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Abstract

We propose a new cascaded regressor for eye center de-
tection. Previous methods start from a face or an eye de-
tector and use either advanced features or powerful re-
gressors for eye center localization, but not both. Instead,
we detect the eyes more accurately using an existing fa-
cial feature alignment method. We improve the robustness
of localization by using both advanced features and pow-
erful regression machinery. Unlike most other methods
that do not refine the regression results, we make the lo-
calization more accurate by adding a robust circle fitting
post-processing step. Finally, using a simple hand-crafted
method for eye center localization, we show how to train
the cascaded regressor without the need for manually an-
notated training data. We evaluate our new approach and
show that it achieves state-of-the-art performance on the
BioID, GI4E, and the TalkingFace datasets. At an aver-
age normalized error of e < 0.05, the regressor trained
on manually annotated data yields an accuracy of 95.07%
(BioID), 99.27% (GI4E), and 95.68% (TalkingFace). The
automatically trained regressor is nearly as good, yield-
ing an accuracy of 93.9% (BioID), 99.27% (GI4E), and
95.46% (TalkingFace).

1 Introduction

Eye center localization in the wild is important for a vari-
ety of applications, such as eye tracking, iris recognition,

and more recently augmented reality applications for the
beauty industry enabling virtual try out of contact lenses.
While some techniques require the use of specialized
head-mounts or active illumination, such machinery is ex-
pensive and is not applicable in many cases. In this paper,
we focus on eye center localization using a standard cam-
era. Approaches for eye center localization can be divided
into two categories. The first, predominant, category con-
sists of hand-crafted model fitting methods. These tech-
niques employ the appearance, such as the darkness of the
pupil, and/or the circular shape of the pupil and the iris
for detection [3, 9, 10, 11, 16, 19, 20, 22, 24, 25]. These
methods are typically accurate but often lack robustness
in more challenging settings, such as low resolution or
noisy images and poor illumination. More recently, a sec-
ond category emerged - machine learning based methods.
While there are approaches that train sliding window eye
center detectors, recent success of cascaded regression for
facial feature alignment [6, 18, 14, 26] has prompted the
community to apply these methods for eye center localiza-
tion [17, 21, 28]. These new methods have proven to be
more robust, but they lack the accuracy of the model fit-
ting approaches and require annotated training data which
may be cumbersome to obtain.

In this paper, we propose a novel eye center detec-
tion method that combines the strengths of the aforemen-
tioned categories. In the literature on facial feature align-
ment, there are two types of cascaded regression methods,
simple cascaded linear regressors using complex features
such as SIFT or HoG [4, 26] and more complex cascaded
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Figure 1: Overview of our method. Top: At run-time an image and the detected facial features are used to regress
the eye centers, which are then refined by fitting circles to irises. Bottom: Rather than training the regressor from
manually annotated data, we can train the regressor on automatically generated annotations from a hand-crafted eye
center detector.

regression forests using simple pairwise pixel difference
features [6, 14]. Our first contribution is a new method
for eye center localization that employs complex features
and complex regressors. It outperforms simple regres-
sors with complex features [28] and complex regressors
with simple features [17, 21]. Similar to [17, 21] our
method is based on cascaded regression trees, but unlike
these authors, following [6, 18, 14, 26], our features for
each cascade are anchored to the current eye center esti-
mates. Moreover, based on the pedestrian detection work
of Dollar et al.[8] we employ more powerful gradient his-
togram features rather than simple pairwise pixel differ-
ences. Finally, while the aforementioned eye center re-
gressors bootstrap the regression using face or eye detec-
tors, given the success of facial feature alignment methods
we make use of accurate eye contours to initialize the re-
gressor and normalize feature locations. We show that the
resulting method achieves state-of-the-art performance on
BioID [1], GI4E [5], and TalkingFace [2] datasets.

The proposed cascaded regression approach is robust,
but suffers from the same disadvantages of other discrim-
inative regression-based methods. Namely, it is inaccu-
rate and requires annotated training data. To make our
approach more accurate, in our second contribution we re-
fine the regressor estimate by adding a circle fitting post-

processing step. Employing robust estimation and prior
knowledge of iris size facilitates sub-pixel accuracy eye
center detection. We show the benefit of this refinement
step by evaluating our approach on GI4E [5] and Talking-
Face [2] datasets, as well as performing qualitative evalu-
ation.

Finally, for our third contribution, rather than training
our regressor on manually generated annotations we em-
ploy a hand-crafted method to generate annotated data au-
tomatically. Combining recent advances of eye center and
iris detection methods, we build a new hand-crafted eye
center localization method. It performs well compared to
its hand-crafted peers, but is inferior to regressor-based
approaches. Despite the noisy annotations generated by
the hand-crafted algorithm, we show that the resulting re-
gressor trained on these annotation is nearly as good as
the regressor trained on manually annotated data. What is
even more unexpected is that the regressor performs much
better than the hand-crafted method used for training data
annotation.

In summary, this paper proposes a new state-of-the-art
method for eye center localization and has three main con-
tributions that are shown in Figure 1. First, we present a
novel cascaded regression framework for eye center lo-
calization, leading to increased robustness. Second, we
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add a circle fitting step, leading to eye center localization
with sub-pixel accuracy. Finally, we show that by employ-
ing a hand-crafted eye center detector the regressor can be
trained without the need for manually annotated training
data. This paper builds on the work that was presented in
a preliminary form in [15].

2 Related Work
The majority of eye center localization methods are hand-
crafted approaches and can be divided into shape and ap-
pearance based methods. In the iris recognition literature
there are also many segmentation based approaches, such
as methods that employ active contours. An extensive
overview is given by Hansen and Li [12]. Shape-based
techniques make use of the circular or elliptical nature
of the iris and pupil. Early methods attempted to de-
tect irises or pupils directly by fitting circles or ellipses.
Many techniques have roots in the iris recognition and
are based on the integrodifferential operator [7] . Others,
such as Kawaguchi et al.[13], use blob detection to extract
iris candidates and use Hough transform to fit circles to
these blobs. Toennies et al.[23] also employ generalized
Hough transform to detect irises, but assume that every
pixel is a potential edge point and cast votes proportional
to gradient strength. Li et al.[16] propose the Startburst
algorithm, where rays are iteratively cast from the cur-
rent pupil center estimate to detect pupil boundaries and
RANSAC is used for robust ellipse fitting.

Recently, some authors focused on robust eye center lo-
calization without an explicit segmentation of the iris or
the pupil. Typically, these are either voting or learning-
based approaches. The method of Timm and Barth [22] is
a popular voting based approach where pixels cast votes
for the eye center based on agreement in the direction of
their gradient with the direction of radial rays. A similar
voting scheme is suggested by Valenti and Gevers [24],
who also cast votes based on the aforementioned align-
ment but rely on isophote curvatures in the intensity image
to cast votes at the right distance. Skodras and Fakotakis
[19] propose a similar method but use color to better dis-
tinguish between the eye and the skin. Ahuja et al.[3] im-
prove the voting using radius constraints, better weights,
and contrast normalization.

The next set of methods are multistage approaches that

first robustly detect the eye center and then refine the es-
timate using circle or ellipse fitting. Świrski et al.[20]
propose to find the pupil using a cascade of weak classi-
fiers based on Haar-like features combined with intensity-
based segmentation. Subsequently, an ellipse is fit to the
pupil using RANSAC. Wood and Bulling [25], as well as
George and Routray [11], have a similar scheme but em-
ploy a voting-based approach to get an initial eye center
estimate. Fuhl et al.propose the Excuse [9] and Else [10]
algorithms. Both methods use a combination of ellipse
fitting with appearance-based blob detection.

While the above methods are accurate, they still lack
robustness in challenging in-the-wild scenarios. The suc-
cess of discriminative cascaded regression for facial fea-
ture alignment prompted the use of such methods for eye
center localization. [17, 21] start by detecting the face
and initializing the eye center estimates using anthropo-
metric relations. Subsequently, they use a cascade of re-
gression forests with binary pixel difference features to
estimate the eye centers. Inspired by the recent success
of the SDM method for facial feature alignment Zhou et
al.[28] propose a similar method for eye center localiza-
tion. Unlike the original SDM work, their regressor is
based on a combination of SIFT and LBP features. More-
over, unlike [17, 21] who regress individual eye centers,
Zhou et al.estimate a shape vector that includes both eye
centers and eye contours. In line with this trend we de-
velop a new regression-based eye center estimator, but
additionally employ circle-based refinement and voting-
based techniques to get an accurate detector that is easy
to train.

3 Eye Center Localization

In this section, we describe our three main contributions
in detail. We start by introducing our cascaded regres-
sion framework for eye center localization (Section 3.1).
Next, we show how the eye center estimate can be refined
with a robust circle fitting step by fitting a circle to the iris
(Section 3.2). Section 3.3 explains how to train the regres-
sor without manually annotated eye center data by using
a hand-crafted method for automatic annotation. Finally,
in Section 3.4 we discuss our handling of closed or nearly
closed eyes.
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Figure 2: Normalized eye center locations. The eye cen-
ters (red) coordinates are normalized such that the vector
Einter (yellow) between the two eye centers cR and cL
(cyan) maps to the vector (1, 0)T .

3.1 Cascaded regression framework

Inspired by the face alignment work in [6, 14], we build an
eye center detector using a cascade of regression forests.
Our shape is represented by a vector S = (xT

R,x
T
L),

where xR and xL are the coordinates of right and left eye
centers respectively. Starting from an initial guess S0, we
refine the shape using a cascade of regression forests:

St+1 = St + rt(I,S
t), (1)

where rt is the t-th regressor in the cascade estimating
the shape update given the image I and the current shape
estimate St. Next, we describe our choice of image fea-
tures, our regression machinery, and the mechanism for
obtaining an initial shape estimate S0.

For our choice of image features, similar to Dollar et
al.[8], we selected HoG features anchored to the cur-
rent shape estimate. We find that using HoG is espe-
cially helpful for bright eyes, where variation in appear-
ance due to different lighting and image noise is more ap-
parent, hurting the performance of regressors employing
simple pixel difference features. Zhou et al.[28], also em-
ploy advanced image features, but in contrast to them we
use regression forests at each level of our cascade. Fi-
nally, while [17, 21] estimate eye center positions inde-
pendently, we find that due to the large amount of cor-
relation between the two eyes it is beneficial to estimate
both eyes jointly. In [28], the shape vector consists of
eye centers and their contours. However, since it is possi-
ble to change gaze direction without a change in eye con-
tours, our shape vector S includes only the two eye center
points.

To get an initial shape estimate, existing approaches
use eye detectors or face detectors with anthropometric

relations to extract the eye regions. Instead, we employ
a facial feature alignment method to get an initial shape
estimate and anchor features. Specifically, the four eye
corners are used to construct a normalized representa-
tion of shape S. We define cR and cL, to be the center
points between the corners of the right and left eyes re-
spectively. The vector Einter between the two eye cen-
ters is defined as the interocular vector with its magni-
tude ‖Einter‖ defined as the interocular distance. Figure
2 illustrates this geometry. The similarity transformation
T (x) maps points from image to face-normalized coor-
dinates and is defined to be the transformation mapping
Einter to a unit vector aligned with the X axis with the
cR mapped to the origin. Therefore, the shape vector S
consists of two normalized eye centers xR = T (ximage

R )

and xL = T (ximage
L ) with ximage

R and ximage
L being the

eye center estimates in the image. The eye center esti-
mates cR and cL are also used to define the initial shape
S0 = (T (cR)

T , T (cL)
T ).

At each level of the cascade, we extract HoG features
centered at the current eye center estimates.To make HoG
feature extraction independent of the face size we scale
the image by a factor s =

Ehog

‖Einter‖ , where Ehog is the
constant interocular distance used for HoG computation.
Using bilinear interpolation, we extract W ×W patches
centered at the current eye center estimates sT−1(xR)
and sT−1(xL), with W = 0.4Ehog . Both patches are
split into 4 × 4 HoG cells with 6 oriented gradient his-
togram bins per cell. The cell histograms are concate-
nated and the resulting vector normalized to a unit L2
norm, yielding a 96 dimensional feature vector for each
eye. Instead of using these features directly at the decision
nodes of regression trees, we use binary HoG difference
features. Specifically, at each decision node we generate a
pool of K (K = 20 in our implementation) pairwise HoG
features by randomly choosing an eye, two of the 96 HoG
dimensions, and a threshold. The binary HoG difference
feature is defined as the thresholded difference between
the chosen HoG components. During training, the feature
that minimizes the regression error is selected.

To train the cascaded regressor, we use a dataset of an-
notated images with eye corners and centers. To model
the variability in eye center locations we use Principal
Components Analysis. Using a simple form of Procrustes
Analysis, each training shape is translated to the mean
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shape and the resulting shapes are used to build a PCA
basis. Subsequently, for each training image, multiple ini-
tial shapes S0 are sampled by generating random PCA co-
efficients, centering the resulting shape at the mean, and
translating both eyes by the same random amount. The
random translation vector is sampled uniformly from the
range

[
− 0.1, 0.1

]
in X and

[
− 0.03, 0.03

]
in Y . The

remaining parameters of the regressor are selected using
cross validation. Currently, our regressor has 10 levels
with 200 depth-4 trees per level. Each training image is
oversampled 50 times. The regressor is trained using gra-
dient boosting, similar to [14], with the learning rate pa-
rameter set to ν = 0.1.

3.2 Iris refinement by robust circle fitting
We refine the eye center position from the regressor by
fitting a circle to the iris. Our initial circle center is taken
from the regressor and the radius estimate rinit starts with
a default of 0.1‖Einter‖. The iris is refined by fitting a
circle to the iris boundaries. To that end, assuming the
initial circle estimate is good enough, we extract edge
points that are close to the initial circle boundary as can-
didates for the iris boundary. Not all of the extracted edge
points will belong to the iris boundary and our circle fit-
ting method will need to handle these outliers.

Employing the eye contours once again, we start by
sampling N points on the circle and removing the points
that lie outside the eye mask. To avoid extracting the eye-
lid edges we only consider circle samples in range ±45◦
and

[
135◦, 225◦

]
. For each circle point sample we form

a scan line centered on that point and directed toward the
center of the circle. The scan line is kept short (±30%
of the circle radius) to avoid extracting spurious edges.
Each point on the scan line is assigned a score equal to the
dot product between the gradient and outwards-facing cir-
cle normal. The highest scoring point location is stored.
Points for which the angle between the gradient and the
normal is above 25◦ are not being considered. This pro-
cess results in a list of edge points (red points in Figure
3).

Given the above edge points
{
ei
}N
i=1

, the circle fitting
cost is defined as follows:

C(a, b, r) =

N∑
i=1

(√
(eix − a)2 + (eiy − b)2−r

)2
, (2)

Figure 3: Robust circle fitting for iris refinement. Starting
from an initial iris estimate (green center and circle), short
scan lines (yellow) perpendicular to the initial circle are
used to detect candidate iris boundaries (red). A robust
circle fitting method is then used to refine the estimate.

where (a, b) is the circle center and r is the radius. How-
ever, this cost is not robust to outliers nor are any priors
for circle location and size being considered. Thus, we
modify the cost to the following:

C2 = w1 ·
1

N

N∑
i=1

ρ
(√

(eix − a)2 + (eiy − b)2 − r
)

+ w2 ·
(
a− a0)2

+ w2 ·
(
b− b0)2

+ w3 ·
(
r − rdefault)2. (3)

Note that the squared cost in the first term was con-
verted to a robust cost (we chose ρ to be the Tukey ro-
bust estimator function). The rest are prior terms, where
(a0, b0) is the center estimate from the regressor and
rdefault = 0.1‖Einter‖. We set the weights to w1 =
1, w2 = 0.1, w3 = 0.1 and minimize the cost using the
Gauss-Newton method with iteratively re-weighted least
squares. The minimization process terminates if the rela-
tive change in cost is small enough or if a preset number
of iterations (currently 30) was exceeded. For the Tukey
estimator, we start by setting its parameter C = 0.3rinit
and decrease it to C = 0.1rinit after initial convergence.
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3.3 Using a hand-crafted detector for auto-
matic annotations

As mentioned in Section 2, there are a variety of hand-
crafted techniques for eye center localization. Some
methods work well in simple scenarios but are still falling
short in more challenging cases. In this section, we con-
struct our own hand-crafted method for eye center local-
ization and use it to automatically generate annotations
for a set of training images. The resulting annotations can
be considered as noisy training data. One can imagine
similar data as the output of a careless human annotator.
We then train the cascaded regressor from Section 3.1 on
this data. Since the output of the regressor is a weighted
average of many training samples, it naturally smooths
the noise in the annotations and yields better eye center
estimates than the hand-crafted method used to generate
the annotations. Next, we describe the approach in more
detail.

Our hand-crafted eye center localization method is
based on the work of Timm and Barth [22]. Since we
are looking for circular structures, [22] propose finding
the maximum of an eye center score function S(c) that
measures the agreement between vectors from a candidate
center point c and underlying gradient orientation:

c∗ = argmax
c

S(c) = argmax
c

{
1

N

N∑
i=1

wc

(
dT
i gi
)2}

,

(4)
where di is the normalized vector from c to point i and gi
is the normalized image gradient at i. wc is the weight of
a candidate center c. Since the pupil is dark,wc is high for
dark pixels and low otherwise. Specifically, wc = 255 −
I∗(c), where I∗ is an 8-bit smoothed grayscale image.

Similar to [3], we observe that an iris has a constrained
size. More specifically, we find that its radius is about
20% of the eye size E, which we define as the distance
between the two eye corners. Thus, we only consider pix-
els i within a certain range of c. Furthermore, the iris is
darker than the surrounding sclera. The resulting score
function is:

S(c) =
1

N

∑
0.3E≤‖d∗

i ‖≤0.5E

wc max
(
dT
i gi, 0

)
, (5)

where d∗i is the unnormalized vector from c to i.

Unlike [22] that find the global maximum of the score
function in Eqn 4, we consider several local maxima of
our score function as candidates for eye center locations.
To constrain the search, we use a facial feature alignment
method to obtain an accurate eye mask. We erode this
mask to avoid the effect of eye lashes and eyelids, and
find all local maxima of S(c) in Eqn 5 within the eroded
eye mask region whose value is above 80% of the global
maximum. Next, we refine each candidate and select the
best one.

Since each candidate’s score has been accumulated
over a range of radii, starting with a default iris radius
of 0.2E, the position and the radius of each candidate is
refined. The refinement process evaluates the score func-
tion in an 8-connected neighborhood around the current
estimate. However, instead of summing over a range of
radii as in Eqn 5, we search for a single radius that max-
imizes the score. Out of all the 8-connected neighbors
together with the central position, we select the location
with the maximum score and update the estimate. The
process stops when all the 8-connected neighbors have a
lower score than the central position. Finally, after pro-
cessing all eye center candidates in the above fashion, we
select a single highest scoring candidate. Its location and
radius estimates are then refined to sub-pixel accuracy us-
ing the robust circle fitting method from Section 3.2.

In the next step, we use our hand-crafted method to au-
tomatically annotate training images. Given a set of im-
ages, we run the facial feature alignment method and the
hand-crafted eye center detector on each image. We anno-
tate each image with the position of the four eye corners
from the facial feature alignment method and the two iris
centers from our hand-crafted detector. Finally, we train
the regressor from Section 3.1 on this data. In Section 4
we show that the resulting regressor performs much bet-
ter than the hand-crafted method on both training and test
data, and performs nearly as well as a regressor trained on
manually annotated images.

3.4 Handling closed eyes
Our algorithm has the benefit of having direct access to
eye contours for estimating the amount of eye closure. To
that end, we fit an ellipse to each eye’s contour and use its
height to width ratio r to control our algorithm flow. For
r > 0.3, which holds for the majority of cases we have
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examined, we apply both the regression and the circle fit-
ting methods described in previous sections. For reliable
circle refinement, a large enough portion of the iris bound-
ary needs to be visible. Thus, for 0.15 < r ≤ 0.3 we only
use the regressor’s output. For r ≤ 0.15 we find even the
regressor to be unreliable, thus the eye center is computed
by averaging the central contour points on the upper and
lower eyelids.

4 Evaluation
We perform quantitative and qualitative evaluation of our
method and compare it to other approaches. For quan-
titative evaluation we use the normalized error measure
defined as:

e =
1

d
max(eR, eL), (6)

where eR, eL are the Euclidean distances between the es-
timated and the correct right and left eye centers, and d is
the distance between the correct eye centers. When ana-
lyzing the performance, different thresholds on e are used
to assess the level of accuracy. The most popular met-
ric is the fraction of images for which e ≤ 0.05, which
roughly means that the eye center was estimated some-
where within the pupil. In our analysis we pay closer at-
tention to even finer levels of accuracy as they may be
needed for some applications, such as augmented beauty
or iris recognition, where the pupil/iris need to be detected
very accurately.

While there are many public facial datasets available,
many do not contain iris labels. Others may have iris
only images or NIR images. For our analysis, we re-
quire color or grayscale images containing the entire face
with labeled iris centers. Therefore, we use the BioID
[1], GI4E [5], and TalkingFace [2] datasets for evalua-
tion. The BioID dataset consists of 1521 low resolution
(384 × 286) images. Images exhibit wide variability in
illumination and contain several closed or nearly closed
eyes. While this dataset tests the robustness of eye cen-
ter detection, its low resolution and the presence of closed
eyes make it less suitable to test the fine level accuracy
(finer levels than e ≤ 0.05). The GI4E and the Talk-
ing Face datasets have 1236 and 5000 high resolution im-
ages respectively and contain very few closed eye images.

Thus, we find these datasets to be more appropriate for
fine level accuracy evaluation.

We implement our method in C/C++ using OpenCV
and DLIB libraries. Our code takes 4ms to detect both eye
centers on images from the BioID dataset using a modern
laptop computer with Xeon 2.8GHz CPU, not including
the face detection and face alignment time. The majority
of this time is spent on image resizing and HoG feature
computation using the unoptimized code in the DLIB li-
brary and can be significantly sped up. Given the features,
traversing the cascade is fast. For each 4-level tree, 3 sub-
tractions and comparisons are needed to reach the leaf.
The shifts (4 values for the two iris center coordinates) in
all the trees are added together to compute the final regres-
sor output. This results in 3× 200× 10 = 6000 subtrac-
tions and comparisons, and 4× 200× 10 = 8000 floating
point additions per image. The facial alignment method
we use is based on [14] and is part of the DLIB library,
but any approach could be used for this purpose. Simi-
lar to previous methods, which rely on accurate face de-
tection for eye center estimation, we require accurate eye
contours for this purpose. To that end, we implemented
a simple SVM-based approach for verifying alignment.
Similar to previous methods, which evaluate eye center
localization only on images with detected faces, we eval-
uate our method only on images for which the alignment
was successful. While the alignment is successful in the
vast majority of cases, some detected faces do not have
an accurate alignment result. After filtering out images
without successful alignment we are left with 1459/1521
images (95.9%) of the BioID dataset, 1235/1236 images
of the GI4E dataset, and all the 5000 frames in the Talking
Face dataset.

4.1 Quantitative Evaluation
We evaluate several versions of our method. To evaluate
against alternative approaches and illustrate the effect of
circle refinement we evaluate a regressor trained on man-
ually annotated data with (REG-MR) and without (REG-M)
circle refinement. We also evaluate a regressor trained on
automatically annotated data (REG-AR) and show how it
compares to REG-MR, the hand crafted approach used to
generate annotations (HC), and the competition. To eval-
uate the regressors trained on manual annotations we use
the MPIIGaze dataset [27] for training, which has 10229
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Refined/Unrefined comparison Manual/Auto/HC comparison

Figure 4: Quantitative evaluation. Left: Evaluation of regression-based eye center detector trained on manually
annotated MPIIGaze data with (REG-MR-M) and without (REG-M-M) circle refinement. Right: Comparison of auto-
matically trained regressor (REG-AR-G) to manually trained regressor (REG-MR-G) and the hand-crafted method (HC)
used to generate automatic annotations.

cropped out eye images with eye corners and center an-
notations. To test REG-AR, we need a dataset where the
entire face is visible, thus we use the GI4E dataset with
flipped images for training. Since GI4E is smaller than
MPIIGaze, the regressor trained on it works marginally
worse than the regressor trained on MPIIGaze, but never-

theless achieves state-of-the-art performance. We indicate
the dataset used for training as a suffix to the method’s
name (-M for MPIIGaze and -G for GI4E). Figure 4 left
shows that for errors below 0.05, for the two high-res
datasets (GI4E and Talking Face), circle refinement leads
to significant boost in accuracy. This is particularly ap-
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Method e < 0.025 e < 0.05 e < 0.1 e < 0.25
BioID Dataset

REG-MR-M 68.13% 95.07% 99.59% 100%
REG-M-M 74.3% 95.27% 99.52% 100%

REG-MR-G 68.75% 94.65% 99.73% 100%
REG-AR-G 64.15% 93.9% 99.79% 100%

HC 36.26% 92.39% 99.38% 100%
Timm and Barth [22] 38%∗ 82.5% 93.4% 98%

Valenti and Gevers [24] 55%∗ 86.1% 91.7% 97.9%
Zhou et al. [28] 50%∗ 93.8% 99.8% 99.9%
Ahuja et al. [3] NA 92.06% 97.96% 100%

Markuš et al. [17] 61%∗ 89.9% 97.1% 99.7%
GI4E Dataset

REG-MR-M 88.34% 99.27% 99.92% 100%
REG-M-M 77.57% 99.03% 99.92% 100%
REG-AR-G 83.32% 99.27% 99.92% 100%

HC 47.21% 90.2% 99.84% 100%
Fuhl et al. [10] 49.8% 91.5% 97.17% 99.51%

George and Routray [11] NA 89.28% 92.3% NA
Talking Face Dataset

REG-MR-M 65.78% 95.68% 99.88% 99.98%
REG-M-M 18.7% 95.62% 99.88% 99.98%

REG-MR-G 71.56% 95.76% 99.86% 99.98%
REG-AR-G 71.16% 95.46% 99.82% 99.98%

HC 67.74% 94.86% 99.84% 99.98%
ELSE [10] 59.26% 92% 98.98% 99.94%
Ahuja [3] NA 94.78% 99% 99.42%

Table 1: Quantitative evaluation. Values are taken from respective papers. For [10], we used the implementation
provided by the authors with eye regions from facial feature alignment. * = value estimated from authors’ graphs.
Performance of REG-MR-G on GI4E is omitted since GI4E was used for training. The three best methods in each
category are marked with green, orange, and red respectively.

parent on the Talking Face dataset, where the accuracy
for e ≤ 0.025 increased from 18.70% to 65.78%. For
the BioID dataset, foregoing refinement is marginally bet-
ter. This is in line with our previous observation, and
is likely due to the low resolution and poor quality of
the images. Our method achieves state of the art per-
formance across all the three datasets. In particular, for
e ≤ 0.05 REG-MR-M (REG-M-M) achieves the accuracy of
95.07% (95.27%) on BioID, 99.27% (99.03%) on GI4E,
and 95.68% (95.62%) on the Talking Face dataset.

Recall that the evaluation is restricted to images where

facial alignment passed verification. On GI4E and Talk-
ing Face datasets combined, only one image failed verifi-
cation. However, on BioID 62 images failed verification
compared to only 6 images where a face was not detected.
Evaluating REG-MR-M on all images with a detected face
yields a performance of 67.19% for e ≤ 0.025, 94.19%
for e ≤ 0.05, 99.47% for e ≤ 0.1, and 100% for e ≤ 0.25,
which is only marginally worse than the method with fa-
cial verification and still out-performs the competition.
Future improvements to facial feature alignment will re-
move this gap in performance. Table 1 summarizes the
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results.
Next, we compare the performance of the automati-

cally trained regressor (REG-AR-G) to the hand-crafted ap-
proach that generated its annotations (HC), as well as to
REG-MR-G trained on manually annotated GI4E data. The
results are shown in Figure 4 right and are included in
Table 1. Observe that REG-AR-G outperforms the hand-
crafted method on both the train (GI4E) and the test
(BioID and Talking Face) sets. Moreover, on the test sets
its performance is close to REG-MR-G.

4.2 Qualitative Evaluation
For qualitative evaluation we compare the performance
of REG-MR-G, REG-M-G, REG-AR-G, and HC. For consis-
tency, all regressors were trained on GI4E. Figure 5 shows
selected results. The first four examples illustrate the in-
creased accuracy when using circle refinement. Further-
more, the first three examples illustrate a failure of HC on
at least one eye while REG-AR-G, which was trained using
HC, is performing well. Finally, in the provided examples
we observe no significant difference in quality between
the manually and the automatically trained regressors, as
well as their ability to cope with challenging imaging con-
ditions such as poor lighting (1st and 3rd images) and mo-
tion blur (left eye in 3rd image).

One failure mode of our approach is when the pupils are
near the eye corners. This is especially true for the inner
corner (left eye in the last example of Figure 5), where
the proximity to the nose creates strong edges that likely
confuse the HoG descriptor. The lack of training data with
significant face rotation may also be a contributing factor.
Training on more rotated faces, as well as using the skin
color to downweigh the gradients from the nose, should
help alleviate this issue.

5 Conclusions
We presented a novel method for eye center localiza-
tion. State-of-the-art performance is achieved by local-
izing the eyes using facial feature regression and then de-
tecting eye centers using a cascade of regression forests
with HoG features. Combining the regressor with a ro-
bust circle fitting step for iris refinement results in both
robust and accurate localization. Using a hand-crafted

eye center detector, the regressor can be trained automat-
ically. The resulting regressor out-performs the hand-
crafted method, works nearly as well as the manually
trained regressor, and performs favorably compared to
competing approaches.

As a result of our ongoing work in this research area,
we created an internal database consisting of 726 very
precisely labeled iris images. We observed that, although
the number of photos were limited, for e < 0.025 we ob-
tained better results using the methods outlined in this pa-
per but trained on this highly-accurate database. As part
of our future work, we aim to expand this database and
observe the extent to which the accuracy can be improved.
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Figure 5: Qualitative evaluation. For each image we show the results of (a) REG-MR-G, (b) REG-M-G, (c) REG-AR-G,
and (d) HC.
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