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A Survey on Heterogeneous Face Recognition: Sketch, Infra-red, 3D and
Low-resolution

Shuxin Ouyang1,2,∗, Timothy Hospedales1,∗, Yi-Zhe Song1,∗, Xueming Li2,∗, Chen Change Loy3,∗, Xiaogang Wang3,∗

1. Beijing University of Posts and Telecommunications, 2.Queen Mary University of London, 3. Chinese University of Hong Kong

Abstract

Heterogeneous face recognition (HFR) refers to matching face imagery across different domains. It has received much
interest from the research community as a result of its profound implications in law enforcement. A wide variety of new
invariant features, cross-modality matching models and heterogeneous datasets being established in recent years. This
survey provides a comprehensive review of established techniques and recent developments in HFR. Moreover, we offer
a detailed account of datasets and benchmarks commonly used for evaluation. We finish by assessing the state of the
field and discussing promising directions for future research.

Keywords: Cross-modality face recognition, heterogeneous face recognition, sketch-based face recognition,
visual-infrared matching, 2D-3D matching, high-low resolution matching.

1. Introduction

Face recognition is one of the most studied research top-
ics in computer vision. After over four decades of research,
conventional face recognition using visual light under con-
trolled and homogeneous conditions now approaches a ma-
ture technology [1], being deployed at industrial scale for
biometric border control [2] and producing better-than-
human performance [3]. Much research effort now focuses
on uncontrolled, non-visual and heterogeneous face recog-
nition, which remain open questions. Heterogeneous face
recognition (HFR) refers to the problem of matching faces
across different visual domains. Instead of working with
just photographs, it encompasses the problems of closing
the semantic gap among faces captured (i) using different
sensory devices (e.g., visual light vs. near-infrared or 3D
devices), (ii) under different cameras settings and speci-
fications (e.g., high-resolution vs. low-resolution images),
and (iii) manually by an artist and automatically by a dig-
ital sensor (e.g., forensic sketches vs. digital photographs).

HFR has grown in importance and interest because het-
erogeneous sets of facial images must be matched in many
practical applications for security and law enforcement as
well as multi-media indexing. For example, visual-infrared
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matching is important for biometric security control, be-
cause enrollment images can be taken in controlled a set-
ting with visual light, while probe images may be taken
in infra-red if visual lighting in the access control area is
not controllable. Meanwhile, sketch-based recognition is
important for law-enforcement, where eyewitness sketches
should be matched against mugshot databases to identify
suspects.

Nevertheless, HFR poses a variety of serious challenges
beyond conventional homogeneous face recognition. These
include: (i) comparing single versus multi-channel imagery
(e.g., infra-red versus RGB visible light images), (ii) linear
and non-linear variations in intensity value due to different
specular reflection properties (e.g., infra-red versus RGB),
(iii) different coordinate systems (e.g., 2D versus 3D depth
images), (iv) reduction of appearance detail (e.g., photo
versus sketch, or high versus low-resolution), (v) non-rigid
distortion preventing alignment (e.g., photo versus foren-
sic sketch). For all these reasons, it is not possible or
effective to compare heterogeneous imagery directly as in
conventional face recognition.

To address these challenges, the field of HFR has in
recent years proposed a wide variety of approaches to
bridge the cross-modal gap, thus allowing heterogeneous
imagery to be compared for recognition. Research progress
in bridging this gap has been assisted by a growing variety
of HFR benchmark datasets allowing direct comparison of
different methodologies. This paper provides a compre-
hensive and up-to-date review of the diverse and growing
array of HFR techniques. We categorize them in terms of
different modalities they operate across, as well as their
strategy used to bridge the cross modal gap – bringing out
some cross-cutting themes that re-occur in different pairs
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Figure 1: Scope of heterogeneous face recognition studied in this survey.

of modalities. Additionally, we summarize the available
benchmark datasets in each case, and close by drawing
some overall conclusions and making some recommenda-
tions for future research.

In most cases HFR involves querying a gallery consisting
of high-resolution visible light face photographs using a
probe image from an alternative imaging modality. We
first break down HFR research in the most obvious way
by the pairs of imagery considered. We consider four cross-
modality applications: sketch-based, infra-red based, 3D-
based and high-low resolution matching.More specifically
they are:

• Sketch: Sketch-based queries are drawn or created by
humans rather than captured by an automatic imag-
ing device. The major example application is facial
sketches made by law enforcement personal based on
eye-witness description. The task can be further cat-
egorized into four variants based on level of sketch
abstraction, as shown in the left of Fig. 1.

• Near Infrared: Near Infrared (NIR) images are
captured by infrared rather than visual-light devices.
NIR capture may be used to establish controlled light-
ing conditions in environment where visual light is not
controllable. The HFR challenge comes in matching
NIR probe images against visual light images. A ma-
jor HFR application is access control, where enroll-

ment images may use visual light, but access gates
may use infra-red.

• 3D: Another common access control scenario relies
on an enrollment gallery of 3D images and 2D probe
images. As the gallery images contain more informa-
tion than the probe images, this can potentially out-
perform vanilla 2D-2D matching, if the heterogeneity
problem can be solved.

• Low-Resolution: Matching low-resolution against
high-resolution images is a topical challenge under
contemporary security considerations. A typical sce-
nario is that a high-resolution ‘watch list’ gallery is
provided, and low-resolution facial images taken at
standoff distance by surveillance cameras are used as
probes.

Fig. 1 offers an illustrative summary of the five cate-
gories of HFR literature covered in this survey. Tab. 1
further summarizes the studies reviewed broken down by
the modalities and methodological focus.

Related areas not covered by this review include (ho-
mogeneous) 3D [58] and infra-red [59] matching. View
[60] and illumination [61] invariant recognition are also re-
lated, in that there exists a strong covariate shift between
probe and gallery images, however we do not include these
as good surveys already exist [61, 62]. Fusing modalities in

2



Table 1: Overview of heterogeneous face recognition steps and typical strategies for each.

Component Approach Sketch-Photo VIS-NIR 2D-3D Low-High

Representation Analytic Active Shape & PDMs[4, 5]

Relative Geometry [6]

Global Holistic Whole image [7, 8, 9] Whole image [10, 11, 12] Whole image [13, 14, 15] Whole image [16, 17, 18]

Whole image [19, 20, 21] Whole image [17, 22, 23]

Whole image with Deep Encoder [24]

Global Patch Regular grid of patches [25, 26] Regular grid of patches [27, 12] Regular grid of patches [28]

Regular grid of patches [29, 30]

Regular grid of patches [31, 32, 33]

Facial Component Active Shape Model Detection [34] Rectangular patches [35]

Cross domain Feature-based LBP [32, 34] SSIM [33] LBP [11, 27], LGH [21] OGM [36] Eigenfaces and Fisherfaces[18]

Gabor [30], SIFT [31] DSIFT [37] Log-DoG [38]

CITE [39], HOAG [29]

Projection CDFE [40], Common Basis [31] CDFE [40] LDA [41] CCA [28, 42] Sparse Coding [43] SDA [16]

Kernel LDA [26] CSR [19, 20, 35] KCCR [17] MDS [22] CKE [23]

RS-LDA [25], PLS [9] CCA [10] Adaboost [35, 11] Sparse Coding [44] Max-margin [45]

Sparse Coding [46] RBMs [47]

Synthesis MRF [25] Eigentransform [7, 8] LLE [27] 3D AFM [14] 3D-FE-GEM [15] Relationship learning [48]

LLE [26] DSR [48] GPA [49] RBF [50]

Eigenface [51] S2R2 [18]

Matching Multi-class NN [7, 31, 8, 33, 4, 9] NN [27, 52, 19, 20, 21] NN [16]

NN with χ2 [29, 30] NN with χ2 [35, 41] NN with χ2 [42]

NN with HI [34] NN with Cosine [10] NN with Cosine [28]

Multi-class (Tr) Bayesian [8], Metric learning [32] Metric learning [53] SVM [48]

Verification (Tr) SVM [54, 24] Similarity thresh. (Cosine) [11] SVM[55]

Log. Reg. [54], ANN [24]

Gentleboost [56, 57]

multi-modal face recognition [63][58, 64, 59, 65, 66] is also
relevant in that multiple modalities are involved. How-
ever the key difference to HFR is that multi-modal as-
sumes both enrolment and testing images are available
in all modalities, and focuses on how to fuse the cues
from each, while HFR addresses matching across modal-
ities with probe and enrolment image in heterogeneous
modalities. Finally, a good survey about face-synthesis
[67] is complementary to this work, however we consider
the broader problem of cross-domain matching.

Most HFR studies focus their contribution on improved
methodology to bridge the cross-modal gap, thus allow-
ing conventional face recognition strategies to be used for
matching. Even across the wide variety of application do-
mains considered above, these methods can be broadly
categorized into three groups of approaches: (i) those that
synthesize one modality from another, thus allowing them
to be directly compared; (ii) those that engineer or learn
feature representations that are variant to person identity
while being more invariant to imaging modality than raw
pixels; and (iii) those that project both views into a com-
mon space where they are more directly comparable. We
will discuss these in more detail in later sections.

The main contributions of this paper are summarized as
follows:

1. We perform an up-to-date survey of HFR literature

2. We summarize all common public HFR datasets in-
troduced thus far

3. We extract some cross-cutting themes face recognition
with a cross-modal gap

4. We draw some conclusions about the field, and offer
some recommendations about future work on HFR

The rest of this paper is organized as follow: In Sec-
tion 2, we provide an overview of a HFR system pipeline,
and highlight some cross-cutting design considerations. In
Section 3, we provide a detailed review of methods for
matching facial sketches to photos and a systematic intro-
duction of the most widely used facial sketches datasets.
In Section 4, we describe approaches for matching near-
infrared to visible light face images in detail. In Section 5,
we focus on matching 2D probe images against a 3D en-
rollment gallery. Section 6 discusses methods for match-
ing low-resolution face images to high-resolution face im-
ages.We conclude with a discussion of current issues and
recommendations about future work on HFR.

2. Outline of a HFR system

In this section, we present an abstract overview of a
HFR pipeline, outlining the key steps and the main types
of strategies available at each stage. A HFR system can
be broken into three major components, each correspond-
ing to an important design decision: representation, cross-
modal strategy and matching strategy (Fig. 2). Of these
components, the first and third have analogues in homoge-
neous face recognition, while the cross-modal bridge strat-
egy is unique to HFR. Accompanying Fig. 2, Tab. 1 breaks
down the papers reviewed in this survey by their choices
about these design decisions.
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Figure 2: Overview of an abstract HFR pipeline.

2.1. Representation

The first component of a HFR system determines how
the face image in each modality is represented. Common
options for representations (Fig. 2, top) include analytic,
component-based, patch-based, and holistic.
Analytic representations [4, 5, 6] detect facial com-
ponents and fiducial points, allowing the face to be mod-
eled geometrically, e.g., using point distribution models
[4, 5]. This representation has the advantage that if a
model can be fit to a face in each modality, then the an-
alytic/geometric representation is relatively invariant to
modality, and to precise alignment of the facial images.
However, it is not robust to errors in face model fitting and
may require manual intervention to avoid this [5]. More-
over geometry is not robust to facial expression [6], and
does not exploit texture information by default.
Component-based representations detect face parts
(e.g., eyes and mouth), and represents the appearance of
each individually [35, 34]. This allows the informative-
ness of each component in matching to be measured sep-
arately [35]; and if components can be correctly detected
and matched it also provides some robustness to both lin-
ear and non-linear misalignment across modalities [34].
However, a component-fusion scheme is then required to
produce an overall match score between two face images.
Global holistic representations represent the whole
face image in each modality with a single vector [10, 7, 40].
Compared to analytic and component-based approaches,
this has the advantage of encoding all available appear-
ance information. However, it is sensitive to alignment
and expression/pose variation, and may provide a high-
dimensional feature vector that risks over-fitting [68].
Patch-based holistic representations encode the ap-
pearance of each image in patches with a feature vector per
patch [25, 26, 29, 30, 32]. Subsequent strategies for using
the patches vary, including for example concatenation into
a very large feature vector [31] (making it in effect a holis-
tic representation), or learning a mapping/classifier per
patch [39]. The latter strategy can provide some robust-
ness if the true mapping is not constant over the whole

face, but does require a patch fusion scheme.

2.2. Cross-modal bridge strategies

The key HFR challenge of cross-modality heterogene-
ity typically necessitates an explicit strategy to deal with
the cross-modal gap. This component uniquely distin-
guishes HFR systems from conventional within-modality
face recognition. Most HFR studies focus their effort on
developing improved strategies for this step. Common
strategies broadly fall into the categories: feature design,
cross-modal synthesis and subspace projection. These
strategies are not exclusive, and many studies employ or
contribute to more than one [31, 25].
Feature design strategies [29, 30, 31, 32] focus on en-
gineering or learning features that are invariant to the
modalities in question, while simultaneously being discrim-
inative for person identity. Typical strategies include vari-
ants on SIFT [31] and LBP [32].
Synthesis approaches focus on synthesizing one modal-
ity based on the other [7, 25]. Typical methods include
eigentransforms [7, 8], MRFs [25], and LLE [26]. The syn-
thesized image can then be used directly for homogeneous
matching. Of course, matching performance is critically
dependent on the fidelity and robustness of the synthesis
method.
Projection approaches aim to project both modalities
of face images to a common subspace in which they
are more comparable than in the original representations
[40, 31, 10]. Typical methods include linear discriminant
analysis (LDA) [25], canonical components analysis (CCA)
[10, 28], partial least squares (PLS) and common basis [31]
encoding.

A noteworthy special case of projection-based strategies
is those approaches that perform feature selection. Rather
than mapping all input dimensions to a subspace, these
approaches simply discover which subset of input dimen-
sions are the most useful (modality invariant) to compare
across domains, and ignore the others [35, 11], for example
using Adaboost.

2.3. Matching strategy

Once an effective representation has been chosen, and
the best effort made to bridge the cross-modal heterogene-
ity, the final component of a HFR system is the matching
strategy. Matching-strategies may be broadly categorized
as multi-class classifiers (one class corresponding to each
identity in the gallery), or model-based verifiers.
Multi-class classifiers pose the HFR task as a multi-
class-classification problem. The probe image (after the
cross-modal transform in the previous section) is classified
into one of the gallery classes/identities. Typically simple
classifiers are preferred because there are often only one
or a few gallery image(s) per identity, which is too sparse
to learn complex model-based classifiers. Thus Nearest-
Neighbor (NN) [7, 40, 31, 10] is most commonly used to
match against the gallery [7]. NN classifiers can be defined
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with various distance metrics, and many studies found χ2

[29, 30] or cosine [28] to be most effective than vanilla eu-
clidean distance. An advantage of NN-based approaches is
that they do not require an explicit training step or anno-
tated cross-modal pairs provided as training data. How-
ever, they can be enhanced with metric-learning [32] if
annotated cross-domain image pairs are available for train-
ing.

Model-based verification strategies pose HFR as
a binary, rather than multi-class, classification problem
[11, 54]. These take a pair of heterogeneous images as
input, and output one or zero according to if they are es-
timated to be the same person or not. An advantage of
verification over classification strategies is robustness and
data sufficiency. In many HFR applications there is only
one cross-modal face pair per person. Thus classification
strategies have one instance per class (person), and risk
over fitting when training a model-based recogniser. In
contrast, by transforming the problem into a binary one,
all true pairs of faces form the positive class and all false
pairs form the negative class, resulting in a much larger
training set, and hence a stronger and more robust classi-
fier.

In conventional face recognition, matching strategies are
often adopted according to how the proposed system is to
be used at test time. If the task is to recognise a face as
one of a pre-defined set of people, multi-class classifiers
are a natural matching strategy. If the task is to check
whether a face image matches someone on a given watch-
list or not, then model-based binary-verifiers are a natural
choice. However, it is worth noting that multi-class clas-
sification can be performed by exhaustive verification, so
many HFR systems are realized by verification, whether
the final aim is verification or recognition. A second rea-
son for the use of verification in HFR studies is that the
classic forensic sketch application scenario for HFR is an
open-world verification scenario (the sketch may or may
not correspond to a person in the mug-shot database).
For simplicity, in this paper we use the term ‘recognition’
loosely to cover both scenarios, and disambiguate where
necessary.

We note that some methodologies can be interpreted as
either cross-domain mappings or matching strategies. For
example, some papers [25] present LDA as a recognition
mechanism. However, as it finds a projection that maps
images of one class (person identity) closer together, it
also has a role in bridging the cross-modal gap when those
images are heterogeneous. Therefore for consistency, we
categorize LDA and the like as cross-domain methods.

2.4. Formalizations

Many HFR methods can be seen as special cases of a
general formalization given in Eq. 1. Images in two modal-
ities xa and xb are input; non-linear feature extraction F
may be performed; and some matching function M then
compares the extracted features; possibly after taking lin-

ear transforms W a and W b of each feature.

M
(
W aF (xa

i ),W bF (xb
j)
)
. (1)

many studies reviewed in this paper can be seen as provid-
ing different strategies for determining the mappings W a

and W b or parameterizing functions M and F .
Matching Strategies Many matching strategies can be
seen as design decisions about M(·, ·). For example, in the
case of NN matching, the closest match j∗ to a probe i is
returned. Thus M defines the distance metric ‖·‖, as in
Eq. (2). In the case of model based verification strategies,
a match between i and j may be declared depending on
the outcome of a model’s (e.g., Logistic Regression [54],
SVM [54]) evaluation of the two projections (e.g., their
difference), e.g., Eq. (3). In this case, matching methods
propose different strategies to determine the parameters
w of the decision function.

j∗ = arg min
j

∥∥W aF (xa
i )−W bF (xb

j)
∥∥ (2)

match iff wT
∣∣W aF (xa

i )−W bF (xb
j)
∣∣ > 0 (3)

Cross-domain Strategies Feature-centric cross-
domain strategies [29, 30, 31, 32, 11, 27, 34, 33, 21, 39]
can be seen as designing improved feature extractors
F . While projection/synthesis strategies can be seen as
different approaches to finding the projections W a and
W b to help make the domains more comparable. For
example synthesis strategies [12, 48] may set W a = I, and
search for the projection W b so that

∣∣F (xa
i )−W bF (xa

i )
∣∣

is minimized. CCA [10, 28] strategies search for W a

and W b such that
∣∣W aF (xa

i )−W bF (xa
i )
∣∣ is minimized

for cross-modal pairs of the same person i. While LDA
[25] strategies search for a single projection W such
that

∣∣WF (xa
i )−WF (xa

j )
∣∣ is minimized when i = j and

maximized when i 6= j.

2.5. Summary and Conclusions

HFR methods explicitly or implicitly make design de-
cisions about three stages of representation, cross-domain
mapping and matching (Fig. 1). An important factor in
the strengths and weaknesses of each approach arises from
the use of supervised training in either or both of the latter
two stages (Fig. 2).
Use of training data An important property of HFR
systems is whether annotated cross-modal training data is
required/exploited. This has practical consequences about
whether an approach can be applied in a particular appli-
cation, and its expected performance. Since a large dataset
of annotated cross-modal pairs may not be available, meth-
ods that require no training data (most feature-engineering
and NN matching approaches [29, 30, 33, 34]) are advan-
tageous.

On the other hand, exploiting available annotation pro-
vides a critical advantage to learn better cross-domain
mappings, and many discriminative matching approaches.
Methods differ in how strongly they exploit available su-
pervision. For example CCA tries to find the subspace
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where cross-modal pairs are most similar [10, 28]. In
contrast, LDA simultaneously finds a space where cross-
modal pairs are similar and also where different identities
are well separated [25], which exploits the labeled train-
ing data more thoroughly. It is worth noting that since
HFR is concerned with addressing the cross-modal gap,
most approaches using training data make use of cross-
domain matching pairs as annotated training data, rather
than person identity annotations that are more common
in conventional (within-domain) face recognition.

Heterogeneous Feature Spaces A second important
model-dependent property is whether the model can deal
with heterogeneous data dimensions. In some cross-modal
contexts (photo-sketch, VIS-NIR), while the data distri-
bution is heterogeneous, the data dimensions can be the
same; while in 2D-3D or low-high, the data dimension-
ality may be fundamentally different. In the latter case
approaches that require homogeneous dimensions such as
LDA may not be applicable, while others such as CCA and
PLS can still apply.

3. Matching facial sketches to images

The problem of matching facial sketches to photos
is commonly known as sketch-based face recognition
(SBFR). It typically involves a gallery dataset of visible
light images and a probe dataset of facial sketches. An
important application of SBFR is assisting law enforce-
ment to identify suspects by retrieving their photos auto-
matically from existing police databases. Over the past
decades, it has been accepted as an effective tool in law
reinforcement. In most cases, actual photos of suspects
are not available, only sketch drawings based on the rec-
ollection of eyewitnesses. The ability to match forensic
sketches to mug shots not only has the obvious benefit of
identifying suspects, but moreover allows the witness and
artist to interactively refine the sketches based on similar
photos retrieved [25].

SBFR can be categorized based on how the sketches
are generated, as shown in Fig. 3: (i) viewed sketches,
where artists are given mugshots as reference, (ii) forensic
sketches, where sketches are hand-drawn by professional
artists based on recollections of witnesses, (iii) composite
sketches, where rather than hand-drawn they were pro-
duced using specific software, and (iv) caricature sketches,
where facial features are exaggerated.

The majority of existing SBFR studies focused on rec-
ognizing viewed hand drawn sketches. This is not a real-
istic use case – a sketch would not be required if a photo
of a suspect is readily available. Yet studying them is a
middle ground toward understanding forensic sketches –
viewed sketch performance should reflect forensic sketch
performance in the ideal case when all details are remem-
bered and communicated correctly. Research can then
focus on making good viewed sketch methods robust to
lower-quality forensic sketches.

Viewed sketch Forensic sketch Forensic composite	


 sketch 

Caricature sketch 

Photograph 

Figure 3: Facial sketches and corresponding mugshots: viewed
sketch, forensic hand drawn sketch, forensic composite sketch, cari-
cature sketch and their corresponding facial images

3.1. Categorization of facial sketches

Facial sketches can be created either by an artist or by
software, and are referred to as hand-drawn and composite
respectively. Meanwhile depending on whether the artist
observes the actual face before sketching, they can also be
categorized as viewed and forensic (unviewed). Based on
these factors, we identify four typically studied categories
of facial sketches:

• Forensic hand drawn sketches: These are pro-
duced by a forensic artist based on the description of
a witness ([71]), as illustrated in the second column of
Fig. 3. They have been used by police since the 19th
century, however they have been less well studied by
the recognition community.

• Forensic composite sketches: They are created
by computer software (Fig. 4) with which a trained
operator selects various facial components based on
the description provided by a witness. An example
of a resulting composite sketch is shown in the third
column of Fig. 3. It is reported that 80% of law en-
forcement agencies use some form of software to cre-
ate facial sketches of suspects [72]. The most widely
used software for generating facial composite sketches
are IdentiKit [70], Photo-Fit [73], FACES [69], Mac-
a-Mug [73], and EvoFIT [74]. It is worth nothing that
due to the limitations of such software packages, less
facial detail can be presented in composite sketches
compared with hand-drawn sketches.

• Viewed hand drawn sketches: In contrast to
forensic sketches that are unviewed, these are sketches
drawn by artists by while looking at a corresponding
photo, as illustrated in the first column of Fig. 3. As
such, they are the most similar to the actual photo.

• Caricature: In contrast to the previous three cat-
egories, where the goal is to render the face as ac-
curately as possible, caricature sketches are purpose-
fully dramatically exaggerated. This adds a layer of
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(a)FACES 4.0 [69] (b)FACES [69] (c)IdentiKit [70]

Figure 4: Examples of different kind of composite sketch softwares

abstractness that makes their recognition by conven-
tional systems much more difficult. See fourth column
of Fig. 3 for an example. However, they are inter-
esting to study because they allow the robustness of
SBFR systems to be rigorously tested, and because
there is evidence that humans remember faces in a
caricatured form, and can recognize them even better
than accurate sketches [4, 75, 76].

3.2. Facial sketch datasets

There are five commonly used datasets for benchmark-
ing SBFR systems. Each contains pairs of sketches and
photos. They differ by size, whether sketches are viewed
and if drawn by artist or composited by software. Tab. 2
summaries each dataset in terms of these attributes.

CUHK Face sketch dataset (CUFS) [25] is widely used
in SBFR. It includes 188 subjects from the Chinese Uni-
versity of Hong Kong (CUHK) student dataset, 123 faces
from the AR dataset [79], and 295 faces from the XM2VTS
dataset [80]. There are 606 faces in total. For each subject,
a sketch and a photo are provided. The photo is taken of
each subject with frontal pose and neutral expression un-
der normal lighting conditions. The sketch is then drawn
by an artist based on the photo.

CUHK Face Sketch FERET Dataset (CUFSF) [39, 25]
is also commonly used to benchmark SBFR algorithms.
There are 1,194 subjects from the FERET dataset [81].
For each subject, a sketch and a photo is also provided.
However, compared to CUFS, instead of normal light con-
dition, the photos in CUFSF are taken with lighting vari-
ation. Meanwhile, the sketches are drawn with shape ex-
aggeration based on the corresponding photos. Hence,
CUFSF is more challenging and closer to practical sce-
narios [39].

The IIIT-D Sketch Dataset [32] is another well known fa-
cial sketch dataset. Unlike CUFS and CUFSF, it contains
not only viewed sketches but also semi-forensic sketches
and forensic sketches, therefore can be regarded as three
separate datasets each containing a particular type of
sketches, namely IIIT-D viewed, IIIT-D semi-forensic and
IIIT-D forensic sketch dataset. IIIT-D viewed sketch
dataset comprises a total of 238 sketch-image pairs. The
sketches are drawn by a professional sketch artist based on

photos collected from various sources. It comprises of 67
sketch-image pairs from the FG-NET aging dataset4, 99
sketch-digital image from Labeled Faces in Wild (LFW)
dataset [82], and 72 sketch-digital image pairs from the
IIIT-D student & staff dataset [82]. In the IIIT-D semi-
forensic dataset, sketches are drawn based on an artist’s
memory instead of directly based on the photos or the
description of an eye-witness. These sketches are termed
semi-forensic sketches. The semi-forensic dataset is based
on 140 digital images from the Viewed Sketch dataset. In
the IIIT-D forensic dataset there are 190 forensic sketches
and face photos. It contains 92 and 37 forensic sketch-
photo pairs from [83] and [84] respectively, as well as 61
pairs from various sources on the internet.

The Pattern Recognition and Image Processing (PRIP)
Viewed Software-Generated Composite (PRIP-VSGC)
database [34] contains 123 subjects from AR database. For
each photograph, three composites were created. Two of
composites are created using FACES [69] and the third
was created using Identi-Kit [70].

The Pattern Recognition and Image Processing (PRIP)
Hand-Drawn Composite (PRIP-HDC) database [77] in-
cludes 265 hand-drawn and composite facial sketches, to-
gether with corresponding mugshots. Those facial sketches
are drawn based on the verbal description by the eyewit-
ness or victim. Among all those facial sketches, 73 were
drawn by Lois Gibson, 43 were provided by Karen Taylor,
56 were provided by the Pinellas County Sheriff’s Office
(PCSO), 46 were provided by Michigan State Police, and
47 were downloaded from the Internet. So far, only those
47 facial sketches collected from Internet are publicly avail-
able.

All sketches collected by previous attempts are coarsely
grouped as either viewed or unviewed, without tracking
the time-delay between viewing and forensic sketching –
a factor that has critical impact on the fidelity of human
facial memory [85]. To address this [78] introduce the first
Memory Gap Database which not only includes viewed and
unviewed sketch, but uniquely sketches rendered at dif-
ferent time-delays between viewing and sketching. Mem-
ory Gap Database (MGDB) [78] includes 100 real subjects

4Downloadable at http://www-prima.inrialpes.fr/FGnet/html/
home.html
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Table 2: Existing facial sketch benchmark datasets.

Datasets Pairs of Sketch/Photo Viewed or Forensic Composite or Hand drawn Availability

CUFS [25] 606 Viewed Hand drawn CUHK: Free to download

AR: Request permission

XM2VTS: Pay a fee

CUFSF [39, 25] 1,194 Viewed Hand drawn Sketch: Free to download

Photo: Request permission

IIIT-D viewed sketch [32] 238 Viewed Hand drawn Request permission

IIIT-D semi-forensic sketch [32] 140 Semi-Forensic Hand drawn Request permission

IIIT-D forensic sketch [32] 190 Forensic Hand drawn and Composite Request permission

PRIP-VSGC database[34] 123 Viewed Composite Free to download

PRIP-HDC database [77] 265 Forensic Hand drawn Part (47) of free to download

Memory Gap Database [78] 100 Forensic/Viewed Hand drawn Request permission

(mugshots sampled from mugshot.com). Each subject has
frontal face photo and four facial sketches drawn at various
time-delays: viewed sketch, 1 hour sketch, 24 hour sketch
and unviewed sketches. In total, 400 hand-drawn sketches
are provided by the MGDB. This database is aimed to help
modellers disentangle modality, memory, and communica-
tion factors in forensic sketch HFR.

It is worth noting that the accessibility of these datasets
varies, with some not being publicly available. [31] created
a forensic dataset from sketches cropped from two books
(also contained in IIIT-D forensic), which is thus limited
by copyright. Klare et al. also conducted experiments
querying against a real police database of 10,000 mugshots,
but this is not publicly available.

3.3. Viewed sketch face recognition

Viewed sketch recognition is the most studied sub-
problem of SBFR. Although a hypothetical problem (in
practice a photo would be used directly if available, rather
than a viewed sketch), it provides an important step to-
ward ultimately improving forensic sketch accuracy. It is
hypothesized that based on an ideal eyewitness descrip-
tion, unviewed sketches would be equivalent to viewed
ones. Thus performance on viewed sketches should be
an upper bound on expected performance on forensic
sketches.

Viewed sketch-based face recognition studies can be
classified into synthesis, projection and feature-based
methods according to their main contribution to bridging
the cross-modal gap.

3.3.1. Synthesis-based approaches

The key strategy in synthesis-based approaches is to
synthesize a photo from corresponding sketch (or vice-
versa), after which traditional homogeneous recognition
methods can be applied (see Fig. 5). To convert a photo
into a sketch, [7] propose an eigensketch transformation
approach, wherein a new sketch is constructed using a lin-
ear combination of training sketch samples, with linear

coefficients obtained from corresponding photos via eigen
decomposition. Classification is then accomplished by the
obtained eigensketch features. To exploit the strong cor-
relation exists among face images, the Karhunen-Loeve
Transform (KLT) is applied to represent and recognise
faces. The eigensketch transformation algorithm reduced
the discrepancies between photo and sketch. The resulting
rank-10 accuracy is reasonable. However, the work lacks
in the small size of the dataset (188 pairs) used and weak
rank-1 accuracy.

It was soon discovered that synthesizing facial sketches
holistically via linear processes might not be sufficient, in
that synthesized sketches lack details which will in turn
negatively impact final matching accuracy. Liu et al.
[26] proposed a Local Linear Embedding (LLE) inspired
method to convert photos into sketches based on image
patches, rather than holistic photos. For each image patch
to be converted, it finds the nearest neighbors in the train-
ing set. Reconstruction weights of neighbouring patches
are then computed, and used to generate the final synthe-
sized patch. Wang and Tang [25] further improved [26] by
synthesizing local face structures at different scales using
Markov Random Fields (MRF), as shown in Fig. 5(a). By
modelling the relationship between local patches through
a compatibility function, the multi-scale MRF jointly rea-
sons the selection of the sketch patch corresponding to each
photo patch during photo-sketch conversion. In each case
photos/sketche conversion reduces the modality gap, al-
lowing the two domains to be matched effectively. In both
[7] and [25], after photos/sketches are synthesized, many
standard methods like PCA [76], Bayesianface [86], Fish-
erface [87], null-space LDA [88], dual-space LDA [89] and
Random Sampling LDA (RS-LDA) [90, 91] are straight-
forwardly applied for homogeneous face recognition.

The embedded hidden Markov model (E-HMM) is ap-
plied by Zhong et al. [92] to transform a photo to a sketch.
The nonlinear relationship between a photo/sketch pair is
modeled by E-HMM. Then, learned models are used to
generate a set of pseudo-sketches. Those pseudo-sketches
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Figure 5: Examples of sketch synthesis: (Left) photo to sketch by synthesized sketches (Right) sketch to photo by synthesized photos

are used to synthesize a finer face pseudo-sketch based on
a selective ensemble strategy. E-HMMs are also used by
Gao et al. [93, 94] to synthesis sketches from photos. On
the contrary, Xiao et al. [95] proposed a E-HMM based
method to synthesis photos from sketches. Liu et al. [96]
proposed a synthesis method based on Bayesian Tensor
Inference. This method can be used to synthesize both
sketches from photos and photos from sketches.

A common problem shared by most sketch synthesis
methods is that they can not handle non-facial factors such
as hair style, hairpins and glasses well. To tackle this prob-
lem, Zhang et al. [97] combined sparse representation and
bayesian inference in synthesizing facial sketches. Sparse
representation is used to model photo patches, where near-
est neighbor search with learned prior knowledge is applied
to compute similarity scores across patches. After select-
ing candidate sketch patches using these similarity scores,
MRF is employed to reconstruct the final sketch by cal-
culating the probability between photo patches and can-
didate sketch patches.

Most sketch synthesis methods rely on many training
pairs to work, which naturally makes them deficient in
modelling subtle non-facial features. Zhang et al. [98]
recognised this and proposed a method that is capable
of handling non-facial factors only using a single photo-
sketch pair. Sparse representation based greedy search is
used to select candidate patches and bayesian inference is
then used for finalise sketch synthesis. A cascaded image
synthesis strategy is further applied to improve the quality
of the synthesized sketch.

All aforementioned methods synthesize facial sketches
using pixel intensities alone. Peng et al. [99] explored a
multi-representation approach to face sketch modelling.
Filters such as DoG, and features like SURF and LBP
are employed to generate different representations and a
Markov network is deployed to exploit the mutual relation-
ship among neighbouring patches. They conduct forensic
sketch recognition experiments using sketches from CUHK
and AR datasets as probe, and 10,000 face photo images
from LFW-a dataset as gallery.

3.3.2. Projection based approaches

Rather than trying to completely reconstruct one
modality from the other as in synthesis-based approaches;
projection-based approaches attempt to find a lower-
dimensional sub-space in which the two modalities are
directly comparable (and ideally, in which identities are
highly differentiated).

Lin and Tang [40] proposed a linear transforma-
tion which can be used between different modalities
(sketch/photo, NIR/VIS), called common discriminant
feature extraction (CDFE). In this method, images from
two modalities are projected into a common feature space
in which matching can be effectively performed.

Sharma et al. [9] use Partial Least Squares (PLS) to
linearly map images of different modalities (e.g., sketch,
photo and different poses, resolutions) to a common sub-
space where mutual covariance is maximized. This is
shown to generalize better than CCA. Within this sub-
space, final matching is performed with simple NN.

In [46], a unified sparse coding-based model for coupled
dictionary and feature space learning is proposed to simul-
taneously achieve synthesis and recognition in a common
subspace. The learned common feature space is used to
perform cross-modal face recognition with NN.

In [26] a kernel-based nonlinear discriminant analysis
(KNDA) classifier is adopted by Liu et al. for sketch-photo
recognition. The central contribution is to use the nonlin-
ear kernel trick to map input data into an implicit feature
space. Subsequently, LDA is used to extract features in
that space, which are non-linear discriminative features of
the input data.

3.3.3. Feature based approaches

Rather mapping photos into sketches, or both into a
common subspace; feature-based approaches focus on de-
signing a feature descriptor for each image that is intrinsi-
cally invariant to the modality, while being variant to the
identity of the person. The most widely used image feature
descriptors are Scale-invariant feature transform (SIFT),
Gabor transform, Histogram of Averaged Oriented Gra-
dients (HAOG) and Local Binary Pattern (LBP). Once
sketch and photo images are encoded using these descrip-
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tors, they may be matched directly, or after a subsequent
projection-based step as in the previous section.

Klare et al. [31] proposed the first direct sketch/photo
matching method based on invariant SIFT-features [100].
SIFT features provide a compact vector representation of
an image patch based on the magnitude, orientation, and
spatial distribution of the image gradients [31]. SIFT fea-
ture vectors are first sampled uniformly from the face im-
ages and concatenated together separately for sketch and
photo images. Then, Euclidean distances are computed
between concatenated SIFT feature vectors of sketch and
photo images for NN matching.

Later on, Bhatt et al. [101] proposed an method which
used extended uniform circular local binary pattern de-
scriptors to tackle sketch/photo matching. Those descrip-
tors are based on discriminating facial patterns formed by
high frequency information in facial images. To obtained
the high frequency cues, sketches and photos are decom-
posed into multi-resolution pyramids. After extended uni-
form circular local binary pattern based descriptors are
computed, a Genetic Algorithm (GA) [102] based weight
optimization technique is used to find optimum weights for
each facial patch. Finally, NN matching is performed by
using weighted Chi square distance measure.

Khan et al. [33] proposed a self-similarity descriptor.
Features are extracted independently from local regions of
sketches and photos. Self-similarity features are then ob-
tained by correlating a small image patch within its larger
neighborhood. Self-similarity remains relatively invariant
to the photo/sketch-modality variation therefore reduces
the modality gap before NN matching.

A new face descriptor, Local Radon Binary Pattern
(LRBP) was proposed by Galoogahi et al. [103] to directly
match face photos and sketches. In the LRBP framework,
face images are first transformed into Radon space, then
transformed face images are encoded by Local Binary Pat-
tern (LBP). Finally, LRBP is computed by concatenat-
ing histograms of local LBPs. Matching is performed by
a distance measurement based on Pyramid Match Ker-
nel (PMK) [104]. LRBP benefits from low computational
complexity and the fact that there is no critical parameter
to be tuned [103].

Zhang et al. [105] introduced another face descriptor
based on coupled information-theoretic encoding which
uniquely captures discriminative local facial structures.
Through maximising mutual information between photos
and sketches in the quantised feature spaces, they obtained
a coupled encoding using an information-theoretic projec-
tion tree. The method was evaluated with 1,194 faces sam-
pled from the FERET database.

Galoogahi et al. consequently proposed another two
face descriptors: Gabor Shape [30] which is variant of Ga-
bor features and Histogram of Averaged Oriented Gra-
dient (HAOG) features [29] which is variant of HOG for
sketch/photo directly matching, the latter achieves perfect
100% accuracy on the CUFS dataset.

Klare et al. [31] further exploited their SIFT descrip-

tor, by combining it with a ‘common representation space’
projection-based strategy. The assumption is that even if
sketches and photos are not directly comparable, the dis-
tribution of inter-face similarities will be similar within
the sketch and photo domain. That is, the (dis)similarity
between a pair of sketches will be roughly the same as the
(dis)similarity between the corresponding pair of photos.
Thus each sketch and photo is re-encoded as a vector of
their euclidean distances to the training set of sketches and
photos respectively. This common representation should
now be invariant to modality and sketches/photos can be
compared directly. To further improve the results, direct
matching and common representation matching scores are
fused to generate the final match [31]. The advantage of
this approach over mappings like CCA and PLS is that it
does not require the sketch-photo domain mapping to be
linear. The common representation strategy has also been
used to achieve cross-view person recognition [107], where
it was shown to be dependent on sufficient training data.

In contrast to the previous methods which are appear-
ance centric in their representation, Pramanik et al. [6]
evaluate an analytic geometry feature based recognition
system. Here, a set of facial components such as eyes,
nose, eyebrows, lips, are extracted their aspect ratio are
encoded as feature vectors, followed by K-NN as classifier.

Overall, because viewed sketches and photos in the
CUFS database are very well-aligned and exaggeration be-
tween photo and sketch is minimal, appropriate feature
engineering, projection or synthesis approaches can all de-
liver near-perfect results, as shown in Tab. 3.

3.4. Forensic sketch face recognition

Forensic sketches pose greater challenge than viewed
sketch recognition because, beyond modality shift, they
contain incomplete or inaccurate information due to the
subjectivity of the description, and imperfection of the
witness’ memory [85].

Due to its greater challenge, and the lesser availabil-
ity of forensic sketch datasets, research in this area has
been less than for viewed sketches. Uhl et al. [108] pro-
posed the first system for automatically matching police
artist sketches to photographs. In their method, facial fea-
tures are first extracted from sketches and photos. Then,
the sketch and photo are geometrically standardized to
facilitate comparison. Finally, eigen-analysis is employed
for matching. Only 7 probe sketches were used in experi-
mental validation, their method is antiquated with respect
to modern methods. Nonetheless, Uhl and Lobo’s study
highlighted the complexity and difficulty in forensic sketch
based face recognition and drew other researchers towards
forensic sketch-based face recognition.

Klare et al. [109] performed the first large scale study
in 2011, with an approach combining feature-based and
projection-based contributions. SIFT and MLBP features
were extracted, followed by training a LFDA projection
to minimize the distance between corresponding sketches
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Table 3: Sketch-Photo matching methods: Performance on benchmark datasets.

Method Publications Recognition Approach Dataset Feature Train:Test Accuracy

Synthesis based [7] KLT CUHK Eigen-sketch features 88:100 about 60%

[26] KNDA CUFS 306:300 88%

[25] RS LDA CUFS Multiscale MRF 306:300 96%

[92] CUFS E-HMM — 95%

[96] CUFS E-HMM+Selective ensemble — 100%

[97] CUHK/XM2VTS Sparse representations — —

[98] CUHK/XM2VTS Single sketch-photo pair — —

[99] Fisherface CUFS/IIIT-D Multiple representation+Markov Network 88:100 98.3%

Projection based [31] Common representation CUFS SIFT 100:300 96%

[9] PLS CUHK 88:100 93%

[106] PLS regression CUFS,CUFSF Gabor and CCS-POP 0:1800 99%

Feature based [31] NN CUFS SIFT 100:300 98%

[33] NN CUFS Self Similarity 161:150 99%

[105] PCA+LDA CUFSF CITE 500:694 99%

[30] NN,Chi-square CUFS Gabor Shape 306:300 99%

[101] Weighted Chi-square CUFS EUCLBP 78:233 94%

[29] NN,Chi-square CUFS HAOG 306:300 100%

[30] NN,Chi-square CUFSF Gabor Shape 500:694 96%

[103] NN,PMK,Chi-square CUFSF LRBP — 91%

[103] NN,PMK,Chi-square CUFSF LRBP — 91%

[6] K-NN CUHK Geometric features 108:80 80%

[101] Weighted Chi-square IIIT-D EUCLBP 58:173 79%

and photos while maximizing the distance between dis-
tinct identities. They analyse a dataset of 159 pairs of
forensic hand drawn sketches and mugshot photos. The
subjects in this dataset were identified by the law enforce-
ment agencies. They also included 10,159 mugshot images
provided by Michigan State Police to better simulate a
realistic police search against a large gallery. With this
realistic scenario, they achieved about 15 percent success
rate.

To improve recognition performance, Bhatt et al. [32]
proposed an algorithm that also combines feature and
projection-based contributions. They use multi-scale cir-
cular Webber’s Local descriptor to encode structural infor-
mation in local facial regions. Memetic optimization was
then applied to every local facial region as a metric learner
to find the optimal weights for Chi squared NN matching
[32]. The result outperforms [109] using only the forensic
set as gallery.

Different to previous studies that tackle forensic sketch
matching using a single model, Ouyang et al. [78] devel-
oped a database and methodology to decouple the multi-
ple distinct challenges underlying forensic matching: the
modality change, the eyewitness-artist communication,
and the memory loss of the eyewitness. Their MGDB
has 400 sketches created under different conditions such
as memory time-delays. Using this MGDB, they applied
multi-task Gaussian process regression to synthesise facial

sketches accounting for each of these factors. They eval-
uated this model on IIIT-D forensic sketch and a large
(10,030) mugshot database similar to that used in [109]
and achieved state-of-the-art results.

3.5. Composite sketch based face recognition

Several studies have now considered face recognition us-
ing composite sketches. The earliest used both local and
global features to represent sketches and is proposed by
Yuen et al. [5]. This method also investigated user input
in the form of relevance feedback in the recognition phase.
Studies have focused on holistic [110, 24] component based
[34, 56, 111, 57] and hybrid [5, 77] representations respec-
tively.

The holistic method [110] uses similarities between lo-
cal features computed on uniform patches across the entire
face image. Following tessellating a facial sketch/mugshot
into 154 uniform patches, SIFT [100] and multi-scale local
binary pattern (MLBP) [112] invariant features are ex-
tracted from each patch. With this feature encoding, as
improved version of the common representation intuition
from [31] is applied, followed by RS-LDA [91] to generate a
discriminative subspace for NN matching with cosine dis-
tance. The scores generated by each feature and patch are
fused for final recognition.

In contrast, the component based method [34] uses sim-
ilarities between individual facial components to compute
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an overall sketch to mughsot match score. Facial land-
marks in composite sketches and photos are automatically
detected by an active shape model (ASM) [113]. Mutiscale
local binary patterns (MLBPs) are then applied to extract
features of each facial component, and similarity is calcu-
lated for each component: using histogram intersection
distance for the component’s appearance and cosine dis-
tance for its shape. The similarity scores of each facial
component are normalized and fused to obtain the overall
sketch-photo similarity. [56] also used features extracted
according to facial landmarks. Daisy descriptors were ex-
tracted from patches centred on facial landmarks. The
cross-modal Chi square distances of these descriptors at
each landmark are then used as the input feature to train
a binary verifier based on GentleBoost. This was improved
by a subsequent study [57] which improved the representa-
tion by using Self Similarity Descriptors (SSD) as features,
followed by encoding them in terms of distance to a dictio-
nary of faces (analogously to the common representation
in [31]) – before applying GentleBoost verification again.

In contrast to engineered descriptors, deep learning can
provide an effective way to learn discriminative and robust
representations. However these methods tend to require
large data volumes relative to the size of available HFR
datasets. To address this [24] use deep auto encoders and
deep belief networks to learn an effective face representa-
tion based on a large photo database. This is then fine-
tuned on a smaller heterogeneous database to adapt it to
the HFR task. Binary verification is then performed using
SVM and NN classifiers.

Finally, [77] focuses on building a practically accurate,
efficient and deployable sketch-based interaction system
by improving and fusing the holistic and component-based
algorithms in [110] and [34] respectively. The implication
of different sources of training data is also investigated.

3.6. Caricature based face recognition

The human visual system’s ability to recognise a person
from a caricature is remarkable, as conventional face recog-
nition approaches fail in this setting of extreme intra-class
variability (Fig. 6). The caricature generation process can
be conceptualised as follows: If we assume a face space in
which each face lies. Then by drawing a line to connect
the mean face to each face, the corresponding caricature
will lie beyond that face along the line. That is to say, a
caricature is an exaggeration of a face away from the mean
[114].

Studies have suggested that people may encode faces in
a caricatured manner [115]. Moreover they may be more
capable of recognizing a familiar person through a carica-
ture than an accurate rendition [116, 117]. The effective-
ness of a caricature is due to its emphasis of deviations
from average faces [54]. Developing efficient approaches in
caricature based face recognition could help drive more ro-
bust and reliable face and heterogeneous face recognition
systems.

 Caricature sketches 

Photograph 

Figure 6: Caricatures and corresponding mugshots

Klare et al. [54] proposed a semi-automatic system to
match caricatures to photographs. In this system, they
defined a set of qualitative facial attributes that describe
the appearance of a face independently of whether it is
a caricature or photograph. These mid-level facial fea-
tures were manually annotated for each image, and used
together with automatically extracted LBP [112] features.
These two feature types were combined with an ensemble
of matching methods including NN and discriminatively
trained logistic regression SVM, MKL and LDA. The re-
sults showed that caricatures can be recognized slightly
better with high-level qualitative features than low-level
LBP features, and that they are synergistic in that combin-
ing the two can almost double the performance up to 22.7%
rank 1 accuracy. A key insight here is that – in strong con-
trast to viewed sketches that are perfectly aligned – the
performance of holistic feature based approaches is lim-
ited because the exaggerated nature of caricature sketches
means that detailed alignment is impossible.

A limitation of the above work is that the facial at-
tributes must be provided, requiring manual intervention
at run-time. Ouyang et al. [118] provided a fully auto-
mated procedure that uses a classifier ensemble to ro-
bustly estimate facial attributes separately in the photo
and caricature domain. These estimated facial attributes
are then combined with low-level features using CCA to
generate a robust domain invariant representation that can
be matched directly. This study also contributed facial at-
tribute annotation datasets that can be used to support
this line of research going forward.

3.7. Summary and Conclusions

Tab. 3 summarizes the results of major studies in terms
of distance metric, dataset, feature representation, train
to test ratio, and rank-1 accuracy, of feature-based and
projection-based approaches respectively5. As viewed

5Note that some results on the same dataset are not directly com-
parable because of differing test set sizes.
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sketch datasets exhibit near perfect alignment and de-
tail correspondence between sketches and photos, well de-
signed approaches of any type achieve near perfect ac-
curacies. Forensic sketch in contrast is an open prob-
lem, but the fewer and less comparable studies here also
makes it hard to identify the most promising techniques.
What seems clear is that representations assuming sim-
ple perfect correspondence such as dense-HOG and sim-
ple linear projections are unlikely to be the answer, and
that purely image-processing approaches may be signif-
icantly improved by understanding the involved human
factors[78].

Methodologies. All three categories of approaches – syn-
thesis, projection and discriminative features – have been
well studied for SBFR. Interestingly, while synthesis ap-
proaches have been one of the more popular categories
of methods, they have only been demonstrated to work
in viewed-sketch situations where the sketch-photo trans-
formation is very simple and alignment is perfect. It
seems unlikely that they can generalize effectively to foren-
sic sketches, where the uncertainty introduced by forensic
process (eyewitness subjective memory) significantly com-
pletes the matching process.

An interesting related issue that has not been systemati-
cally explored by the field is the dependence on the sketch-
ing artists. Al Nizami et al. [119] demonstrated signifi-
cant intra-personal variation in sketches drawn by different
artists. This may challenge systems that rely on learning a
single cross-modal mapping. This issue will become more
significant in the forensic sketch case where there is more
artist discretion, than in viewed-sketches which are more
like copying exercises.

Challenges and Datasets. The majority of SBFR research
has focused on viewed sketch-based recognition, with mul-
tiple studies now achieving near-perfect results on the
CUFS dataset. This is due to the fact that viewed sketches
are professionally rendered copies of photographed faces,
and thus close in likeness to real faces, so non-linear mis-
alignment and all the attendant noise introduced by verbal
descriptions communicated from memory are eliminated.
This point is strongly made by Choi et al. [106], who crit-
icize the existing viewed-sketch datasets and the field’s fo-
cus on them. They demonstrate that with minor tweaks,
an off the shelf PLS-based homogeneous face recognition
system can outperform existing cross-modality approaches
and achieve perfect results on the CUFS dataset. They
conclude that existing viewed-sketch datasets are unreal-
istically easy, and not representative of realistic forensic
sketch scenarios.

It is thus important that the field should move to more
challenging forensic, composite and caricature sketches
with more realistic non-linear misalignment and het-
eroskedastic noise due to the forensic process. This will re-
veal whether current state of the art methods from viewed-
sketches are indeed best, or are brittle to more realistic

data; and will drive the generation of new insights, meth-
ods and practically relevant capabilities. Research here,
although less mature, has begun to show promising re-
sults. However, it has been hampered by lack of readily
obtainable forensic datasets. Constructing realistic and
freely available datasets should be a priority [106], and is
beginning to happen [78].

Training Data Source. Many effective SBFR studies have
leveraged annotated training data to learn projections
and/or classifiers [31]. As interest has shifted to forensic
sketches, standard practice has been to train such mod-
els on viewed-sketch datasets and test on forensic datasets
[109]. An interesting question going forward is whether
this is the best strategy. The first study explicitly ad-
dressing this issue concluded that it may not be [77]. Since
viewed-sketches under-represent sketch-photo heterogene-
ity, this means that learning methods are learning a model
that is not matched to the data (forensic sketches) that
they will be tested on. This poses an additional challenge
of domain shift [120] (photo/viewed→photo/unviewed), to
be solved. This issue also further motivates the creation
of larger forensic-sketch datasets for training, which will
be necessary to thoroughly investigate the best training
strategy.

Automated Matching versus Human Recognition. Finally
we notice that the vision and biometrics communities
have largely focused on automated cross-domain matching,
while an important outstanding question in forensic sketch
for law enforcement has been left largely un-studied [85].
Rather than cross-domain mapping for HFR matching of a
sketch against a photo database, police are often interested
in generating a sketch/photo which can be best recognised
by a person who might be familiar with the suspect; rather
than generating photo that can be matched to a mugshot
database by a machine. From a cross-domain synthesis
perspective, rather than simply generate the most accurate
photo, the task here is to generate a more human recognis-
able image, which has a different set of requirements [121]
than conventional metrics.

4. Matching NIR to Visible Light Images

NIR face recognition has attracted increasing attention
recently because of its much desired attribute of (visible-
light) illumination invariance, and the decreasing cost of
NIR acquisition devices. It encompasses matching near
infrared (NIR) to visible light (VIS) face images. In this
case, the VIS enrollment samples are images taken under
visible light spectrum (wavelength range 0.4µm− 0.7µm),
while query images are captured under near infrared (NIR)
condition (just beyond the visible light range, wavelengths
between 0.7µm - 1.4µm) [41]. NIR images are close enough
to the visible light spectrum to capture the structure of the
face, while simultaneously being far enough to be invariant
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Near Infrared Images 

Photograph 

Figure 7: VIS and NIR face images.

to visible light illumination changes. Fig. 7 illustrates dif-
ferences between NIR and VIS images. Matching NIR to
VIS face images is of interest, because it offers the potential
for face recognition where controlling the visible environ-
ment light is difficult or impossible, such as in night-time
surveillance or automated gate control.

In NIR based face recognition, similar to sketch based
recognition, most studies can be categorized into synthe-
sis, projection and discriminant feature based approaches,
according to their contribution to bridging the cross-modal
gap.

4.1. Datasets

There are five main heterogeneous datasets covering the
NIR-VIS condition. The CASIA HFB dataset [122], com-
posed of visual (VIS), near infrared (NIR) and 3D faces,
is widely used. In total, it includes 100 subjects: 57 males
and 43 females. For each subject, there are 4 VIS and 4
NIR face images. Meanwhile, there are also 3D images for
each subject (92 subjects: 2 for each, 8 subjects: 1 for
each). In total, there are 800 images for NIR-VIS setting
and 200 images for 3D studies.

CASIA NIR-VIS 2.0 [123] is another widely used NIR
dataset. 725 subjects are included, with 50 images (22 VIS
and 28 NIR) per subject, for a total of 36,250 images.

The Cross Spectral Dataset [124] is proposed by
Goswami et al. It consists of 430 subjects from various
ethnic backgrounds (more than 20% of non-European ori-
gin). At least one set of 3 poses (-10 degree / 0 degree /
10 degree) are captured for each subject. In total, there
are 2,103 NIR images and 2,086 VIS images.

The PolyU NIR face dataset [125] is proposed by the
biometric research center at Hong Kong Polytechnic Uni-
versity. This dataset includes 33,500 images from 335 sub-
jects. Besides frontal face images and faces with expres-
sion, pose variations are also included. It is created with
an active light source in the NIR spectrum between 780nm
to 1,100nm.

The main NIR-VIS datasets are summarised in Tab. 4.
Each column categorizes the datasets by wavelength of
NIR light, no. of subject, no. of images, and whether
they include 3D images, pose and expression variations,
respectively.

4.2. Synthesis based approaches

Wang et al. [12] proposed an analysis-by-synthesis
framework, that transforms face images from NIR to VIS.
To achieve the conversion, facial textures are extracted
from both modalities. NIR-VIS texture patterns extracted
at corresponding regions of different face pairs collectively
compose a training set of matched pairs. After illumi-
nation normalization [126], VIS images can be synthesized
patch-by-patch by finding the best matching patch for each
patch of the input NIR image.

Chen et al. [27] also synthesize VIS from NIR images us-
ing a similar inspiration of learning a cross-domain dictio-
nary of corresponding VIS and NIR patch pairs. To more
reliably match patches, illumination invariant LBP fea-
tures are used to represent them. Synthesis of the VIS im-
age is further improved compared to [12], by using locally-
linear embedding (LLE) inspired patch synthesis rather
than simple nearest-neighbor. Finally homogeneous VIS
matching is performed with NN classifier on the LBP rep-
resentations of the synthesized images.

Xiong et al. [127] developed a probabilistic statistical
model of the mapping between two modalities of facial
appearance, introducing a hidden variable to represent the
transform to be inferred. To eliminate the influences of
facial structure variations, a 3D model is used to perform
pose rectification and pixel-wise alignment. Difference of
Gaussian (DOG) filter is further used to normalize image
intensities.

Recently, Xu et al. [128] introduced a dictionary learn-
ing approach for VIS-NIR face recognition. It first learns
a cross-modal mapping function between the two domains
following a cross-spectral joint l0 minimization approach.
Facial images can then be reliably reconstructed by ap-
plying the mapping in either direction. Experiments con-
ducted on the CASIA NIR-VIS v2.0 database show state-
of-the-art performance.

4.3. Projection based approaches

Lin et al. [40] proposed a matching method based on
Common Discriminant Feature Extraction (CDFE), where
two linear mappings are learned to project the samples
from NIR and VIS modalities to a common feature space.
The optimization criterion aims to both minimize the
intra-class scatter while maximizing the inter-class scat-
ter. They further extended the algorithm to deal with
more challenging situations where the sample distribution
is non-gaussian by kernelization, and where the transform
is multi-modal.

After analysing the properties of NIR and VIS images,
Yi et al. [10] proposed a learning-based approach for cross-
modality matching. In this approach, linear discriminant

14



Table 4: Summary of existing NIR-VIS benchmark datasets

Dataset Wavelength No.of Subjects No.of Images 3D Pose variations Expression variations

CASIA HFB [122] 850nm 100 992
√

× ×

CASIA NIR-VIS 2.0 [123] 850nm 725 17580
√ √ √

Cross Spectral Dataset [125] 800-1000nm 430 4189
√ √

×

PolyU [125] 780-1100nm 335 33500
√ √ √

analysis (LDA) is used to extract features and reduce the
dimension of the feature vectors. Then, a canonical cor-
relation analysis (CCA) [129] based mechanism is learned
to project feature vectors from both modalities into CCA
subspaces. Finally, nearest-neighbor with cosine distance
is used matching score.

Both of methods proposed by Lin and Yi tend to over-
fit to training data. To overcome this, Liao et al. [11]
present a algorithm based on learned intrinsic local im-
age structures. In training phase, Difference-of-Gaussian
filtering is used to normalize the appearance of heteroge-
neous face images in the training set. Then, Multi-scale
Block LBP (MB-LBP) [130] is applied to represent fea-
tures called Local Structure of Normalized Appearance
(LSNA). The resting representation is high-dimensional,
so Adaboost is used for feature selection to discover a sub-
set of informative features. R-LDA is then applied on the
whole training set to construct a discriminative subspace.
Finally, matching is performed with a verification-based
strategy, where cosine distance between the projected vec-
tors is compared with a threshold to decide a match.

Klare et al. [41] build on [11], but improve it in a few
ways. They add HOG to the previous LBP descriptors to
better represent patches, and use an ensemble of random
LDA subspaces [41] learn a shared projection with reduced
over fitting. Finally, NN and Sparse Representation based
matching are performed for matching.

Lei et al. [19] presented a method to match NIR and VIS
face images called Coupled Spectral Regression (CSR).
Similar to other projection-based methods, they use two
mappings to project the heterogeneous data into a com-
mon subspace. In order to further improve the perfor-
mance of the algorithm (efficiency and generalisation),
they use the solutions derived from the view of graph em-
bedding [131] and spectral regression [132] combined with
regularization techniques. They later improve the same
framework [20], to better exploit the cross-modality su-
pervision and sample locality.

Huang et al. [133] proposed a discriminative spectral
regression (DSR) method that maps NIR/VIS face im-
ages into a common discriminative subspace in which ro-
bust classification can be achieved. They transform the
subspace learning problem into a least squares problem.
It is asked that images from the same subject should be
mapped close to each other, while these from different sub-
jects should be as separated as possible. To reflect cate-

gory relationships in the data, they also developed two
novel regularization terms.

Yi et al. [47] applied Restricted Boltzmann Machines
(RBMs) to address the non-linearity of the NIR-VIS pro-
jection. After extracting Gabor features at localised facial
points, RBMs are used to learn a shared representation
at each facial point. These locally learned representations
are stacked and processed by PCA to yield a final holistic
representation.

4.4. Feature based approaches

Zhu et al. [21] interpret the VIS-NIR problem as a highly
illumination-variant task. They address it by designing an
effective illumination invariant descriptor, the logarithm
gradient histogram (LGH). This outperforms the LBP and
SIFT descriptors used by [11] and [41] respectively. As
a purely feature-based approach, no training data is re-
quired.

Huang et al. [134], in contrast to most approaches,
perform feature extraction after CCA projection. CCA
is used to maximize the correlations between NIR and
VIS image pairs. Based on low-dimensional represen-
tations obtained by CCA, they extract three different
modality-invariant features, namely, quantized distance
vector (QDV), sparse coefficients (SC), and least square
coefficients (LSC). These features are then represented
with a sparse coding framework, and sparse coding co-
efficients are used as the encoding for matching.

Goswami et al. [124] introduced a new dataset for
NIR/VIS (VIS/NIR) face recognition. To establish base-
lines for the new dataset they compared a series of photo-
metric normalization techniques, followed by LBP-based
encoding and LDA to find an invariant subspace. They
compared classification with Chi-squared and Cosine as
well as establishing a logistic-regression based verification
model that obtained the best performance by fusing the
weights from each of the model variants.

Gong and Zheng [135] proposed a learned feature de-
scriptor, that adapts parameters to maximize the correla-
tion of the encoded face images between two modalities.
With this descriptor, the within-class variations can be re-
duced at the feature extraction stage, therefore offering
better recognition performance. This descriptor outper-
forms classic HOG, LBP and MLBP, however unlike the
others it requires training.
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To tackle cross spectral face recognition, Dhamecha et
al. [37] evaluated the effectiveness of a variety of HoG vari-
ants. They concluded that DSIFT with subspace LDA
outperforms other features and algorithms.

Finally, Zhu et al. [38] presented a new logarithmic Dif-
ference of Gaussians (Log-DoG) feature, derived based on
mathematical rather than merely empirical analysis of var-
ious features properties for recognition. Beyond this, they
also present a framework for projecting to a non-linear
discriminative subspace for recognition. In addition to
aligning the modalities, and regularization with a mani-
fold, their projection strategy uniquely exploits the unla-
belled test data transductively.

4.5. Summary and Conclusions

Given their decreasing cost, NIR acquisition devices are
gradually becoming an integrated component of everyday
surveillance cameras. Combined with the potential to
match people in a (visible-light) illumination independent
way, this has generated increasing interest in NIR-VIS face
recognition.

Tab. 5 summarizes the results of major cross-spectral
studies in terms of recognition approach, dataset, fea-
ture representation, train to test ratio, and rank-1 accu-
racy. Results are promising, but lack of standardization
in benchmarking prevents direct quantitative comparison
across methods.

As with all the HFR scenarios reviewed here, NIR-VIS
studies have addressed bridging the cross-modal gap with
a variety of synthesis, projection and feature-based tech-
niques. One notable unique aspect of NIR-VIS is that it
is the change in illumination type that is the root of the
cross-modal challenge. For this reason image-processing
or physics based photometric normalization methods (e.g.,
gamma correction, contrast equalization, DoG filtering)
are often able to play a greater role. This is because it is
to some extent possible to model the cross-modal lighting
change more analytically and explicitly than other HFR
scenarios that must rely entirely on machine learning or
invariant feature extraction methods.

5. Matching 2D to 3D

The majority of prior HFR systems work with 2D im-
ages, whether the face is photographed, sketched or com-
posited. Owning to the 2D projection nature of these faces,
such systems often exhibit high sensitivity to illumination
and pose. Thus 3D-3D face matching has been of interest
for some time [58]. However, 3D-3D matching is hampered
in practice by the complication and cost of 3D compared
to 2D equipment. An interesting variant of interest is thus
the cross-modal middle ground, of using 3D images for en-
rollment, and 2D images for probes. This is useful, for
example, in access control where enrollment is centralized
(and 3D images are easy to obtain), but the access gate
can be deployed with simpler and cheaper 2D equipment.

Figure 8: 2D images and 3D images from FRGC dataset.

In this case, 2D probe images can potentially be matched
more reliably against the 3D enrollment model than a 2D
enrollment image – if the cross-domain matching problem
can be solved effectively.

A second motivation for 2D-3D HFR indirectly arises
in the situation where pose-invariant 2D-2D matching is
desired [136, 15, 14]. In this case the faces can be dra-
matically out of correspondence, so it may be beneficial
to project one face to 3D in order to better reason about
alignment, or synthesize a better aligned or lit image for
better matching.

5.1. Datasets

The face Recognition Grand Challenge (FRGC) V2.0
dataset6 is widely used for 2D-3D face recognition. It con-
sists of a total of 50,000 recordings spread evenly across
6,250 subjects. For each subject, there are 4 images taken
in controlled light, 2 images taken under uncontrolled light
and 1 3D image. The controlled images were taken in
a studio setting while uncontrolled images were taken in
changing illumination conditions. The 3D images were
taken by a Minolta Vivid 900/910 series sensor, including
both range and texture cues. An example from the FRGC
V2.0 dataset is shown in Fig. 8.

UHDB11 [137] is another popular dataset in 2D-3D face
recognition. It consists of samples from 23 individuals,
for each of which it has 2D high-resolution images span-
ning across six illumination conditions and 12 head-pose
variations (72 variations in total), and a textured 3D fa-
cial mesh models. Each capture consists of both 2D images
captured using a Canon DSLR camera and a 3D mesh cap-
tured by 3dMD 2-pod optical 3D system. UHDB12 [138]
is an incremental update to UHDB11 [137]. 3D data were
captured using a 3dMD 2-pod optical scanner, while 2D
images were collected using a commercial Cannon DSLR
camera. The 2D acquisition setup has six diffuse lights
that vary lighting conditions. For each subject, a single

6Downloadable at http://www.nist.gov/itl/iad/ig/frgc.cfm
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Table 5: NIR-VIS matching methods: Performance on benchmark datasets.

Method Publications Recognition Approach Dataset Feature Train:Test Accuracy

Synthesis based [12] Analysis-by-synthesis framework Self-collected Texture patterns 200:200 about 90%

[27] LLE Self-collected LBP 250:250 94%

[127] Probabilistic statistical model CASIA HFB 200:200 40%

[128] Cross-Spectral joint dictionary learning CASIA NIR-VIS 2.0 8600:6358 79%

Projection based [40] CDFE Self-collected 800:64 68%

[11] LSNA CASIA NIR-VIS 2.0 3464:1633 68%

[41] random LDA subspace CASIA NIR-VIS 2.0 HoG + LBP 2548:2548 93%

[19] Coupled Spectral Regression CASIA NIR-VIS 2.0 LBP 2549:2548 97%

[133] Discriminative Spectral Regression CASIA NIR-VIS 2.0 LBP 2549:2548 95%

[47] Restricted Boltzmann Machines CASIA HFB Gabor about 2500:2500 99%

CASIA NIR-VIS 2.0 Gabor – 87%

Feature based [21] NN CASIA HFB LGH 400:400 46%

[38] THFM CASIA HFB Log-DoG 400:400 99%

3D scan and 6 2D images under different lighting condi-
tions were captured. Overall, there are 26 subjects with a
total of 26 3D scans and 800 2D images. The most recent
UHDB31 [14] dataset includes 3D models and facial im-
ages from 21 view points for each of the 77 subjects used.
All data were captured using 21 3dMDTM high resolution
cameras properly set-up in a semi-sphere configuration.
The average facial ROI in 2D images is around 800× 600.

5.2. Synthesis based approaches

Toderici et al. [13] projected the probe 2D face image
onto a normalized image space with the help of a subject-
specific 3D model in the gallery. This allows them to intro-
duce a relighting algorithm that transfers the probe image
lighting to the gallery images in order to generate more
accurate matching.

Wu et al. [14] compared two 3D-aided face recognition
where the 3D model is used for either image normalisa-
tion or rendering. Once normalised/rendered, images are
encoded with various descriptors such as HOG, LBP, etc.
The conclusion is that rendering-based strategies and sub-
sequent HOG encoding perform best.

To deal with unconstrained matching against back-
ground clutter with varied expressions, Moeini et al. [15]
proposed a 3D facial expression generic elastic model (3D-
FE-GEM) that reconstructs a 3D model of each human
face using only a single 2D frontal image. 3D-FE-GEM
improves accuracy compared to alternatives by better han-
dling expression variation through the elastic model, and
introducing a pose-robust sparse encoding of LBP for a
descriptor.

Dou et al. [136] reconstruct a 3D Annoted Face Models
(AFM) directly from 2D facial images using only a sparse
set of 2D facial landmarks. With the help of self-occlusion
masks, they are able to extract novel face signatures that
were shown to be effective in matching faces in a pose-
robust fashion.

5.3. Projection based approaches

Yang et al. [28] used CCA to correspond the 2D and
3D face modalities and deal with their heterogeneous di-
mensionality. Once projected into a common space, NN
matching with Cosine distance is applied. To deal with
the 2D-3D mapping being more complicated than a single
linear transform, the CCA mapping is learned per-patch,
and the matching scores fused at decision level.

Huang et al. [42] presented a scheme to improve results
by fusing 2D and 3D matching. 2D LBP features are ex-
tracted from both the 2D image and the 2D projection of
the 3D image; and then compared with Chi-squared dis-
tance. Meanwhile LBP features are also extracted from
both the 2D face and 3D range image. These are mapped
into a common space using CCA and compared with co-
sine distance. The two scores are fused at decision level,
and the desired result of 2D-3D matching outperforming
2D-2D matching is demonstrated.

To further improve recognition performance, Huang et
al. [44] proposed a 2D-3D face recognition approach with
two separate stages: First, for 2D-2D matching, Sparse
Representation Classifier (SRC) is used; Second, CCA is
exploited to learn the projections between 3D and 2D face
images. The two scores are again fused synergistically.

5.4. Feature based approaches

A biologically inspired feature, Oriented Gradient Maps
(OGMs), is introduced by Huang et al. in [36]. OGMs sim-
ulate the complex neurons response to gradients within a
pre-defined neighborhood. They have the benefit of be-
ing able to describe local texture of 2D faces and local
geometry of 3D faces simultaneously. Using this feature,
they are able to improve on both the 2D-2D and 2D-3D
components of their previous work [42, 44].

5.5. Summary and Conclusions

2D image based face recognition systems often fail in
situations where facial depictions exhibit strong pose and
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Table 6: 3D-2D matching methods: Performance on benchmark datasets.

Method Publications Recognition Approach Dataset Feature Train:Test Accuracy

Synthesis based [13] Bidirectional relighting algorithm UHDB11/UHDB12 — 91%

[14] Rendering/Normalisation UHDB31 HOG, LBP, SIFT — 83%

[136] 3D Annotated Face Models (AFM) UHDB11 DFD, LBP — 94%

[15] 3D-FE-GEM CMU-PIE/FERET LBP, Sparse Coding — —

Projection based [28] CCA FRGC V2.0 172:28 87%

[42] CCA FRGC V2.0 LBP 170:30 82%

[44] SRC+CCA FRGC V2.0 410:410 93%

Feature based [36] CCA FRGC V2.0 OGMs 3541:466 95%

illumination variations. Introducing 3D models instead
naturally solves these problems since poses are fully en-
coded and illumination can be modeled. However, match-
ing 3D models generally is more computational resource
demanding and incurs relatively higher cost (labor and
hardware) in data acquisition. 2D-3D matching is thus
gaining increasing interest as a middle ground to obtain
improved pose invariance, with cheaper and easier data
acquisition at test time. In this area studies can be bro-
ken down into those that do some kind of explicit 3D
reasoning about matching 2D probe images to 3D mod-
els [13, 139, 136, 15, 13], and others that have relied on
discriminative features and learning a single cross-domain
mapping such as CCA [42, 44, 36, 28]. The latter ap-
proaches are somewhat more straightforward, but to fully
realize the potential pose-invariance benefits of 2D-3D
matching, methods that explicitly reason about pose map-
ping of each test image are likely to have greater poten-
tial. Tab. 6 summarises the performance of major 2D-3D
matching studies.

6. Matching low and high-resolution face images

The ability to match low-resolution (LR) to high-
resolution (HR) face images has clear importance in se-
curity, forensics an surveillance. Interestingly we know
this should be possible, because humans can recognize low-
resolution faces down to 16× 16 pixels [115]. In practice,
face images with high-resolution such as mug-shots or pass-
port photos need to be compared against low-resolution
surveillance images captured at a distance by CCTV, PTZ
and wearable cameras. In this case there is a dimension
mismatch between the LR probe images and HR gallery
images. Simple image processing upscaling the probe im-
ages, or down-scaling the HR images is a direct solution
to this, but it is possible to do better.

In matching across resolution, existing approaches can
be categorized into synthesis based and projection-based.
Synthesis based approaches, attempt to transform LR into
HR images for matching. Super-resolution [140] is used
to reconstruct a HR representation of LR probe image.
Then matching can be performed with any state of the

art homogeneous face recognition systems. In projection-
based approaches, HR gallery images and LR probes are
projected into a common space in which classification is
performed.

6.1. Datasets

Most LR-HR matching studies simulate LR data by
downsampling HR data. SCface provides a ‘natural’ multi-
resolution dataset [141]. It includes 4160 images of 130
subjects taken by five surveillance cameras and a high res-
olution SLR. The different surveillance cameras result in
LR images from 144×108 to 224×168 pixels in size. Some
simple PCA baselines for cross-resolution recognition are
also provided.

6.2. Synthesis based approaches

Hennings-Yeomans et al. [18] presented a simultane-
ous super-resolution and recognition (S2R2) algorithm to
match the low-resolution probe image to high-resolution
gallery. Training this algorithm learns a super-resolution
model with the simultaneous objective that the resulting
images should be discriminative for identity. In followup
work, they further improved the super-resolution prior and
goodness of fit feature used for classification [142]. How-
ever these methods have high computational cost.

Zou et al. [48] propose a similarly inspired discrimina-
tive super resolution (DSR) approach. The relationship
between the two modalities is learned in the training pro-
cedure. Then, test time procedure, the learned relation-
ship is used to reconstruct the HR images. In order to
boost the effectiveness of the reconstructed HR images, a
new discriminative constraint that exploits identity infor-
mation in the training data is introduced. With these, the
reconstructed HR images will be more discriminative for
recognition.

Zou et al. [143] proposed a nonlinear super resolution al-
gorithm to tackle LR-HR face matching. The kernel trick
is used to tractably learn a nonlinear mapping from low
to high-resolution images. A discriminative regularization
term is then included that requires the high-resolution re-
constructions to be recognizable.
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Jia et al. [144] presented a bayesian latent variable ap-
proach to LR-HR matching. Tensor analysis is exploited
to perform simultaneous super-resolution and recognition.
This framework also has the advantage of simultaneously
addressing other covariates such as view and lighting.

Jiang et al. [49] super-resolved LR probe images
by Graph Discriminant Analysis on Multi-Manifold
(GDAMM), before HR matching. GDAMM exploits man-
ifold learning, with discriminative constraints to mini-
mize within-class scatter and maximize across-class scat-
ter. However to learn a good manifold multiple HR sam-
ples per person are required.

Shekhar et al. [43] proposed an algorithm to address
low-high resolution face recognition, while maintaining il-
lumination invariance required for practical problems. HR
training images are relighted and downsampled, and LR
sparse coding dictionaries are learned for each person. At
test time LR images are classified by their reconstruction
error using each specific dictionary.

Huang et al. [50] proposed a nonlinear mapping ap-
proach for LR-HR matching. First, CCA is employed to
align the PCA features of HR and LR face images. Then
a nonlinear mapping is built with radial basis functions
(RBF)s in this subspace. Matching is carried out by sim-
ple NN classifier.

Instead of super-resolving a LR image for matching with
HR images, Gunturk et al. [51] proposed an algorithm
which constructs the information required by the recogni-
tion system directly in the low dimensional eigenface do-
main. This is more robust to noise and registration than
general pixel based super-resolution.

6.3. Projection-based approaches

Li et al. [145] proposed a method that projects face im-
ages with different resolutions into a common feature space
for classification. Coupled mappings that minimize the dif-
ference between the correspondences (i.e., low-resolution
and its corresponding high-resolution image) are learned.
The online phase of this algorithm is a simple linear trans-
formation, so it is more efficient than many alternatives
that perform explicit synthesis/super-resolution.

Zhou et al. [16] proposed an approach named Simultane-
ous Discriminant Analysis (SDA). In this method, LR and
HR images are projected into a common subspace by the
mappings learned respectively by SDA. The mapping is
designed to preserve the most discriminative information.
Conventional classification methods can then be applied
in the common space.

Wang et al. [17] present a projection-based approach
called kernel coupled cross-regression (KCCR) for match-
ing LR face images to HR ones. In this method, the re-
lationship between LR and HR is described in a low di-
mensional embedding by a coupled mappings model and
graph embedding analysis. The kernel trick is applied to
make this embedding non-linear. They realize the frame-
work with spectral regression to improve computational
efficiency and generalization.

Sharma and Jacobs’s cross-modality model [9] discussed
previously can also be used for LR-HR matching. PLS
is used to linearly map images of LR and HR to a com-
mon subspace. The matching results show that PLS can
be used to obtain state-of-the-art face recognition perfor-
mance in matching LR to HR face images.

Multidimensional Scaling (MDS) is used by Biswas et
al. [22] to simultaneously embed LR and HR images in a
common space. In this space, the distance between LR
and HR approximates the distance between corresponding
HR images.

Ren et al. [23] tackle the low-high resolution face recog-
nition by coupled kernel embedding (CKE). With CKE,
they non-linearly map face images of both resolutions into
an infinite dimensional Hilbert space where neighborhoods
are preserved. Recognition is carried out in the new space.

Siena et al. [45] introduced a Maximum-Margin Coupled
Mappings (MMCM) approach for low-high resolution face
recognition. A Maximum-margin strategy is used to learn
the projections which maps LR and HR data to a common
space where there is the maximum margin of separation
between pairs of cross-domain data from different classes.

In [52], Li et al. generalize CCA to use discriminative
information in learning a low dimensional subspace for LR-
HR image recognition. This is an closed-form optimization
that is more efficient that super-resolution first strategies,
while being applicable to other types of ‘degraded’ images
besides LR, such as blur and occlusion.

Deng et al. [146] utilized color information to tackle LR
face recognition as color cues are less variant to resolution
change. They improved on [145] to introduce a regularized
coupled mapping to project both LR and HR face images
into a common discriminative space.

Representation learning and metric learning were com-
bined and optimized jointly by [53]. Matching is finally
performed using NN with the learned metric.

Finally [55] addressed LR-HR matching while simul-
taneously addressing the sparsity of annotated data by
combining the ideas of co-training and transfer learning.
They pose learning HFR as a transfer learning problem
of adapting an (easier to train) HR-HR matching model
to a (HFR) HR-LR matching task. The base model is
binary-verification SVM based on LPQ and SIFT features.
To address sparsity of annotated cross-domain training
data, they perform co-training which exploits a large but
un-annotated pool of cross-domain data to improve the
matching model.

6.4. Summary and Conclusions

Both high-resolution synthesis and sub-space projection
methods have been successfully applied to LR-HR recog-
nition. In both cases the key insight to improve perfor-
mance has been to use discriminative information in the
reconstruction/projection, so that the new representation
is both accurate and discriminative for identity. Interest-
ingly, while this discriminative cue has been used relatively
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Table 7: LR-HR matching methods: Performance on benchmark datasets.

Method Publications Recognition Approach Dataset Feature Train:Test High Resolution Low Resolution Accuracy

Synthesis based [18] S2R2 FRGC V2.0 CFA 5120:300 24× 24 6× 6 80%

[48] DSR FRGC V2.0 LBP 2488:622 56× 48 7× 6 56%

[143] Nonlinear kernel FRGC V2.0 2220:4168 64× 56 14× 16 84%

[144] Bayesian latent variable AR+ FERET + Y ale 2655:295 56× 36 14× 9 75%

[49] GDAMM AR 441:441 24× 24 7× 8 73%

[50] RBFs FERET 1196:1195 72× 72 12× 12 84%

Projection based [145] CMs FERET 1002:1195 72× 72 12× 12 92%

[16] SDA FERET 1002:1195 72× 72 12× 12 93%

[17] KCCR FERET 1002:1195 72× 72 12× 12 91%

[9] PLS FERET 90:100 76× 66 5× 4 60%

[22] MDS FRGC 183:608 45× 39 9× 7 56%

[23] CKE Multi-PIE 108:229 Original Images 6× 6 88%

[146] CMs AR Color 700:700 33× 24 7× 6 85%

[55] SVM SCface LPQ+SIFT 72× 72 24× 24 70%

[53] CBD SCface 510:130 30× 24 15× 12 58%

less frequently in SBFR, NIR and 3D matching, it has
been used almost throughout in HR-LR matching. Tab. 7
summarizes the results of major LR-HR matching studies;
although again lack of consistency in experimental settings
prevents direct quantitative comparison.

LR Dataset realism. With few exceptions [43, 55], the
majority of LR-HR studies simulate LR data by down-
sampling HR face images. Similarly to SBFR’s focus on
viewed-sketches, it is unclear that this is a realistic simu-
lation of a practical LR-HR task. In practice, LR surveil-
lance images are unavoidably captured with many other
artefacts such as lighting change, motion-blur, shadows,
non-frontal alignment and so on [43, 55]. Thus existing
systems are likely to under perform in practice. This may
lead into integrating super-resolution and recognition with
simultaneous de-blurring [147, 148], re-lighting [43] and
pose alignment [60].

7. Discussion

As conventional within-modality face-recognition under
controlled conditions approaches a solved problem, het-
erogeneous face recognition has grown in interest. This
has occurred independently across a variety of covariates
– Sketch, NIR, LR and 3D. In case there is a strong driving
application factor in security/law-enforcement/forensics.
We draw the following observations and conclusions:

7.1. Common Themes

Model types. Although the set of modality pairs consid-
ered has been extremely diverse (Sketch-Photo, VIS-NIR,
HR-LR, 2D-3D), it is interesting that a few common
themes emerge about how to tackle modality heterogene-
ity. Synthesis and subspace-projection have been applied
in each case. Moreover, integrating the learned projection

with a discriminative constraint that different identities
should be separable, has been effectively exploited in a
variety of ways. On the other hand, feature engineering
approaches, while often highly effective, have been largely
limited to situations where the input-representation itself
is not intrinsically heterogeneous (Sketch-Photo, and VIS-
NIR).

Learning-based or Engineered. An important property dif-
ferentiating cross-domain recognition systems is whether
they require training data or not (and if so how much).
Most feature-engineering based approaches have the ad-
vantage of requiring no training data, and thus not re-
quiring a (possibly hard to obtain) dataset of annotated
image pairs to be obtained before training for any partic-
ular application. On the other hand, synthesis and pro-
jection approaches (and some learning-based feature ap-
proaches), along with discriminatively trained matching
strategies, can potentially perform better at the cost of
requiring such a dataset. A third less-explored alterna-
tive is approaches that can perform effective unsupervised
representation learning, such as auto-encoders and RBMs
[47].

Exploiting Face Structure. The methods reviewed in this
survey varied in how much face-specific information is ex-
ploited; as opposed to generic cross-domain methods. An-
alytic and component-based face image representations ex-
ploit face structure, but these are less common than patch-
based or holistic representations. Methods in the 2D-3D
HFR setting often use explicit face representations in or-
der to exploit 3D’s ability to align and correct for lighting
shift. However, the majority of methods reviewed do not
exploit face-specific domain knowledge, relying on simple
holistic or patch based representations with generally ap-
plicable synthesis/projection steps (e.g., CCA, PLS, sparse
coding). Many methods rely on the assumption of a fairly
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accurate and rigid correspondence in order use simple rep-
resentations and mappings (such as patches with CCA).
Going forward, this may be an issue in some circumstances
like forensic sketch and ‘in the wild’ LR recognition where
accurate alignment is difficult.

Dataset over-fitting. Recognition tasks in broader com-
puter vision have recently been shown to suffer from over-
fitting to entire datasets, as researchers engineer meth-
ods to maximize benchmark scores on insufficiently diverse
datasets [149]. Current HFR datasets, notably in Sketch
are also small and likely insufficiently diverse. As new
larger and more diverse datasets are established, it will
become clear whether existing methods do indeed gener-
alize, and if the current top performers continue to be the
most effective.

7.2. Issues and Directions for Future Research

Training data Volume. An issue for learning-based ap-
proaches is how much training data is required. Simple
mappings to low-dimensional sub-spaces may require less
data than more sophisticated non-linear mappings across
modalities, although the latter are in principle more pow-
erful. Current heterogeneous face datasets, for example in
sketch [25, 32, 25, 39], are much smaller than those used in
homogeneous face recognition [82] and broader computer
vision [150] problems. As larger heterogeneous datasets
are collected in future, more sophisticated non-linear mod-
els may gain the edge. This is even more critical for future
research into HFR with deep-learning based methodolo-
gies which have proven especially powerful in conventional
face recognition, but require thousands to millions of an-
notated images [3].

Alignment. Unlike homogeneous face recognition which
has moved onto recognition ‘in the wild’ [82], heteroge-
neous recognition generally relies on accurately and manu-
ally aligned facial images. As a result, it is unclear how ex-
isting approaches will generalize to practical applications
with inaccurate automatic alignment. Future work should
address HFR methods that are robust enough to deal with
residual alignment errors, or integrate alignment into the
recognition process.

Side Information and Soft Biometrics. Side information
and soft-biometrics have been used in a few studies [109] to
prune the search space to improve matching performance.
The most obvious examples of this are filtering by gen-
der or ethnicity. Where this information is provided as
metadata, filtering to reduce the matching-space is triv-
ial. Alternatively, such soft-biometric properties can be
estimated directly from data, and then the estimates used
to refine the search space. However, better biometric es-
timation and appropriate fusion methods then need to be
developed to balance the contribution of the biometric cue
versus the face-matching cue.

Facial Attributes. Related to soft-biometrics is the con-
cept of facial attributes. Attribute-centric modelling has
made huge impact on broader computer vision problems
[151]. They have successfully been applied to cross-domain
modeling for person (rather than face) recognition [152].
Early analysis using manually annotated attributes high-
lighted their potential to help bridge the cross-modal gap
by representing faces at a higher-level of abstraction [54].
Recent studies [118] have begun to address fully automat-
ing the attribute extraction task for cross-domain recog-
nition, as well as releasing facial attribute annotation
datasets (both caricature and forensic sketch) to support
research in this area. In combination with improving facial
attribute recognition techniques [153], this is a promising
avenue to bridge the cross-modal gap.

Computation Time. For automated surveillance, or search
against realistically large mugshot datasets, we may need
to recognise faces in milliseconds. Test-time computation
is thus important, which may be an implication for models
with sophisticated non-linear mappings across modalities;
or in the LR-HR case, synthesis (super-resolution) meth-
ods that are often expensive. Deep learning techniques
may help here, as while they are costly to train, they can
provide strong non-linear mappings with modest run-time
cost.

Technical Methodologies. CCA, PLS, Sparse Coding,
MRFs, metric learning and various generalizations thereof
have been used extensively in the studies reviewed here.
Going forward, there are other promising methodologies
that are currently under-exploited in HFR, notably trans-
fer learning and deep learning.

Deep Learning. Deep learning has transformed many
problems in computer vision by learning significantly more
effective feature representations [154]. These representa-
tions can be unsupervised or discriminatively trained, and
have been used to archieve good effect in conventional
face recognition [3, 155]. They have also been effectively
applied for many HFR-related problems including face-
recognition across pose [156], facial attribute recognition
[153] (which provides a more abstract domain/modality in-
variant representation), and super-resolution [157] (which
could potentially be used to address the HR-LR variant of
HFR). Preliminary studies found that conventional photo
face recognition DNNs do not provide an excellent out of
the box representation for HFR [78], suggesting that they
need to be trained and/or designed specifically for HFR.

Only a few studies have begin to consider application
of Deep Neural Networks (DNN)s to HFR [24], thus there
is significant scope for deep learning to make impact in
future. In terms of our abstract HFR pipeline, deep
learning approaches to HFR would combine both feature-
based and synthesis or projection approaches by learning a
deep hierarchy of features that together bridge the cross-
modal gap. Both cross-modal HFR synthesis or match-
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ing would be possible with deep learning: E.g., by fully-
convolutional networks such as used in super-resolution
[157], image-image encoders such as used for cross-pose
matching [156], or multi-branch verification/ranking net-
works such used in other matching problems [158, 159]. To
fully exploit DNNs for the HFR problem, a key challenge
is HFR datasets, which likely need to grow to support
training dat requirements of DNNs, or developing meth-
ods for training DNNs with sparse data [160]. Neverthe-
less, if this can be solved, DNNs are expected to provide
improved feature and cross-modal projection learning com-
pared to existing approaches. Like CCA style projections,
but unlike many other reviewed methods, they can match
across heterogenous dimensionality, e.g., as required for
2D-3D matching. Moreover they provide the opportunity
to integrate a number of other promising strategies dis-
cussed earlier including multi-task learning for integrat-
ing attribute/biometric information with matching [161],
jointly reasoning about alignment and matching [159], and
fast yet non-linear matching.

Transfer Learning. Transfer Learning (including Domain
Adaptation (DA)) [120] is also growing in importance in
other areas of computer vision [162], and has begun to in-
fluence, e.g., view and lighting invariant face recognition
[163]. This research area addresses adapting models to a
different-but-related task or domain to those which they
were trained [120, 162]. Approaches to adapt both spe-
cific models [120, 24] and model-agnostic approaches that
adapt low-level features both exist [120, 163]. Some also
require annotated target domain training data [24] while
others do not [163]. A straightforward application of DA
to HFR would be adapting a within-domain model (e.g.,
HR-HR) to another within domain setting (e.g., LR-LR).
The outstanding research question for HFR is how to use
these ideas to support cross-modal matching, which is just
beginning to be addressed [24, 55]. Finally, we note that
TL is potentially synergistic with deep leaning, in poten-
tially allowing a strong DNN trained from large conven-
tional recognition datasets to be adapted to HFR tasks.

7.3. Conclusion

In this survey we have reviewed the state of the art
methodology and datasets in heterogeneous face recog-
nition across multiple modalities including Photo-Sketch,
VIS-NIR, 2D-3D and HR-LR. We provided a common
framework to breakdown and understand the individual
components of a HFR pipeline and a typology of ap-
proaches, that can be used to relate methods both within
and across these diverse HFR settings. Based on this
analysis we extract common themes, drawing connections
across the somewhat distinct communities of HFR re-
search, as well as identifying challenges for the field and
directions for future research.
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