the locations of the bounding boxes within which the actions are assumed to take

place. Those locations are unknown during both training and testing. During

testing/inference the proposed method optimizes with respect to both the video

label (i.e. action class) and the location of the bounding boxes a cost that
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comprises of two terms. First, a classical SVM misclassification penalty term35

and second, a term that is related to the saliency within the bounding box. The

proposed SVM tries to find the class label and the location of bounding box that

optimally balance the minimization of the missclassification cost once a linear

classifier is applied on features extracted within the bounding box in question,

and the maximization of the sum of the predicted saliencies within the bounding40

box. The proposed scheme shows improvements over the baseline SVM, over

the latent SVM introduced in [9] and over the proposed SVM that does not use

the additional saliency cost. It also achieves state-of-the-art performance on the

UCF sports dataset.

Figure 1 shows an overview of the inference procedure of our proposed system45

for a single video. In the first phase (PHASE 1 in Figure 1) we use the out-

puts of two separate 3D CNNs - one for saliency prediction and another one for

feature extraction. The simple majority voting-based classification scheme is de-

picted as PHASE 2A in Figure 1 and the SVM-based joint action classification-

localization is depicted as PHASE 2B.50

The main contributions of this paper are the following:

• we present a fully supervised method for learning saliency prediction using

human gaze information and show the usefulness of saliency prediction in

a majority voting and an SVM framework,

• we present a fully supervised method for learning action features using hu-55

man gaze information and show that those features outperform commonly

used handcrafted features in a majority voting framework,

• we present a latent SVM based method for joint action recognition and

localization in which the class label and the bounding boxes are inferred

by optimizing a cost function that contains a missclassification penalty60

term and a term that that is related to the saliency within the bounding

box. We show that our joint localization and recognition model that uses

predicted saliency for bounding box inference during training is better
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Figure 1: Illustration of two phases in action class inference procedure for the whole video

than both the model that does not use predicted saliency and the model

of [9].65

The rest of the paper is organized as follows. In section 2, we present related

work in action recognition focusing on how saliency has been used to alleviate

some of the major challenges. In section 3, we present how we learn features for

action recognition and how we learn a saliency predictor. In section 4, we present

the proposed SVM framework that uses those action features and a saliency70

predictor to infer the class of the video and the location of the bounding boxes

that contain relevant parts of the video. In section 5, we present experimental
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results and in section 6 we give conclusions and future work.

2. Related work

There is a large body of works in the area of action recognition - for re-75

cent surveys we refer the reader to [10, 11, 12]. In what follows, we briefly

review some the major works in the field and then focus on works that are

closer related to the contributions that we make in this paper, namely, works on

feature learning, works on joint localization and recognition, focusing on latent

SVM formulations, and finally, works that use gaze in the action recognition80

framework.

In the classical pipeline for human action recognition the first step is fea-

ture extraction. Usually features based on shape, such as HOG and Scale-

Invariant Feature Transform (SIFT), or motion, such as HOF and Histogram

of the Oriented edges of the Motion Boundaries (MoBH), are extracted across85

the areas detected by local STIP detectors. In such approach, both the fea-

ture detector and feature descriptor usually act locally. Lately, tracking and

extracting trajectory features has shown very good performance in the action

recognition[13, 14, 15, 16, 17, 18]. The second step is feature encoding. Un-

til recently a simple BoW approach was most popular: the features extracted90

around detected areas are quantized and a BoW representation of the whole

video is built. Lately, using Fisher Vector (FV) encoding [19] has shown supe-

rior results comparing to the BoW approach, in image recognition[20] and action

recognition[21, 22, 16, 17]. In the third step an SVM is used as a classifier on

top of the video representation.95

In such approach local changes can be captured but more complex global

spatiotemporal relations and higher level motion patterns are lost by pooling

in the feature encoding stage. For that purpose, probabilistic graphical models

such as Conditional Random Fields (CRFs)[23, 24, 25, 26], Hidden Markov

Models (HMMs)[27, 28, 29, 30], probabilistic Latent Semantic Analysis (pLSA)100

and Latent Dirichlet Allocation (LDA)[31] can be used. Action grammars[32,
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33, 34, 35], models that use graph relations[18, 36] and latent SVMs[37, 38, 39]

are also used to model the higher levels of action recognition frameworks.

2.1. Descriptors and feature learning

Much effort has been put in enriching local descriptors and detectors with for105

example, hierarchical structures [40, 41, 42], local contexts [43, 44], or extending

them to 3D [45, 46, 47]. An approach that is focused on learning feature repre-

sentations, namely deep learning, has shown very good performance in various

computer vision tasks [48, 49, 50, 51]. In [41, 52] features for action recognition

are learned using unsupervised learning algorithms: [41] uses Independent Sub-110

space Analysis and [52] uses Slow Feature Analysis. Supervised deep learning

algorithms, such as 3D CNN, have also been successfully applied in the problem

of action recognition [53, 54, 51]. In those works 3D CNNs are applied in a

holistic manner. However, the inputs to these networks are segmented video

sequences. Finally, [55] adopts the two level discriminative learning approach115

which is conceptually similar to ours. In [55] the discriminative mid-level fea-

tures are learned using an exemplar SVM on low-level features. Those features

are used to build a global video representation which is then fed into a linear

SVM. However, the selection of discriminative parts of the videos that are used

to train an exemplar SVM is manual.120

2.2. Higher level modeling of the video structure

In the last few years, inspired by the work of [9] on part-based object recog-

nition, several works introduce latent variables in the action recognition frame-

work. [37, 39] try to jointly localize and recognize the actions in a latent SVM

framework, and [56, 30] use latent variables to model the temporal structure125

of activities. Finally, a recent work that is close to ours is [38] where recorded

human gaze is incorporated in the structured output latent SVM framework.

The gaze was used only in the training phase in a form of a loss in the structured

prediction to infer the latent variable that determines the bounding boxes of the

action.130
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2.3. Gaze as an interest point detector

A couple of recent works use gaze information for action recognition as a

STIP detector[7, 8]. This can be done in two ways: first by using ground truth

recorded fixations as a STIP detector in test videos [8], and second by using

ground truth fixations to train a detector on a training set and use the pre-135

dicted fixations as a STIP in test videos [7]. [8] showed that results for action

recognition obtained using the former approach in the test video classification

procedure outperformed the results obtained using commonly used STIPs. How-

ever, this method requires gaze information in test videos and this is not always

available.140

Other works, such as [7], learns to predict the human fixations on test videos

using recorded fixations only on training videos. They pose saliency prediction

problem as a binary classification problem, i.e. fixated points are treated as

positive examples, and non-fixated points are treated as negative examples.

To solve this classification problem, a linear SVM is used on top of manually145

selected features extracted around points in question. Action recognition results

obtained when using fixations predicted by this saliency predictor as a STIP did

not outperformed the ones obtained when using ground truth recorded fixations

as a STIP, but they did outperform the results obtained when using common

STIPs. This is consistent with the results of [8].150

3. Learning action features and saliency prediction

The modified SVM-based classifier for joint action recognition and localiza-

tion that we propose (see Figure 1), utilizes as input the outputs of two 3D

CNNs. The first 3D CNN predicts saliency and the second 3D CNN extracts

action features. Recorded human fixations are required for training both of155

those networks. In section 3.1 we will describe the first 3D CNN and how the

extracted local action features are used in a global SVM framework. In section

3.2 we will describe the second 3D CNN and how the predicted saliency is used

as an additional cost in the proposed SVM framework.
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Table 1: Parameters of 3D-CNNs

Parameters saliency action features

input cube dimensionality 21x21x10 21x21x10

size of 1st layer filters 4x4x3 4x4x3

1st layer subsampling 2x2x1 2x2x1

number of 1st layer filters 25 50

size of 2nd layer filters 2x2x3 2x2x3

2nd layer subsampling 2x2x1 2x2x1

number of 2nd layer filters 50 100

units in fully connected layer 50 50

3.1. 3D CNN for learning discriminative mid-level local action features160

Similar to other works in the literature of Deep Learning we extract features

by training a CNN in a supervised way. The architecture of the proposed CNN

(Figure 2) has 10 outputs in the last layer, one for each of the 10 action classes

and takes as input 3D cuboids extracted around points at which humans fixate.

By training this network only on fixated points we learn discriminative features165

discarding the background clutter. Once the 3D CNN is trained, when presented

with a 3D cuboid it outputs a 10 dimensional vector containing the soft class

labels for the cuboid in question.

The parameters of the 3D CNN architecture are listed in Table 1. We use

f(x) = tanh(x) to model neurons output and spatial max pooling. In the final170

layer we use a softmax classifier. The implementation is made using Theano[57,

58]. We have used small filter sizes in order to reduce the number of parameters

and make the training easier and a small number of units in the hidden layer

in order to prevent overfitting. We have experimented with different number of

filters and, as expected, found that the larger the number of filters the better175

(performance saturates for number of filters reported in Table 1). This will be

further discussed in section 5.1.

In the proposed SVM framework for action recognition, we use as features
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Figure 2: Convolutional neural network architecture used in our experiments, both for learning

saliency prediction and action features. However, the number of outputs is different: the

network for learning action features has C = 10 outputs (as depicted here) and the network

for saliency prediction has two outputs. The input and the maps are depicted as 2D, in

practice they are 3D.

the outputs of the uppermost softmax layer of the trained 3D CNN, that is, the

soft class labels. In order to bring the videos to the same dimensionality, we180

sample cuboids at a regular 3D grid with a fixed number of points - clearly, we

need to use different sampling steps for videos of different resolutions or number

of frames. For each cuboid a C dimensional vector, where C is the number

of action classes, is extracted after the 3D CNN is applied to it. For joint

localization and recognition, we introduce latent variables that are bounding185

boxes with fixed dimensionality in space and in time, that is, they contain a

fixed number of points of the 3D spatiomporal grid. The representation that we

used for the whole video is the concatenation of the C-dimensional features at

the spatiotemporal bounding box.

Formally, the representation of a video xi, denoted by R(xi,bbi) , is a con-

catenation of features extracted at bounding boxes per frame bbi = [bb1 ... bbt ...]
T ,

t = 1, ..., T , where T is the number of frames. That is, R(xi,bbi) consists of
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the concatenated features r(xi
t, bb

i
t) for each frame t. Formally:

R(xi,bbi) = [r(xi
1, bb

i
1)T ... r(xi

t, bb
i
t)

T ...]T , t = 1, ..., T, (1)

where r(xi
t, bb

i
t) is the concatenation of features extracted by the pretrained

3D-CNN within the bounding box bbit in frame t, that is:

r(xi
t, bb

i
t) = [... a(p; θa)T ...]T , p ∈ bbit, (2)

where p is a point within the bounding box and a(p; θa) is a vector of features

extracted at point p using the 3D CNN (with parameters θa) trained for action

cube classification. The feature vector a(p; θa) is the output of the softmax layer

of the 3D CNN and contains the probabilities that the cuboid p belongs to each

of the class c. That is:

a(p; θa) = [P (Y = 1|p, θa), ..., P (Y = c|p, θa), ..., ]T , (3)

where c is an action class. Clearly, the dimensionality of a(p; θa) is equal to the190

number of classes.

3.2. 3D CNN for saliency prediction

Very recently, deep learning has been applied for saliency prediction, either

in an unsupervised way [59] or in a supervised way using recorded ground truth

fixations obtained by gaze tracking [60, 61, 62, 63]. In this paper we adopt the195

supervised approach and use a 3D CNN. The network acts as a binary classifier

that classifies cuboids as being fixations or not.

The architecture for saliency prediction is the same as the one for learning

action features depicted in Fig. 2, the only difference being that it has only

two outputs in the last layer and fewer number of filters in both layers. The200

parameters of this 3D CNN architecture are listed in Table 1. The output of

the softmax layer of the network for saliency prediction will be incorporated in

the total cost of the SVM classifier, as described in the following paragraph.

In our SVM framework we want to avoid choosing bounding boxes bbi with

low concentration of saliency. Hence, for each video xi, we add a cost which is
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defined in terms of the saliency concentration in the inferred bounding boxes.

The saliency concentration within the bounding box bbi for the video xi is

defined as:

M(xi,bbi) =

T∑
t=1

m(xi
t, bb

i
t), (4)

where m(xi
t, bb

i
t) is the saliency concentration at bounding box bbit at frame t

defined as:

m(xi
t, bb

i
t) =

∑
p∈bbit

s(p; θs)∑
p∈bbit

1
(5)

where s(p; θs) is the estimated saliency of a point p using the parameters θs of

the 3D CNN that is trained for saliency prediction, that is:

s(p; θs) = P (Y = +1|p, θs), (6)

where P (Y = +1|p, θs) is the output of the softmax layer of the network for

saliency prediction, that is the probability of a point p being a fixation. Hence,205

s(p; θs) ∈ [0, 1].

4. SVM formulation

First, in section 4.1, we will present the proposed SVM-based classifier, the

parameters over which its cost function is optimized, and how the representa-

tion of a video described in section 3.1 and the saliency cost described in 3.2210

are incorporated in the total cost. Second, in section 4.2, we will present the

optimization procedure for this type of SVM, and how the inference of bounding

boxes and video class is incorporated in it. Third, in section 4.3, we will present

how the classification of a video is performed. Finally, in section 4.4, we will

present how a special case of our model compares to [9].215

4.1. Cost function

Here, we define the problem formally. Let xi be a video of T frames and

bbi = [bbi1, ..., bb
i
t, ..., bb

i
T ]T bounding boxes per frame, that ideally contain
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discriminative information for action classification. Let R(xi,bbi) be a repre-

sentation of the video in question, as described in section 3.1. Typical systems,220

such as [41, 43], assume that the information bbi is given, and adopt a video

classification scheme such as wTR(xi,bbi) + b, where w, b are learned using,

for example, max-margin learning. For example, bbi can be given in a form

of a STIP detector that is used in order to sample the cuboids around salient

points. The representation R(xi,bbi) that is built using those points is then225

fed into an SVM classifier and only SVM parameters are learned. By contrast,

we treat the locations of the bounding boxes bbi as latent variables and solve

the optimization problem in which we are searching not only for the optimal

values of the standard SVM parameters, but also for the optimal locations of

the bounding boxes.230

Given a set of labeled videos D = {(x1, y1), ..., (xM , yM )} where yi ∈

{−1, 1} and M is the number of videos, we are solving the following optimization

problem:

min
w,b,{bbi}Mi=1

LD(w, b, {bbi}Mi=1), (7)

where

LD(w, b, {bbi}Mi=1) =
1

2
(wTw + b2)+ (8)

M∑
i=1

[
max(0, 1− yif(w, b;xi,bbi))− λM(xi,bbi)

]
. (9)

In the above equation f(w, b;xi,bbi) is the scoring function for a video xi:

f(w, b;xi,bbi) = wTR(xi,bbi) + b, (10)

and w are concatenated weights per frame:

w = [wT
1 , ..., wT

t , ..., wT
T ]T . (11)

Note that the additional cost M(xi,bbi) related to the saliency of a bounding

box areas is regularized by the parameter λ.
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Figure 3: Illustration of the proposed SVM. In each frame xt bounding box bbt is selected

based on saliency concentration and features extracted across that bounding box. Based on

the selected bounding box a frame representation rt(xt, bbt) is built by concatenating features

across the bounding box. A video representation R(x,bb) is further built by concatenating

frame representations.

In Fig.3 we illustrate the working of our proposed SVM, that is the selection

of the bounding box and the build of the input feature representation based on

learned saliency and action features.235

4.2. Learning

In order to minimize the cost function LD(w, b, {bbi}Mi=1), over two subsets

of the parameters, namely w and b on the one hand and {bbi}Mi=1 on the other,

we use a block coordinate descent method. We iteratively alternate between

optimizing the cost function with respect to the SVM parameters w, b keeping240

the bounding box parameters {bbi}Mi=1 fixed (step 2) and optimizing the cost

function with respect to the bounding box parameters {bbi}Mi=1 keeping the
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SVM parameters w, b fixed (step 3). Step 2 results to a convex optimization

problem, more specifically an SVM-like problem that we solve with a gradient

descent method. Step 3 is an optimization problem that can be solved by245

enumeration of the positions of the {bbi}Mi=1 - an efficient exact solution is

possible given that we do not consider interdependencies in subsequent frames

(see Eq. (19) - Eq. (23)). Therefore, each step gives optimal solutions with

respect to the subset of the parameters and the procedure converges to a local

minimum.250

The full procedure consists of the following steps:

Step 1. Initialization

We initialize the bounding box (bbit)
∗ at frame t as the one that maximizes

the saliency:

(bbit)
∗ = argmax

bbit

m(xi
t, bb

i
t), (12)

i.e. we are choosing the most salient areas of the videos. Note that this

solution is actually the solution of a special case of our model when in the

objective function the parameter λ = +∞.255

Step 2. Optimization with respect to w, b

In this step we solve for w, b while keeping {bbi}Mi=1 fixed. This results

in a convex optimization problem that we solve by stochastic gradient

descent. The subgradient of the objective function with respect to w is

computed as follows:

5wLD(w, b, {bbi}Mi=1) = w + C
∑
i

hw(w,xi, yi), (13)

where

hw(w,xi, yi) =

0, if yif(w, b;xi, (bbi)∗) ≥ 1,

yiR(xi, (bbi)
∗), otherwise.

(14)
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and the subgradient with respect to b:

5bLD(w, b, {bbi}Mi=1) = b+ C
∑
i

hb(b,xi, yi), (15)

where

hb(b,xi, yi) =

0, if yif(w, b;xi, (bbi)∗) ≥ 1,

yi, otherwise.

(16)

The full gradient descent algorithm for optimizing LD(w, b, {bbi}Mi=1) over

w, b is summarized in Algorithm 1.

Algorithm 1 Stochastic gradient descent for [w, b] optimization

pick a random example i

use (bbi)∗ computed in the previous step to calculate f(w, b;xi, (bbi)∗)

if yif(w, b;xi, (bbi)∗) ≥ 1 then

w← w − αw,

b← b− αb

else

w← w − α(w − CyiR(xi, (bbi)∗)),

b← b− α(b− Cyi)

end if

where α is learning rate.

The learning rate α is set to 0.05/it, where it is the iteration index.

Step 3. Optimization with respect to bb260

In this step we optimize LD(w, b, {bbi}Mi=1) with respect to {bbi}Mi=1 by

doing inference for every bounding box bbi independently in the following

way:
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(bbi)∗ = argmin
bbi

[
max(0, 1− yif(w, b;xi,bbi))− λM(xi,bbi)

]
(17)

= argmax
bbi

(yif(w, b;xi,bbi) + λM(xi,bbi)) (18)

Here we can see how the search for a bounding box balances between good

feature response f(w, b;xi,bbi) across the bounding box area and a high

saliency concentration M(xi,bbi) of the same bounding box. Further, by

applying f(w, b;xi,bbi) = wTR(xi,bbi)+b, the inference can be written

as:

argmax
bbi

(yi(wTR(xi,bbi) + b) + λM(xi,bbi)). (19)

Since R(xi,bbi) is concatenation of features per frame, we get:

argmax
bbi

[
yi(

T∑
t=1

wT
t r(xi

t, bb
i
t) + b) + λ

T∑
t=1

m(xi
t, bb

i
t)
]

(20)

= argmax
bbi

{ T∑
t=1

[
yiwT

t r(xi
t, bb

i
t) + λm(xi

t, bb
i
t)
]

+ yib
}
. (21)

We can ignore yib:

=

T∑
t=1

argmax
bbit

[
yiwT

t r(xi
t, bb

i
t) + λm(xi

t, bb
i
t)
]
, (22)

and, therefore, the inference of an optimal bounding box positions across

the whole videos comes down to inference of the optimal bounding box

position per frame t:

(bbit)
∗ = argmax

bbit

[
yiwT

t r(xi
t, bb

i
t) + λm(xi

t, bb
i
t)
]
. (23)

Step 4. Algorithm iteration

After step 3 the algorithm iterates between step 2 and step 3 until it265

reaches the maximum number of iterations.
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As our bounding box search space is constrained to fixed size bounding boxes,

the time complexity of one iteration of our algorithm is O(WHT ) (for a single

training example), where W is width, H is height and T is the number of frames

of a video. The complexity of our method is the same as in [38]. In practice we270

sample a fixed number of points across x-axis, y-axis and frames as described

in 3.1. We sample 20 points across the x-axis, 10 points across the y-axis and 5

frames across the video. Therefore, in our case W = 20, H = 10 and T = 5.

4.3. Classification

Once learning is performed, we end up with C binary classifiers that are

trained in one-vs.-all manner. Each of those classifiers parametrized by (wc, bc)

can be used in order to determine whether a video described by xi depicts the

action c by solving the following optimization problem (for clarity, we omit the

index i):

y∗c ,bb
∗
c = argmax

y∈{+1,−1},bb
[yf(wc, bc,bb;x) + λM(x,bb)]. (24)

In order to solve the multiclass classification problem, we find the label c∗

that gives the maximum response f(wc, bc;x,bb
∗
c) for the video in question.

That is, we solve:

c∗ = argmax
c∈{1, ..., C}

f(wc, bc;x,bb
∗
c), (25)

where bb∗c is given by 24.275

Finally, let us note that when the bounding boxes are fixed, the classifi-

cation decisions are not influenced by the saliency costs. That is, the binary

classification in eq. 24 becomes a standard SVM classifier, that is:

y∗c = argmax
y∈{+1,−1}

[yf(wc, bc;x,bb
∗
c)], (26)

or

y∗c = sgn f(wc, bc;x,bb
∗
c). (27)
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4.4. Comparison with latent SVM presented in [9]

In this section we will show the relation of our model to the latent SVM

proposed in [9]. If we set λ = 0, the cost function of our model takes the

following form:

min
w,b,{bbi}Mi=1

1

2
(wTw + b2) +

M∑
i=1

[
max(0, 1− yif(w, b;xi,bbi))

]
, (28)

while the one of latent SVM[9] is defined as follows:280

min
w,b

1

2
(wTw + b2) +

M∑
i=1

[
max(0, 1− yi max

bbi
f(w, b;xi,bbi))

]
. (29)

When searching for (yi)∗ and (bbi)∗ our model searches over all possible

combinations of (yi)∗ and (bbi)∗ (analogous to eq. 24 when λ = 0; for clarity,

in the rest of the section we omit index i):

y∗,bb∗ = argmax
y∈{+1,−1},bb

yf(w, b,bb;x). (30)

In contrast to this, in [9] the search for y∗ and bb∗ is performed in two separate

steps:

bb∗ = argmax
bb

f(w, b,bb;x), (31)

and

y∗ = argmax
y∈{+1,−1}

yf(w, b,bb∗;x). (32)

The drawback of this model is that it is not possible to incorporate the

saliency cost under the maxbb term as it would add negative saliency in the

cost for negative examples. On the other hand, this model searches for the285

strongest bounding box area response first and classifies it afterwards. By doing

so, the models avoids choosing the strong negative response and classifying it

as negative, as it can happen in our model. In our model we are trying to avoid

this by adding saliency cost.
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5. Results290

We evaluate our method on the UCF sports dataset [64] using human eye

movements recorded for each video of this dataset [7]. It contains 150 videos

depicting 10 sports actions classes. The actions are recorded in different scenes

and viewpoints, and some of the sequences contain more than one human. The

human eye movements were collected from 16 human subjects.295

Most works on UCF sports dataset use leave-one-out protocol, however, we

follow the one from [38]. In this protocol the dataset is split in 103 training

examples and 47 test examples. We follow this protocol for a couple of reasons.

First, this is the work closest to ours and second, in [37], where this protocol was

introduced, it has been shown that there is a strong scene correlation among300

videos in certain classes. Also, in some works that use LOO cross validation the

parameter setting is unclear [37].

Additionally, to validate the proposed SVM approach we use Olympic sports

dataset [56]. For this dataset there are no recorded gaze fixations available,

therefore it is not possible to validate our learned features and saliency pre-305

diction in the MV framework. However, it is possible and we will show the

usefulness of saliency prediction in the SVM framework. The Olympic sports

dataset contains videos of athletes practicing different sports. There are 783

videos of 16 sports action classes. Videos are collected from YouTube and only

video class annotations are available. We use the suggested split for training310

and testing available on the dataset webpage.

When predicting saliency on Olympic sports dataset we use 3D CNN for

saliency prediction that is trained on UCF sports dataset. As features we use

the one from [65], which are also deeply learned using a CNN. However, they

are learned on ILSVRC-2012 dataset, which contains only static 2D images, so315

they do not capture motion. Feature representation is built in the same way

as in the experiments on the UCF sports dataset. The only minor difference is

that during bounding box search W and H are both set to 7. That is due to

the architectural properties of the network used for feature extraction (for more
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details see [65]).320

5.1. Majority voting based video classification

In Table 2 we present the results obtained by a simple majority voting scheme

on the UCF sports dataset in order to illustrate two things. First, in order to

show a good discriminatory power of the features learned with CNN we com-

pare the results obtained by simple majority voting scheme to the ones obtained

with the BoW approach. In BoW approach cuboids are densely sampled (in-

terestingly, in realistic videos, dense sampling has been shown to be a better

sampling strategy than using any kind of STIP[43]) and HOG, HOF and HoMB

descriptors are used - for more details see [38]. In our approach the votes of

the cuboids are sampled across the whole video in three different ways: without

using saliency, i.e. randomly, using saliency predicted by our 3D CNN network

trained for saliency prediction or using ground truth saliency. The vote of a

cuboid is

c∗ = argmax
c

ac(p; θa) = argmax
c

P (Y = c|p, θa) (33)

where c is an action class. In the setup where ground truth saliency is used,

we simply use only the votes of the recorded fixations points. In the setup with

predicted saliency we are using the output of a pretrained saliency predictor (3D-

CNN) which gives as an output the probability of a cuboid being salient, that325

is s(p; θs) = P (Y = +1|p, θs). A cuboid is classified as a salient if s(p; θs) ≥ 0.5

and in that case we count its vote, otherwise we discard it. We can see that

our simple majority voting scheme, that is without the additional quantization

step and training an SVM classifier that are used in the BoW approach, yields

much better results, both when using predicted saliency and when using ground330

truth saliency. Even when using no saliency, the result is comparable with the

global BoW setting. This result shows that our discriminatively learned features

compare well to the handcrafted ones.

We can see that even when using ground truth saliency, the result is 85.00%,

which is around 3% above the state-of-the-art and around 1.5% above our best335
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Method MAP

Global BoW [38] 64.29

BoW with spatial split [38] 65.95

BoW with temporal split [38] 69.64

MV (no saliency) 64.31

MV (with predicted saliency) 74.17

MV (with ground truth saliency) 85.00

Table 2: Results obtained using majority voting scheme on the UCF sports dataset. The

measure is mean per class classification accuracy.

result obtained with SVM-based approach. Those results are reported in Table

5 and further discussed in section 5.2. Note that those results reported in

Table 5 are obtained by frameworks in which only predicted saliency is allowed.

However, one of the reasons that the result of 85.00% obtained using ground

truth saliency is still lacking is due to the fact that even ground truth saliency340

can be misleading - for example, people tend to look a lot at faces, which are

not discriminatory for any action. This affects the results in two ways: first, as

the action features are used only on fixations, they may capture some irrelevant

head movements and because of that, the learned features are lacking. Second,

during sampling the ground truth fixations, the same irrelevant movements are345

captured, which all together can lead to misclassification.

The second thing we want to illustrate in this majority voting scheme is the

fact that there is a large improvement in results when using any kind of saliency

prediction, either ground truth or predicted, over the results without saliency

prediction, i.e. random dense sampling. As mentioned in the beginning of this350

section, the latter were shown to be superior over sampling the points detected

with any of the STIPs[43]. This shows the efficacy of our 3D CNN-based saliency

predictor.

In table 3 we present results we obtain by varying the hyperparameters

of 3D CNN for action recognition. We varied the number of filters in both355
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layers, the number of fully connected units and the depth of the 3D CNN for

action features. The size of the filters is the same for all networks, that is

4x4x3 in the first layer and 2x2x3 in the second layer. The only exception is

network 10, which has larger first layer filters, that is 8x8x5. We can observe the

following. First, we can see that adding a layer improves the results. Second,360

larger number of filters is beneficial (in our case especially first layer filters -

compare networks 0 and 1). Third, larger number of units in a fully connected

layer leads to overfitting (network 4). Fourth, even in an one layer network

training with larger filter size seems to be challenging (network 10). Our results

verify general findings in the deep learning literature (we mention those in the365

beginning of section 3.1). However, we did not investigate the impact that

different hyperparameters would have in the SVM framework: in further SVM

experiments we use the largest network, that is network 0. The hyperparameters

of 3D CNN for saliency prediction had less impact on the action recognition

results in a majority voting framework so we omit those.370

In Figure 4 we can see some examples of well estimated saliency maps and

voting maps. Those maps are obtained by sampling points across the video

with a variable step size, as described in section 3.1. For each point, its saliency

value (see eq. 6) and voting vector (see eq. 3) are obtained. Correct votes in the

voting maps are the ones for which c∗ (see eq. 33) corresponds to the ground375

truth and those are marked with white. The incorrect ones, i.e. the ones that

cast vote for any other action than the correct one, are marked with black. In

Figure 5 we see examples of misclassification of a video action class, and we

notice that the misclassification is mostly due to errors in the voting scheme

rather than in the saliency prediction. Those videos exhibit large change in380

scale and we can see that in those videos it is hard to notice the movements

even with bare eye.

5.2. SVM-based video classification

In this section we present the results obtained with the method presented

in section 4. As a baseline, in Table 5 we report the results obtained without385
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Network 1st layer filters 2nd layer filters fully connected units result

0 50 100 50 85.11

1 50 50 50 85.11

2 25 100 50 76.60

3 50 100 25 78.72

4 50 100 100 78.72

5 25 50 50 78.72

6 50 50 25 78.72

7 50 - 50 74.47

8 50 - 25 72.34

9 10 - 50 68.09

10 50 - 50 68.09

Table 3: Results obtained in a majority voting framework when neural network for action

features is learned using different hyperparamters. Here, as saliency prediction ground truth

fixations are used. The measure is classification accuracy per video, as opposed to the mean

per class classification accuracy reported in table 2.

Figure 4: Examples of good saliency prediction and voting maps: (a) original frame, (b)

predicted saliency map, (c) voting map.
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Figure 5: Examples of bad voting maps: (a) original frame, (b) predicted saliency map, (c)

voting map.

optimizing with respect to the bounding box, i.e. when the bounding box at

each frame is the whole frame. Those results are significantly lower than the

ones obtained when using bounding boxes, except when λ = 0. This illustrates

the importance of both searching for discriminative areas in the video and the

importance of adding the saliency cost.390

Furthermore, we would like to illustrate the importance of adding the saliency

cost term in our SVM framework by varying the value of the parameter λ in

the set of values: {0.0, 2.5.5.0, 7.5, 10.0, 15.0, 17.5, 20.0}. The results obtained

on the test set of UCF sports dataset are presented in Fig. 6. We observe that

increasing λ significantly improves the results and that the peak is reached at395

λ = 2.5. For λ>17.5 the performance drops and then, as λ→ +∞ it saturates.

The highest performance on the test set was obtained for λ = 2.5 (85.24%),

however with cross validation we obtained λ = 5.0, so in Table 5 we report the

results obtained with that value of λ (83.57%). The value of the SVM parameter

C in Eq. (13) was also obtained by cross validation; C = 0.1. Parameters λ400

and C were obtained by cross validation simultaneously and the cross validation

was 2-folded. Note that when using no saliency, i.e. for λ = 0.0, the results

are worse than the ones obtained with majority voting using saliency prediction

(see Table 2). In this case the initial weights were obtained using saliency in-

formation, so this also illustrates the importance of saliency being incorporated405

in the optimization procedure.
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d g k l ri ru s sB sSA w

diving 100 0 0 0 0 0 0 0 0 0

golf 0 83.3 0 0 0 0 0 0 0 16.7

kicking 16.7 0 66.7 0 0 0 0 0 0 16.7

lifting 0 0 0 100 0 0 0 0 0 0

riding 0 0 0 0 100 0 0 0 0 0

running 0 0 0 0 0 75 0 0 0 0

skateboarding 0 0 0 0 0 0 25 0 0 75

swing-bench 0 0 0 0 0 0 0 100 0 0

swing-SA 0 0 0 0 0 0 0 0 100 0

walking 0 14.3 0 0 0 0 0 0 0 85.7

Table 4: Confusion matrix obtained for λ = 5.0 on the UCF sports dataset

For the Olympic sports dataset we perform cross validation only over C

parameter and use λ = 5.0 obtained for UCF sports dataset. The results we

obtain on this dataset also show that it is beneficial to use saliency, even if it

is learned on a different dataset. We have seen that on the UCF sports best410

results are achieved for smaller λ. Therefore, it is interesting to note that on the

Olympic sports dataset better results are achieved when λ = +∞, even though

the saliency is learned on the UCF sports. This is probably due to the fact that

in the experiments on UCF sports we use features trained on this dataset, and

in the experiments on the Olympic sports we use features that are not trained415

on the Olympic sports dataset.However, it also implies that our learned saliency

is general enough to improve the result on a different dataset comparing to the

method that does not use saliency.

In the same table, that is Table 5, we compare our results to the state-of-

the-art. The work that is closest to ours is presented in [38]. In their work the420

recored human gaze fixations are incorporated, in the training phase only, in

the form of structural loss of a structured output latent SVM that is used as

an action classifier. That makes the gaze inference necessary during the opti-
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mization. By contrast, in our method the saliency prediction depends only on

the output of the pretrained 3D CNN, i.e. there is no top-down inference. The425

works of [37, 39] also use latent SVM, however no saliency data has been used in

either training or testing. [66] and [18] also do not use saliency data. Another

major difference in comparison to [38] is that as a feature representation they

use BoW per frame. By contrast, we use feature concatenation, which seems to

be a better representation, as inside the discriminative area of a bounding box430

the spatial relations should not be disregarded. Furthermore, [38] reports the

results obtained when inferring one and two discriminative regions to illustrate

the importance of adding flexibility in the choice of discriminative regions. We

can see that even when using two discriminative regions (for which they obtain

best results), their results were worse than ours even though we use only a single435

bounding box. In the confusion matrix presented in Table 4 we can see that

the action kicking which contains additional object of interest (the ball) has the

lowest accuracy.

The state-of-the-art on Olympic sports dataset is obtained using trajectory

based features and Fisher Vectors as a higher level video representation [17]. 1
440

As we mention in the beginning of the related work section, those are the meth-

ods that in general currently hold the state-of-the-art on the action recognition

datasets. We can see that our results are lower. We intent to investigate how

such representations can be incorporated in our framework in our future work.

The main limitation of our approach is that our representation is not invari-445

ant to larger translation and scale variations: the choice of fixed size bounding

box makes our representation sensitive to scale changes, and using the fixed

feature concatenation without any kind of pooling makes it sensitive to transla-

tions. That is a problem especially for periodic actions, such as skateboarding

and running - in Table 4 we can see that accuracies obtained for those actions450

are lower.

1Note that the results of the approach of [17] we report are reported in [67], not in [17].
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Figure 6: The effect of different λ values on the UCF sports test set. Dash-dot green line

represents the results obtained before the optimization, i.e. using the initial weights and

different values of λ, full blue line represents the results after the optimization, and red dashed

line represents the result obtained using the initial weights and the initial bounding boxes.

5.2.1. Comparison with latent SVM results

In section 4.4 we showed how our model in a special case when λ = 0

compares to the one of [9]. Here, in Table 5 we report how their results compare.

As we are interested in comparing only the performance of the latent SVM455

model [9] to ours, the features that are used are the ones that we used in all our

experiments, i.e. the ones obtained by 3D CNN. That is, we do not implement

the deformable parts model on top of which latent SVM is built, as presented

in [9].

We can see that the model of [9] achieves slightly better results than our460

model in case of λ = 0. This was expected as our model can pick up on

the noise of strong negative bounding box responses, while [9] searches for the

strong bounding box area response first and classifies it afterwards. However,

with added saliency cost, our model outperforms it by a large margin. Hence,

it seems that adding saliency cost acts as a much better regularization scheme465

for not picking the irrelevant background clutter.
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Method UCF sports Olympic sports

Lan et al. [37] 73.1 -

Shapovalova et al. [39] 75.3 -

Raptis et al. [18] 79.4 -

Jain et al. [66] 80.24 -

Shapovalova et al. [38] (1 region) 77.98 -

Shapovalova et al. [38] (2 regions) 82.14 -

Niebles et al. [56] - 72.1

Laptev et al. [68] - 62.0

Peng et al. [17] - 93.8

Ours (no bounding box) 67.62 60.45

Ours (λ = +∞) 79.05 67.16

Ours (λ = 0.0) 66.31 59.7

Ours (λ = 5.0) 83.57 64.18

Latent SVM 68.57 61.19

Table 5: Comparison of the results obtained with SVM to the state-of-the-art. The measure

for UCF sports dataset is mean per class classification accuracy. The measure for Olympic

sports dataset is mean average precision.

28



6. Conclusion

In this paper we have shown how saliency prediction learned from recorded

human fixations can alleviate the problem of action recognition: first, by train-

ing a saliency predictor, and second, by training a discriminative mid level470

feature extractor on recorded human fixations. We have shown the efficacy of

both the saliency predictor and the feature extractor in a simple majority voting

framework. Furthermore, we have developed an SVM framework which incor-

porates the saliency cost from saliency prediction and representation built from

learned action features. In this framework we have shown the importance of475

using saliency through saliency cost term and achieved state-of-the-art results

on the UCF sports dataset.

References

[1] I. Laptev, T. Lindeberg, Space-time interest points, in: Proceedings of

International Conference on Computer Vision, 2003.480

[2] A. Klami, C. Saunders, T. Campos, S. Kaski, Can relevance of images be

inferred from eye movements?, in: Proceedings of International Conference

on Multimedia Information Retrieval, 2008.

[3] Y. Zhang, H. Fu, Z. Liang, Z. Chi, D. Feng, Eye movement as an interac-

tion mechanism for relevance feedback in a content-based image retrieval485

system, in: Proceedings of the Eye Tracking Research and Application

Symposium, 2010.

[4] S. Vrochidis, I. Patras, I. Kompatsiaris, Exploiting gaze movements for

automatic video annotation, in: Proceedings of International Workshop on

Image Analysis for Multimedia Interactive Services, 2012.490

[5] M. Sadeghi, G. Tien, G. Hamarneh, M. Atkins, Hands-free interactive im-

age segmentation using eyegaze, in: Proceedings of SPIE 7260, Medical

Imaging 2009: Computer-Aided Diagnosis, 2009.

29



[6] A. Fathi, Y. Li, J. M. Rehg, Learning to recognize daily actions using gaze,

in: Proceedings of European Conference on Computer Vision, 2012.495

[7] S. Mathe, C. Sminchisescu, Dynamic eye movement datasets and learnt

saliency models for visual action recognition, in: Proceedings of European

Conference on Computer Vision, 2012.

[8] E. Vig, M. Dorr, D. Cox, Space-variant descriptor sampling for action

recognition based on saliency and eye movements, in: Proceedings of Eu-500

ropean Conference on Computer Vision, 2012.

[9] P. Felzenschwalb, R. Girshick, D. McAllester, D. Ramannan, Object detec-

tion with discriminatively trained part based models, IEEE Transactions

on Pattern Analysis and Machine Intelligence 32 (9) (2009) 1627–1645.

[10] J. Aggarwal, M. S. Ryoo, Human activity analysis: A review, ACM Com-505

puting Surveys 43.

[11] R. Poppe, A survey on vision-based human action recognition, Image Vision

Computing 28 (2010) 976–990.

[12] D. Weinland, R. Ronfard, E. Boyer, A survey of vision-based methods for

action representation, segmentation and recognition, Computer Vision and510

Image Understanding 115 (2011) 224–241.

[13] H. Wang, A.Klaser, C.Schmid, C. Liu, Action recognition by dense tra-

jectories, in: Proceedings of International Conference on Computer Vision

and Pattern Recognition, 2011.

[14] H. Wang, A.Klaser, C.Schmid, C. Liu, Action recognition with improved515

trajectories, in: Proceedings of International Conference on Computer Vi-

sion, 2013.

[15] J. Sun, X. Wu, S. Yan, L. Cheong, T. Chua, J. Li, Hierarchical spatio-

temporal context modeling for action recognition, in: Proceedings of Inter-

national Conference on Computer Vision and Pattern Recognition, 2009.520

30



[16] X. Peng, L. Wang, X. Wang, Y. Qiao, Bag of visual words and fusion

methods for action recognition: Comprehensive study and good practice,

in: arXiv preprint arXiv:1405.4506, 2014.

[17] X. Peng, C. Zou, Y. Qiao, Q. Peng, Action recognition with stacked fisher

vectors, in: Proceedings of European Conference on Computer Vision,525

2014.

[18] M. Raptis, I. Kokkinos, S. Soatto, Discovering disriminative action parts

from mid-level video representation, in: Proceedings of International Con-

ference on Computer Vision and Pattern Recognition, 2012.

[19] F. Perronnin, J. Sanchez, T. Mensink, Improving the fisher kernel for large-530

scale image classification, in: Proceedings of European Conference on Com-

puter Vision, 2010.

[20] K. Chatfield, V. Lempitsky, A. Vedaldi, A. Zisserman, The devil is in the

details: an evaluation of recent feature encoding methods, in: Proceedings

of British Machine Vision Conference, 2011.535

[21] D. Oneata, J. Verbeek, C. Schmid, Action and event recognition with fisher

vectors on a compact feature set, in: Proceedings of International Confer-

ence on Computer Vision, 2013.

[22] H. Wang, D. Oneata, J. Verbeek, C. Schmid, A robust and efficient video

representation for action recognition, in: arXiv preprint arXiv:1504.05524,540

2015.

[23] A. Quattoni, S. Wang, L. Morency, M. Collins, T. Darrell, Hidden-state

conditional random fields, IEEE TPAMI.

[24] C. Sminchisescu, A. Kanaujia, M. D., Conditional models for contextual

human motion recognition, CVIU.545

[25] Y. Song, L. Morency, R. Davis, Action recognition by hierarchical sequence

summarization, in: Proceedings of International Conference on Computer

Vision and Pattern Recognition, 2013.

31



[26] Y. Wang, , M. G., Hidden part models for human action recognition: Prob-

abilistic versus max margin, IEEE TPAMI.550

[27] D. Q. P. T. V. Duong, H. H. Bui, S. Venkatesh, Activity recognition and

abnormality detection with the switching hidden semi-markov model, in:

Proceedings of International Conference on Computer Vision and Pattern

Recognition, 2005.

[28] S. Hongeng, R. Nevatia, Large-scale event detection using semi-hidden555

markov models, in: Proceedings of International Conference on Computer

Vision, 2003.

[29] P. Natarajan, R. Nevatia, Coupled hidden semi markov models for activ-

ity recognition, in: Proceedings of IEEE workshop on Motion and Video

Computing (WMVC), 2007.560

[30] K. Tang, L. Fei-Fei, D. Koller, Learning latent temporal structure for com-

plex event detection, in: Proceedings of International Conference on Com-

puter Vision and Pattern Recognition, 2012.

[31] J. C. Niebles, H. Wang, L. Fei-Fei, Unsupervised learning of human action

categories using spatial-temporal words, Internation Journal of Computer565

Vision 79 (3) (2008) 299–318.

[32] J. K. Aggarwal, M. S. Ryoo, Recognition of composite human activities

through context-free grammar based representation, in: Proceedings of In-

ternational Conference on Computer Vision and Pattern Recognition, 2006.

[33] H. Pirsiavash, D. Ramanan, Parsing videos of actions with segmental gram-570

mars, in: Proceedings of International Conference on Computer Vision and

Pattern Recognition, 2014.

[34] H. Kuehne, A. Arslan, T. Serre, The language of actions: Recovering the

syntax and semantics of goal-directed human activities, in: Proceedings

of International Conference on Computer Vision and Pattern Recognition,575

2014.

32



[35] N. N. Vo, A. F. Bobick, From stochastic grammar to bayes network: Prob-

abilistic parsing of complex activity, in: Proceedings of International Con-

ference on Computer Vision and Pattern Recognition, 2014.

[36] S. Assari, A. Zamir, M. Shah, Video classification using semantic concept580

co-occurrences, in: Proceedings of International Conference on Computer

Vision and Pattern Recognition, 2014.

[37] T. Lan, Y. Wnag, G. Mori, Discriminative figure-centric models for joint

action localization and recognition, in: Proceedings of International Con-

ference on Computer Vision, 2011.585

[38] N. Shapovalova, M. Raptis, L. Sigal, G. Mori, Action is in the eye of the

beholder: Eye-gaze driven model for spatio-temporal action localization, in:

Proceedings of Neural Information Processing Systems Conference, 2013.

[39] N. Shapovalova, A. Vahdat, K. Cannons, T. Lan, G. Mori, Similarity con-

strained latent support vector machine: An application to weakly super-590

vised action classification, in: Proceedings of European Conference on Com-

puter Vision, 2012.

[40] A. Gilbert, J. Illingworth, R. Bowden, Action recognition using mined hi-

erarchical compound features, IEEE Transactions on Pattern Analysis and

Machine Intelligence 33 (5) (2011) 883–897.595

[41] Q. V. Le, W. Y. Zou, S. Y. Yeung, A. Y. Ng, Learning hierarchihal invariant

spatio-temporal features for action recognition with independent subspace

analysis, in: Proceedings of International Conference on Computer Vision

and Pattern Recognition, 2011.

[42] A. Kovashka, K. Grauman, Learning a hierarchy of discriminative space-600

time neighborhood features for human action recognition, in: Proceedings

of International Conference on Computer Vision and Pattern Recognition,

2010.

33



[43] H. Wang, U. M. M., A. Klaser, I. Laptev, C. Schmid, Evaluation of local

spatio-temporal features for action recognition, in: Proceedings of British605

Machine Vision Conference, 2009.

[44] S. Christian, I. Laptev, B. Caputo, Recognizing human actions: A local svm

approach, in: Proceedings of International Conference on Pattern Recog-

nition, 2004.

[45] C. F. T. P. H. Sapienza, M., Learning discriminative space-time actions610

from weakly labelled videos, in: Proceedings of British Machine Vision

Conference, 2012.

[46] J. Yuan, L. Zicheng, Y. Wu, Discriminative subvolume search for efficient

action detection, in: Proceedings of International Conference on Computer

Vision and Pattern Recognition, 2009.615

[47] S. Koelstra, I. Patras, The fast-3d spatio-temporal interest region detector,

in: Workshop on Image Analysis for Multimedia Interactive Services, 2009.

[48] A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep

convolutional neural networks, in: Proceedings of Neural Information Pro-

cessing Systems Conference, 2012.620

[49] H. Lee, R. Grosse, , R. Ranganath, A. Ng, Convolutional deep belief net-

works for for scalable unsupervised learning of hiererchical representations,

in: Proceedings of International Conference on Machine Learning, 2009.

[50] C. Szegedy, A. Toshev, D. Erhan, Deep neural networks for object detec-

tion, in: Proceedings of Neural Information Processing Systems Conference,625

2013.

[51] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-

Fei, Large-scale video classification with convolutional neural networks, in:

Proceedings of International Conference on Computer Vision and Pattern

Recognition, 2014.630

34



[52] L. Sun, K. Jia, T. Chan, Y. Fang, G. Wang, S. Yan, Dl-sfa: Deeply-learned

slow feature analysis for action recognition, in: Proceedings of International

Conference on Computer Vision and Pattern Recognition, 2014.

[53] S. Ji, W. Xu, M. Yang, K. Yu, 3d convolutional neural networks for human

action recognition, IEEE Transactions on Pattern Recognition and Machine635

Intelligence 35 (1) (2013) 221–231.

[54] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, A. Baskurt, Sequential

deep learning for human action recognition, in: Proceedings of Workshop

on Human Behaviour Understanding, 2011.

[55] D. Tran, L. Torresani, Exmoves: Classifier-based features for scalable ac-640

tion recognition, in: Proceedings of International Conference on Learning

Representations, 2014.

[56] J. Niebles, C. Chen, L. Fei-Fei, Modeling temporal structure of decompos-

able motion segments of activity classification, in: Proceedings of European

Conference on Computer Vision, 2010.645

[57] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Berg-

eron, N. Bouchard, Y. Bengio, Theano: new features and speed improve-

ments, Deep Learning and Unsupervised Feature Learning NIPS 2012

Workshop (2012).

[58] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-650

jardins, J. Turian, D. Warde-Farley, Y. Bengio, Theano: a CPU and GPU

math expression compiler, in: Proceedings of the Python for Scientific Com-

puting Conference (SciPy), 2010.

[59] Y. Lin, S. Kong, D. Wang, Y. Zhuang, Saliency detection within a deep

convolutional architecture, in: Proceedings of AAAI Workshop on Cogni-655

tive Computing for Augmented Human Intelligence, 2014.

35



[60] E. Eleonora Vig, M. Dorr, D. Cox, Large-scale optimization of hierarchical

features for saliency prediction in natural images, in: Proceedings of Inter-

national Conference on Computer Vision and Pattern Recognition, 2014.

[61] M. Kmmerer, L. Theis, M. Bethge, Deep gaze i: Boosting saliency predic-660

tion with feature maps trained on imagenet, in: arXiv:1411.1045, 2014.

[62] C. Shen, M. Song, Q. Zhao, Learning high-level concepts by training a deep

network on eye fixations, in: Deep Learning and Unsupervised Feature

Learning Workshop, in conjunction with NIPS, 2012.

[63] C. Shen, Q. Zhao, Learning to predict eye fixations for semantic contents665

using multi-layer sparse network, Neurocomputing 138 (2014) 61–68.

[64] M. Rodriguez, J. Ahmed, M. Shah, Action mach: A spatio-temporal maxi-

mum average correlation height filter for action recognition, in: Proceedings

of International Conference on Computer Vision and Pattern Recognition,

2008.670

[65] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, in: Proceedings of International Conference on

Learning Representations, 2015.

[66] M. Jain, J. Gemert, H. Jegou, P. Bouthemy, C. Snoek, Action localization

with tubelets from motion, in: Proceedings of International Conference on675

Computer Vision and Pattern Recognition, 2014.

[67] Z. Lan, M. Lin, X. Li, A. Hauptmann, B. Raj, Beyond gaussian pyramid:

Multi-skip feature stacking for action recognition, in: Proceedings of Inter-

national Conference on Computer Vision and Pattern Recognition, 2015.

[68] I. Laptev, M. Marszalek, C. Schmid, B. Rozengeld, Learning realistic hu-680

man actions from movies, in: Proceedings of International Conference on

Computer Vision and Pattern Recognition, 2008.

36


	Introduction
	Related work
	Descriptors and feature learning
	Higher level modeling of the video structure
	Gaze as an interest point detector

	Learning action features and saliency prediction
	3D CNN for learning discriminative mid-level local action features
	3D CNN for saliency prediction

	SVM formulation
	Cost function
	Learning
	Classification
	Comparison with latent SVM presented in parts

	Results
	Majority voting based video classification
	SVM-based video classification
	Comparison with latent SVM results


	Conclusion

