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Abstract

Learning hash functions/codes for similarity search
over multi-view data is attracting increasing atten-
tion, where similar hash codes are assigned to the
data objects characterizing consistently neighbor-
hood relationship across views. Traditional meth-
ods in this category inherently suffer three limita-
tions: 1) they commonly adopt a two-stage scheme
where similarity matrix is first constructed, fol-
lowed by a subsequent hash function learning; 2)
these methods are commonly developed on the as-
sumption that data samples with multiple represen-
tations are noise-free,which is not practical in real-
life applications; 3) they often incur cumbersome
training model caused by the neighborhood graph
construction using all N points in the database
(O(N)). In this paper, we motivate the problem
of jointly and efficiently training the robust hash
functions over data objects with multi-feature rep-
resentations which may be noise corrupted. To
achieve both the robustness and training efficiency,
we propose an approach to effectively and effi-
ciently learning low-rank kernelized 1 hash func-
tions shared across views. Specifically, we utilize
landmark graphs to construct tractable similarity
matrices in multi-views to automatically discover
neighborhood structure in the data. To learn robust
hash functions, a latent low-rank kernel function is
used to construct hash functions in order to accom-
modate linearly inseparable data. In particular, a
latent kernelized similarity matrix is recovered by
rank minimization on multiple kernel-based sim-
ilarity matrices. Extensive experiments on real-
world multi-view datasets validate the efficacy of
our method in the presence of error corruptions.

1We use kernelized similarity rather than kernel, as it is not a
squared symmetric matrix for data-landmark affinity matrix.

1 Introduction
Hashing is dramatically efficient for similarity search over
low-dimensional binary codes with low storage cost. Inten-
sive hashing methods valid on single data source have been
proposed which can be classified into data-independent hash-
ing such as locality sensitive hashing (LSH) [Datar et al.,
2004] and data-dependent hashing or learning based hashing
[Weiss et al., 2008; Wang et al., 2010].

In real-life situations, data objects can be decomposed of
multi-view (feature) spaces where each view can character-
ize its individual property, e.g., an image can be described
by color histograms and textures, and the two features turn
out to be complementary to each other [Wang et al., 2014;
Wang et al., 2013; Wang et al., 2015c; Wu et al., 2013;
Wu et al., 2016; Wang et al., 2016b; Wang et al., 2015d;
Wang et al., 2015e; Wang et al., 2016a]. Consequently, a
wealth of multi-view hashing methods [Zhang et al., 2011;
Kim et al., 2012; Masci et al., 2014; Song et al., 2011;
Liu et al., 2012b; Shen et al., 2015] are developed in order to
effectively leverage complementary priors from multi-views
to achieve performance improvement in similarity search.
The critical issue is to ensure the learned hash codes can
well preserve the original data similarities regarding view-
dependent feature representations. To be specific, similar
hash codes are assigned to data objects that consistently cap-
ture nearest neighborhood structure across all views.

1.1 Motivation
Despite improved performance delivered by existing multi-
view hashing methods [Zhang et al., 2011; Kim et al., 2012;
Masci et al., 2014; Song et al., 2011; Liu et al., 2012b; Shen
et al., 2015], some fundamental limitations can be identified:

• The learning process is conducted by a two-stage mech-
anism where hash functions are learned based on pre-
constructed data similarity matrix. Their methods com-
monly assume that data samples are noise-free under
multiple views whereas in real-world applications input
data objects may be noisy (e.g., missing values in pix-
els), resulting in corresponding similarity matrices being
corrupted by considerable noises [Wang et al., 2015d;
Xia et al., 2014]. Moreover, the recovery of consen-
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sus or requisite similarity values across views in the
presence of noise contamination remains an unresolved
challenge in multi-view data analysis [Li et al., 2015;
Zheng et al., 2015; Ye et al., 2012].
This motivates us to deliver a framework to jointly
and effectively learn similarity matrices and robust hash
functions with kernel functions plugged because the ker-
nel trick is able to tackle linearly inseparable data [Liu
et al., 2012a]. To this end, a latent kernelized similarity
matrix is recovered shared across views by using low-
rank representation (LRR) [Liu et al., 2013] which is
robust to corrupted observations. The recovered low-
rank kernelized similarity matrix is consensus-reaching
across views and can reveal the true underlying struc-
tures in data points.

• State-of-the-art multi-view hashing methods is less effi-
ciency in their learning procedure because the learning
is performed by building and accessing a neighborhood
graph using all N points (O(N2)). This action is in-
tractable in off-line training when N is large.
To this end, we are further motivated to employ an land-
mark graph to build an approximate neighborhood graph
using landmarks [Liu et al., 2011; Liu et al., 2010b],
in which the similarity between a pair of data points is
measured with respect to a small number of landmarks
(typically a few hundred). The resulting graph is built
in O(N) time and sufficiently sparse with performance
approaching to true k-NN graphs as the number of land-
marks increases [Liu et al., 2011].

1.2 Our Method
In this paper, we propose a novel approach to robust multi-
view hashing by effectively and efficiently learning a set of
hash functions and a low-rank kernelized similarity matrix
shared by multiple views.

We remark that our method is fundamentally different from
existing multi-view hashing methods that are conditioned on
corruption-free similarities, which has diminished their ap-
plication to real-world tasks. Instead, we propose to learn
hash functions and kernel-based similarities under a more re-
alistic scenario with noisy observations. Our method is ad-
vantageous in the aspect of efficiency due to the employ-
ment of approximate neighborhood with landmark graphs.
We clarify the recovered low-rank similarity matrix in ker-
nel functions to be the kernelized rather than kernel since it
is not a symmetric matrix yet characterizes non-linear sim-
ilarities. The proposed method is also different from par-
tial view study [Kumar and III, 2011; Wang et al., 2015a],
where they consider the case that data examples with some
modalities are missing. Our approach follows the setting
of multi-view learning which aims to improve existing sin-
gle view model by learning a model utilizing data collected
from multiple channels [Xu et al., 2013; Zheng et al., 2015;
Kumar et al., 2011; Wang et al., 2014; Wang et al., 2015b;
Xia et al., 2014] where all data samples have full information
in all views.

In our framework, the low rank minimization is enforced
to yield a consensus-reaching, kernelized similarity matrix

shared by multiple views where larger similarity values indi-
cate corresponding data objects from the same cluster, while
smaller similarity values imply those come from distinct clus-
ters. Thus, the learned low-rank similarity matrix against
multi-views can reflect the underlying clustering information.

Technically, a nonlinear kernelized similarity matrix in the
m-th view, denoted as K(m), can be decomposed into three
components: (1) A latent low-rank kernelized similarity ma-
trix K̂, representing the nonlinear requisite or consensus sim-
ilarities shared across views; (2) a view-dependent redun-
dancy characterizing its individual similarities; and (3) pos-
sible error corruptions for view-specific representations. We
unify view redundancy and errors into E(m) and impose an
`2,1-norm constraint on it, denoted as ||E(m)||2,1. This is
because view redundancy and disturbing errors are always
sparsely distributed, and minimizing ||E(m)||2,1 is able to
identify non-zero sparse columns revealing corresponding re-
dundancy/errors. Note that in this work, “error” generally
refers to error corruptions or perturbation, e.g., noise or miss-
ing values, in view-dependent feature values. These princi-
ples are formulated into an objective function, which is op-
timized based on the inexact Augmented Lagrangian Multi-
plier (ALM) scheme [Lin et al., 2010]. It allows us to jointly
learn a latent low-rank nonlinear similarity with corruption
free and optimal hash functions for multi-view data, where
hash codes are restricted to well preserve local (neighbor-
hood) geometric structures in each view. We remark that sev-
eral cross-view semantic hashing algorithms [Ou et al., 2013;
Wei et al., 2014; Kumar and Udupa, 2011] have been devel-
oped to embed multiple high dimensional features from het-
erogeneous data sources into one Hamming space, while pre-
serving their original similarities. Our setting is fundamen-
tally different from cross-view/modal hashing in the aspect
that we aim to leverage multiple features to jointly learn hash
functions and a latent nonlinear similarity matrix over a ho-
mogeneous data source. To the best of our knowledge, we are
the first to systematically address the problem of multi-view
hashing with possible data error corruptions.

1.3 Contributions

The major contributions of this paper are three-fold.

• We motivate the problem of robust hashing over multi-
view data with nonlinear data distribution, and propose
to learn the robust hash functions and a low-rank kernel-
ized similarity matrix shared by views.

• An iterative low-rank recovery optimization technique is
proposed to learn the robust hashing functions. For the
sake of efficiency, the neighborhood graph is approxi-
mated by using landmark graphs with sparse connection
between data points.

• Extensive experiments conducted on real-world multi-
view datasets validate the efficacy of our method in the
presence of error corruptions for multi-view feature rep-
resentations.



2 Related Work

2.1 Multi-view Learning based Hashing
The purpose of multi-view learning based hashing is to learn
better hash codes by leveraging multiple views. Some re-
cent representative works include Multiple Feature Hashing
(MFH) [Song et al., 2011], Composite Hashing with Multi-
ple Sources (CHMS) [Zhang et al., 2011], Compact Kernel
Hashing with multiple features (CKH) [Liu et al., 2012b],
and Multi-view Sequential Spectral Hashing (SSH) [Kim et
al., 2012]. However, these methods have common drawbacks
that they typically apply spectral graph technique (e.g., k-NN
graph) to model a similarities between data points. In general,
the complexity of constructing the similarity matrix isO(N2)
for N data points, which is not pragmatic in large-scale ap-
plications. Moreover, the similarity matrix induced by graph
construction is very sensitive to noise corruptions. To avoid
the construction of similarity matrix, Shen et al. [Shen et al.,
2015] present a Multi-View Latent Hashing (MVLH) to learn
hash codes by performing matrix factorization on a unified
kernel feature space over multiple views. Nonetheless, there
are significant differences between MVLH and our approach.
First, matrix factorization is performed on a unified kernel
space which is formed by simply concatenating multiple ker-
nel feature spaces. This would discard distinct local struc-
tures in individual views. By contrast, the kernelized simi-
larity matrix is constructed with respect to the distinct char-
acteristic in each view. Second, MVLH neglects the case of
potential noise corruption in data samples. In this aspect, we
attentively employ the low-rank representation (LRR) [Liu et
al., 2013] to recover latent subspace structures from corrupted
data.

2.2 Low-rank Modeling
Low-rank modeling in attracting increasing attention due to
its capability of recovering the underlying structure among
data objects [Wright et al., 2009a; Candes and Recht, 2009;
Li et al., 2015; Zhang et al., 2016; Zhang et al., 2014;
Zhang et al., 2015]. It has striking success in many ap-
plications such as data compression [Wright et al., 2009a],
subspace clustering [Liu et al., 2013; Deng et al., 2013;
Zhang et al., 2014], and image processing [Zhou et al., 2013;
Zhang et al., 2016; Zhang et al., 2015]. For instance, in
[Zhang et al., 2016], Zhang et al. consider a joint formula-
tion of recovering low-rank and sparse subspace structures
for robust representation.

Nowadays, data are usually collected from diverse domains
or obtained from various feature extractors, and each group
of features can be regarded as a particular view [Xu et al.,
2013]. Moreover, these data can be easily corrupted by po-
tential noises (e.g., missing pixels or outliers), or large varia-
tions (e.g., post variations in face images) in real applications.
In practice, the underlying structure of data could be multiple
subspaces, and thus Low-Rank Representation (LRR) is de-
signed to find subspace structures in noisy data [Liu et al.,
2013; Zhang et al., 2014]. The multi-view low-rank analysis
[Li et al., 2015] is a recently proposed multi-view learning
approach, which introduces low-rank constraint to reveal the

intrinsic structure of data, and identifies outliers for the rep-
resentation coefficients in low-rank matrix recovery.

In this paper, we are the first to apply low-rank learning
to reveal structured kernalized similarity among multi-view
data, and scale it up well to large-scale applications.

3 Robust Multi-view Hashing
3.1 Preliminary and Problem Definition
Let φ(·) = {φ1(·), ··, φM (·)} be the embedding function for
M nonlinear feature spaces, each of which corresponds to one
view. Following the Kernelized Locality Sensitive Hashing
[Kulis and Grauman, 2009], we uniformly select R samples
from the training set X , denoted by Zr (r = 1, . . . , R), to
construct kernelized similarity matrices under multiple views.
Given a sample represented by its feature xi, the p-th hash bit
can be generated via the linear projection:

hp(xi) = sign(CTp φ(xi) + bp), (1)

where sign(·) denotes the element-wise function, which is
1 if it is larger or equal to 0 and -1 otherwise. Cp =∑R
r=1Wrpφ(Zr) indicates the linear combination of R land-

marks, which can be the cluster centers [Liu et al., 2011] via
scalable R-means clustering over the feature space with d di-
mensions. bp ∈ R is a bias term. Then, we have

hp(xi) = sign(

R∑
r=1

WrpKi + bp), (2)

where Ki denotes the i-th column of K ∈ RR×N , such that
K =

∑M
i=1K

(m), and K(m) ∈ RR×N (m = 1, . . . ,M) de-
notes the kernelized similarity matrix between R landmarks
and N samples corresponding to the kernelized representa-
tion φ(m)(·). Accordingly, the hash code of xi can be rewrit-
ten via the kernel form,

yi = sign(WTKi + b), (3)

where W ∈ RR×P and b = [b1, . . . , bP ].
Given a set of training samplesX = [x1, . . . , xN ] that may

contain errors, x(m)
i ∈ Rdm×1 denotes them-th feature of xi,

and dm is the dimensionality for the feature space regard-
ing the m-th view. Then X(m) = [x

(m)
1 , x

(m)
2 . . . , x

(m)
N ] ∈

Rdm×N is the view matrix corresponding to the mth feature
of all training data. xi = [(x1)Ti , . . . , (x

M )Ti ]T ∈ Rd×1 is the
vector representation of the ith training data using all features
where d =

∑M
m=1 dm, andM is the number of views. We de-

note Y = [y1, y2, . . . , yN ] ∈ RP×N as the hash codes of the
training samples corresponding to all features, and Y (m) =

[y
(m)
1 , . . . , y

(m)
N ] ∈ RP×N as the hash codes of the training

data for the m-th view. We aim to learn a latent low-rank ker-
nel matrix K̂ shared across multiple kernels, and construct a
set of robust hashing functions H = {h1(·), . . . , hP (·)} for
multi-view data where hp : Rd 7→ {1,−1} (p = 1, 2, . . . , P ),
and P is the number of hashing functions, i.e., the hash code
length. The kernel function is plugged into hash function be-
cause the kernel trick has been theoretically and empirically
proved to be able to tackle the data distribution that is almost
linearly inseparable [Liu et al., 2012a].



3.2 Low-rank Kernelized Similarity Recovery
from Multi-views

Given a collection of high-dimensional multi-view data
samples that may contain certain errors for each view-
specific representation, we construct multiple nonlinear fea-
ture spaces K(m)(m = 1, . . . ,M), each of which represents
one feature view. To leverage multiple complementary repre-
sentations, we propose to derive a consensus low-rank kernel-
ized similarity matrix K̂ recovered from corrupted data ob-
jects, and shared across views. This low-rank nonlinear sim-
ilarity matrix is considered as the most requisite component,
whilst each view also contains individual non-requisite infor-
mation including redundancy and errors. We explicitly model
the redundancy via sparsity since multi-view study suggests
that each individual view is sufficient to identify most of the
similarity structure, and the deviation between requisite com-
ponent and data sample is sparse [Kumar et al., 2011]. In
reality, data samples can be grossly corrupted due to the sen-
sor failure or communication errors. Thus, an `2,1-norm is
adopted to characterize errors since they usually cause col-
umn sparsity in an affinity matrix [Liu et al., 2013].

In our framework, the low-rank similarity matrix is con-
structed to be sparse by considering data samples and land-
marks, thus ascertaining the efficiency of our approach.
Therefore, the latent low-rank kernelized similarity matrix K̂
can be recovered from K(m)(m = 1, . . . ,M) through a low-
rank constraint on K̂ and sparse constraint on eachE(m), that
is,

min
K̂,E(m)

||K̂||∗+λ
M∑
m=1

||E(m)||2,1, s.t. K(m) = K̂+E(m), K̂ ≥ 0.

(4)
where λ is the trade-off parameter andE(m) encodes the sum-
mation of error corruption and possible noise information re-
garding the m-th view.

3.3 Objective Function

Many studies [Weiss et al., 2008; Song et al., 2011] have
shown the benefits to exploit local structure of the training
data to infer accurate and compact hash codes. However, all
these algorithms are sensitive to error corruptions, hampering
them to be effective in practical situations. By contrast, we
propose to jointly learn hash codes by preserving local sim-
ilarities in multiple views while being robust to errors. To
exploit the local structure in each view, we define M affinity
matrices S(m) ∈ RN×N (m = 1, . . . ,M), one for each view,
that is,

S
(m)
ij =

{
1, x

(m)
i ∈ Nk(x

(m)
j ) or x(m)

j ∈ Nk(x
(m)
i );

0, else.

where Nk(·) is the k-nearest neighbor set, and the Euclidean
distance is employed in each feature space to determine the
neighborhood. A reasonable criteria of learning hash codes
y
(m)
i from the m-th view is to ensure similar objects in the

original space should have similar binary hash codes. This

can be formulated as below:

min

N∑
i,j=1

S
(m)
ij ||y

(m)
i − y(m)

j ||2F . (5)

Given a training sample xi, we expect the optimal hash
code yi consistent with its distinct hash codes y(m)

i derived
from each view. In this way, the local geometric structure in
a single view can be globally optimized. Therefore, we have

min

M∑
m=1

 N∑
i,j=1

S
(m)
ij ||y

(m)
i − y(m)

j ||2F + γ

N∑
i=1

||yi − y(m)
i ||2F

 ,

(6)
where γ is a trade-off parameter. The main bottleneck in the
above formulation is computation where the cost of building
the underlying graph and its associate affinity matrix S(m)

is O(dmN
2), which is intractable for large N . To avoid the

computational bottleneck, we employ a landmark graph by
using a small set of L points called landmarks to approximate
the data neighborhood structure [Liu et al., 2011]. Similar-
ities of all N database points are measured with respect to
these L landmarks, and the true adjacency/similarity matrix
S(m) in the m-th view is approximated using these similar-
ities. First, K-means clustering 2 is performed on N data
points to obtain L (L � N ) clusters center U = {uj ∈
Rdm}Lj=1 that act as landmark points. Next, the landmark
graph defines the truncated similarities Fij’s between all N
data points and L landmarks as,

Fij =

{
exp(−D2(xi,uj)/t)∑

j′∈〈i〉 exp(−D2(xi,u′j)/t)
, ∀j ∈ 〈i〉

0, elsewhere

where 〈i〉 ⊂ [1 : L] denotes the indices of k (k � L) nearest
landmarks of points xi in U according to a distance function
D() such as `2 distance, and t denotes the bandwidth param-
eter. Note that the matrix F ∈ RN×L is highly sparse. Each
row of F contains only k non-zero entries which sum to 1.
Thus, the landmark graph provides a powerful approximation
to the adjacency matrix S(m) as Ŝ(m) = FΛ−1FT where
Λ = diag(FT 1) ∈ RL×L [Liu et al., 2011].

For ease of representation, we denote L(Y, Y (m)) =∑N
i,j=1 Ŝ

(m)
ij ||y

(m)
i − y(m)

j ||2F + γ
∑N
i=1 ||yi − y

(m)
i ||2F . To

learn a set of hashing functions and a consensus nonlinear
representation in a joint framework, we formulate the objec-
tive function of robust multi-view hashing as follows

min
W,K̂,b,E(m)

M∑
m=1

L(Y, Y (m)) + α||K̂||∗ + λ

M∑
m=1

||E(m)||2,1,

s.t. K(m) = K̂ + E(m), K̂ ≥ 0,m = 1, . . . ,M,

yi = sign(WT K̂i + b) ∈ {−1, 1}P , Y Y T = I,
(7)

where α is a trade-off parameter, yi ∈ {−1, 1}P enforces the
hash code yi to be binary codes, and the constraint Y Y T = I

2In practice, running K-means algorithm on a small subsample
of the database with very few iterations is sufficient.



is imposed to encourage bit de-correlations while avoiding
the trivial solution. Due to the discrete constraints and non-
convexity, the optimization problem in Eq.(7) is difficult to
solve. Following spectral hashing [Weiss et al., 2008], we
relax the constraints yi ∈ {−1, 1}P to be yi = WT K̂i + b,
then we have

min
W,K̂,b,E(m)

M∑
m=1

L(Y, Y (m)) + α||K̂||∗ + λ

M∑
m=1

||E(m)||2,1,

s.t. K(m) = K̂ + E(m), K̂ ≥ 0,m = 1, . . . ,M ;

yi = WT K̂i + b, Y Y T = I.

We rewrite the objective function by further minimizing the
least square error regarding Y while regularizing W coupled
with trade-off parameters β and δ, it then has

min
W,K̂,b,E(m)

M∑
m=1

L(Y, Y (m)) + α||K̂||∗ + λ

M∑
m=1

||E(m)||2,1

+ β
(
||K̂TW + 1b− Y ||2F + δ||W ||2F

)
s.t. K(m) = K̂ + E(m), K̂ ≥ 0,m = 1, . . . ,M ;Y Y T = I.

(8)

Eq.(8) is still non-convex due to orthogonal constraint
Y Y T = I . Fortunately with either W , b or K̂, E(m) fixed,
the problem is convex with respect to the other variables.
Therefore, we present an alternating optimization way that
can efficiently find the optimum in a few steps. First, given K̂
and E(m), we show that computation expressions of W and
b can be obtained. To compute K̂ and E(m), we employ an
efficient optimization technique, the inexact augmented La-
grange multiplier (ALM) algorithm [Lin et al., 2010].

4 Optimization
4.1 Compute W and b
With other variables fixed, and setting the derivative of Eq.(8)
w.r.t. b to zero, we get

1T
(
K̂TW + 1b− Y

)
= 0

⇒ b =
1

N

(
1TY − 1T K̂TW

)
.

(9)

Setting the derivative of Eq.(8) w.r.t. W to zero, we yield

K̂(K̂TW + 1b− Y ) + δW = 0. (10)

Substituting b in Eq.(9) into Eq.(10), we have

K̂K̂TW + K̂1
(

1

N
(1TY − 1T K̂TW )

)
− K̂Y = 0

⇒W = (K̂LcK̂
T + δI)−1 + K̂LcY,

(11)

where Lc = I − 1
N 11T is the centering matrix, and Lc =

LTc = LcL
T
c .

4.2 Compute K̂ and E(m)

With variables W and b being fixed, the problem turns to be

min
K̂,E(m)

α||K̂||∗ + λ

M∑
m=1

||E(m)||2,1,

s.t. K(m) = K̂ + E(m), K̂ ≥ 0,m = 1, . . . ,M.

(12)

The rank minimization problem has been well studied in liter-
ature [Liu et al., 2010a; Wright et al., 2009b]. By introducing
an auxiliary variableQ such that K̂ = Q, Eq.(12) can be then
converted into the following equivalent form:

D(K̂,Q,E(m)) = α||Q||∗ + λ

M∑
m=1

||E(m)||2,1

+

M∑
m=1

(
〈A(m), K̂ + E(m) −K(m)〉+

µ

2
||K̂ + E(m) −K(m)||2F

)
+ 〈B, K̂ −Q〉+

µ

2
||K̂ −Q||2F ,

(13)

where A(m) and B represent the Lagrange multipliers, 〈·, ·〉
denotes the inner product of matrices, and µ > 0 is an adap-
tive penalty parameter. Next we will elaborate the update
rules for each of K̂, Q, and E(m) by minimizing D while
fixing the others.

Solving for Q When the other variables are fixed, the sub-
problem w.r.t. Q is

min
Q
||Q||∗ +

µ

2α
||K̂ −Q+

B

µα
||2F . (14)

It can be solved by the Singular Value Threshold method [Cai
et al., 2010]. More specifically, let UΣV T be the SVD form
of (K̂ + B

µα ), the updating rule of Q using the SVD operator
in each iteration will be

Q = US1/µα(Σ)V T , (15)

where S%(x) = max(x−%, 0)+min(x+%, 0) is the shrinkage
operator [Lin et al., 2015].

Solving for E(m) The subproblem with respect to
E(m), (m = 1, . . . ,M) can be simplified as

min
E(m)

λ||E(m)||2,1+
µ

2
||E(m)−(K(m)−K̂−A

(m)

µ
)||2F , (16)

which enjoys a closed form solution E(m) = Sλ/µ(K(m) −
K̂ − A(m)

µ ).

Solving for K̂ With the other variables being fixed, we up-
date K̂ by solving

K̂ = arg min
K̂
||K̂+E(m)−K(m)+

A(m)

µ
||2F+

µ

2
||K̂−Q+

B

µ
||2F

(17)



For ease of representation, we define C = 1
M (Q − B

µ +∑M
m=1(K(m)−E(m)− A(m)

µ )). Then, the problem in Eq.(17)
can be rewritten as

K̂ = arg min
K̂

1

2
||K̂ − C||2F = arg min

K̂1,...,K̂N

=
1

2

N∑
i=1

||K̂i − Ci||22.

s.t.K̂ ≥ 0, K̂i(i=1,...,N) ≥ 0.
(18)

Hence, the problem in Eq.(18) can be decomposed into N
independent subproblems: minK̂i

1
2 ||K̂i − Ci||22, subject to

K̂i ≥ 0. Each subproblem is a proximal operator problem,
which can be efficiently solved by the projection algorithm in
[Duchi et al., 2008].

4.3 Learning Hash Codes
Once the hashing function implemented by W and b is
learned by exploiting the kernelized similarity consensus K̂,
we can generate hash codes for both database and query sam-
ples, denoted as xt, via Eq. (19).

yt = sign(WT [K(xt, Z1), . . . ,K(xt, ZR)]T + b), (19)

where W ∈ RR×P , K(xt, Zi) represents the similarity be-
tween xt and the i-th landmark using Gaussian RBF kernel
over the concatenated feature space for all views.

4.4 Out-of-Sample Extension
An essential part of hashing is to generate binary codes for
new samples, which is known as out-of-sample problems. A
widely used solution is the Nyström extension [Bengio et al.,
2004]. However, this is impractical for large-scale hashing
since the Nyström extension is as expensive as doing exhaus-
tive nearest neighbor search with a complexity of O(N) for
N data points. In order to address the out-of-sample exten-
sion problem, we employ a non-parametric regression ap-
proach, inspired by Shen et al. [Shen et al., 2013]. Specif-
ically, given the hashing embedding Y = {y1, y1, . . . , yN}
for the entire training set X = {x1, x2, . . . , xN}, for a new
data point xq , we aim to generate a hashing embedding yq
while preserving the local neighborhood relationships among
its neighbors Nk(xq) in X . A simple inductive formulation
can produce the embedding for a new data point by a sparse
linear combination of the base embeddings:

yq =

∑N
i=1 w(xq, xi)yi∑N
i=1 w(xq, xi)

, (20)

where we define

w(x1, xi) =

{
exp(−||xq − xi||2/σ2), xi ∈ Nk(xq)

0, elsewhere.

However, Eq.(20) does not scale well for computing out-
of-sample extension (O(N)) for large-scale tasks. To this
end, we employ a prototype algorithm [Shen et al., 2013] to
approximate yq using only a small base set:

h(xq) = sign

(∑Z
j=1 w(xq, cj)yj∑Z
j=1 w(xq, cj)

)
(21)

where sign(·) is the sign function, and Y = {y1, y2, . . . , yZ}
is the hashing embedding for the base set B =
{c1, c2, . . . , cZ} which is the cluster centers obtained by K-
means. In this stage, the major computation cost comes from
K-means clustering, which is O(dlZN) in time (d is the fea-
ture dimension, and l is the number of iterations in K-means).
The iteration number l can be set less than 50, thus, the K-
means only costs O(dZN). Considering that Z is much less
than N , the total time is linear in the size of training set. The
computation of distance between B and X cost O(dZN).
Thus, the overall time cost is O(dZN + dZN) = O(dZN).

5 Complexity Analysis
We analyze the time complexity regarding per iteration of the
optimization strategy. The complexity of computing K̂LcK̂T

and (K̂LcK̂
T + δI)−1 in Eq.(11) is O(R2N) and O(R3),

respectively. Commonly, R(� N) landmarks are gener-
ated off-line via scalable K-means clustering for less than
50 iterations, keeping the complexity of computing W to be
O(R2N)+O(R3). The complexity of computing hash codes
for a new sample isO(dZN). Overall, the time complexity is
O(dZN +R3 +R2N) ≈ O(dZN +R2N) in one iteration,
which is linear with respect to the training size.

6 Experiments
6.1 Experimental Settings
Competitors We compare our method with recently pro-
posed state-of-the-art multiple feature hashing algorithms:

• Multiple feature hashing (MFH) [Song et al., 2011]:
This method exploits local structure in each feature and
global consistency in the optimization of hashing func-
tions.

• Composite hashing with multiple sources (CHMS)
[Zhang et al., 2011]: This method treats a linear combi-
nation of view-specific similarities as an average similar-
ity which can be plugged into a spectral hashing frame-
work.

• Compact kernel hashing with multiple features (CKH)
[Liu et al., 2012b]: It is a multiple feature hashing
framework where multiple kernels are linearly com-
bined.

• Sequential spectral hashing with multiple representa-
tions (SSH) [Kim et al., 2012]: This method constructs
an average similarity matrix to assemble view-specific
similarity matrices.

• Multi-View Latent Hashing (MVLH) [Shen et al.,
2015]: This is an unsupervised multi-view hashing ap-
proach where binary codes are learned by the latent fac-
tors shared by multiple views from an unified kernel fea-
ture space.

Datasets We conduct the experiments on two image bench-
marks: CIFAR-10 3 and NUS-WIDE.

3http://www.cs.toronto.edu/ kriz/cifar.html



• CIFAR-10 consists of 60K 32×32 color images from
ten object categories, each of which contains 6K sam-
ples. Every image is assigned to a mutually ex-
clusive class label and for each image, we extract
512-dimensional GIST feature [Oliva and Torralba,
2001] and 300-dimensional bag-of-words quantized
from dense SIFT features [Lowe, 2004] to be two views.

• NUS-WIDE [Chua et al., 2009] contains 269,648 la-
beled images crawled from Flickr and is manually
annotated with 81 categories. Three types of fea-
tures are extracted: 128-dimensional wavelet texture,
225-dimensional block-wise color moments, and 500-
dimensional bag-of-words to construct three views.

Multi-view Corruption Setting In CIFAR-10, consider-
ing that missing features may have some structure, we re-
move a square patch of pixels from each image covering 25%
of the total number of pixels. The location of the patch is uni-
formly sampled for each image. This will naturally deterio-
rate view-dependent feature representations. In NUS-WIDE,
we consider the scenario where 20% of feature values in each
view are corrupted with perturbation noise following a stan-
dard Gaussian distribution.

Parameter Setting In the training phase, we uniformly
sample 30K and 100K images as training data from both
datasets, and generate 300 and 500 landmarks. That is, we
fix the graph construction parameters L = 300, k = 3 on
CIFAR-10, and L = 500, k = 5 on NUS-WIDE, respec-
tively. In the testing phase, we randomly select 1,000 query
images in which the true neighbors of each image are defined
as the semantic neighbors which share at least one common
semantic label. For our method and CKH, we use Gaussian
RBF kernelK(i)(x, y) = exp(−||x−y||2i /2σ2)(i = 1, ·,M),
where || · ||2i represents the Euclidean distance within the i-th
feature space. The parameter σ is learned via the self-tuning
strategy [Zelnik-Manor and Perona, 2004].

In Eq.(8), there are five tunable parameters: γ, δ, α, β, and
λ. Parameters γ and δ controlling global hash code learning
and regularization on hashing functions are set as 10−4 and
10−6, respectively. For α, β, and λ, we tune their optimal
combination, that is, α = 10−1, β = 100, and λ = 10−3, as
conducted in section 6.3.

Evaluation Metric The mean precision-recall and mean
average precision (MAP) are computed over the retrieved set
consisting of the samples with the hamming distance [Liu
et al., 2012a] using 8 to 32 bits to a specific query. We
carry out hash lookup within a Hamming radius 2 and re-
port the mean hash lookup precision over all queries. For a
query q, the average precision (AP) is defined as AP (q) =
1
Lq

∑l
z=1 Pq(z)$q(z), where Lq is the number of ground-

truth neighbors of q in database, l is the number of enti-
ties in database, Pq(z) denotes the precision of the top z
retrieved entities, and $q(z) = 1 if the z-th retrieved en-
tity is a ground-truth neighbor and $q(z) = 0, otherwise.
Ground truth neighbors are defined as items which share at

0 0.1 0.25 0.5 0.7 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Precision, Recall on CIFAR-10

Ours

MVLH

CKH

SSH

CHMS

MFH

Recall

P
re

c
is

io
n

8 24 32 48 64 128
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
MAP on CIFAR-10

Ours

MVLH

CKH

SSH

CHMS

MFH

Code Length

M
A

P

Figure 1: Performance comparison on CIFAR-10 database.
Left: Mean precision-recall of Hamming ranking at 48 bits.
Right: Mean average precision of Hamming ranking w.r.t. 8-
128 bits.
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Figure 2: Performance comparison on NUS-WIDE database.
Left: Mean precision-recall of Hamming ranking at 64 bits.
Right: Mean average precision of Hamming ranking w.r.t. 8-
128 bits.

least one semantic label. Given a query set of size F , the
MAP is defined as the mean of the average precision for all
queries: MAP = 1

F

∑F
i=1AP (qi).

6.2 Results
We report the mean precision-recall curves of Hamming rank-
ing, and mean average precision (MAP) w.r.t. different num-
ber of hashing bits over 1K query images. Results are shown
in Fig.1, which are computed from top-100 retrieved samples.
It can be seen from top subfigure of Fig.1 that our method
achieves a performance gain in both precision and recall over
all counterparts and the second best is MVLH. This can
demonstrate the superiority of using nonlinear hashing func-
tions in nonlinear space. More importantly, the latent consen-
sus kernelized similarity matrix by low-rank minimization is
not only effective in leveraging complementary information
from multi-views, but also robust against the presence of er-
rors. The subfigure (bottom) in Fig.1 shows that as the hash-
ing bit number varies, our method consistently keeps superior
performance. Specifically, it reaches the highest precision
value for 48 bits and shows a relatively steady performance
with more hashing bits. The results from the NUS-WIDE
database are shown in Fig.2. Once again we can see per-
formance gaps in precision-recall between our approach and
competitors, as illustrated in top subfigure of Fig.2. This vali-
dates the advantage of our method by exploiting consensus of
kernelized similarity to learn robust nonlinear hashing func-
tions. In subfigure (bottom) of Fig.2, as the number of hash-
ing bit increases, our method is able to keep high and steady
MAP values.

To evaluate the impact of hashing bit numbers on perfor-
mance of hash lookup, in Table 1, we report hash lookup
mean precision with standard deviation (mean±std) in the
case of 8, 32, 48, 128 bits on both databases. Similar to



Table 1: Hash lookup precision (mean±std) with Hamming radius 2 on different databases.

Method CIFAR-10 NUS-WIDE
P=8 P=32 P=48 P=128 P=8 P=32 P=48 P=128

MFH 23.31±0.71 28.19±0.48 26.38±0.68 23.68±0.71 23.52±0.72 26.49±0.85 33.55±0.49 34.97±0.81
CHMS 25.61±0.22 31.8±0.66 26.54±0.52 19.38±0.84 27.54±0.41 30.22±0.92 28.24±0.96 27.52±1.12
CKH 31.75±0.53 32.05±0.72 37.32±0.76 34.45±0.81 29.72±0.43 37.84±0.63 33.56±0.82 34.42±1.32
SSH 27.34±0.46 35.78±0.68 29.36±0.63 27.52±0.72 28.95±0.46 33.42±0.88 30.05±0.71 29.21±0.98

MVLH 32.27±0.41 40.24±0.63 44.81±0.46 42.06±0.62 31.92±0.62 39.05±0.87 40.31±0.52 36.12±0.70
Ours 36.73±0.41 47.63±0.52 51.22±0.36 46.57±0.44 34.21±0.48 46.35±0.47 44.33±0.34 43.08±0.32

(a) λ is fixed as 10−3 (b) α is fixed as 10−1 (c) β is fixed as 100

Figure 3: The MAP variations of different parameter settings on NUS-WIDE database.

Table 2: Training/test time comparison on different algo-
rithms using 64 bits. All training/test time is recorded in sec-
ond. The training size of two datasets are 30K and 100K,
respectively.

Method CIFAR-10 NUS-WIDE
Training Test Training Test

MFH 32.8 6.4×10−5 41.6 8.5×10−5

CHMS 29.8 4.7×10−5 37.2 7.8×10−5

SSH 23.6 1.3×10−5 31.7 2.4×10−5

CKH 10.7 2.3×10−6 15.3 3.2×10−6

MVLH 20.4 2.2×10−6 28.1 4.3×10−6

Ours 14.1 2.6×10−6 19.2 3.5×10−6

Hamming ranking results, our method achieves the better per-
formance than others and obviously increasing performance
with less than 32 bits, which demonstrates that our approach
with compact hashing codes can retrieve more semantically
related images than all baselines in terms of hash lookup.

In Table 2, we report the comparison on training/test time
over the two image benchmarks. CKH and our method are
much more efficient by taking less than 15s and 20s respec-
tively to train on CIFAR-10 and NUS-WIDE using 32 bits.
The efficiency improvement comes from the usage of land-
marks. While our method is slightly less efficient to CKH
because of the low-rank kernelized similarity recovery, it is
very comparable to CKH and consistently superior to CKH
in other performance. MVLH is relatively costly due to its
expensive matrix factorization in its kernel space. MFH and
CHMS are time-consuming in training stage because they
both involve the eigen-decomposition of a dense affinity ma-
trix, which is not scalable to a large-scale setting. SSH has
a gain in efficiency compared with MFH and CHMS on ac-
count of their approximation on the K-nearest graph construc-
tion [Kim et al., 2012].

Figure 4: Convergence study over real-world datasets.

6.3 Parameter Tuning
In this experiment, we test different parameter settings for
our algorithm to study the performance sensitivity. We learn
three parameters: α, λ, and β, corresponding to the term of
requisite component, non-requisite decomposition, and hash-
ing function learning in Eq.(8). For these parameters, we
tune them from {10−5, 10−3, 10−1, 100, 101, 102, 103}. We
fix one of the parameters in α, λ, and β to report the MAP
while the other two parameters are changing. The results are
shown in Fig.3. In Fig.3 (a), by fixing λ = 10−3, we show the
performance variance on different pairs of α and β. We can
observe that our algorithms achieves a relatively higher MAP
when α = 0.1, and β = 100. The similar performance can
also be seen from Fig.3 (b) and Fig.3 (c). Thus, among dif-
ferent combinations, the method gains the best performance
when α = 10−1, β = 1, and λ = 10−3, while it is relatively
insensitive to varied parameters setting. With optimal combi-
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Figure 5: Performance comparison on MNIST database us-
ing base hash functions learn from CIFAR-10 dataset. Left:
Precision with respect to number of returned sampled at 64
bits. Right: Mean average precision of Hamming ranking
w.r.t. 8-128 bits.

nation of parameters, we study the issue of convergence. In
Fig.4, we can observe that our algorithm becomes convergent
in less than 40 iterations, demonstrating its fast convergence
rate.

6.4 Out-of-Sample Case
In this experiment, we study the property of out-of-sample
extension. We take the CIFAR-10 dataset as the base bench-
mark to train base embeddings. Another dataset MNIST is
considered as the testing bed. The MINIST dataset [LeCun
et al., 1998] consists of 70K images, each of 784 dimen-
sions, of handwritten digits from “0” to “9”. As in Fig.5,
our method achieves the best results. On this dataset, we can
clearly see that our method outperforms MVLH by a large
margin, which increases as code length increases. This fur-
ther demonstrates the advantage of kernelized low-rank em-
bedding as a tool for hashing by embedding high dimensional
data into a lower dimensional space. This dimensionality re-
duction procedure not only preserves the local neighborhood,
but also reveals global structure.

7 Conclusion
In this paper, we motivate the problem of robust hashing for
similarity search over multi-view data objects under a prac-
tical scenario that error corruptions for view-dependent fea-
ture representations are presented. Unlike existing multi-view
hashing methods that take a two-phase scheme of construct-
ing similarity matrices and learning hash functions separately,
we propose a novel technique to jointly learn hash functions
and a latent, low-rank, corruption-free kernelized similarity
under multiple representations with potential noise corrup-
tions. Extensive experiments conducted on real-world multi-
view data sets demonstrate the superiority of our method in
terms of efficacy.
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