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ABSTRACT
Gender classification (GC) has achieved high accuracy in dif-
ferent experimental evaluations based mostly on inner facial
details. However, these results do not generalize well in un-
restricted datasets and particularly in cross-database experi-
ments, where the performance drops drastically. In this paper,
we analyze the state-of-the-art GC accuracy on three large
datasets: MORPH, LFW and GROUPS. We discuss their re-
spective difficulties and bias, concluding that the most chal-
lenging and wildest complexity is present in GROUPS. This
dataset covers hard conditions such as low resolution ima-
gery and cluttered background. Firstly, we analyze in depth
the performance of different descriptors extracted from the
face and its local context on this dataset. Selecting the bests
and studying their most suitable combination allows us to de-
sign a solution that beats any previously published results
for GROUPS with the Dago’s protocol, reaching an accu-
racy over 94.2%, reducing the gap with other simpler datasets.
The chosen solution based on local descriptors is later eval-
uated in a cross-database scenario with the three mentioned
datasets, and full dataset 5-fold cross validation. The achieved
results are compared with a Convolutional Neural Network
approach, achieving rather similar marks. Finally, a solution
is proposed combining both focuses, exhibiting great comple-
mentarity, boosting GC performance to beat previously pub-
lished results in GC both cross-database, and full in-database
evaluations.

Index Terms— Gender classification, HOG, LBP, LSP,
LOSIB, information fusion, face local context, cross-database,
CNN

1. INTRODUCTION

Gender is a feature easily extracted by humans, and quite
useful for human interaction. After all, gender classification
(GC) is not yet a solved problem for the computer vision com-
munity. Automatic GC is nowadays an active research field
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merical Applications in Engineering and the Computer Science Department
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Fig. 1. (a) Images extracted from [1]. Both images are ob-
tained from the same original, but their contrast has been al-
tered, for most human observers the face on the left appears
male, while the face on the right appears female. (b) Le Fils
de l’homme (René Magritte).

in computer vision, with different application scenarios cov-
ering surveillance, demographics or direct marketing among
others.

Nowadays, state-of-the-art GC approaches achieve rela-
tive high performance based just on visual facial features.
However, the exclusive observation of the face might produce
perception errors and restrict scenarios of application. In the
former, the face pattern may create perception illusions [1],
see Figure 1a. The latter occurs in low resolution applica-
tions, such as surveillance scenarios, where the facial local
context may help to estimate the gender of an individual, see
Figure 1b.

1.1. Related work

In this paper, a first objective is to analyze GC results of dif-
ferent datasets to identify those that are closer to real sce-
narios. As mentioned above, most state-of-the-art GC ap-
proaches focus on the facial pattern. This is evidenced by the
latest problem surveys [13, 14], and recent results in major
journals [2, 9, 10, 15, 16, 17, 18].

As in any classification problem, GC accuracy is es-
timated on different datasets obtaining the so-called in-
database accuracy. However, researchers must not just be
interested in getting higher and stable recognition rates for
a particularly database, but also improving cross-database
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Table 1. Cross-database accuracy rates in the literature eval-
uating large iage collections: 1 inter-ocular distance > 20, 2

> 20 years old , 3 automatically detected faces of > 20 years
old, 4 single face per identity, 5 LFW subset containing 10147
samples.

Reference Training set Test set Accuracy (%)
[2] FERET UCN 81.29
[2] PAL UCN 74.09
[3] MORPH LFW 75.10
[4] MORPH LFW 76.64
[5] GROUPS1 LFW 89.77
[6] GROUPS1 LFW 94.48
[7] GROUPS2 LFW 79.53
[8] GROUPS3 LFW 91.62
[9] GROUPS3 LFW4 93.35
[10] 4 million faces LFW 96.86
[11] CASIA WebFace [12] LFW5 97.10
[3] MORPH GROUPS 76.74
[5] LFW GROUPS1 81.02
[6] LFW GROUPS1 83.03
[9] LFW GROUPS3 85.00

classification rates, i.e. testing with an independent dataset,
whose images were captured with different conditions. Cross-
database classification is closer to real situations with no
dataset bias, that has been proven to provoke optimistic ac-
curacies [7, 19]. Indeed, in real scenarios a gender classifier
is trained with a set of images, and later deployed under
conditions that may differ from those of the training dataset.
Table 1 summarizes recent cross-database classification rates
of large databases. We claim that high performance can be
obtained particularly in homogeneous, biased and/or reduced
datasets, with good image quality, and restricted poses. To
illustrate this, different experiments on FERET [20] have
recently reported very high GC rates [2, 15, 16]. However,
classifiers trained with FERET do not perform robustly with
other datasets. The performance drops notoriously [18]. Ob-
serving Table 1, with the exception of testing with the biased
LFW dataset, the accuracy hardly reaches 80%, evidencing a
lack of accuracy in cross-database classification. .

Therefore, part of the community is currently addressing
a more realistic or general problem, i.e. GC in the wild. Thus,
researchers are now giving more attention to experiments with
newer and larger databases that enclose more variability in
terms of 1) identity, age and ethnicity, 2) pose and illumina-
tion conditions, and 3) image resolution.

Focusing on large and heterogeneous datasets, we high-
light recent results reported for the non public UCN [2], and
the available MORPH [21], GROUPS [22], and LFW [23]
datasets. Observing the in-database rates in Table 2, there
is not much room for improvement for LFW and MORPH.
We argue that both datasets present some level of simplifica-
tion that benefits the overall accuracy achieved. In fact, both
include multiple samples of the same identity, circumstance
that clearly mix gender and identity classification. On the
other side, GROUPS offers a less restricted scenario, report-

Table 2. Recent in-database accuracy results in large datasets.
1 inter ocular distance > 20, 3 22778 aut. detected faces,
4 7443 of the total 13233 images, 5 BEFIT protocol, 6 bal-
anced subset with 14244 of the total 55134 images.

Reference Dataset Accuracy (%)
[24] LFW4 94.81
[17] LFW4 98.01
[5] LFW5 97.23
[6] LFW5 96.25

[25] LFW 91.5
[5] GROUPS1 84.55 − 86.61

[26] GROUPS1 88.1
[6] GROUPS1 91.59

[27] GROUPS1 92.46
[28] GROUPS3 86.4
[7] GROUPS3 80.5

[29] GROUPS3 90.4
[30] MORPH 88
[3] MORPH6 97.1

ing the lowest accuracy, with a large gap compared to other
datasets. This evidence has convinced us to focus on this par-
ticular dataset, agreeing with the 2015 NIST report conclu-
sion on the topic [14]. We aim at reducing this GC accuracy
gap.

Certainly, the need of facial features restricts the con-
text of application, requiring a visible and almost frontal
face. From another point of view, different researchers have
recently investigated the inclusion of external facial fea-
tures [28, 31] such as hair, clothing [32, 33, 34], their combi-
nation with other cues [35], or even features extracted from
the body [36, 37]. The latter claims to be better adapted to real
surveillance scenarios where the facial pattern is noisy, not
frontal, occluded, or presents low resolution. However, their
application is particularly restricted, as no body occlusion
may be present.

Indeed, the inclusion of non facial features is consistent
with the human vision system that employs external and other
features for GC, such as gait, body contours, hair, clothing,
voice, etc. [28, 38]. These considerations seem to be of
particular interest for degraded, low resolution or noisy im-
ages [39]. For those reasons, we will include in our study
features extracted from the face, and its local context.

1.2. Contributions

Summarizing, the paper contributions in relation to recent
literature are: 1) a study of state-of-the-art GC accuracies
in large datasets, analyzing the elements that characterize
the current problem challenges, 2) an extensive experimen-
tal analysis of a wide collection of descriptors in GROUPS,
identifying the best local descriptors for the problem, and
an analysis of their robustness against noise; 3) the reduc-
tion of the accuracy gap compared to other datasets making
use of a score fusion architecture combining features and
regions of interest, outperforming previous results, while



Fig. 2. Normalized face (F) and its corresponding face
with context (HS). Each face image is rotated, re-scaled and
cropped so that the center of each eye is placed at a fixed
location (pixels (16,17) and (42,17) for F). Sample from
GROUPS.

confirming that both descriptors and regions provide comple-
mentary information for the problem; 7) a further analysis of
GC failures for GROUPS; 4) the translation of the approach
to cross-database scenarios; including GROUPS, LFW and
MORPH. 5) the comparison with a CNN architecture, 6) and
the proposal of a solution that combines local descriptors and
CNN, boosting significantly previous results;

2. REPRESENTATION AND CLASSIFICATION

Figure 2 illustrates on the left a typical face pattern used for
GC. To get this image, a normalization step rotates, scales and
crops the image to fix the eyes in specific locations and inter-
eye distance (26 pixels), with the resolution of 59×65 pixels.
This pattern is referred below as the face (F).

On the right in Figure 2, both the face and its local context
are presented. The pattern encloses the hair, shoulders, part
of the upper chest, and some background. This is the pattern
that we refer hereafter as head and shoulders (HS). The final
159×155 pattern exhibits a large resolution for a real surveil-
lance scenario, and increases the number of features. For that
reason and to bring the resolutions closer to those found in
real scenarios, in the local descriptors experiments we have
considered the HS pattern scaled down to 64 × 64, 32 × 32
and 16 × 16 pixels. Accordingly, in those lower resolution
images, the aproximated inter-eye distances are respectively
10, 5 and 3 pixels.

2.1. Representation

Local pixel-wise descriptors have recently received lots of at-
tention with several successful applications to facial analy-
sis [40, 41]. We briefly describe those included in the experi-
mental study.

2.1.1. Histograms of Oriented Gradients (HOG)

HOG [42] is based on the histogram of the gradient orienta-
tions in a regular area of the image, called cell. The image is
divided into cells, concatenating their respective histograms

to compose the descriptor. In order to reduce the illumina-
tion influence, each histogram is normalized using a neigh-
borhood, called block. In their original implementation [42],
the cell size is 8 × 8 pixels and the block is 2 × 2 cells. The
configuration parameters are the number of bins in the his-
togram, the angle range 0 − 180◦ or 0 − 360◦, the norm used
in the normalization stage inside the block, and the overlap-
ping between blocks in the image. In the experiments, we
used a 8 × 8 cells grid, and 9 bins following the implemen-
tation by Ludwig et al. [43]. Figure 3 illustrates the gradient
orientation in each cell of the image, for a sample at different
resolutions.

2.1.2. Local Binary Patterns (LBP)

LBP [44] is a robust and simple but efficient texture descrip-
tor that labels the pixels of an image by thresholding the pixel
neighborhood. In texture classification, the LBP code occur-
rences in an image are described using a histogram.

However, for facial recognition this approximation im-
plies the loss of spatial information. The alternative proposed
in [40], divides the face into small regions where the LBP
operator is applied and later concatenated into a single his-
togram. The textures of the facial regions are locally encoded,
and the combination of these micro-patterns histograms gen-
erates a comprehensive description of the face image.

An extension reduces the dictionary of LBP codes observ-
ing the most common ones in texture images. Uniform LBP,
LBPu2, contains at most two bitwise transitions from 0 to 1
or vice versa. NILBP [45] is another LBP variant that tries
to reduce the LBP local structure oversimplification, comput-
ing the difference with the neighbors mean, µ, instead of the
central pixel gray value.

A recent redefinition known as Local Salient Patterns
(LSP) [46] focuses on the location of the largest differences
within the pixel neighborhood. LSP has reported better rates
in identity recognition.

Finally, LOSIB [47] is a descriptor enhancer based on
LBP that computes local oriented statistical information in
the whole image. We have adapted it to face analysis con-
catenating the histograms obtained from a grid of cells.

The chosen operators are studied below applied on the
normalized facial pattern (F) divided into a grid of n×n cells,
in our case, n = 5.

2.2. Classification

As the focus of this paper is in the combination of descriptors
more than the classifiers themselves, we have used the well
known Support Vector Machine (SVM) classifier with RBF
kernel [48]. As the reader knows, the SVM classifier obtains
the hyperplane that maximizes the class separation to mini-
mize the risk. For non linear separable problems, a previous
mapping of the original feature space to a higher dimensional
one is carried out by means of kernels.



Fig. 3. Relative size of the different HS pattern resolutions
considered: respectively 64×64 and 32×32. Their respective
HOG grid is depicted.

3. DATABASES

We argued above that an experimental setup with a small or
restricted database is not representative for a real world sce-
nario where the gender classifier must face up with thousands
of people. To overcome this limitation, we have selected three
public databases with a large number of individuals acquired,
with the aim at including larger variability. A sample of each
dataset in shown in Figure 4, and their respective statistics
are presented in Table 3, summarizing their main features as
follows:

• MORPH [21]. This set contains images of more than
13, 000 identities. We observe however, three unde-
sired features for in the wild scenarios: 1) the number
of samples per class is not balanced, 2) the images were
acquired indoor in rather similar resolution and illumi-
nation conditions (capture bias [49]), and 3) there are
multiple samples per individual.

• Labeled Faces in the Wild (LFW) [23]. The dataset
includes images of 5, 749 individuals captured under
less controlled conditions. However, 1) it contains sev-
eral samples per individual, 2) the number of samples
per class is not balanced, and 3) the inclusion of public
people introduce a selection bias [49].

• The Images of Groups (GROUPS). This database [22]
contains more than 28, 000 labeled faces of lower res-
olution. According to Table 2, and the recent FRVT
report [14], this database is the hardest for GC. Ob-
serving Table 3, this is explained due to the lower face
resolution (IE) and the larger out of plane rotations
(σ̄EN ).

4. EXPERIMENTS

As mentioned before, we firstly focus on GROUPS to ana-
lyze the accuracy achieved by a wide collection of descrip-
tors. For this aim, we have followed the experimental proto-
col defined by Dago et al. [5]. This protocol defines a 5-fold

Fig. 4. Sample images respectively of GROUPS, LFW and
MORPH. Their respective original resolutions are 391× 293,
249× 249 and 200× 240 pixels, suggesting a relevant differ-
ence in the facial pattern resolution.

Table 3. Databases characteristics: Instances (per class),
SNR, inter eye distance mean (IE), and normalized standard
deviation of the eye-nose distance (σ̄EN ).

Database Total (female/male) SNR IE σ̄EN

GROUPS 28,220 (14,549/13,671) 36.91 25.32 ± 15.4 0.50
LFW 13,232 (2,970/10,252) 36.08 42.16 ± 4.5 0.15
MORPH 55,134 (8,488/46,646) 31.44 92.97 ± 26.4 0.2

cross-validation experimental setup that contains the subset of
faces automatically detected with an inter-eye distance larger
than 20 pixels1. Secondly, we define strategies to improve ac-
curacy and analyze incorrectly classified samples to improve
the overall accuracy. Later, aiming at verifying the proposal
generalization, we design an in- and cross-database experi-
mental setup that considers the full three selected datasets:
GROUPS, LFW and MORPH. Those results are also com-
pared with a CNN designed for GC, to finally conclude the
great benefits that the combination of local descriptors and
CNN offer to boost GC performance.

4.1. GROUPS Dago’s protocol

The results achieved for the Dago’s protocol are summarized
in Table 4. The experiments have covered the local descrip-
tors collection described above.

The table includes results using both the facial (F), and
the head and shoulders (HS) patterns. We remind the reader
that F has a resolution of 59 × 65 pixels, and three different
resolutions have been used for HS: 16 × 16, 32 × 32 and
64 × 64, see Section 2 for more details. Observe that the
facial resolution contained in HS is up to eight times lower
than in F.

For F we employed as descriptors HOG, LBPu2, NILBP,
LOSIB, and LSP histograms (respectively F-HOG, F-LBPu2,
F-NILBP, F-LOSIB and F-LSP). For HOG, we have selected
8 × 8 cell histograms with 9 bins. For the rest of descrip-
tors, we have made use of 5 × 5 histograms, attending our
previous experience in [3]. HS is described in terms of HOG

1Available at BEFIT site, visit http://i14s50.anthropomatik.kit.edu/431.php

http://i14s50.anthropomatik.kit.edu/431.php


and LOSIB features, but considering for the former different
resolutions of the pattern.

As baseline, we have included classifiers trained with the
first 100 PCA components obtained from the original nor-
malized gray facial images, the histograms obtained from the
facial pattern using LBP and HOG, and HS using HOG (F-
PCA, F-HOG-PCA, F-LBP-PCA, and HS64×64-HOG-PCA).
For classification we present results for SVM+RBF with C
(trade-off between margin and error) and gamma values, re-
spectively tuned in the range of C = [0.25, 8] and gamma =
[0.04, 0.15].

The best two accuracies for F are provided by: F-HOG
(C1), F-LBP (C3), while the best one for HS is reported by
HS64×64-HOG (C2). In particular the representation based
on F-HOG beats most literature rates of this dataset [5], in-
cluding our previous results with linear kernels [26]. That
descriptor reached 88.23%. It is also remarkable the accuracy
achieved using the lowest HS resolution, 75.31%. Observe
that Dago et al. [5] made use of a pattern almost twice larger,
and the number of features in our previous work was signif-
icantly larger. These accuracies were found significantly dif-
ferent (p = 4 · 10−4) after carrying out a Kruskal-Wallis test
because a previous Jarque-Bera test (p = 0.5) rejected the
normality of the samples.

The table includes the classification rates per gender, a
detail commonly skipped in the literature. In most cases the
female accuracy is slightly lower, similarly to the conclusions
of the 2015 NIST report [14].

Table 4. GC accuracy (in brackets per class: female/male)
achieved using different sets of features (n number of fea-
tures), resolutions and patterns (F and HS) following the
Dago’s protocol. Processing time in milliseconds.

Pattern-Descriptor Accuracy (%) n Proc.
time

F-PCA 77.91 (77.86/77.95) 100 1.2
F-HOG (C1) 88.23 (88.20/88.25) 576 5.7
F-HOG-PCA 81.10 (81.02/81.38) 100 1

F-LBPu2 (C3) 86.74 (86.29/87.20) 1475 48.3
F-LBPu2-PCA 80.45 (80.15/80.76) 100 1

F-NILBP 85.31 (85.02/85.59) 1425 48.3
F-LOSIB (C4) 86.65 (86.00/87.31) 512 10.4

F-LSP0 85.58 (84.98/81.17) 1425 39.7
F-LSP1 85.27 (84.85/85.69) 1425 31.3
F-LSP2 82.92 (81.94/83.91) 1425 31.3

HS64×64-HOG-PCA 80.80 (80.15/80.76) 100 1
HS64×64-HOG (C2) 85.93 (83.69/88.11) 576 6.2

HS64×64-LOSIB (C5) 82.72 (81.41/84.06) 512 10.4
HS32×32-HOG 85.04 (83.13/86.99) 576 11.3
HS16×16-HOG 75.31 (75.08/75.56) 576 18.5

4.2. Robustness against noise

An important element to study, in low resolution scenarios,
is the robustness of the proposed approach to the presence
of noise. GROUPS contains faces of different resolutions. Of

Fig. 5. Original normalized face (59 × 65), and resulting im-
ages after applying Gaussian (first row ) or Blurring (second
row) noise with different magnitudes: a variance for the gaus-
sian noise up to 0.1, and a linear motion up to 21 pixels for
blurring.

(a) (b)

Fig. 6. Accuracies with (a) Gaussian and (b) blur noise.

the total number of samples, a 5% of them present an inter-eye
distance lower than 10 pixels, and 41% lower than 20 pixels.
Focusing on lower resolution, we include an additional exper-
iment introducing noise to avoid the advantage of getting low
resolution images down-sampling higher resolution patterns.
Thus, we have noised the images before extracting HOG fea-
tures.

In Figure 5 we present the original and resulting patterns
after applying noise of different nature and magnitude. Fig-
ures 6a-b reports the noise influence in GC comparing dif-
ferent pattern resolutions. The accuracy achieved considering
only the face pattern (F) is largely affected by the Gaussian
noise; reporting lower accuracy than for HS when the noise
magnitude increases, see Figure 6a.

4.3. Ensemble of classifiers

Due to the nature of the different descriptors studied, they
might provide complementary information. Thus, the combi-
nation of all of them in a stacking fashion [50] can improve
the overall performance, added to the evidences in the reduc-
tion of ambiguous cases occurrences [51].

We explore below score level fusion, as feature level fu-
sion did not report a notorious accuracy improvement, requir-
ing to evaluate a much more complex multi-feature problem.
Therefore, we have followed a two stage stacking architecture
as illustrated in Figure 7. The first stage obtains the respec-
tive output scores of the different single classifiers described
in Section 4.1 based on different feature and patterns. The



Fig. 7. Illustration of an stacked classifiers architecture, with
three classifiers in the first stage whose scores are fed into a
second stage ”‘meta”’ classifier.

classifier in the second stage considers those scores as inputs.
We have performed an extensive experimental evaluation

of possible combinations of those classifiers presented in Ta-
ble 4. Starting with a fusion of C1 and C2, the best final con-
figuration fuses the information obtained from the following
descriptors:

• C1. HOG of the facial pattern (F-HOG).

• C2. HOG of the head and shoulders pattern (HS64×64-
HOG).

• C3. Concatenated LBP histogram extracted from the
facial pattern (F-LBPu2).

• C4. Concatenated LOSIB histogram extracted from the
facial pattern (F-LOSIB).

• C5. Concatenated LOSIB histogram from the head and
shoulders pattern (HS64×64-LOSIB).

Each first stage classifier is trained using a SVM+RBF.
The second stage feeds their respective scores into a new
SVM+RBF classifier in charge of taking the final decision.
The results achieved for the Dago’s protocol are reported in
Table 5. In order to confirm the influence of the combination
in the results, a Kruskal-Wallis test was carried out and the
difference in accuracy was found significant (p = 4.7 · 10−5).
The ANOVA test was discarded because a previous Jarque-
Bera test rejected the normality of the samples (p = 0.5).

The results confirm the initial hypothesis of the comple-
mentary information contained in the different descriptors.
This is evident observing the fusion of features from F, e.g.
S1 and S2. There is also a benefit when features are extracted
from both F and HS, as evidenced in S3 where LOSIB fea-
tures are extracted from both patterns, or in S4 and S5. The
former fuses LBP and HOG features, the latter integrates also
LOSIB features. The accuracy reaches 91.64% (up to 94.28%
for adults), beating both the results previously presented in
this work, and the literature for this experimental setup. The

Fig. 8. ROC curves using the Dago’s protocol.

observation of the respective ROC curves, see Figure 8, con-
firms the best performance of S5.

Table 5. GC accuracy (in brackets female/male) using
stacked classifiers for GROUPS.

Classifiers fused Accuracy (%)

C1-C3 (S1) 88.59
(88.09/89.10)

C1-C3-C4 (S2) 89.18
(88.98 /89.38)

C4-C5 (S3) 88.72
(87.67/89.79)

C1-C2-C3 (S4) 90.44
(90.22/90.66)

C1-C2-C3-C4-C5 (S5) 91.65
(91.05/92.26)

C1-C2-C3-C4-C5 (adults) 94.28
(94.40/94.16)

The reader may have observed the large improvement
when only adults (> 20 years old) are considered in both
training and test sets. As recently analyzed, gender discrim-
inant features in children differ from adults [52]. This effect
is illustrated in Figure 9, where the GROUPS samples age
groups distribution is presented on the left, and the error per
gender and age group distribution on the right. Both children
and elderly affect negatively the overall recognition accuracy.
The former particularly among males, the latter particularly
among females. In GROUPS the presence of children is much
larger, therefore there is a larger improvement when they are
not considered for both test and training, reaching over 94%
accuracy.

The influence of elderly is reflected in Figure 10. We
present there samples that were incorrectly classified by all
the first stage classifiers. Observing the female failures in
detail, there is a large presence of elderly ladies, suggesting
the inadequate modeling of that particular appearance. Other
errors seem to be related with the presence of both glasses,
and hats or other elements. The former is affecting the facial
features, the latter blocks what may be coped with the local



Fig. 9. Ratio (left) of samples per age range in GROUPS, dis-
tribution (miggle and right) of errors per age range and class.

Fig. 10. Examples of female samples (HS) with no correct
classification.

Fig. 11. Examples of female (left) and male (right) samples
correctly classified after adding HS features.

context.
Finally, Figure 11 presents samples (age range 20 − 36)

that were incorrectly classified using the combination S2, i.e.
using only the facial features, but correctly classified with the
full ensemble of classifiers, i.e. S5, using both facial and lo-
cal context details. This set of ambiguous facial patterns was
better described adding HS features.

4.4. In- and cross-database results in full datasets

In a final experiment, we have tested the best performing
classifier in the full selected databases: LFW, GROUPS and
MORPH. The in-database (highlighted) and cross-database
results are presented in the upper half of Table 6.

Starting with GROUPS, a slight decrease, compared to
the Dago’s protocol, is observed. Certainly, the inclusion of
the whole dataset introduces low resolution and non automat-
ically detected faces, circumstance that adds challenging as-

pects in the experiment. However, the accuracy is closer to
91%, and to 94% if only adults are considered for training
and test. Those rates beat any previous results in the dataset,
but the best is still to come.

For the other two datasets: MORPH and LFW. We already
mentioned that the state-of-the-art literature reports 97−98%
accuracies. We achieved that accuracy for MORPH, but only
95% for LFW. We argue that as stated in those works [17, 24],
the authors skipped faces that are not (near) frontal, and used
higher resolution. The comparison is therefore not completely
as fair as it should.

Fig. 12. Boxplot of the accuracy for in-database results
(GROUPS* > 20 years old).

Focusing on the most challenging cross-database per-
formance, the observation of Table 6 evidences firstly an
improvement compared to previous literature, even if full
datasets are evaluated. This suggests that if a more chal-
lenging or general problem is carried out, the complementary
information contained in both the descriptors, and the re-
gions of interest helps, particularly to tackle large variability,
and smaller image resolutions. This achievement is new if
compared to the exclusively face centered classifiers.

However, we were not completely satisfied, and analyzed
alternatives. CNN [53] have lately achieved relevant results in
many Computer Vision problems as image classification [54].
In this sense, some authors have started to evaluate them in
GC, with some results reported for LFW and GROUPS [6,
11]. We have adopted the CNN design proposed by [55]
with three convolutional layers and two fully connected lay-
ers, trained with HS pattern (159× 155 pixels), see section 2.
The achieved results are summarized in the lower half of Ta-
ble 6, presenting in most cases slightly better accuracies par-
ticularly when testing with GROUPS.

This observation, added to some promising very recent re-
sults combining CNN and hand crafted features [6, 56], have
guided us to combine local descriptors and CNN, integrating
in the proposal another first stage classifier, this time based on



Table 6. GC accuracy (%) with full datasets using hand
crafted (left) and CNN (right) classification. The table in-
cludes in- (5-folds cross validation) and cross-database re-
sults. In-database results are highlighted. 1 > 20 years old

Training set
Test set (hand crafted)

GROUPS LFW MORPH
GROUPS 90.85 94.10 89.98

GROUPS1 93.89 93.94 88.11

LFW 80.22 95 89.16

MORPH 62.04 84.53 98.85

Training set
Test set (CNN)

GROUPS LFW MORPH
GROUPS 92.90 94.48 87.56

GROUPS1 95.82 94.64 90.80

LFW 85.92 96.7 91.84

MORPH 72.32 83.16 98.77

Table 7. GC accuracy (%) combining hand crafted features
and CNN.

Training set
Test set

GROUPS LFW MORPH
GROUPS 97.23 98.00 93.46

GROUPS1 98.10 97.95 92.98

LFW 90.14 98.06 93.54

MORPH 67.40 88.70 99.42

CNN. The achieved results are summarized in Table 7. The
new results evidence that with the exception of one situation,
the one with originally lowest accuracy (MORPH for train-
ing, GROUPS for testing), the proposed combination boosted
all the accuracies remarkably.

Reviewing first the in-dataset 5-fold cross-validation eval-
uations, LFW and MORPH reported respectively 98.06% and
99.42%. Thy are indeed new state-of-the-art for both, but
certainly similar rates have been achieved for the LFW sub-
set containing almost frontal faces [17, 24]. The accuracy
achieved for GROUPS boosted up to 97.23% and to 98.1%
when only faces over 19 were used for both training and test.
We have no previous referece of any similar reported accuracy
neither for the whole dataset, or a subset.

Considering cross-database, training with GROUPS and
testing with LFW reported similar numbers to LFW in-dataset
results. In fact, previous state-of-the-art for cross-dataset with
LFW has already reported 97%, but that was achieved train-
ing with 400,000 samples [11] or four millions [10] Here that
accuracy is beaten, reaching 98%, and that is done with just a
7% of the training samples used by Antipov et al. When train-
ing with MORPH GC rates are lower, 88%, but significantly
better that recent reported results that reached 76% [4]. On
the other side, GROUPS present larger difficulties, being ex-
tremely complex if training with MORPH, just 67%, and eas-
ier training with LFW. Again the achieved performance over
90%, is more than 5% better than the latest reported result by

Danisman et al.[9], i.e. 85%

In order to test the significance in performance in the
datasets, a previous Jarque-Bera test was carried out to as-
sess the normality of the samples and the results was that the
samples are not normally distributed (p = 0.5) so a Kruskal-
Wallis test was conducted instead of the ANOVA test. As
result, it is found a significant difference (p = 1.1 · 10−3) in
the performance of the datasets, see Figure 12.

4.5. Discussion

In short, we have compared two different focuses to tackle the
GC problem. On the one side, we have made use of previous
computer vision experience to setup a solution based on local
descriptors, that required the almost manual exploration of
alternatives, configuration setups, and areas of interest. This
focus is now being referred as hand crafted features based,
due to the high cost given to the system designer to select the
parameters. On the other side, to translate the feature selec-
tion and tuning work load to the training process, deep-CNN
have also been studied within the same experimental setup.

The evaluation of both solutions reported similar perfor-
mances, even if a closer look indicates a tiny advantage in
terms of accuracy for CNN, compare left and fight accuracies
in Table 6.

However, we have proven that the combination at score
level of both approaches reaches higher levels of GC accu-
racy, evidencing better performance both for in- and cross-
database evaluations, suggesting the different complemen-
tary information for GC provided by descriptors, regions of
interest and CNN. For cross-database, previous reported ac-
curacies were typically lower than in-database accuracies.
We have however confirmed the claim made by Klare et
al. [57] suggesting the importance of demographic variety in
the training data. In fact training with GROUPS and testing
with LFW reached similar marks than the in-database eval-
uation for LFW. Under our knowledge, this is the first time
that this fact has been made with a relative reduced number
of samples.

Observing the accuracies achieved for in the wild scenar-
ios, we may wonder whether the problem is solved. Certainly,
there is no real evidence that rates over 97 − 98% will be
kept after deployment in real world conditions. However,
we consider that it is the right time to think about building
more challenging in the wild benchmarks to evidence exist-
ing difficulties. A very recent work focused on the MORPH
dataset [58] presents a joint estimation framework, dealing
with the influence of gender and ethnicity on age estimation.
Their in-database results achieved high rates for GC (95 −
98%) in MORPH. However, we are concerned with this par-
ticular kind of databases that certainly presents a selection
bias containing several samples of the same individual. For
this reason, we have studied the GC errors in GROUPS. Those
age ranges less present produce more classification errors us-



ing local descriptors, while their influence is irrelevant for
CNN. However, removing under 20 years old, affects posi-
tively both approaches as the population appearance seems to
be less spread.

In any case, GROUPS is in fact not ideal, there is a bias
in the dataset, that may be illustrated observing the mean face
images per age group and gender, see Figure 13. The average
faces are smiling, suggesting the particular capture conditions
used for the image collection.

Assuming newer and more challenging datasets, we may
think about future lines of improvement, that for our proposal
may focus on the CNN architecture design, the features and
areas of interest analyzed, or even the fusion approach used.
In any case, two different GC architecures may be considered
as suggested by Klare et al. [57]: a single gender classifier
able to handle each demographic group, or a group of classi-
fiers that may be tuned for each demographic group.

Fig. 13. Mean facial patterns per gender and age group in
GROUPS.

0-19 20-36 37-65 66+

Female
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5. CONCLUSIONS

In this work, we have extensively explored the use of several
descriptors and areas of interest for the face based GC prob-
lem. The ensemble of different classifiers considering a set of
local descriptors and regions of interest in a stacking fashion
has proven to reduce almost 20% the previous error rate in the
challenging GROUPS dataset following the Dago’s protocol.

These results were later confirmed in an experimental
evaluation considering in- and cross-database classification
in three large datasets: GROUPS, LFW and MORPH. Firstly,
the in-database experiment with GROUPS keeps quite simi-
lar classification rates, over to 94% in adults. The other two
datasets reported similar accuracy rates to the best recent
literature.

The experimental evaluation was carried out also for a
CNN. The comparison indicates that both approaches perform
similarly, with slight advantage for CNN in some experimen-
tal scenarios. A further exploration fused both focuses in a
score level combination. The accuracies in full in-database
cross-validation evaluations for GROUPS, LFW and MOPRH

were respectively boosted up to over 97% (98% in adults),
98% and 99%, reporting also new state-of-the-art accuracies
in cross-database GC performance.
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