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Abstract

Hair highly characterises human appearance. Hair detection in images is useful

for many applications, such as face and gender recognition, video surveillance,

and hair modelling. We tackle the problem of hair analysis (detection, segmen-

tation, and hairstyle classification) from unconstrained view by relying only on

textures, without a-priori information on head shape and location, nor using

body-part classifiers. We first build a hair probability map by classifying over-

lapping patches described by features extracted from a CNN, using Random

Forest. Then modelling hair (resp. non-hair) from high (resp. low) probability

regions, we segment at pixel level uncertain areas by using LTP features and

SVM. For the experiments we extend Figaro, an image database for hair de-

tection to Figaro1k, a new version with more than 1,000 manually annotated

images. Achieved segmentation accuracy (around 90%) is superior to known

state-of-the-art. Images are eventually classified into hairstyle classes: straight,

wavy, curly, kinky, braids, dreadlocks, and short.
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1. Introduction

Over the course of time, computer vision tasks related to human analysis,

such as face detection and recognition, or pedestrian detection and tracking,

have always received high research attention. Recent advances allowed the de-

velopment of robust algorithms able to perform human detection in quite uncon-5

strained conditions, usually referred to as “in the wild”, such as the detection

method for faces from unconstrained views proposed in [1]. Despite this progress

there are still some loopholes or rather some room to increase the robustness of

existing human detection algorithms.

One such limitation comes from the incapability of most of the existing10

methods to detect human presence in fully unconstrained conditions. More

specifically we are referring to those cases when we need to detect human pres-

ence from the back or over-the-shoulder views, with no clear head-and-shoulder

profile, and hence when the only available information is human hair.

Apart from this specific detection problem, which can be useful for surveil-15

lance applications [2], head detection tasks [3], facial part segmentation [4], and

shot type analysis in movies [5, 6], hair analysis also plays an important role

for face recognition [7] and gender classification [8, 9]. In fact many studies

confirm that hair is the most important single feature for recognizing familiar

faces [10, 11, 12, 13], especially for recognizing faces of your own gender [14].20

Last, hair segmentation is a prior step for enabling interesting consumer ap-

plications, including 3D hair modeling from a single portrait image [15], portrait

pop-ups and hairstyle virtual tryon [16], virtual hair cutting and physical hair

simulation [17], and portrait relighting and 3D-printed portrait reliefs [18].

In spite of its importance, hair is rarely analysed, probably because of var-25

ious problems that make this task particularly challenging. These problems

include: wide number of variations in hairstyle, colour and dye; non-rigid struc-

ture which may vary depending on ambient conditions, such as wind; variations

in visual appearance depending on the head-tilt angle; possible presence of com-

plex backgrounds. To overcome such obstacles, most approaches in literature30
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make assumptions that restrict the applicability of hair analysis. Typically

these include the presence of a plain background [7], faces depicted in near-

frontal view [7, 19, 20, 21, 22, 23] or a-priori known spatial hair information

[19, 20, 21, 24, 25, 26, 27].

Another limitation which probably prevented research on this topic is the35

scarcity of shared databases annotated for hair detection from unconstrained

views. Most repositories for facial features [28, 20, 29] contain only frontal or

near-frontal views and are normalized according to face or head size. With the

exception of OpenSurfaces [30], which has never been employed in any study

for hair analysis yet and which is lacking further subdivision into hairstyles, no40

database provides segmented hair masks on images from unconstrained views.

1.1. Paper aims and organization

Motivated by its importance, the work proposed here can be regarded as the

first attempt to perform a complete hair analysis (detection, segmentation, and

hairstyle classification) from unconstrained view without a-priori knowledge on45

body parts, thus without prior face or head-and-shoulder detection.

The adopted texture-based approach is motivated in order to overcome the

typical obstacles of hair analysis. Opting for a coarse-to-fine approach, we start

off by producing a hair probability map generated by a binary classification

of overlapping image patches represented by texture descriptors. By learn-50

ing models from texture information derived from high-probability hair regions

(and from high-probability non-hair regions, respectively) we are able to ob-

tain a fine-level hair segmentation on uncertain image areas. For performing

texture analysis we here extend our initial work on hair analysis in [31] where

Linear Ternary Pattern (LTP) [32] features have proven to provide promising55

results. Inspired by the cross domain success of Convolutional Neural Networks

(CNNs) [33], which are recently employed also for segmentation purposes [34],

and the potential of various layer outputs as texture descriptors [35], we here

consider deep features, i.e. descriptors obtained by truncating different CNNs

(specifically, CaffeNet [36] and VGG-VD[37]) at different layers.60
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Even if attitudes towards hairstyles or hair removal may vary widely across

different cultures and historical periods, hairstyle is one of the defining charac-

teristics of humans, often related to person’s social position, such as age, gender,

religion [38]. Despite the fact the human can drastically manipulate their hair,

they typically do not [7], so that hair appearance and attributes may provide65

useful cues also for the recognition task. Hence, as another contribution, for

the first time automatic hairstyle recognition is performed here by means of a

multi-class texture classification step on the previously segmented hair region.

As a last contribution, we present and share Figaro1k, an extension of Figaro

[31], a multi-class image database for hair detection in the wild1. Figaro1k70

contains 1050 unconstrained view images with persons, subdivided into seven

different hairstyle classes (straight, wavy, curly, kinky, braids, dreadlocks, short),

where each image is provided with the corresponding manually segmented hair

mask, acting as a ground-truth. Examples of images and related ground-truth

masks are given in Figure 1, while a description of the database is in Section 4.75

Figure 1: Figaro1k contains 1050 hair images belonging to seven different hairstyles (from left

to right: straight, wavy, curly, kinky, braids, dreadlocks, short). First row: original images

(one per hairstyle class). Second row: related ground-truth masks (in blue).

This document is organized as follows. In Section 2 we review previous

work done on hair analysis and texture analysis. In Section 3 we present the

workflow of the processing chain, providing a separate description for each block.

1Download the database from http://projects.i-ctm.eu/en/project/figaro
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In Section 4 we describe the generation process and the main characteristics of

Figaro1k. In Section 5 we focus on the implementation and experimental results.80

Conclusion marks and future work are drawn in Section 6.

2. Previous work

In this section we give a brief summary of the previous work on hair analysis,

along with the approaches that have been used for texture analysis.

2.1. Hair analysis85

The work of Liu et al. [39] is one of the first dealing with the hair detection

problem, where hair regions are segmented using a-priori spatial and geomet-

rical information. After this initial effort, the hair detection problem remains

in the background of computer vision research until the work of Yacoob et al.

[7]. Assuming a face in frontal view, the authors propose an algorithm for au-90

tomatic detection of hair which consisted of face and eye detection followed by

skin and hair colour modelling. Rousset et al. [20] propose a hair segmentation

algorithm based on a matting technique. First information from frequential and

colour analysis is extracted in order to create binary masks as descriptors of hair

location. Then a matting method is applied to get the final hair mask. Lee et95

al. [19] instead introduce a probabilistic approach to perform hair segmenta-

tion. They use a Markov Random Field approach and optimize it by extending

segmentation algorithms such as Graph-Cut [40] and Loopy Belief Propagation

[41] for hair and face segmentation. Roth and Liu [22] propose a learned hair

matcher using shape, color, and texture features derived from localized patches100

through an AdaBoost technique, which they apply on a subset of images from

LFW funneled dataset [29] where all face regions are reasonably aligned with

the in-plane rotation (roll) removed.

All above methods suffer by two principal limitations: they require near-

frontal face and/or a body part detector in order to perform hair detection.105

The first attempt to overcome the limitation of frontal face view is the work
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by Wang et al. [24]. They use a Bayesian based method for hair segmentation,

which shows tolerance to small pose variations. Later on, they extend their

work [25, 26] to be compatible with multi-pose situations, including over-the-

shoulder view, by proposing a coarse-to-fine hair segmentation method based110

on a combination of probability maps, fixation points and graph-based segmen-

tation. In the work of Wang et al. [27] the authors propose a method for hair

segmentation which does not require the initial detection of the face and/or

eyes. First background subtraction is performed to obtain foreground objects,

and then human head is detected with a trained human head detector. Next,115

hair segmentation is carried out using K-mean clustering. While these recent

approaches overcame the limitation of frontal view, they still employed body

part detectors to help the task of spatially locating hair.

2.2. Texture analysis

Texture segmentation and classification have been interesting for various re-120

searches for quite a while, dating back to the work of Laws [42]. In 1991 Jain

et al. [43] present an unsupervised texture segmentation algorithm that uses a

fixed set of Gabor filters. Using textons as frequently co-occuring combinations

of oriented linear filter outputs, Malik et al. [44] propose texton learning using

a K-means approach. Later on Malik along with Leung [45] studies the recog-125

nition of surfaces made from different materials such as concrete, rug, marble,

or leather on the basis of their textural appearance. They propose an approach

based on building a universal texton vocabulary that could describe generic

local features of texture surfaces. Varma and Zisserman [46] show that the

texture classification problem can also be tackled effectively by employing only130

local neighbourhood distributions without the use of large filter banks, which

had been done in majority of the works till that point. Other significant con-

tributions include the work by Caputo et al. [47], Ferrari and Zisserman [48],

Schwartz and Nishino [49], and Sharan et al. [50].

Since the breakthrough by Krizhevsky et al. [9] lots of computer vision tasks135

have been improved by the use of Convolutional Neural Networks (CNNs). Tex-
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ture analysis is no exception. The work of Cimpoi et al. in [51, 52, 35] represents

the current state-of-the-art: the authors obtain local texture descriptors by trun-

cating a CNN (VGG at conv5 ) and then use Improved Fisher Vector [53] as a

pooling strategy, in opposition to traditional fully connected (fc) pooling.140

3. Proposed method

In this section we describe in detail the methodological basis of the pro-

posed processing chain to achieve hair detection, segmentation and hairstyle

classification in the wild. The overall visual workflow is depicted in Figure 2.

Figure 2: Logical workflow of the proposed processing chain: a) a hair probability map

(top) is created on image patches for identifying high probability hair (white) vs. non-hair

(black) regions: as a result a high-probability hair region is returned (bottom, in red); b)

hair segmentation is achieved by classifying image pixels in the uncertain area only (in blue,

top) thus refining the final hair region (bottom, in red); c) hairstyle is classified by adopting

a majority voting scheme on the previously segmented hair patches.

3.1. Hair detection on image patches145

The first detection step aims at creating a probability map of hair presence

at patch level, to help distinguishing image patches which likely contain hair

from those belonging to the background. We tackle this task by a classification

pipeline which is purely based on hair texture analysis. As shown in Figure
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3 detection involves: a) a feature extraction phase, where hair and non-hair150

patches from the training set are represented by texture descriptors; b) a model

learning phase, where texture descriptors representing hair and non-hair classes

are exploited by a machine learning method to train a classifier; and c) the final

classification phase, where the trained classifier eventually categorizes patches

of the input image either as hair or non-hair.155

This final phase of hair detection uses a moving window which classifies

overlapping square patches, where the amount of overlap is controlled by the step

size of the moving window. Overlapping patches are adopted in order to have

multiple classifications on single pixels. This procedure generates a probability

map of hair presence in the image, where pixels classified most times as hair160

indicate the regions with the highest probability of containing hair. Conversely

pixels which are never, or almost never, classified as hair represent the regions

with least probability of being hair.

As documented in detail in Section 5.2, several experiments are carried out

to produce hair probability maps, by comparing different texture features (LTP,165

CaffeNet, and VGG-VD), by augmenting the training set, and by adopting dif-

ferent solutions for processing border patches in order to have all pixels classified

the same amount of times. During the experiments the best setting for gener-

ating the hair probability map is chosen by fixing a high precision value and

choosing the configuration which returns the highest recall on the ground truth170

masks. The same values of precision and recall are then used to get the probabil-

ity which best identifies the hair region. A similar procedure is then applied to

non-hair regions to isolate background patches. As presented in Section 5.2 best

results are obtained by a RF classifier fed with CaffeNet-fc7 features, average

color handling and no data augmentation.175

3.2. Hair segmentation on image pixels

The second step aims at segmenting hair at pixel level. Having previously

identified (highly probable) hair and background patches, segmentation is per-

formed only where the hair presence is uncertain, as shown in Figure 4c.
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Figure 3: Hair detection at patch level: a) feature extraction from pure hair vs. non-hair

patches; b) model learning; c) classification step on overlapping patches of the test image.

To do this we exploit the texture information present in the already detected180

hair and non-hair regions of the currently processed image. This means that

while hair and non-hair models used for patch-level analysis are generated by

considering the whole training set of images, for classifying hair pixel in the

uncertain areas of an image, we rely on the hair and background information

which are specific of the image itself. The procedure is shown in Figure 4.185

Keeping in mind that using a single image we have limited data available

for training a classifier, feature extraction is performed on overlapping patches

obviously smaller than those adopted during the hair detection at patch level.

The fine level hair segmentation is achieved by adopting a central pixel labelling

scheme, where the result of patch classification is assigned to the central pixel.190

Adopted texture features for classification, patch size, configuration parameters,

performed experiments, and segmentation performance computed against the

manually annotated masks are documented in detail in Section 5.3. Best results

are obtained by using LTP features and a SVM classifier.
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Figure 4: Hair segmentation at pixel level: a) feature extraction from high-probability hair (in

red) vs. non-hair regions (in grey); b) representation of hair vs. non-hair models of the specific

image; c) segmentation is performed as a patch classification step (central pixel classification)

only on the uncertain region (in blue).

3.3. Hair classification195

In this last step of the processing chain, we identify the hairstyle of the

depicted person in the image, by choosing among the seven balanced style

classes present in Figaro1k : straight, wavy, curly, kinky, braids, dreadlocks, or

short. The learned classifier performs multi-class classification on hair patches

extracted from the segmented hair region obtained from the previous step. For200

the final hairstyle labelling we adopt a voting scheme, the class receiving the

most votes being considered the final label, as shown in Figure 2c. All performed

settings, experiments, and results on hairstyle classification are described in Sec-

tion 5.4. Best results are obtained by using LTP features and a RF classifier.

4. Databases205

In order to carry out hair analysis in the wild, a database with unconstrained

view images containing various hair textures is needed. Most repositories avail-

able for facial features, including hair information, such as [28, 7, 20, 22] con-

tain only frontal or near-frontal views and are normalized according to face or

head size. Conversely other repositories which do contain variations in head-210
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shoulder poses and background [15] [54] are not publicly available. Authors of

[55, 25, 26, 56] contacted via mail for sharing the annotated databases never

answered, so it was not possible to adopt them for comparison. The scarcity

of such databases pushed us to build and share Figaro1k (extension of Figaro

[31]), an annotated multi-class image database for hair analysis in the wild.215

4.1. Figaro1k description

Hair exists in a variety of textures, depending on curl pattern, volume, and

consistency. We adopted seven possible hairstyle classes, namely straight, wavy,

curly, kinky, braids, dreadlocks and short. This categorization extends the four

types in Walker’s taxonomy [57] (straight, wavy, curly, kinky) by three categories220

(braids, dreadlocks, short), which broaden the scope of the analysis.

We collected images from Google Images and Flickr, restricting our choice

mostly on content in creative commons. When choosing images we adopted

some strict guidelines: a significant visible presence of hair texture, balanced

distribution of images on all hairstyle classes, unconstrained view images with a225

particular focus on over-the-shoulder view, balanced number of male and female

subjects, different levels of background complexity, diverse hair colours, hairstyle

variations for each class on hair arrangements and length. With these criteria in

mind, we manually filtered the retrieved images to remove errors and unsuitable

samples, to finally obtain a database of 1050 images, 150 for each class.230

Being images different in size and aspect ratio, a normalization procedure

has been applied. Since individuals are shot from all angles, it was not possible

to carry out typical normalization procedures used for frontal views, such as a

fixed pixel distance between eyes. The employed normalization factor is chosen

so as to reduce the size of the maximum square area inscribed in the hair region235

to 227×227 pixels, which is the minimum patch size required for further deep

feature extraction. As a consequence, images with hair regions smaller than

227×227 pixels have been discarded. This procedure does not limit the applica-

bility of the method to smaller images, as we show in the multi-scale analysis in

Section 5.2.4. Eventually, since most images contain hair in a relatively small240
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region if compared to the full image size, we cropped each spatial image dimen-

sion to a maximum of 1,000 pixels. As a result, the average image size over the

database is 718 × 635 (height, width). Regarding the relative size of the hair

w.r.t the images, since the hair region contains at least 227 × 227 pixels, hair

presence covers on average the 11% of the normalized image.245

For each normalized image the ground truth of hair regions has been man-

ually labelled at pixel level using an image analysis tool. As a result, a binary

mask indicates the hair location in each image as in Figure 1 (blue for hair, grey

for non-hair).

4.1.1. Patch-F1k250

Patch-F1k is an auxiliary database used only for training hair detection at

patch level. It is publicly shared and contains 1,050 pure hair texture images

(227 × 227) and 1,050 pure non-hair texture images (same size), for a total of

2,100 images. Hair patches of Patch-F1k are directly extracted from images of

Figaro1k (first row of Figure 5), while non-hair patches are partially extracted255

from non-hair regions in Figaro1k pictures (420 images), and partially from

VOC2012 [58] (again 420), for a total of 840 non-hair images. The reason of

having these non-hair samples taken from VOC2012 is to have a wider variety

of backgrounds, so as to make the first level coarse hair detection step more

robust, as detailed in Section 5.2.260

Figure 5: First row: Patch-F1k hair patch examples from the corresponding Figaro1k exam-

ples in Figure 1. Second row: Patch-F1k non-hair patch examples.
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5. Experimental results

In this section we describe the experimental details of the proposed pro-

cessing chain with the corresponding results. Since we tackle hair detection,

segmentation and hairstyle classification by adopting a pure texture analysis

approach, we first describe the employed texture descriptors.265

5.1. Texture descriptors

Considered descriptors are Local Ternary Patterns [32] and deep features.

5.1.1. Local Ternary Pattern features

Proposed as a generalization of the Local Binary Pattern (LBP) [59], LTP

can be considered as a way of summarizing local grey-level structure. Given270

a local neighbourhood around each pixel, LTP thresholds the neighbour pixels

at the value of the central one (± a threshold LTP thr) and uses the resulting

binary-valued image patches as local descriptors. To reduce the number of

bins in the histogram forming the final feature, we adopt the uniform pattern

extension of the algorithm [32], which assigns all non-uniform patterns to a275

single bin, obtaining a feature of 118 dimensions.

5.1.2. Deep features

Deep features are obtained using the transfer learning approach on Convolu-

tional Neural Networks (CNNs). The overall process consists of training a deep

model on a very large database, and then using the learned model as a feature280

extractor to obtain descriptors. In our implementation for the extraction of deep

features we use CaffeNet model [36], which is a replication of AlexNet model

[60] with some minor differences in its default hyper-parameters, and VGG-VD

model [37], which has already proven to be an efficient deep feature extractor

for local texture description [35]. Our implementation differs from the one pre-285

sented in [35], since we are not interested in the local texture descriptors but

rather in the texture represented in the whole extracted patch.
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For CaffeNet deep features the considered patch is 231 × 231 pixels (only

the central 227 × 227 portion is taken as input), while for VGG-VD the patch

is 224× 224. As described in Section 5.2.3 we compare the performance of deep290

features extracted across several layers. In order to make the feature dimensions

compatible, we apply Principal Component Analysis (PCA) to reduce the huge

dimensionality of lower convolutional layers and obtain a feature length of 4096,

while for fc layers we take the raw output as they are already 4096 units long.

5.2. Hair detection295

In order to perform the proposed hair detection pipeline, we first prepare

data and select the optimal parameters for the employed texture descriptors.

5.2.1. Data preparation and parameter selection

A testing set of 210 images randomly chosen from Patch-F1k is used through

the first experiments for selecting best parameters and comparing performance300

of different approaches. For training we use 840 pure hair and 840 pure non-hair

texture patches from Patch-F1k (see Figure 5), ensuring that they are not con-

tained in the test set. A k-fold (k = 5) cross-validation is eventually performed

(in Section 5.3.3) only on the best approach to ensure its generalisation.

Optimal parameters for LTP feature are selected based on the study in [31].305

This work compares different combinations of LTP and HOG [61] parameters on

hair detection using the first Figaro database, concluding that LTP with patch

size 35 × 35 and the threshold value LTP thr = 0.02 provide the best results.

Regarding deep features, we adopt CaffeNet and VGG-VD models pre-trained

on ImageNet ILSVRC [62] data, and we compare feature vectors extracted from310

various convolutional layers and from fully connected ones.

5.2.2. Classification parameters

We train the classifier on the descriptors extracted from the patches using

Random Forest (RF) [63], an approach which adopts an ensembling strategy of

combining multiple weak classifiers to obtain a final strong classifier.315
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Classification is performed on a square moving window whose dimension is

equal to the patch size required by each texture descriptor. The step size of the

moving window is chosen so that the number of times a pixel is classified is the

same for all descriptors, to obtain comparable probability maps. Hence for LTP

descriptor the patch is 35×35 and the step size 5 in each dimension, for CaffeNet320

based deep feature the patch is 227 × 227 with step size 33 in each dimension,

and for VGG-VD based features the patch is 224×224 and the step size 32. The

probability maps generated with the aforementioned parameters range over 50

different values for all texture descriptors, i.e. a pixel can be classified as hair

from 0 times (minimum value) up to 49 times (maximum value).325

5.2.3. Results on Figaro1k

The description of the analyses performed in order to obtain the best perfor-

mance follows. Tests are executed in a progressive way, each step highlighting

the best choice on a subset of overall parameters. Performance are evaluated by

considering precision and recall values obtained by thresholding the probability330

maps, i.e. the classification output, at different levels (between 0 and 100 %

with the step of 5%) and comparing them with the ground truth hair masks.

We start off by comparing the performance of LTP features versus deep

features as shown in Figure 6a: deep features (both CaffeNet and VGG-VD)

outperforms LTP features which were the former best hair descriptors in [31].335

We then proceed by analysing the performance of the two deep features ob-

tained by using the output of various convolutional (conv) layers and fully con-

nected (fc) layers. Among conv layers, conv5 based deep features performs the

best, while among fc layers fc7 gives the best performance. Overall CaffeNet-fc7

outperforms all other deep features, as shown in Figure 6b (where only the best340

conv and fc layers are presented, for the sake of clarity).

After selecting the best deep feature, we try to see whether classical data

augmentation strategies applied on training data improves the results. For data

augmentation each input hair/non-hair patch first is rotated left and right by

a random quantity (up to a limit of 90 degrees), and then the rotated patch is345

15



passed through a low pass filter with probability p = 0.5. Second, we generate

new data by applying feature standardization of pixel values across the entire

dataset. Third a whitening transform on patches is also applied, to better

highlight the structures and features in the image to the learning algorithm.

Despite the obtained augmented dataset, as reported in Figure 6c we observe350

no substantial increase in performance, hence we discard data augmentation

from further processing.

It is worth mentioning that the minimum patch size required for deep feature

extraction is of considerable dimensions, i.e. 227×227, thus the choice of border

type becomes of particular relevance. We experiment different approaches to355

border handling, by comparing average image colour border and two different

types of phase scrambling permutation borders, finding out that average image

colour border gives the best performance, as shown in Figure 6d.

(a) Feature comparison. (b) Deep feature comparison.

(c) Data augmentation. (d) Border handling comparison.

Figure 6: Tests carried out for performance evaluation and comparison.
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5.2.4. Scale invariance evaluation

The following experiment aims at demonstrating that the proposed approach360

overcomes the problem of detecting hair in images of small dimensions, or when-

ever the relative size of hair area with respect to the image size becomes small.

Let us imagine that we have an image with a very small hair region. Since

to run our method we technically need a minimum patch size of 227 × 227,

when we are not detecting any hair region, it might be the case that the image365

contains a hair region, but this is too small to be detected. To take into account

this case, the idea is to up-scale the image using an interpolation filter with

increasing factors L = 2, 3, . . . and apply the proposed detection method. In

the case hair is present, whenever the minimum hair patch size reaches at least

227×227 pixels (i.e., hair detection is technically feasible) the hair region should370

be correctly detected.

In order to test this idea, we have first down-scaled 35 randomly chosen im-

ages from Figaro1k (5 from each hair class) using a decimation filter with factor

M = 4 (i.e., bringing them to the 25% of the original size), so that hair detection

was no longer technically feasible. Then, starting from the down-scaled image,375

we run the algorithm on up-scaled versions of it using an interpolation filter

with factors L = 2, 3, . . . , 7 (i.e., on 50%, 75%, . . ., 175% of the original size, as

shown in Figure 7), where L = 4 corresponds to restoring the original image size

(100%). By doing so, if any hair region is present, it will pragmatically reach

the minimum patch size enabling detection, even if up-scaled images are clearly380

at degraded quality with respect to original ones.

Figure 7: Hair detection is first performed on a down-sampled image at 25% of the original

size, which is afterwards up-scaled at 50%, 75%, 100%, 125%, 150%, 175% (from left to right).
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As presented in Figure 8 we can observe that when the scale is below 100%

of the original (i.e. with L < 4) the algorithm does not detect any hair because

hair patches are too small for technically being detected. Conversely for all

down- and up-scaled images above 100% (i.e. with L ≥ 4, that is when the385

constrain on the minimum hair patch size is satisfied), perform well (and very

similarly) even if they are degraded versions of the original ones (because of

interpolation), thus showing good robustness of the approach to scale variance

and detection of small hair regions.
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Figure 8: Test on scale invariance is performed on images which are obtained by up-scaling

a down-sampled version at 25% of the original image. The algorithm runs on interpolated

versions at 50%, 75%, 100%, 125%, 150%, and 175% of the original size.

5.3. Hair segmentation390

Hair segmentation is tackled by training a per-image classifier which per-

forms hair segmentation at pixel level.

5.3.1. Data preparation and parameter selection

For training the per-image classifier we exploit the results of the previous

step by extracting texture features from image regions where the probability of395

having hair is higher than 65% of the maximum value of the probability map
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(measured for each image). This threshold corresponds to the probability level

which gives the precision of 95% on hair region detection, as shown in Figure 9a.

We repeat the process for training the recognition of the background by feeding

the classifier with texture features extracted from image regions with probability400

of not having hair higher than 85% of the maximum value of the probability

map (measured for each image). This threshold corresponds to the probability

level which ensures a precision of 95% on non-hair region, as shown in Figure 9b.

Segmentation is then performed only on the uncertain region (the blue area in

Figure 2b), i.e. where the probability of having hair and non-hair is lower than405

95%.

(a) Hair thresholding. (b) Non-hair thresholding.

Figure 9: Intersection between the probability curve and the horizontal red line, corresponding

to 95% precision, identifies the threshold probability level for hair and non-hair detection.

Due to the fine nature of hair segmentation needed for this step, we use only

LTP features with patch size of 25×25 as the best choice derived from [31], with

LTP threshold value LTPthr = 0.02, thus discarding the deep features which

have performed so well for the coarse level hair detection.410

5.3.2. Classification parameters

Best classification results are obtained by using a linear Support Vector

Machine (SVM) [64] which we train with overlapping patches of high probability

hair and non-hair regions. During the classification of the uncertain region, a

moving window extracts overlapping square patches of size 25 × 25, with step415

19



size of 3 pixels in each dimension. Such step size is compatible with the adopted

central pixel labelling scheme, which labels the result of the patch classification

to only the central 3 × 3 pixels. At the end we refine the obtained result by

using a super-pixel representation [65] of the uncertain area and labelling each

super-pixel using a majority voting scheme.420

5.3.3. Results on Figaro1k

Performance of hair segmentation are first evaluated on the test set of 210

segmented images with respect to the corresponding ground truth masks. Re-

sults are shown in Table 1 in terms of precision and recall.

To compare our results we apply on Figaro1k the hair segmentation method425

proposed in [31], where both hair detection and segmentation are achieved us-

ing LTP, followed by a graph-based segmentation. To test the specific benefit

brought by our segmentation approach we also tried an hybrid algorithm, using

the hair detection results obtained by our deep features combined with the hair

segmentation method proposed in [31]. All obtained results on Figaro1k are430

reported in Table 1 and are presented for comparison in Figure 10, where it is

evident that the present approach overcomes previous work methodologies.

Precision Recall Accuracy F1
0%

20%

40%

60%

80%

100%

89.0

81.1

91.5

84.9
81.2

65.1

85.3

72.3
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88.7

78.3

DeepFeature + LTP + super-pixel

LTP + LTP + graph-based

DeepFeature + LTP + graph-based

Figure 10: Overall hair segmentation performance.

To ensure the generalisation of the proposed approach, experiments with

our best method (DeepFeature+LTP+super-pixel) are repeated on the whole

Figaro1k dataset using a 5-fold cross-validation. This means that hair detection435
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Method (coarse+fine+segmentation) Pr.(%) Rec.(%) F1(%) Acc.(%)

DeepFeature+LTP+super-pixel 89.0 81.1 84.9 91.5

LTP+LTP+graph-based [31] 81.2 65.1 72.3 85.3

DeepFeature+(LTP+graph-based [31]) 89.4 69.7 78.3 88.7

Table 1: Overall hair segmentation performance (our approaches in bold).

at patch level is performed by splitting Figaro1k in 5 subsets (or folds) of 210

images each. Then we use 4 subsets to train (using the related patches in Patch-

F1k) and leave the remaining fold as test, and finally average the results against

each of the folds. By considering segmentation results at pixel level on the whole

Figaro1k dataset (i.e. all 1050 images), with respect to results reported in440

Table 1 we observe a slight increase of average precision (Pr. = 90.3%), a more

evident drop in recall (Rec. = 72.2%), which lead to final average F1 = 80.0%

and Acc. = 89.5%, thus ensuring that the model generalize to new data. End

to end k-fold cross-validation on the whole Figaro1k dataset is not performed

on other methods due to the computational effort required by the extraction of445

LTP features, as described later in Section 5.3.5.

5.3.4. Comparison across databases

Our method has been trained and tested on the first version of Figaro

database, where it outperforms the approach in [31], as shown in Table 2. Since

other direct comparisons with different methods are not possible due to the450

unavailability of shared databases (see details in Section 4), we here report per-

formance declared in [25] for indirect comparison. This work compares more

methods on a conventional Near-frontal Head-shoulder Database with 1000 im-

ages (NHD1000), and a Multi-pose Head-shoulder Database of 3820 images

(MHD3820), which also includes 920 non-frontal views. By a simple inspection455

of images in [25] (the database is not shared) we can estimate that the challenge

level provided by the 920 non-frontal views in MHD3820 is comparable with im-

ages in Figaro1k. However, considering that [25] achieves an overall best value
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of F1 = 77.3% (as reported in Table 2) on MHD3820 images mostly in frontal

views (2900 out of 3820), we expect our algorithm which scores F1 = 84.9% on460

Figaro1k where most images are in non-frontal view, to be far superior.

Algorithm NHD1000 MHD3820 FIGARO FIGARO1K

[24] 65.6 64.0 - -

[19] 81.3 66.9 - -

[25] 85.0 77.3 - -

[31] n.a. n.a. 77.5 72.3

Our method n.a. n.a. 80.8 84.9

Table 2: Hair segmentation performance comparison F1(%). Performance on Figaro1k are

computed on the test set of 210 images.

5.3.5. Computation time

Training a per-image classifier makes the overall pipeline fairly slow. In

particular the bottleneck of the whole process is constituted by the current

CPU-based implementation of LTP features, which are extracted from 25 × 25465

patches and step size 3 pixels, along each dimension. While the initial hair de-

tection at patch-level (performed with deep features on 227 × 227 patches and

step size 33 pixels) is pretty fast (5.31 s on average per image, GPU-based im-

plementation), the extraction of LTP features from high probability hair (resp.

non-hair) regions of each image takes an average of 519.94 s per image. Once470

computed LTP features, the training process of the classifier is pretty fast, 2.18

s on average. After the detection phase, hair segmentation conducted at pixel-

level requires the extraction of LTP features from the uncertain region, for an

average processing time of 225.56 s. Considering that the post-processing is

pretty fast (around 1.79 s per image), the total average processing time per475

image is 754.78 s. All timings have been computed using an Intel(R) Xeon(R)

CPU E5-1650 v4 @3.60GHz, with 6 cores per socket, a GPU GeForce GTX

1080 Ti, and 64 GB of memory. Computation time could be severely improved
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by smarter (GPU-based) implementation of LTP features, however in this work

we focused more on surpassing other existing methods in terms of classification480

accuracy, leaving the computational improvements to future work.

5.4. Hair classification

After detection and segmentation, our hair analysis considers the hairstyle.

5.4.1. Data preparation and parameter selection

For training the classifier we use 120 pure hair texture images from Patch-F1k485

for each of the seven types of hair classes (see Figure 5). Testing is performed

on the set of 210 unconstrained view images of Figaro1k, 30 for each hairstyle

class, which do not contain patches of Patch-F1k used for training. Due to

the size variety of segmented hair regions, tests are carried out by comparing

LTP on three different patch size: 25 × 25, 50 × 50, and 100 × 100, all with490

LTPthr = 0.02.

5.4.2. Classification parameters

Best results are obtained by using a Random Forest (RF) [63], by feeding it

with texture descriptors extracted from non-overlapping patches of the training

set. Classification is performed on a square moving window which extracts non-495

overlapping square patches of size 35 × 35 from the segmented hair region and

classify them into one hairstyle class. The overall hairstyle class is eventually

obtained by employing a majority voting scheme on patch classification results.

5.4.3. Results on Figaro1k

Performance of the proposed multi-class hairstyle classification method using500

patch size of 25×25, 50×50, and 100×100 are shown by the confusion matrices

in Tables 3, 4, and 5, respectively. As somehow expected (see Figure 11) small

patches (25× 25) obtain best precision on highly textured hairstyles (i.e. curly,

kinky, dreadlocks, and short), while bigger patches (50 × 50 and 100 × 100)

perform best on more regular and less textured classes (i.e. straight and wavy).505
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Predicted labels

Straight Wavy Curly Kinky Braids Dread. Short
T

ru
e

la
b

el
s

Straight 16 4 0 0 0 1 9

Wavy 6 18 2 0 0 0 4

Curly 1 1 20 6 0 1 1

Kinky 1 0 1 25 1 2 0

Braids 1 6 7 2 10 2 2

Dread. 1 1 6 1 2 18 1

Short 2 0 2 6 1 1 18

Table 3: Hair classification - patch size 25 × 25.

Predicted labels

Straight Wavy Curly Kinky Braids Dread. Short

T
ru

e
la

b
el

s

Straight 18 4 0 0 0 0 8

Wavy 6 17 5 0 0 0 2

Curly 0 3 20 4 1 2 0

Kinky 0 0 3 22 2 3 0

Braids 1 8 7 1 8 3 2

Dread. 1 2 8 1 1 16 1

Short 4 2 3 5 1 0 15

Table 4: Hair classification - patch size 50 × 50.
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Figure 11: Precision performance on hairstyle classification.
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Figure 12: Fourteen examples (two per hairstyle class) of the proposed method are shown.

Displayed outputs for each example: original image (RGB), ground truth (overlay in blue),

hair detection method (overlay in yellow), and final segmentation step (overlay in red).
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Predicted labels

Straight Wavy Curly Kinky Braids Dread. Short
T

ru
e

la
b

el
s

Straight 20 6 0 0 0 0 4

Wavy 4 20 3 0 1 0 2

Curly 1 4 17 5 0 2 1

Kinky 0 0 4 19 3 3 1

Braids 0 5 10 1 9 2 3

Dread. 1 3 6 2 2 16 0

Short 6 4 4 5 1 1 9

Table 5: Hair classification - patch size 100 × 100.

6. Conclusion

We perform hair analysis in unconstrained setting, including hair detection,

segmentation, and hairstyle classification. The analysis is carried out without

a-priori information about head and hair location, nor any body-part classifier,

but exploiting only texture features. Using deep features derived from CaffeNet-510

fc7 and RF classification we first tackle hair detection at patch level. We then

refine the obtained results by segmenting hair at pixel level using LTP feature

and SVM. Obtained results are superior to other methods exploiting a-priori

information on near-frontal face view databases. Some visual results are pro-

vided in Figure 12. As a further contribution, we share Figaro1k a database515

of 1,050 annotated hair images taken from unconstrained views, subdivided in

sever hairstyle classes, hoping to make a contribution to the problem of hair

analysis, and warranting further study on this often-ignored visual cue.
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