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Abstract

Eye-gaze tracking has long been considered a desktop technology that
finds its use inside the traditional office setting, where the operating condi-
tions may be controlled. Nonetheless, recent advancements in mobile tech-
nology and a growing interest in capturing natural human behaviour have
motivated an emerging interest in tracking eye movements within uncon-
strained real-life conditions, referred to as pervasive eye-gaze tracking. This
critical review focuses on emerging passive and unobtrusive video-based eye-
gaze tracking methods in recent literature, with the aim to identify different
research avenues that are being followed in response to the challenges of
pervasive eye-gaze tracking. Different eye-gaze tracking approaches are dis-
cussed in order to bring out their strengths and weaknesses, and to identify
any limitations, within the context of pervasive eye-gaze tracking, that have
yet to be considered by the computer vision community.
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1. Introduction

The notion of measuring and tracking the human eye-gaze has been re-
ceiving increasing interest for over ten decades, ever since the pioneering work
on eye tracking in the 1870s revealed a wealth of information contained within
the eye movements [1]. Research at the earliest time was mainly concerned
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with studies of scan paths performed by the eyes during reading, and in the
absence of sophisticated machines for eye tracking, early recording methods
were based on mere visual observation often requiring the insertion of specks
or eyecups over the eyeball which moved in response to the ocular motion.
Following this emerging interest in eye movement research, many subsequent
studies were driven towards the improvement of eye-gaze tracking techniques
leading to the development of new concepts such as video-based eye-gaze
tracking which captures the eye movements non-intrusively by means of a
video camera alone. The introduction of computers in the 1980s broadened
the otherwise narrow application of eye tracking technology in clinical studies
to user-oriented applications outside the clinical laboratory. The application
of eye-gaze tracking within the domain of human-computer interaction (HCI)
was among the first to be established to assist physically challenged individ-
uals to operate a computer by eye movement alone [2]. Eye-gaze tracking
technology has since found its way into other domains, including automo-
tive engineering for car driver assistance and monitoring [3–6], human-robot
interaction [7] and marketing and advertising research [8].

Notwithstanding the extensive development of stationary desktop-based
approaches for eye-gaze tracking, recent advancements in mobile technology
and a growing interest in capturing natural human behaviour under uncon-
strained real-life conditions, often referred to as in the wild, give rise to
challenges that go beyond the controlled settings for which existing track-
ing methods have been developed. This led to the emergence of pervasive
eye-gaze tracking, as originally coined by Bulling et al. [9], referring to the
endeavour of tracking and analysing the eye movements continuously in daily
life settings. The notion behind this paradigm is multi-faceted and typically
relates to characteristics that facilitate eye-gaze tracking in uncontrolled real-
life scenarios, such as robustness to varying illumination conditions and ex-
tensive head rotations, the capability of estimating the eye-gaze at increased
distance from the imaging hardware, reduced or implicit calibration in or-
der to allow for situations that do not permit user cooperation and calibra-
tion awareness, and the estimation of eye-gaze on mobile devices comprising
integrated imaging hardware without requiring further hardware modifica-
tion. This will potentially broaden the application areas for eye-gaze tracking
within scenarios that may not permit for controlled conditions, such as for
gaze-based interaction in public spaces [10–12].

This critical review, therefore, aims to investigate the research avenues
that are being followed in response to emerging challenges associated with
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Figure 1: An illustration of the human eye anatomy (left) and the formation of Purkinje
images from different components making up the eyeball structure (right).

eye-gaze tracking in the wild and to identify research gaps that yet need to
be addressed. In the following sections a brief overview of the human eye
anatomy is first presented in Section 2, in order to define and illustrate the
relevant ocular components that will be referred to in subsequent sections.
Section 3 gives an overview of existing eye-gaze tracking methods, followed
by a brief description of the contribution of this review in Section 4. This
sets the stage for the emerging challenges that will be discussed in Section
5. An overarching discussion is provided in Section 6 in order to summarise
the research work that has been carried out so far in light of the emerging
challenges, and to identify possible future avenues in Section 7. Finally,
Section 8 concludes this review.

2. Anatomical Terminology of the Human Eye

The human eye is an intricate organ despite its small dimensions. Its
shape approaches that of a spheroid and is often approximated as such for
simplification purposes. The eyeball is free to rotate inside its socket around
a centre point lying at a population average of 13.5mm behind the front
vertex, termed the eyeball centre. The outer coating of the eyeball is the
sclera that is particularly identifiable by its opaque white colour. Light first
enters the eye through the cornea, which is the clear dome-shaped layer that
covers a portion of the visible part of the eyeball, and which joins the sclera
at a border that is known as the corneal limbus. Light then travels through
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the iris, which is the coloured portion of the eye and acts as a diaphragm
that narrows or widens the dark pupil aperture to regulate the amount of
light entering the eye. Light rays are then received at the retina at the back
of the eyeball, which contains cones and rods that generate the perceived
image. Light rays which fall upon the fovea travel along the visual axis, such
that an observer must direct the visual axis towards the object of interest to
obtain a sharp image of an object. The angle which the visual axis makes
with the optical axis, which passes through the centre of the pupil to the
retina, is subject-dependent.

An illustration of the eyeball and its components that shall be referred
to within this section is shown in Figure 1.

3. Overview of Eye-Gaze Tracking

Research efforts aimed towards the development of improved eye move-
ment measurement techniques were always driven towards minimising dis-
comfort and direct contact with the user without jeopardising the measure-
ment accuracy. Through technological development, the degree of intrusion
of eye movement measurement techniques lessened over the years, progressing
from the highly intrusive insertion of specks or search coils onto the eyeball
[13], to less intrusive electrooculographic (EOG) methods requiring the at-
tachment of electrodes around the eye regions [14], to video-based eye-gaze
tracking methods which track the eye-gaze remotely via digital cameras that
capture the ocular movements in a stream of image frames alone [15]. The
ease-of-use and practicality of video-based eye-gaze tracking methods outside
the research laboratory offer an attractive solution for user-oriented appli-
cations, such as HCI, as evidenced by several video-based eye-gaze tracking
systems that have been made commercially available for home users [16], and
more recently for human authentication [17–20].

In a previous survey on video-based eye-gaze tracking techniques [15],
Hansen and Ji refer to this field as having two distinct areas, which are in
fact two different domains, namely, the image domain and the gaze domain,
as illustrated further in Figure 2. Video-based eye-gaze tracking will always
require eye detection and localisation in the image domain, hence we fol-
low Hansen and Ji [15] in the categorisation of methods for eye detection
and localisation, which are often done simultaneously. These methods are
categorised by Hansen and Ji [15] according to the exploited eye image char-
acteristics, such as the shape and contours of the open eye [21–29, 29–36], the
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appearance of the eye region [37–51], or distinctive features around the eyes
[52–65]. A further category is also included for active methods that exploit
the physiological properties of the human eye by illuminating the face and
eye regions with infra-red (IR) illumination for eye detection and localisation.
Nonetheless, within the context of pervasive eye-gaze tracking, the effective-
ness of methods that utilise IR illumination diminishes as soon as external
factors, such as interfering IR illumination from the surrounding environment
[66], affect the image quality or the pupil size and brightness. Hence, while
in the office paradigm the use of IR illumination may be preferred, since
this simplifies the task of eye detection and localisation, the problems that
active methods potentially face in pervasive scenarios outweigh the benefits.
In absence of any dependence upon specialised IR illumination sources and
imaging hardware, passive methods are potentially better suited for a wider
range of pervasive scenarios, permitting increased portability for both indoor
and outdoor use, and the capability to capture natural visual behaviour in
less constrained scenarios. Hence, this review will not be considering active
methods any further.

Specifically, eye detection and localisation methods that are categorised as
shape-based, since they exploit the shape and contours of the open eye, typ-
ically aim to fit a geometrical model to the eye region [21–29, 29–36]. These
methods approach the problem of eye detection either by fitting the iris or
pupil region with a simple circular [21–30] or elliptical model [29, 31, 32], or
by the use of more complex models [33–36], which are more computationally
demanding than their simpler counterparts but allow for detailed modelling
of the eye region by including components such as the eyelids [33–36] and
eye corners [36]. Both subcategories of shape-based methods typically re-
quire high contrast images that permit reliable feature extraction for shape
fitting [21, 23, 24, 26, 27, 32, 33, 35], together with the initialisation of the
shape models close to the eye region for successful localisation [28] or the
acquisition of close-up eye region images within which the model-fitting is
carried out directly [29, 32, 35]. Appearance-based methods, in contrast,
are independent of the actual geometry since these exploit the photometric
properties of the eye region for detection [37–51]. Eye detection by these
methods follows different approaches, such as via machine learning [37–44]
or template-matching techniques [45–51], which preserve the spatial and in-
tensity information of the eye image pixels. Most appearance-based methods
that rely on machine learning require the collection of a sizeable set of train-
ing data under the expected tracking conditions, upon which the performance
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Figure 2: The field of video-based eye-gaze tracking comprises two distinct domains,
namely the image domain and the gaze domain. The gaze domain further consists of
two main classes of tasks, namely the calibration tasks, and the gaze estimation and track-
ing tasks. This figure summarises different aspects of these domains and tasks.

of eye detection is subsequently contingent [44]. Furthermore, methods that
rely on image templates for eye detection are often inherently limited by ro-
tation and scale constraints [48]. Feature-based methods, on the other
hand, seek to identify specific informative local features of the eye region that
may be less susceptible to illumination changes and variations in viewpoint
[52–65]. Detection of these local features may either exploit the grey-level
differences at the feature boundaries, such as the limbus boundary [52–55],
or alternatively the dark and distinctive colour of the pupil [56–65]. In or-
der to reduce the number of eye candidates that may be captured by wide
field-of-view imaging hardware and which may exhibit similar features to the
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Figure 3: Eye detection and localisation methods typically exploit (a) the shape and con-
tours of the open eye by fitting a geometrical model to the eye region, (b) the photometric
appearance of the eye by employing machine learning or template-matching techniques,
or (c, d) specific informative local features of the eye region, such as the limbus boundary.

eyes, feature detection is often performed within close-up eye region images
[63–65]. Different methods for eye detection and localisation are summarised
in Figure 2 and illustrated in Figure 3.

The gaze domain is a second component of video-based eye-gaze tracking
consisting of two main classes of tasks, which are the calibration tasks and
the gaze tracking tasks, as outlined in Figure 2. Calibration is typically
performed to estimate parameter values that permit information from the
image domain to be converted to the gaze domain, hence allowing for gaze
estimation and subsequently gaze tracking, where the latter refers to the
process of estimating the eye-gaze through time. We distinguish between the
following calibration procedures:

(a) Intrinsic camera calibration determines parameter values that charac-
terise the geometric properties of the imaging hardware, such as the
focal length, the principal point offset and the skew coefficients [67].

(b) Setup calibration determines parameter values that position the camera
centre within the world coordinate space, and hence permit transfor-
mation of points from the camera image space to the 3-dimensional
world space [67].

(c) User/personal calibration determines parameter values that charac-
terise the intrinsic anatomical properties of the human eye [49, 68–
76]. These may include the eyeball and cornea radii, the angular offset
between the optical and visual axes, and the refraction parameters.
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(d) Gaze calibration determines parameter values that position the eyeballs
within the coordinate spaces of the head and camera [64, 68–77].

(e) Point-of-regard calibration determines parameter values that position
the gaze on a monitor screen [22, 25, 27, 37, 40, 45, 56, 57, 61, 62, 70–
73, 78–87] or on a planar surface positioned at a distance from the user
in physical space [43, 68, 69, 74–77], hence permitting the estimation
of a point-of-regard (PoR). This may be carried out by:

(i) Geometric mapping which estimates the PoR by intersecting two
gaze vectors, each projecting from each eyeball, in 3-dimensional
space [77], or by intersecting a single gaze vector, often estimated
by averaging the two gaze vectors projecting from each eyeball
[47, 68–76, 88], with a prior defined surface. This is illustrated in
Figure 4(a).

(ii) Implicit mapping which determines a mapping function that esti-
mates the PoR by mapping the image contents directly to screen
coordinates. This may be achieved by means of machine learning
techniques [22, 37, 38, 40, 43, 45, 56, 57, 61, 62, 82–87], or by
mapping the distance of a specific eye region feature from a refer-
ence image point onto a corresponding fixation point on a monitor
screen [25, 27, 78–81]. Figure 4(b) illustrates this calibration pro-
cedure.

The outlined procedures require different levels of calibration effort per ses-
sion. For instance, calibration procedures (a) and (b) may be carried out
once prior to use, and remain valid as long as the properties pertaining to
the geometry of the setup and the imaging hardware remain unchanged.
Subject-dependent parameter values characterising the anatomical proper-
ties of the human eyeballs may also be re-used between sessions after having
been estimated via calibration procedure (c), since these also remain un-
changed. The parameter values estimated by calibration (d), on the other
hand, are typically re-initialised at every session since, while the eyeball po-
sitions remain fixed within the head coordinate space of the same user, their
placement within the camera coordinate space depends on the head pose.
Calibration (e) is also typically performed at every session, since this takes
into consideration the positioning of the user with respect to the surface of
interest in order to estimate the PoR. During calibration procedures (c) to
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Figure 4: Point-of-regard calibration may be carried out by (a) geometric mapping, which
estimates the point-of-regard from gaze vectors projecting from each eyeball, or (b) implicit
mapping, which determines a mapping function that estimates the point-of-regard by
mapping the image contents directly to screen coordinates.

(e), the user is either required to maintain a frontal eye and head pose [68], or
perform specific eye [25, 27, 37, 40, 43, 45, 49, 56, 57, 61, 62, 64, 69–73, 79–86]
or head movements [62, 64, 69, 77] by fixating at markers appearing sequen-
tially on a monitor screen [25, 27, 40, 45, 49, 56, 57, 61, 62, 64, 70–73, 79–86],
or positioned at a distance from the user in physical space [43, 77]. This may
require substantial user effort, especially if calibration requires the collection
of hundreds [38, 57, 86] or thousands [40, 43, 56, 61, 83, 85] of data samples
under the expected tracking conditions, in order to serve as training data for
a machine learning algorithm.

The second class of tasks within the gaze domain deals with gaze esti-
mation and tracking. In the process of estimating and tracking the gaze, the
head pose plays an important role in conjunction with the eyeball orienta-
tion: the head pose typically defines a coarse estimate of the gaze direction,
while the eyeball orientation refines upon this estimate to define the gaze di-
rection at a finer level. The estimation of gaze under different eye and head
configurations is a desirable aspect of pervasive eye-gaze tracking, since this
would lift any constraints on the user and permit natural head movement.
While more recent eye-gaze tracking methods are increasingly allowing more
freedom of movement, as will be further discussed in Section 5.4, many other
methods have conventionally resorted to stationary head pose constraints
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[22, 45, 49, 57, 75, 78, 79, 81–84], often by the use of a chin-rest [45, 82], or
made use of wearable setups that circumvent the need for head pose estima-
tion but cannot track the eye-gaze remotely [43, 78, 85]. Furthermore, the
appearance of the face and eye regions changes significantly with head mo-
tion, resulting in many possible combinations of face appearance and eyeball
orientation which correspond to the same gaze direction. This is especially
taxing on methods that exploit the photometric appearance of the eye re-
gion for gaze estimation, since these would typically require a large corpus of
training data that captures the eye appearance under many head orientations
[38, 40, 44].

Most of the overviewed video-based methods focus mainly on the appli-
cation of eye-gaze tracking as a desktop technology. Hence, most research
effort in past years has been mainly dedicated towards the development of
methods that fit controlled conditions where the head movement, if any, is
mostly constrained to a small volume [22, 35, 45, 49, 57, 75, 78, 79, 81–
84, 89], the illumination conditions are stable or controllable by the projec-
tion of visible [62] or IR [29, 31, 57, 90] illumination, and both calibration
[22, 25, 27, 35, 43, 47, 49, 64, 64, 69–80, 88, 91] or the collection of a training
data set [37, 38, 40, 43, 45, 52, 56, 57, 61, 62, 82–86, 92] may be carried
out as required. Such conditions limit the applicability of these video-based
eye-gaze tracking methods within the uncontrolled settings associated with
pervasive eye-gaze tracking and, hence, call for methods that address the
challenges which emerge from these limitations.

We identify five emerging challenges of pervasive eye-gaze tracking, namely
the estimation of gaze from low-resolution eye images; the estimation of gaze
from sparse, synthesised or person-independent training samples; reduced or
implicit calibration; head pose invariant gaze estimation; and eye-gaze track-
ing on mobile platforms. The next sections, therefore, define our research
contribution and subsequently discuss emerging work and challenges within
the context of pervasive eye-gaze tracking.

4. Our Contribution

This paper presents a critical review of recent technical advancements
in eye-gaze tracking within the context of pervasive applications. In light
of emerging demands for pervasive applications, most state-of-the-art video-
based eye-gaze tracking methods that had previously been reviewed by Hansen
and Ji [15], face new challenges that go beyond the classical desktop setting
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for which they were developed. Hence, in contrast to the survey of Hansen
and Ji [15], our review aims to investigate and highlight the research av-
enues that are specifically being followed in response to emerging challenges
associated with eye-gaze tracking in the wild.

The following sections categorise emerging passive and unobtrusive video-
based eye-gaze tracking methods in recent literature, with the aim to identify
different research avenues that are being followed in response to the identi-
fied challenges of pervasive eye-gaze tracking. We aim to bring out their
strengths and weaknesses, and to identify any limitations, within the con-
text of pervasive eye-gaze tracking, that have yet to be considered further by
the computer vision community.

5. Challenges of Pervasive Eye-Gaze Tracking

5.1. Challenge A: Gaze Estimation from Low-Resolution Eye Images

The shift towards pervasive eye-gaze tracking has brought an increasing
interest in the development of low cost alternatives to commercial eye-gaze
tracking systems using consumer electronics, such as webcams. In compari-
son with the image quality captured by higher-end cameras used in commer-
cially available eye-gaze trackers, consumer-grade cameras typically acquire
images of inferior quality and wider field-of-view, which capture an expansive
portion of the background. If the camera is placed at a distance from the
user [37, 38, 40, 81, 82, 84, 86, 93–99] rather than mounted close to the eye
regions [85, 100, 101], its wide field-of-view accommodates larger head move-
ment that is advantageous within the context of pervasive eye-gaze tracking,
in comparison with the narrower field-of-view that is typically associated
with commercial eye-gaze trackers. Nonetheless, this reduces the perceived
resolution of the eye region images, which calls for methods that address the
challenge of estimating the eye-gaze from low-quality images.

Appearance-based methods have been receiving increasing attention in
this regard, since these methods exploit the photometric properties of the
eye that are preserved at low-resolution, rather than the geometric details
that may be difficult to extract. A subset of the methods that address the
problem of gaze estimation from low-resolution images aim to exploit the eye
region appearance at the detection stage, in order to extract the pupil [81, 93]
or iris [94–96] centre coordinates as a prior step to gaze estimation. In this
regard, Ince and Kim [93] and Janko and Hajder [94] propose to estimate the
pupil [93] or iris [94] centre coordinates by employing a circular template to
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capture the gradient change across the boundary of the eye region under con-
sideration. Wojciechowski and Fornalczyk [95], on the other hand, localise
the iris region by performing adaptive thresholding on the eye region image.
Kim et al. [81] extract the pupil centre coordinates within an image frame in
two successive stages, by initially extracting an approximate location of the
iris region due to its larger footprint and subsequently using this estimate to
detect the pupil position via a machine learning approach. Their method [81]
first localises the iris region by summing across the image rows and columns
in order to compute the respective horizontal and vertical intensity projec-
tions that delineate the change in intensity between the iris and surrounding
sclera. This gives a coarse indication of the iris centre coordinates, which
are subsequently improved by a neural network trained on pairs of iris and
pupil centre coordinates. Lu et al. [96] address the problem of iris localisa-
tion from low-resolution eye images, where a reliable iris contour is difficult
to extract. To this end, they synthesise virtual iris appearances for possible
gaze directions using a simple 3-dimensional model of the eyeball, and sub-
sequently optimise over this synthetic space to find the solution that best
fits the observed eye image and iris appearance. The resulting output of this
method is a 3-dimensional gaze estimate. Within the context of pervasive
eye-gaze tracking, a common downside to these methods is their require-
ment for suitable image contrast at the boundaries that separate different
eye region components, such as the iris, pupil and sclera, a condition which
may not be necessarily fulfilled under pervasive conditions. In comparison,
Cristina and Camilleri [97, 98] propose to extract the iris region by means
of a Bayes’ classifier trained to classify between the intensity values of iris
and non-iris pixels based on labelled samples belonging to the two classes.
This results in a binary image that permits the estimation of the iris centre
coordinates as the centre of mass of the segmented iris region, followed by
image-to-screen mapping in order to compute the screen coordinates of the
PoR. While good image contrast is not a strict requirement for this method
to operate, its performance is susceptible to illumination variations that alter
the intensity values of the iris and non-iris pixels. The methods of Cristina
and Camilleri [97, 98] alleviate this susceptibility to illumination variations
by populating the training data set with iris and non-iris samples acquired
under different illumination conditions.

The aforementioned methods [81, 93–95, 97, 98] use the information ex-
tracted at the detection stage to compute a point-of-regard on a monitor
screen via an image-to-screen mapping function. Hence, the gaze estima-
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tion performance of these approaches [81, 93–95, 97, 98] is highly contingent
upon the accuracy of detection of single feature coordinates, namely the iris
or pupil centre coordinates. Alternatively, appearance-based methods that
map high-dimensional [38, 40, 82, 84, 99, 102] or low-dimensional [37, 86, 103]
image information directly to gaze parameters, utilise the entire image con-
tent for gaze estimation irrespective of the resolution and hence do not require
the explicit identification of small scale features. In this regard, Mansanet et
al. [86] compare the use of k-Nearest Neighbour regression, support vector
regression and random forest regression to map a set of principal compo-
nents extracted from an eye region image, to a PoR on a monitor screen.
Wojke et al. [103] employ Gaussian process regression to map an observed
eye patch to a PoR on a monitor screen. A mapping relationship between
screen coordinates and a low-dimensional manifold of eye patches, generated
by applying a Gaussian process latent variable model to the image data, is
established following a calibration phase during which sets of on-screen gaze
points and corresponding eye patches are recorded. The method of Huynh
[37] seeks to obtain a discrete classification of the gaze direction by feeding a
neural network with a set of principal components extracted from eye region
images, based on the availability of a training data set. George and Routray
[102] seek a discrete classification of the eye-gaze direction as well, by feeding
a convolutional neural network with low-resolution eye images at the input
stage, following a training step on a publicly available image data set. Simi-
larly, Holland and Komogortsev [84] and Sewell and Komogortsev [82] feed a
neural network with a vector of raw pixel intensities from an input eye region
image to estimate the PoR. The methods of Wojke et al. [103], Holland and
Komogortsev [84], and Sewell and Komogortsev [82] necessitated the collec-
tion of a training data set via a calibration procedure that required the user
to gaze at visual markers appearing in sequence on a display screen.

The aforementioned methods for gaze estimation [37, 82, 84, 86, 102, 103]
do not compensate for changes in eye appearance that arise due to head move-
ment, hence constraining the user to a stationary head pose [37, 82, 84, 86,
102, 103] that is often supported by the use of a chin-rest [86]. This constraint
is incompatible in the context of pervasive eye-gaze tracking since it greatly
limits the natural movement of the user that is otherwise characteristic of
real-life scenarios, as will be further discussed in Section 5.4. To counteract
this limitation, Koutras and Maragos [99] and Dhyawala et al. [40] compen-
sate for head movement by including information related to the head pose
in the estimation of gaze, where Koutras and Maragos [99] obtain this infor-
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mation by fitting an active-appearance model to the face, while Dhyawala
et al. [40] infer the head pose from the relative image distances between
salient facial features. These methods [40, 99] also require the availability of
a training data set in order to train several Gaussian mixture models [99] or a
neural network [40] to estimate the PoR. Nguyen et al. [38] employ Gaussian
process regression to estimate a PoR from input data consisting of the pixel
intensities of the eye region image. They propose to handle head movement
by employing two separate calibration procedures; the first procedure col-
lects pairs of eye images and corresponding screen coordinates while the user
maintains a stationary head pose, whereas the second procedure requires the
user to perform head rotations in four different directions in order to capture
the change in eye region appearance under a changing head pose.

In order to estimate the gaze from image information, most of the appearance-
based methods that have been discussed within this section require the collec-
tion of a large corpus of training data, especially if the method aims to handle
head movement by collecting a training data set that captures the changes
in eye region appearance under a changing head pose, as in [38, 40, 99]. For
instance, Nguyen et al. [38] reportedly perform ten calibration sessions in
order to collect sufficient training data that permit a suitable reduction in the
gaze estimation error under head movement. The collection of such a large
corpus of data requires extensive user cooperation, which is highly limiting in
a pervasive scenario where prolonged user cooperation cannot be guaranteed.
Techniques to reduce the size of the training data sets typically required by
such appearance-based methods and, hence, improve the suitability of these
methods for pervasive eye-gaze tracking, will be further discussed in Section
5.2.

5.2. Challenge B: Gaze Estimation from Sparse, Synthesised or Person-Independent
Training Samples

Within the context of pervasive eye-gaze tracking, appearance-based meth-
ods have been receiving increasing attention since these potentially permit
the estimation of gaze from low-resolution eye region images without requir-
ing explicit identification of small scale features. Nonetheless, the compu-
tation of the mapping function necessitates the collection of large data sets
comprising hundreds [38, 57, 86] or thousands [40, 43, 56, 61, 83, 85] of
training samples, which often requires considerable user cooperation prior
to gaze estimation. Furthermore, the collected training samples are often
person-specific and, hence, the computed mapping function may not suitably
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compensate for appearance variations across a cohort of users [87, 104, 105].
The following sections discuss recent research work that specifically aims to
address these issues.

5.2.1. Gaze Estimation from Sparse Data

The availability of large sets of training data typically allows for an im-
provement in the gaze estimation accuracy [45] at the expense of lengthy data
collection that may be taxing on the user. Recent methods that specifically
address this problem, seek to learn a mapping function from sparsely col-
lected training samples without compromising the gaze estimation accuracy
[87, 104, 105].

In this regard, Lu et al. [87, 104] propose an adaptive linear regression
technique (ALR) that optimally selects a small number of training samples
for gaze estimation. Since the training samples are sparsely collected, local
linearity of the eye appearance manifold cannot be assumed, as would be the
case if dense training samples had otherwise been collected. Alternatively,
Lu et al. [87, 104] propose to estimate the gaze information for a newly
observed eye image from an optimal subset of the training data that is closely
correlated to the observed eye image and can interpolate it linearly. Liang
et al. [105] similarly seek to address the problem of gaze estimation from
a limited number of training samples. To this end, they propose a method
to increase the number of available training samples by employing semi-
supervised learning on a set of labelled data, which consists of pairs of eye
appearance vectors and the corresponding gaze coordinates, and unlabelled
data, which comprises the eye appearance vectors alone. The objective of the
semi-supervised learning, based on Gaussian process regression, is to infer the
gaze coordinates of the unlabelled data from an active set of limited labelled
samples. This bypasses the need to collect further training data by increasing
the number of calibration points displayed to the user, which procedure may
be taxing and time consuming. These methods [87, 104, 105] all reportedly
achieved mean gaze estimation accuracies below 1◦ of visual angle, using
sparse training data collected during calibration procedures comprising no
more than 33 points [87, 104] and as few as 5 points [105]. It is, however,
important to underline that the method of Lu et al. [104] does not consider
the variation of eye image appearance under head movement instead focusing
on a fixed and frontal head scenario, which limits the applicability of this
method in the context of pervasive eye-gaze tracking. The methods of [87,
105] handle slight head movement only, where Lu et al. [87] compensate
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for the resulting image distortion via a rigid transformation consisting of
translational and rotational components. The challenges associated with
head pose-free gaze estimation will be further discussed in Section 5.4.

5.2.2. Gaze Estimation from Synthesised Training Data

Rather than opting to collect a sparse data set in order to lessen the
data collection effort [87, 104, 105], as discussed in the previous section, the
synthesis of photo-realistic training data has been alternatively proposed in
order to allow the creation of a large body of training data, bypassing the
need for data collection [106, 107].

The methods of Wood et al. [106, 107] propose an anatomically inspired
eye region model that can represent variations in facial shape and appear-
ance, and which may be rendered at different eye and head rotation angles
and under variable lighting to produce a training data set that covers a wide
range of tracking conditions. This morphable shape model is built upon high
resolution 3-dimensional head scans captured by professional photogramme-
try from a cohort of participants [106, 107]. To improve realism, the model
proposed by Wood et al. [106, 107] includes elements such as the eyelashes
and eye wetness, and animates the eyelid to simulate its motion during eye
saccades. In order to quantify the ability of the proposed model in estimat-
ing the eye-gaze, Wood et al. [107] match the rendered eye images to those
contained within a benchmark data set comprising real image data, using a
k-Nearest-Neighbour technique trained on the rendered images. They report
a comparable performance to state-of-the-art appearance-based methods em-
ploying deep learning algorithms, which were trained on synthesised or real
image data and tested on the same benchmark data set.

The shape and appearance variability of the training data synthesised
by the model of Wood et al. [106, 107] is reportedly contingent upon the
number of captured 3-dimensional head scans. In their work, this number
is increased from ten [106] to twenty [107] in order to include more of such
variations, nonetheless the need for further head scans, which would capture
additional shape and appearance variations, has been reported necessary
[107]. This leads on to the challenge of person-independent gaze estimation
in the following section.

5.2.3. Person-Independent Gaze Estimation

Another challenging aspect of appearance-based gaze estimation relates to
variation in the facial characteristics of different users, which often affects the
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gaze estimation accuracy. Indeed, an investigation carried out by Zhang et
al. [85] revealed a drop in the gaze estimation accuracy for an unseen subject
whose samples were not contained within the training data set in use, where
the data was characterised by large variation of eye appearance from persons
of different gender, age and ethnicity. Hence, data collection for training and
testing is often carried out for every individual user [87, 104, 105], which is
often limiting if this data is not available or a data collection session cannot
be performed. Head movement offers a further challenge in this regard by
introducing further changes in facial appearance under different head poses.

Methods that aim to address the challenge of person-independent gaze
estimation generally extract information from an existing data set of train-
ing samples and exploit this information to compensate for the change in
appearance of an unseen user that is not included within the data set [108–
110]. In this regard, Schneider et al. [108] propose a method for submanifold
reconstruction of the low-dimensional features and corresponding gaze labels
for an unseen user, via a linear interpolation of neighbouring data points on
the same manifold. Their method does not address the challenges associ-
ated with head movement, alternatively focusing on frontal eye images alone
aligned according to the relative positions of the inner and outer eye corners.
Lu and Chen [109] aim to extract from the eye image, eye features that are
less person-dependent in order to learn a person-independent relationship
between changes in gaze and eye appearance variation. To this end, they
partition eye images into smaller patches of different sizes and subsequently
employ a sparse auto-encoder to learn a codebook. This codebook carries es-
sential structural information that can reconstruct the original image patches
from coefficient vectors computed for every image patch. Gaze prediction is
then carried out by employing a multi-class support vector machine trained
on sets of eye features, produced by pooling the coefficients at different im-
age scales, and the corresponding gaze directions. Similar to Schneider et al.
[108], Lu and Chen [109] do not handle head movement and are restricted
to frontal eye images alone. Mora and Odobez [110] propose to reconstruct
a newly observed eye image from a linear combination of a subset of train-
ing samples, selected according to their relevance to the test image based on
the computation of a weighting value. Any variation to the eye appearance
due to head movement is handled beforehand by re-rendering the texture
of an RGB-D frame to a frontal head pose, according to head pose param-
eters computed by fitting a 3-dimensional face model to depth information
acquired by a Kinect sensor. Hence, the proposed appearance-based method
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estimates the eye rotation from frontal eye images, which is then combined
with the estimated head pose as a final step to compute the gaze direction.

Mora and Odobez [110] compare the results obtained by the proposed
method, under stationary and free head pose conditions, to the estimation
of gaze by specific training and testing for an individual user alone, and
by cross-testing of an unseen user that is not included within the data set.
Specific user training and testing is reported to produce the highest gaze
estimation accuracy whereas the use of cross-estimation leads to the least
accurate results, in agreement with the results of Zhang et al. [85] as pre-
viously reported. Furthermore, the results report a degradation in the gaze
estimation accuracy under a changing head pose, indicating the need for
robust techniques that address the challenges of appearance-based methods
under less constrained conditions.

5.3. Challenge C: Reduced or Implicit Calibration

One of the limitations associated with eye-gaze tracking that is often
considered to hamper the use of the technology, especially in pervasive sce-
narios such as public spaces, is the need to perform calibration prior to gaze
estimation. Several types of calibration procedures have been discussed in
Section 3, where it has been seen that different calibration procedures typi-
cally require active user participation in order to estimate parameter values
that permit information from the image domain to be converted to the gaze
domain. Nonetheless, user participation cannot necessarily be guaranteed
especially if the users are infants, such as in studies related to autism [111],
or exhibit involuntary movements as by-product of a disability [112], or if the
users simply regard the process of calibration as a tedious task [113]. Fur-
thermore, setup calibration typically imposes a static setup geometry that
cannot be re-configured to accommodate personal needs during tracking. In
light of these constraints, recent research work on eye-gaze tracking has been
directly aimed at the reduction of calibration, as will be further discussed in
the following sections.

5.3.1. Reduction of Point-of-Regard Calibration

One approach towards the reduction of calibration effort performs im-
plicit calibration while the user is induced to execute a specific action, such
as following a moving target [114] or gazing at a static visual stimulus [115],
or while the user is interacting with a personal computer through mouse
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clicks [116–119] and keyboard presses [118, 119]. Such user activities per-
mit the unobtrusive collection of data in the background without the user
being explicitly aware of the calibration task. Pfeuffer et al. [114] designed
three different applications to investigate different capabilities of their im-
plicit calibration approach for gaze mapping, namely the smooth blend be-
tween the calibration task and the application, the unawareness of the user
during calibration and the capability of resuming calibration at the occur-
rence of distractions. The proposed method detects when the user attends
to the moving target by computing a Pearson’s product-moment correlation
measure between moving windows that aggregate the target coordinates and
uncalibrated gaze coordinates over time. The sampled coordinate-pairs are
then fitted to a homography model that represents a perspective projection
between the gaze estimates and the screen plane. Pfeuffer et al. [114] report
short calibration times for most of the participants, nonetheless the display
area covered by the calibration target together with its size and speed were
reported to affect the calibration accuracy. Alnajar et al. [115] exploit the
fact that different individuals tend to produce similar gaze patterns when
looking at the same visual stimulus. Hence, they present different users with
the same image to capture an initial set of uncalibrated gaze patterns and
subsequently match these patterns across users to correct their image space
positions. Two methods have been proposed for the computation of the ini-
tial gaze patterns; the first of which computes the gaze points corresponding
to newly captured eye region images from pairs of eye region templates and
gaze information acquired from a template subject, while the second method
follows the first one, however the template and newly captured eye region
images are projected to a lower-dimensional space. Matching between gaze
patterns is subsequently carried out by a closest point search algorithm that
applies different translation and scaling transformations, hence permitting
the computation of a mapping transformation across different users. Head
movements have not been handled at this stage, nonetheless these reportedly
affect the gaze mapping accuracy by altering the eye region appearance upon
which the proposed method depends.

Methods that exploit user interaction often assume that the PoR coin-
cides with the on-screen mouse cursor position when the user clicks the mouse
button [116, 117]. Papoutsaki et al. [116] collect pairs of training data that
consist of specific eye features together with corresponding on-screen click
coordinates, while users navigate the web unaware of the calibration process.
The collected data is then used to train a linear regression model to map the
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eye features to screen coordinates. Similarly, Sugano et al. [117] assume that
clicked screen positions coincide with a PoR, and create training samples
using appearance features of the eye and head together with the correspond-
ing screen coordinates. In order to handle head movement, training samples
with similar head poses are clustered and a local manifold for each cluster is
created. The output gaze for a newly observed eye image and the associated
head pose is then estimated as a weighted average of candidate gaze predic-
tions from multiple clusters. Huang et al. [118, 119], in contrast, argue that
the moment of best alignment between the user activity and the correspond-
ing PoR varies according to the type and context of the interaction, and the
individuality of different users. They investigate the relationship between
gaze patterns and interaction cues across a cohort of users. Based on this
investigation, Huang et al. [118, 119] propose data validation techniques that
utilise head pose and eye features to identify instances when the PoR and
an interaction event are most likely to be aligned. These head pose and eye
features together with the corresponding on-screen gaze point are then used
to train a random forest regression model. These methods typically report
effective use of the relationship between the eye-gaze and the interactive be-
haviour of the user. Nonetheless, they are designed for a desktop scenario
where the user actively interacts with on-screen content through the use of
peripheral devices, which may limit the applicability of such methods for
pervasive applications.

Another approach exploits the visual saliency of video frames in order
to reduce or eliminate the necessity for active PoR calibration [120, 121].
For instance, Valenti et al. [121] reduce the required calibration effort with-
out jeopardising the gaze estimation accuracy, by exploiting visual saliency
to re-calibrate during runtime without necessitating user intervention. Vi-
sual saliency is extracted by the computation of displacement vectors from
isophote curvatures that indicate the positions of interesting or structured
objects inside the image space. Following the estimation of a gaze point on
the image, a meanshift algorithm iterates towards the closest saliency peak,
which subsequently determines the adjusted gaze estimate and provides in-
formation regarding the calibration error. The proposed method compen-
sates for affine transformations of the gaze estimates and potentially permits
changes in head pose, which is desirable in a pervasive setting. Sugano et
al. [120] generate saliency maps for every input image frame by extracting
low-level saliency features, such as colour, intensity, orientations, flicker and
motion, and higher level saliency features of the human face. Following the
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collection of a training data set under stationary head conditions, consisting
of synchronised pairs of saliency maps and eye images, gaze probability maps
are computed from sets of saliency maps clustered according to the similarity
of corresponding eye images. The mapping relationship between eye images
and gaze points is established by Gaussian process regression based on the
training data set, permitting the computation of gaze for a newly acquired
eye image. The method of Sugano et al. [120] eliminates the need for calibra-
tion at the expense of requiring the collection of a training data set, which
task may be difficult to achieve under pervasive conditions.

Pervasive scenarios in which user interaction happens spontaneously and
varies in duration often do not allow for implicit or explicit person-dependent
calibration. Interaction with public displays fits this scenario, where differ-
ent users that walk up to the display individually or simultaneously expect
to be able to navigate the displayed content immediately. Within this con-
text, Zhang et al. [10, 11] eliminate the need for gaze mapping calibration
entirely by proposing a relative rather than absolute mapping of the eye
movements onto the display screen. Conventionally, gaze mapping methods
are absolute since these estimate a point on the screen for every gaze direc-
tion directly [22, 25, 27, 37, 38, 40, 43, 45, 56, 57, 61, 62, 64, 78–86, 92].
In comparison, Zhang et al. [10, 11] propose to relate the movements of the
eyes to the scrolling direction of information presented on the screen, bypass-
ing the computation of a PoR. Changes in eye movements are identified by
the computation of the distance between the pupil centres and the inner eye
corners, which they term as pupil-canthi ratio in previous work [122], under
the assumption that the head is held stationary and in a frontal and upright
position. A change in eye movements away from the central position of the
display triggers the displayed content to scroll towards the centre, coming
to a halt at the display centre if the user is detected to follow the scrolling
movement. In absence of head pose estimation, several participants were
reported to find the stationary head constraint difficult to maintain [10, 11],
which underlines another important challenge associated with pervasive eye-
gaze tracking, that is to permit natural head movement as will be discussed
in Section 5.4. Indeed, Zhang et al. [10, 11] reported that head rotations
were a main cause of scrolling failure, causing the changes in the distance
between the pupil centres and inner eye corners due to head movement to be
misinterpreted by the proposed method.

In absence of any information on visual saliency or user interaction cues,
Lu et al. [123] propose a method to recover patterns of gaze movement, up
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to a scaling and translation ambiguity, without necessitating calibration or
training data. As Lu et al. had previously shown [87], eye images captured
under a stationary head pose constitute an appearance manifold that may
be approximated by a 2-dimensional surface, with a similar 2-dimensional
structure that comprises the corresponding gaze positions. If the gaze posi-
tion for a newly observed eye image is recovered by Euclidean measurements,
this appearance-gaze relationship will hold true within local surface regions
where the similarity between eye images is high. This would require the avail-
ability of a large set of calibration samples to permit the recovery of gaze
inside each local region. In order to address this problem, Lu et al. [123]
propose to extend this local linearity by introducing the Geodesic distance,
which measures the shortest path between two nodes in a graph by adding
up small Euclidean distances of neighbouring nodes. Lu et al. [123] report
that this Geodesic distance maintains a global linear relationship between
the eye appearance and the corresponding gaze movement, and exploit this
relationship to recover an uncalibrated pattern of gaze movements. This un-
calibrated gaze pattern may be useful for pervasive applications that do not
require an absolute mapping of the eye movements onto a physical scene ob-
ject, such as for the previously mentioned interaction with public displays. If
an absolute mapping is required, this may be achieved through a calibration
procedure that requires the user to gaze at calibration markers to which the
gaze pattern is subsequently aligned.

5.3.2. Reduction of User/Personal Calibration

Calibration or user-related parameters is typically required by methods
that project a 3-dimensional gaze vector from the eyeball centre to estimate
the gaze direction [35, 43, 47, 49, 64, 69–77, 88, 91]. These methods generally
define a 3-dimensional geometric model of the eyeball and perform calibration
to estimate subject-dependent parameter values, such as the eyeball centre
coordinates and radius.

To reduce the complexity of the eyeball model and hence the number of
parameter values to be estimated, the visual axis of the eyeball is often as-
sumed to coincide with the optical axis, eliminating the need to calculate the
position of the fovea and the angle between these two axes [35, 47, 49, 64, 69,
70, 74–77]. Nonetheless, active user participation is generally still required
to estimate the remaining model parameters, which is often undesirable in
a pervasive scenario. To this end, the methods of Kohlbecher et al. [124]
and Klefenz et al. [125] seek to eliminate the need for personal calibration
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by reconstructing the pupil region in 3-dimensional space via stereo-vision,
and calculating the gaze direction from the pupil normal. Kohlbecher et al.
[124] reconstruct the pupil region by projecting two conics through the cam-
era centres and the pupil images, defining the 3-dimensional pupil ellipse by
their intersection in space. Similarly, Klefenz et al. [125] project the pupil
ellipse and centre coordinates extracted inside the image into 3-dimensional
space by stereo-vision, denoting the gaze vector by the pupil normal. The
downside of these methods in the context of pervasive eye-gaze tracking is
their general requirement for eye images of good resolution and contrast,
which permit accurate extraction of the pupil boundary for ellipse-fitting. In
this regard, Kohlbecher et al. [124] report that in the absence of well-defined
ellipse parameters due to small pupil projections, the gaze vector estimates
exhibited considerable variability.

A further downside to the use of stereo-vision is the need for multiple cam-
eras and additional camera calibration, which reduce the portability of the
setup in a pervasive setting and limit the immediate use of integrated imaging
hardware on off-the-shelf mobile devices. In the absence of any redundant
information acquired by multiple cameras, the complexity of estimating the
3-dimensional parameter values from a single camera, without resorting to
personal calibration, increases. Urano et al. [12] propose a method based on
a single camera without the need for calibration, aimed for an objective eval-
uation of adverts situated in public spaces. Parameter values that personalise
the 3-dimensional eyeball model but cannot be directly measured from im-
age information, such as the eyeball radius, are estimated based on the ratio
between the image space interpupillary distance in pixels and the correspond-
ing anthropometric measure in millimetres. This allows the anthropometric
measure of the eyeball radius to be converted to pixels, hence permitting es-
timation of the 3-dimensional eyeball centre coordinates. The gaze direction
is defined by the 3-dimensional vector that joins the eyeball centre with the
iris centre, previously extracted by an ellipse-fitting technique. The method
proposed by Urano et al. [12] does not compensate for head movements,
which is a serious limitation in public environments where individuals are
expected to move naturally. In comparison, Cristina and Camilleri [126] per-
mit free head movement by proposing a method based upon the definition of
a spherical eye-in-head rotation model that permits gaze estimation by com-
pensating for the change in eye region appearance due to head rotation. The
proposed method requires minimal user cooperation by holding an upright
and frontal head and eye pose during a brief initialisation stage. Similarly
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to Urano et al. [12], the estimation of parameter values that personalise the
rotation model is carried out by relating image space measurements in pixels
to the corresponding anthropometric measures in millimetres. This permits
the estimation of a 3-dimensional vector that joins the eyeball and iris centre
coordinates, and hence the estimation of gaze direction as a combination of
head and eyeball rotation components.

While the 3-dimensional eyeball model may be simplified by defining the
optical axis as the line of gaze, the true gaze direction is defined by the visual
axis, which differs from the optical axis by an angular offset. Computation of
this offset should allow for improved gaze estimation, hence several methods
include the calculation of the angle between the optical and visual axes during
the calibration procedure [71–73]. Methods that are better suited for per-
vasive environments seek to estimate this angle implicitly without requiring
explicit user awareness of the underlying calibration [127–130]. Nagamatsu
et al. [127] propose to estimate the yaw and pitch angular components of the
left and right eyeballs while the user gazes at a minimum of four directions
into the distance. Their calculations are based upon the availability of the op-
tical axes of both eyes, which they estimate beforehand via an active eye-gaze
tracking technique, under the assumption that the visual axes are parallel
as the user gazes at distant visual stimuli. The proposed method is mostly
suitable for driving situations that require the user to gaze into the distance
for most of the time. If the visual stimuli are alternatively situated closer
to the user, Model and Eizenman [128] exploit the constraint that the visual
axes should instead intersect on the observed surface at the PoR. Hence, the
yaw and pitch angular components of both eyes are estimated by minimising
the distance between the intersections of the left and right visual axes with
the surface of interest for several gaze points collected as the user gazes at
the display. Model and Eizenman [128] report that the proposed solution be-
comes less sensitive to noise for increasing angles between the visual axes and
surface normal, hence requiring either a larger display that provides a wider
range of horizontal and vertical viewing angles or an observation surface that
consists of multiple planes. In a pervasive context, both conditions limit the
applicability of the proposed method on small surfaces, such as the display
screens of mobile devices. The methods of Chen and Ji [129, 130] do not re-
quire the user to perform specific actions other than the natural interaction
with the system, in order to calculate and gradually improve the angular
offset and gaze estimates. Chen and Ji [129, 130] exploit visual saliency to
approximate the gaze probability distribution for static images displayed to
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the user. Eye parameter estimation is solved as an inference problem in a
Bayesian network, which estimates the posterior probability of the angular
offset given the optical axis and the displayed image, and the computed gaze
probability distribution. Gaze estimation is also based on the same Bayesian
network model, where the gaze posterior probability is computed through
the prior probability of gaze and the gaze likelihood, which may be derived
from the angular offset probability. Training data is required to estimate the
angular offset probability beforehand, which data is collected by requesting
the users to gaze at a set of images for a specified period of time. In order
to eliminate the need for data collection, Chen and Ji [129, 130] propose an
incremental learning algorithm that extends the Bayesian network to a dy-
namic model and recursively updates the angular offset probability, which is
more suitable for a pervasive scenario.

5.3.3. Reduction of Setup Calibration

The estimation of a 2-dimensional PoR on elements of the surrounding
scene from 3-dimensional gaze information is often carried out by intersecting
the computed 3-dimensional gaze vector with objects inside the world space
[70, 72, 75]. This typically needs the inclusion of a further setup calibration
stage that relates the position and orientation of the camera with other units
in the setup, such as a monitor screen [70, 72, 75]. This calibration procedure
is performed prior to use and imposes a static setup geometry, hence con-
straining the flexibility of re-configuring the setup during use and requiring
re-calibration if the setup configuration is changed.

Nitschke et al. [131] work around the need for additional imaging hard-
ware and calibration by proposing a method to estimate the PoR directly
from corneal surface images of the reflected scene. Similar to the methods
in Section 5.3.2, the method of Nitschke et al. [131] defines a 3-dimensional
eyeball model, characterised by anthropometric measures of the human eye,
that permits the estimation of gaze direction. The gaze-reflection point is
defined by the model as the intersection point between the incoming light
ray, parallel to the optical axis, and the corneal surface. The image coordi-
nates of the gaze-reflection point under weak perspective projection are then
computed from the known gaze direction, and the angle which the vector
that joins the gaze-reflection point to the corneal centre makes with the opti-
cal axis. Nitschke et al. [131] additionally introduce a one-point calibration
method to further improve the PoR accuracy by compensating for the angu-
lar offset between the optical and visual axes. Nonetheless, as discussed in
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Section 5.3.2, the inclusion of user calibration is undesirable in a pervasive
scenario and methods have been proposed to estimate this angle implicitly
without active user participation [127–130]. Takemura et al. [132] follow
a similar method for PoR estimation from corneal surface images, however
they introduce an additional scene camera in order to obtain a higher res-
olution image of the focused object in the scene. In absence of any setup
calibration between the eye and scene cameras, the method of Takemura et
al. [132] identifies the PoR in the scene by matching an unwarped image
of the corneal reflection to the scene image via normalised cross-correlation.
The methods of Nitschke et al. [131] and Takemura et al. [132] require eye
images of suitable resolution that permit the extraction of scene detail, hence
these may be better suited for applications that allow short distance setups,
such as wearable cameras.

5.4. Challenge D: Head Pose Invariant Gaze Estimation

The ability to infer the orientation of a human head within a global
coordinate framework from image information, hereby referred to as head
pose estimation, presents a challenging problem in itself that has generated
significant interest within the computer vision community [133]. Nonetheless,
supplementing gaze estimation methods based on the computation of eye
rotation alone [22, 45, 49, 57, 75, 78, 79, 81–84] with information regarding
the head pose, permits the estimation of gaze under different eye and head
configurations. This is especially desirable in the context of pervasive eye-
gaze tracking where the estimation of head pose lifts any restrictions on the
natural head movement of the user, without resorting to stationary head pose
constraints [22, 45, 49, 57, 75, 78, 79, 81–84], often by the use of a chin-rest
[45, 82], or wearable setups that circumvent the need for head pose estimation
but cannot track the eye-gaze remotely [43, 78, 85]. Indeed, as discussed in
Section 5.3.1 in the context of user interaction with public displays, among
others, the absence of any compensation for head movement constrains the
user to an unnatural fixed head pose that is difficult to maintain, and often
leads to tracking inaccuracies or failure if this condition is violated [10, 11].

5.4.1. Normalisation of Observed Eye Images to a Frontal Pose

One of the challenging aspects relating to the estimation of eye-gaze un-
der different head orientations is the introduction of significant changes in
eye image appearance that arise with a changing head pose. A subset of the
methods that seek to address this problem propose to compensate for such
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changes in appearance by normalising the eye images to a frontal view based
on an inverse rigid transformation of pre-computed head pose parameters
[134–138]. The gaze direction, based on the eyeball rotation alone, is then
estimated from the pose-normalised image and subsequently transformed by
the pre-computed head pose parameters to compute a combined gaze esti-
mate.

Pose-normalisation allows for a reduction in the eye model complexity of
shape-based methods that, otherwise, seek to capture the shape variations of
different eye region components under a changing head pose [32, 34]. In this
regard, normalisation of eye images to a frontal view permits the definition of
a geometrical model that represents the shape of different components that
constitute the open eye, such as the iris [26, 27, 136] and eyelids [137–139], as
seen from a frontal perspective. A number of methods [26, 27, 136–139] first
estimate the head pose parameters by fitting a face model to specific facial
landmarks [26, 27, 136, 139] or a 3-dimensional morphable model to depth
information acquired by a Kinect sensor [137, 138]. Under a frontal head
pose assumption, Baek et al. [136] subsequently generate several elliptical
iris templates by rotating a 3-dimensional eyeball model and computing its
image space projection at different yaw and pitch angles. Following template
matching to determine the best fitting template inside the pose-normalised
images, the corresponding iris centre coordinates are transformed according
to the head pose parameters and mapped to a PoR on a monitor screen. Mora
and Odobez [137, 138] propose a method that infers the eye movement pa-
rameters by maximising an eye image likelihood measure, constrained by the
eyeball geometry and frontal eyelid configuration, and subsequently trans-
forms the pose-rectified eye movement estimate according to the head pose
parameters. In comparison, Xiong et al. [139] include the eyelid contours
within the 3-dimensional face model by which they estimate the head pose.
Following pose-normalisation of the eyelid contours and pupil centre coordi-
nates according to the estimated head rotation angles, the gaze information
is inferred from the relative distances between the pupil centre and the upper
and lower eyelids.

Methods that exploit the photometric appearance of the eye and neces-
sitate the collection of training data for gaze estimation also benefit from
pose-normalisation since this permits the collection of training samples un-
der a frontal head pose alone [134, 135, 140], hence alleviating the need for a
large corpus of training data that captures the eye appearance under different
head orientations [38, 40, 44]. In this regard, the methods of [134, 135, 140]
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first estimate the head pose parameters by fitting a 3-dimensional morphable
model to specific facial landmarks [135, 140] or depth information acquired
by a Kinect sensor [134]. By compensating for changes in head pose, the
method proposed by Egger et al. [135] permits the use of a single random
forest regressor trained on frontal samples in order to estimate the gaze infor-
mation from pose-normalised eye images. Similarly, Mora and Odobez [134]
train an adaptive linear regression (ALR) algorithm on pairs of frontal eye
images and corresponding gaze information, as previously described in Sec-
tion 5.2.1, permitting the estimation of gaze based on eyeball rotation within
a frontal head reference frame. The gaze direction under a changing head
pose may be subsequently corrected by a rotation transformation according
to the estimated head pose parameters [134]. Jeni and Cohn [140] also train
a linear support vector regressor on binary features extracted around specific
points on the eye contours and pupils, after a frontal view of the face had
been synthesised according to the estimated head pose.

Alternatively, pose-normalisation of the eye images to a frontal view al-
lows the estimation of eye movements via a direct comparison of the image
space position of a specific feature, such as the iris, with respect to the
corresponding feature position within a frontal reference image [141, 142].
Asteriadis et al. [141, 142] propose to warp the eye region images around a
cylindrical shape and perform an inverse transformation of the head pose pa-
rameters, computed via an adaptive fusion of feature and appearance-based
image information within a Bayesian framework. The proposed methods seek
to infer the direction of eye movement with respect to a reference frontal pose
and, hence, simplify the iris movement to a linear displacement inside the
image space. The direction of eye movement is finally identified by compar-
ing the image distance between the pose-normalised and reference frontal iris
centre coordinates to pre-defined threshold values.

Most of the aforementioned eye-gaze tracking methods employ a head
pose estimation approach that necessitates the identification and tracking of
specific facial landmarks [26, 27, 135, 136, 141, 142]. This requires that the
range of possible head rotation angles is constrained such that the entire set
of facial landmarks remains visible during tracking, a condition which may
limit the usability of these methods in wide spaces that often necessitate
large head rotations. Facial landmarks which become occluded due to large
head rotations may lead to further inaccuracies in the estimation of head
pose, which may in turn increase the gaze estimation error since the latter is
now contingent upon the accuracy of both the head and eye pose estimates
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combined. Hence, under free head pose conditions, the reliability of the head
pose estimates is an important factor to consider as one of the components
that contributes to the estimation of gaze, since this may introduce a new
source of error.

5.4.2. Compensation for Head Rotation

Rather than compensating for head movement by normalising the eye
image appearance to a frontal pose prior to gaze estimation, a second subset
of methods extract information relating to the eye-gaze from the eye region
under the appearance changes directly [126, 143–146]. This information is
then combined with head pose information in order to compute a joint gaze
estimate. Similarly to the methods in Section 5.4.1, different approaches seek
to exploit the photometric or geometric properties, or the local features of
the eye regions in order to estimate the gaze direction under a changing head
pose.

One approach towards the estimation of the eyeball rotation angles un-
der a changing head pose follows the definition of a 3-dimensional geometric
model of the eyeball [126, 143, 144]. For instance, Xiong et al. [143] first es-
timate the eyeball rotation angles by projecting the image space pupil centre
coordinates to a 3-dimensional eyeball model, in the knowledge of the intrin-
sic camera parameters. The head pose parameters are subsequently applied
on the eyeball model in order to rotate its optical axis, hence permitting the
estimation of a gaze vector that combines the eye and head pose information
together. Utsumi et al. [144] propose to estimate a gaze vector by minimis-
ing the image distance between the observed iris centre coordinates and the
image re-projection of a 3-dimensional eyeball model under different rotation
angles. Their method also requires knowledge regarding the intrinsic and ex-
trinsic camera parameters. Wood et al. [147] make use of high-resolution
face scans in order to construct a multi-part model of the eye region, which
includes an anatomy-based model of the eyeball. The gaze information is
estimated by iteratively synthesising an image of the multi-part model under
different eyeball and head rotations, and identifying the best match to an
observed eye region image by minimising an energy function. Cristina and
Camilleri [126] also define a 3-dimensional eyeball model, onto which they
project the image space displacement between the iris centre coordinates in
a newly observed eye region image and a reference frontal image rotated on
a cylindrical head rotation model by the head pose parameters. This per-
mits the computation of a gaze vector that projects from the eyeball model
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by joint eye and head pose estimation. The methods of Xiong et al. [143],
Utsumi et al. [144], Wood et al. [147], and Cristina and Camilleri [126]
require the identification of specific facial landmarks in order to estimate the
head [126, 143, 144, 147] and eye [147] poses via model-fitting techniques.
Occlusion of these features of interest may lead to increased head or eye pose
estimation error as previously discussed in Section 5.4.1, and further cor-
roborated by the experimental results of Cristina and Camilleri [126], which
reports a reduction in the gaze estimation accuracy with the introduction of
head pose estimation in comparison to the use of ground truth head pose
data.

The problem of relying on specific facial landmarks for head pose es-
timation may be alleviated by appearance-based methods that exploit the
photometric image information as high or low-dimensional input to a ma-
chine learning algorithm. Lu et al. [145] propose a method in this regard
that initially estimates the eye-gaze from a newly observed eye region image
via regression, based on the availability of a training data set collected dur-
ing calibration under stationary head conditions. The initial gaze estimate
is subsequently corrected to compensate for the estimation bias that arises
due to a changing head pose and the resulting eye appearance distortion.
This compensation process requires further calibration, which necessitates
the user to hold a fixed gaze and perform head rotations, in order to collect
the necessary training samples to perform Gaussian process regression. The
prolonged user cooperation required by the method of [145] during calibra-
tion may, however, limit its applicability for pervasive eye-gaze tracking. In
comparison, Sugano et al. [148] handle head movement without requiring
extensive calibration, by synthesising the appearance of the eye regions un-
der different head rotations from frontal images collected under a stationary
head pose. The resulting dense data set is subsequently used to cross-train a
random forest-based algorithm to estimate the gaze from newly observed eye
images captured under head movement. Lai et al. [149] employ a random-
forest based technique as well, trained on image data collected by requesting
the user to hold a fixed gaze and perform different head rotations, in order
to select neighbours on a low-dimensional manifold given the observed head
pose and eye appearance features. The selected neighbouring features un-
der similar eye and head rotation angles are then used as input to an ALR
technique, as previously described in Section 5.2.1, in order to estimate the
gaze direction. Liu et al. [150] estimate the gaze point of newly observed
eye images, from a linear combination of gaze points corresponding to neigh-
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bouring appearance vectors on an appearance manifold. If the left and right
eye images are considered separately under natural head movement, the dis-
similarity in eye appearance due to a rotated head pose might lead to an
erroneous gaze estimation [150]. In order to address this problem, Liu et
al. [150] unify the left and right appearance manifolds by concatenating the
two appearance vectors, hence implicitly modelling the relation of both eye
images in the same linear combination of gaze points.

In a different appearance-based approach, Cai and Lin [151] exploit the
head pose information in order to extend the limited field-of-view of commer-
cial eye-gaze trackers for applications that require a wider field-of-view, such
as in virtual driving simulations. Rather than opting for joint eye and head
pose estimation, Cai and Lin [151] employ a commercial tracker to estimate
the gaze within a limited range of near-frontal head poses and switch to gaze
estimation by the head pose alone outside this narrow range. An estimate
of the head pose is computed as the mean value of multiple neural network
outputs, each of which is trained on head images collected for every user
during calibration. Similar to other appearance-based methods that employ
machine learning techniques, the methods of Lu et al. [145], Lai et al. [149],
Liu et al. [150] and Cai and Lin [151] necessitate the collection of training
samples under the expected tracking conditions, which in this case include
the presence of head movement. Hence, while appearance-based methods
may potentially alleviate the issues associated with model-fitting techniques
for head pose estimation, the need to perform calibration for data collection
purposes may limit their suitability in pervasive settings where active user
cooperation cannot be guaranteed.

Alternatively, the eyeball rotation angles may be estimated from local
features around the eye regions. Weidenbacher et al. [146] propose to initially
infer the gaze direction based on the eye movements alone, by computing the
phase change of Gabor filter responses within sub-regions around the eyes.
Subsequently, the same method is applied to estimate the head pose from
filter responses at ten specific facial landmarks, which method requires the
availability of prototype sets of face landmarks at known head poses together
with the corresponding Gabor responses. The performance of this method
was compared to a model-fitting technique for head pose estimation and both
methods were reported to perform comparably. A combined gaze estimate is
finally computed by mapping the initial gaze direction, computed according
to the eye movements alone, and the head pose estimate on a lookup table
that needs to be generated in advance.
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The aforementioned methods within this section face similar issues to the
methods discussed in Section 5.4.1, which mainly relate to a degradation in
the gaze estimation accuracy with the introduction of head pose compen-
sation. For instance, Cristina and Camillieri [126] report a degradation of
approximately 0.5◦-2◦ in the gaze estimation accuracy with the introduction
of head pose estimation via a model-fitting technique, over the use of ground
truth head pose information. One of the main sources of error in this regard
potentially stems from inaccuracies in the detection and tracking of specific
facial landmarks, which may become increasingly distorted or self occluded
with increasing head rotation angles and subsequently lead to an increase in
head pose estimation error [126]. Nonetheless, the capability to handle head
movement at different head rotation angles is a desirable aspect of pervasive
eye-gaze tracking that serves to lift any constraints on the natural move-
ment of the user. Hence, in tandem with the challenges of pervasive eye-gaze
tracking, these shortcomings call for an improvement in the achievable head
pose estimation accuracy, especially at large head rotation angles typically
expected within pervasive environments.

5.5. Challenge E: Eye-Gaze Tracking on Mobile Platforms

The challenge of estimating the eye-gaze direction on mobile devices,
such as tablets [84, 89, 152–154] and smartphones [41, 89, 153], encompasses
most of the previously discussed challenges that relate to the estimation
of gaze from low-resolution eye images captured by the integrated camera
on the device, handling of head movement during tracking and support for
brief user calibration. Moreover, the use of mobile devices extends these
challenges further due to the limited availability of computational resources
on such platforms and the movement of the device itself.

Methods that seek to estimate the eye-gaze on mobile platforms with
limited computational resources typically aim for lightweight algorithms that
can run robustly without jeopardising the gaze estimation accuracy. This
often requires a thoughtful choice of algorithms for gaze estimation in order
to make effective use of the limited computational resources. Hence, for these
particular methods, the challenges of achieving gaze estimation accuracy that
is competitive with the state-of-the-art, together with a suitable temporal
resolution that permits the method to run in real-time, are often inter-linked.

It has been discussed in Section 5.1 that appearance-based methods have
been found effective in estimating the eye-gaze from low resolution images.
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Indeed, Holland and Komogortsev [84] make use of machine learning in or-
der to map the eye image information directly to a PoR on a tablet screen.
Their method consists of three main steps performed at every time step; face
and eye region detection is initially performed by means of a Haar classifier,
followed by iris region localisation via template-matching, and finally PoR
estimation by feeding a neural network with the pixel intensities of the eye
region image. Since the proposed method is to run on a tablet, Holland and
Komogortsev [84] decrease the required computational cost by converting the
image to grayscale and reducing its pixel resolution by half. Furthermore,
the structure of the neural network is limited to two layers in order to reduce
the size of the training data set that needs to be collected via calibration.
Nonetheless, the method reportedly achieves a low temporal resolution of
0.23 fps on a 1 GHz dual-core processor with 512 MB of memory. The tem-
poral resolution may be improved to 0.70 fps with the removal of the face
detection step, however this is reported to reduce the achievable PoR accu-
racy and constrains both the user and device to a fixed spatial configuration
[84], hence counteracting the primary benefit of utilising a portable device.
Pino and Kavasidis [41] alternatively exploit the availability of sensors inte-
grated on a smartphone device in order to reduce the computational cost and
hence improve the temporal resolution. At every image frame, gyroscope and
accelerometer data are retrieved and compared to the corresponding data at
the previous time step, permitting computation of the device displacement.
Under the assumption that the movement of the handheld device exceeds any
head movement performed by the user, eye detection by Haar classification is
only carried out if this movement exceeds a certain threshold. Otherwise, the
positions of the eye regions are tracked by a Camshift algorithm and the PoR
is subsequently estimated according to the centroids of the bounding boxes
enclosing the eyes. Pino and Kavasidis [41] do not report the achieved PoR
accuracy and processing frame rate, nonetheless a significant reduction in the
number of accurately detected fixation points with respect to ground truth
was reported when the smartphone was undocked and held by the subjects.
Krafka et al. [153] and Huang et al. [154] collect publicly available data
sets consisting of images [153] or videos [154] captured under unconstrained
conditions by the front-facing camera of a smartphone [153] or tablet device
[153, 154]. Krafka et al. [153] aim for a large-scale data set that is charac-
terised by substantial variability in pose, appearance and illumination, while
Huang et al. [154] capture video data while participants, of diverse ethnic
backgrounds, perform gaze shifts while standing, sitting, slouching or lying.
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Huang et al. [154] investigate the use of several feature descriptors and re-
gressors to estimate the gaze on the collected video data set. They report
that a combination of histogram of oriented gradients descriptors together
with random forest regression achieves a gaze estimation accuracy that is
competitive with the state-of-the-art, without constraining the head move-
ment or the user-to-screen distance. Krafka et al. [153], on the other hand,
employ the use of a deep convolutional neural network (CNN), providing it
with separate images of the eyes together with an image of the face and its
location within the full image, at the input layer. Based on such input to
the model, Krafka et al. [153] aim that the CNN infers meaningful informa-
tion that relates the eye and head poses, and the head and camera poses.
In order to compare with other state-of-the-art methods, support vector re-
gression was applied on features extracted from one of the fully-connected
layers of the CNN, which reportedly outperformed the results achieved by
other methods under consideration, including those achieved by Huang et al.
[154]. By reducing the complexity of the CNN model, Krafka et al. [153]
report an expected temporal resolution of 10 to 15 fps on a typical mobile
device.

While the appearance-based methods have been gaining increasing atten-
tion within the context of gaze estimation from low-resolution images, Wood
and Bulling [152] propose a shape-based approach that exploits the circu-
lar limbus boundary to estimate a PoR on a tablet screen. At every image
frame, the proposed method initially employs a Haar classifier to localise the
eye regions coarsely and subsequently improves upon this coarse estimate
by exploiting the change in intensity gradient across the limbus boundary.
Following ellipse-fitting to the limbus boundary and the computation of a
normal vector to the ellipse, the PoR is finally estimated as the average of
the intersection points between the vectors projecting from both eyes and the
tablet screen. The extraction of fine image detail required by the shape-based
method is reported as the main source of error with the highest impact on
the estimation accuracy of the PoR. Furthermore, the method of Wood and
Bulling [152] is reported to achieve a temporal resolution of 12 fps on a 2 GHz
quad-core processor with 8 GB of memory. While the discrepancy in process-
ing power between the devices employed by Holland and Komogortsev [84]
and Wood and Bulling [152] does not permit a direct comparison between
their computational efficiency, a similar improvement in temporal resolution
was also confirmed by Kunze et al. [89] who implemented a shape-based ap-
proach based on ellipse-fitting, over the appearance-based method of Holland
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and Komogortsev [84] on the same tablet and smartphone devices. Hence,
while the use of appearance-based methods appears to be advantageous for
gaze estimation from low-resolution eye region images, such as those acquired
by the integrated camera on mobile devices, the computational requirements
of the method under consideration should complement the limited processing
resources of the mobile platform in use.

6. Summary and Discussion of Reviewed Methods

Until recently, eye-gaze tracking has been mostly regarded as a desktop
technology that finds its use within the controlled conditions of the classical
office environment. As the host of applications for eye-gaze tracking broad-
ens, the necessity to integrate this technology into everyday life settings has
been gaining increasing attention. It has been argued herein that in absence
of any dependence upon specialised IR illumination sources and imaging
hardware, passive video-based eye-gaze tracking would be the natural op-
tion for pervasive applications. This critical review, therefore, focused on
emerging passive and unobtrusive video-based eye-gaze tracking approaches
in recent literature, with the aim to identify different research avenues that
are being followed in response to the challenges of pervasive scenarios.

We have seen that the shift towards pervasive eye-gaze tracking has
brought with it important progress in the field. The use of consumer-grade
cameras, such as webcams, for eye-gaze tracking has been gaining prevalence
in recent years, allowing the possibility to perform eye-gaze tracking on de-
vices with integrated imaging hardware without requiring further hardware
modification. This has been further reinforced with the widespread use of
mobile platforms, such as tablets and smartphones. As a result, we have
seen in Section 5.1 that appearance-based methods for gaze estimation have
also been receiving increasing attention, since these do not rely upon the
extraction of fine image detail and hence permit the estimation of gaze from
wide field-of-view images in which the eye regions appear at low resolution
[38, 40, 56, 57, 61, 81–84, 86].

This increased attention to apperance-based methods has given rise to
a further challenge that relates to the estimation of gaze from sparse [87,
104, 105] and person-independent data [108, 110], as opposed to large data
sets of training samples that would require considerable user cooperation
in order to collect. User cooperation is also required in the calibration of
methods that estimate the PoR by mapping specific eye image features to a
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monitor screen, leading to the emergence of methods that aim for implicit
calibration or calibration-free gaze estimation [10, 11, 114, 115, 120–122, 155].
We consider these research areas to be in their infancy with much room for
further research work and improvements.

The ability to estimate the eye-gaze under different head orientations is a
desirable characteristic of pervasive eye-gaze tracking, nonetheless head pose
estimation is a challenging problem in itself that has been studied consider-
ably over the years [133]. As methods for head pose estimation evolve and
improve in accuracy [156], we expect to see an increasing number of eye-gaze
tracking methods that compensate for head movement, together with an im-
provement in gaze estimation accuracy over the accuracy that has been so
far achieved by present head pose invariant methods.

6.1. Use of Data Sets in Comparing Between Methods

It is common practice to report the accuracy of the proposed method after
having evaluated this on a collection of data, and to compare the results with
other state-of-the-art methods in order to position oneself with respect to the
relevant literature. Nonetheless, the data set in use is an important factor
to consider when comparing between results of different methods. These
results often originate from experimental procedures that use different data
sets, which may not have been generated under the same user and ambient
conditions.

It may indeed be noticed from Table 1 that the reviewed methods are
evaluated on a variety of data sets, where most of these methods are evalu-
ated on test data collected by the authors themselves, while several others
make use of different publicly available data sets. The brief descriptions of
the typically used public data sets, in Table 2, reveal the diversity of condi-
tions under which these data sets are collected. The conditions under which
the self-collected data sets are generated tend to be similarly diverse. These
data sets usually feature variations in the characteristics of the participants
and their backdrops, the illumination conditions, and the eye and head move-
ments, as well as the imaging hardware by which the images are captured,
which in turn affects the image resolution and frame rate. Furthermore,
while the public data sets often report the conditions under which the data
has been collected, this information is not always provided with self-collected
data sets, hence making it difficult for other researchers to reproduce.

One should, therefore, consider these variations in data set collection
when comparing between results of eye-gaze tracking methods that make
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use of different data sets for evaluation. Kar and Corcoran [157] investigate
specifically this problem, identifying impacting factors such as changes in
head pose, camera resolution, display properties, positioning of the user with
respect to the display, platform motion and illumination changes. They re-
port that most of the methods in the literature investigate the effect of only
a few of these factors on the gaze estimation accuracy, such as the effect of
head pose variations, while the impact of the remaining factors is rarely con-
sidered at all. This lack of a common benchmark for evaluation may indeed
pose a serious difficulty in identifying the advantages and disadvantages of
different eye-gaze tracking methods. This problem may be even more pro-
nounced for pervasive eye-gaze tracking methods that aim to operate in the
wild, where variations in the operating conditions are much less constrained.
This presents an open problem for the development of pervasive eye-gaze
tracking, as will be outlined in Section 7.

6.2. Comparison of Quantitative Results

Many of the reviewed eye-gaze tracking methods quantify their gaze es-
timation accuracy by measuring either the angular error in yaw and pitch
separately, or combine the two into a single measurement, as reported in
Table 1. This error is measured with respect to ground truth data, and
is typically presented as the mean angular error of the left and right eyes.
Most eye-gaze tracking methods follow one of two approaches in order to
quantify their accuracy: by performing a validation procedure whereby the
user is asked to gaze at physical or screen markers, where the marker posi-
tions serve as ground truth data, or by running the implemented algorithms
on a data set of images, as indicated in Table 1. In both cases, the collection
of data in use, whether self-collected or publicly available, serves as ground
truth with respect to which the gaze estimation error may be measured.

The results in Table 1 suggest that free head movement tends to in-
troduce an increase in the gaze estimation error, when compared with the
results achieved by methods that consider a frontal and stationary head pose,
or which compensate for small head movement alone. Several of the meth-
ods that have been tested under free head movement in Table 1 [106, 107,
110, 134, 135, 146, 147], indeed report some of the highest gaze estimation
errors among all the state-of-the-art methods that have been considered. In
particular, some of the highest gaze estimation errors have been reported
by appearance-based methods that address Challenge B, which relates to
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the estimation of gaze from sparse, synthesised or person-independent train-
ing samples, and which aim to compensate for free head movement as well
[106, 107, 110]. The gaze estimation accuracy of such methods generally de-
pends on the appearance variations of the training data, which should repre-
sent the expected tracking conditions well. Head movement offers a challenge
in this regard by introducing additional variations in facial appearance under
different head poses. A possible source of error for these appearance-based
methods may, therefore, relate to insufficient representation of the appear-
ance variations that arise due to head movement, by the data set in use. In
the case of feature-based methods that rely on model-fitting for head pose es-
timation [134, 135, 146, 147], the gaze estimation error often originates from
inaccurate detection or tracking of specific face landmarks, which become
increasingly distorted and occluded with increasing head rotation angles.

Nonetheless, as has been previously discussed in Section 6.1, this increase
in error may be due to multiple factors, one of which relates to the condi-
tions under which the data set in use has been collected. In light of this
difficulty in comparing across different methods, we alternatively compare
between different performance measures of the same method when this has
been tested under different tracking conditions. Table 3 presents the state-
of-the-art methods for which such performance measures have been reported.
The table reports the gaze estimation error achieved under stationary, nat-
ural or free head movement for the challenge under consideration, together
with the gaze estimation error achieved in absence of the challenge being
addressed. The values within this table indeed reveal that different levels of
head movement tend to introduce an increase in the gaze estimation error,
over the error that may otherwise be achieved by the same method under a
stationary head pose [87, 110, 123]. This increase in error was also observed
in the values of Table 1 and is consistent with the findings of Kar and Cor-
coran [157], who investigated the effect of head pose variations on the gaze
estimation accuracy. It has been previously discussed that possible causes
for this may be the insufficient representation of appearance variations in
the training data [87], or inaccurate fitting of a face model to specific face
landmarks for detection and tracking [110]. The values within the same table
also reveal that methods which do not handle head movement but are tested
in conditions where the user is allowed to move naturally, could benefit from
head movement compensation [97, 98]. Indeed, Cristina and Camilleri [98]
improve over previous research work [97] by introducing a mechanism that
handles variations in head pose, by approximating these to planar movement,
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and test both methods under natural head movement [97, 98]. A comparison
of the achieved results reveals a reduction in the gaze estimation error when
head movement compensation was included [98].

Furthermore, the gaze estimation error is also noticed to increase in ab-
sence of controlled conditions, which would otherwise constrain the user to
perform calibration or permit the collection of user-specific training data
[110, 123, 128]. For comparison purposes, Mora and Odobez [110] evaluate
the gaze estimation results obtained through the use of person-independent
training samples, against the use of user-specific training data. Similarly,
Lu et al. [123] and Model and Eizenman [128] compare the results achieved
through their calibration-free methods, with those obtained following the
inclusion of a calibration procedure prior to the estimation of gaze. The
reported results suggest that facilitating eye-gaze tracking in less controlled
scenarios by reducing the burden of data collection and calibration on the
user, tends to jeopardise the achievable gaze estimation accuracy. The level
of gaze estimation error presently reported by methods that address the chal-
lenges of pervasive eye-gaze tracking [110, 123, 128] appears to be higher than
the error reported for methods that are tested in the absence of the respective
challenge. This suggests that the methods by which the pervasive eye-gaze
tracking challenges are being addressed have, so far, not been able to com-
pensate sufficiently for the variations brought about by such challenges. This
highlights the importance of addressing the challenges of pervasive eye-gaze
tracking, and to report such performance measures for the proposed method
which allows the results to be interpreted in the correct context.

7. Future Directions for Pervasive Eye-Gaze Tracking

Several of the future directions that Hansen and Ji had outlined in their
survey six years ago [15] have been increasingly taken up by the eye-gaze
tracking community over recent years. Several of these directions point to-
wards a limited use of IR illumination, limited need for calibration, and
reduced costs by the use of consumer-grade cameras. This uptake is evi-
denced by the numerous methods discussed within this review, which aimed
to address different challenges associated with pervasive eye-gaze tracking.

We propose additional directions to be considered in the development of
future pervasive eye-gaze tracking methods, as follows:

• Robustness to non-rigid face deformations : Non-rigid face de-
formations due to changes in facial expression are a common occurrence
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during tracking, yet this challenge is not typically addressed by the eye-
gaze tracking community. Head pose invariant methods that infer the
head orientation from the relative configuration of specific facial fea-
tures are particularly susceptible to non-rigid face deformations [158],
since these often regard the face as a rigid body. In light of the chal-
lenges of pervasive eye-gaze tracking, a future direction is to develop
methods that are robust to non-rigid face deformations, hence lifting
further constraints on the natural user movement.

• Robustness to appearance variations: Issues arising from appear-
ance variations, such as different user ethnicities or the use of specta-
cles during tracking, have also received little attention in the literature.
Ethnic variations of the face features, such as those relating to the ap-
pearance of the eyes and colour of the skin, may affect methods that
exploit the photometric appearance if these are not catered for. Fur-
thermore, the use of spectacles has also been reported to hinder partici-
pants from making effective use of an eye-controlled public display [11],
with inaccuracies in the eye detection due to the presence of the spec-
tacles frame around the eye regions being reported as the main cause.
Future work on eye-gaze tracking should, therefore, address these issues
as an important step towards gaze estimation in pervasive scenarios.

• Simultaneous tracking of multiple users: Research on user in-
teraction in the wild reportedly indicates that often multiple users will
attempt to interact with a display screen simultaneously [10, 11], which
requires further understanding of the interaction modes between multi-
ple users in pervasive scenarios. Hence, this calls for methods that ad-
dress the challenges associated with eye-gaze tracking in unconstrained
environments, such as the detection of multiple eye image pairs and
subsequent mapping of the image information to multiple PoRs on the
same display screen, without generating conflicting commands.

• Illumination invariance : Variability of the surrounding illumina-
tion is one of the main challenges of eye-gaze tracking in the wild,
such as in open [10, 11] and outdoor spaces [127], yet this challenge
has not been widely addressed in the literature. Methods that exploit
the photometric appearance of the eye region may be particularly sus-
ceptible to illumination variations, since these variations may alter the
perceived eye region appearance inside the image space. A few of such
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methods that address this challenge typically perform histogram equal-
isation during a pre-processing stage [37, 95], in order to enhance the
image contrast. Alternatively, other methods alleviate this problem by
employing artificial illumination sources, such as lamplight [62] or IR
illumination [57, 90], in order to stabilise the surrounding illumination.
Nonetheless, the latter is not a desirable solution in real-life scenar-
ios, especially if the eye-gaze had to be tracked in open and outdoor
spaces that would not permit the use of artificial illumination. Hence,
future work should aim for illumination invariance as one of the main
challenges of pervasive eye-gaze tracking.

• Platforms with limited resources : Over recent years, we have wit-
nessed an increasing uptake in the use of off-the-shelf mobile devices
comprising integrated imaging hardware, such as tablets and smart-
phones. It is desirable to employ the eye-gaze as an additional modality
for interaction with these devices, as we have seen within this review,
despite their limited resources in terms of computing power and screen
real estate. Most research work has so far implemented widely-used al-
gorithms for eye-gaze tracking on such mobile devices, performing small
algorithmic modifications in order to reduce the required computational
cost. These methods have typically reported temporal resolutions lower
than 12fps, depending on the available computational resources, and
gaze estimation error of up to 7◦, which is considerably large with re-
spect to the small screen size of such devices. Hence, future research
may consider the development of methods that are specifically targeted
to exploit the limited resources of such devices, aiming to improve the
temporal resolution and gaze estimation accuracy.

• Spontaneous user interaction : Most research effort over the past
years has been mainly dedicated to the development of methods that
condition the user to a sitting position in front of a display device,
such as a computer monitor. Recent years have, nonetheless, seen the
deployment of an increasing number of display devices in public spaces
[159], such as in shopping malls, airports and train stations, which
present a good opportunity for user engagement and interaction [159].
Since passersby will tend to interact with the display spontaneously and
over short periods of time, particular challenges of tracking on public
displays relate to interaction while the user is on the move, at different
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user-display distances and positions [159]. Methods that address these
challenges appear to be gaining traction in the literature [159], which
will potentially lead to compelling applications for eye-gaze tracking
outside of the office environment in the near future.

• Improvement of gaze estimation accuracy : The level of accept-
able gaze estimation accuracy may be subject to the application at
hand, such as for gaze interaction on large displays, where visual stim-
uli tend to be large in size and spaced apart, high accuracy may not
necessarily be required. Nonetheless, a high level of gaze estimation
accuracy would be desirable in many other applications facilitating, for
instance, the analysis of gaze patterns on cluttered scenes or designs, or
gaze interaction with dense user interfaces on a tablet or smartphone
screen. It does not appear that present gaze estimation methods are
yet achieving this level of accuracy, with many of the reported gaze
estimation errors being higher than 5◦. We have also seen, in Section
6.2, that the gaze estimation error also tends to increase with the in-
troduction of challenges associated with pervasive eye-gaze tracking,
where at times this error was seen to exceed 10◦. Hence, future work
should strive to improve the gaze estimation accuracy of passive meth-
ods, bringing this closer to that achieved by active eye-gaze tracking
systems [15]. A possible direction for future work may be to explore
new ways of exploiting the information in the image to improve the
gaze estimation accuracy.

• Common benchmark for evaluation : We have previously outlined
in Section 6.1, that in absence of a common benchmark for evaluation,
a reliable comparison between the results of different eye-gaze track-
ing methods becomes difficult to carry out. We have seen that, while
there are various factors that may have a considerable impact on the
gaze estimation accuracy, their effect is rarely evaluated by most of the
methods in the literature [157]. In view of this, designing a benchmark,
which permits a reliable assessment of different eye-gaze tracking meth-
ods, becomes an imperative task to shed light on key factors that may
impact the field in such a way as to hamper its advancement if not ad-
dressed. The information on each error source that may be extracted
through controlled experiments, may possibly steer the development of
future methods into new directions.
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8. Conclusion

An increasing interest in pervasive eye-gaze tracking has generated a
growing effort toward the development of eye-gaze tracking methods that
can robustly handle the challenges associated with uncontrolled everyday life
scenarios, as evidenced by the literature that has been discussed within this
review. Nonetheless, further open challenges that have not yet received sub-
stantial attention remain and, hence, these call for methods that can handle
emerging challenges associated with the use of eye-gaze tracking under un-
controlled conditions in a robust manner. This paradigm shift in approaching
the problem of eye-gaze tracking that progresses over the classical notion of
eye-gaze tracking as a desktop technology, increases the applicability and up-
take of eye-gaze tracking technology through a wider variety of applications.
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Table 1: Reviewed state-of-the-art methods that report the gaze estimation error, where:
Experimental conditions indicates the level of head movement under which the methods
have been tested; HP indicates whether the methods compensate for head movement,
where X refers to head pose estimation in 3-dimensional space, ≈ refers to a planar
approximation of head movement, and × means that head movement is not compensated
for; Error reports the gaze estimation error separately as (yaw◦, pitch◦) or as a single
measurement that combines the two, and may include the standard deviation as ±σ◦;
while Data set refers to a description of the data set in use as provided in Table 2.

Experimental conditions
Frontal and stationary head pose Natural/slight head movement Free head movement

Challenge Ref HP Error (◦) Data set Ref HP Error (◦) Data set Ref HP Error (◦) Data set

A

[96] × 6.91 ± 4.46 (i) [94] × 1.33 ± 0.13 ◦ [84] × 3.55 ± 0.42 ◦
[95] × (1.56, 2.57) ◦ [84]1 × 4.42 ± 0.55 ◦
[97] × (1.46, 0.71) ◦ [93] × (2.07, 2.48) ◦
[98] ≈ (0.54 ± 0.24, ◦

0.42 ± 0.20)

B

[87]2 ≈ 0.59 ± 0.38 ◦ [87] ≈ 2.37 ± 1.42 ◦ [106]4 X 13.55 (ii)
to 0.97 ± 0.57 ◦ [105] × 0.90 ◦ [106]5 X 11.12 (ii)

[104]3 × 0.62 to 0.69 ◦ [106]6 X 7.90 (ii)
[109] × 7.50 (i) [107] X 9.95 (ii)
[110] X 10.90 ◦ [110] X 16.80 ◦

C

[120] × 6.00 ± 3.50 ◦ [12] × 6.00 ◦ [117] X 2.90 ±2.10 ◦
[116] × 4.17 ◦ [115] × 4.30 ◦ [118] X 2.56 ◦
[123]7 ≈ 2.57 ± 0.38 ◦ [122] × 3.90 ◦ [119] X 4.06 ◦

[128] × 1.30 ◦ [126] X (5.87 ± 3.73, ◦, (iii)
[131] × 0.796 ◦ 5.49 ± 3.45)

[129] X <3.00 ◦
[130] X <3.00 ◦

D

[27] X (4.60, 4.70) ◦
[126] X (5.87 ± 3.73, ◦, (iii)

5.49 ± 3.45)
[134] X 9.90 ◦
[135] X 9.74 (iv)
[136] X 2.42 ± 1.06 ◦
[137] X 6.30 ◦
[139] X 3.33 ◦
[140] X 4.2867 (i)
[140] X 3.8925 (iii)
[140]8 X 5.6265 (i), (iii)
[143] X 4.40 ◦
[144] X (5.40, 9.70) ◦
[145] X 2.38 ◦
[146] X <10.00 ◦
[147] X 9.44 (iii), (v)
[149] X (3.40, 4.49) ◦
[150] X 3.00 to 6.00 ◦
[151] X (2.10 ± 9.70, ◦

5.90 ± 11.10)

E
[84] × 3.55 ± 0.42 ◦
[84]1 × 4.42 ± 0.55 ◦
[152] × 7.00 ◦
[154]9 × 2.86 to 4.76 (vi)
[154]10 × 3.63 to 6.03 (vi)

1Face detection removed to improve the temporal
resolution on a tablet device.

6Synthesised and real data comprising expected
head and eye poses only.

2Using four different training sets, containing 33, 23,
18, and nine samples.

7Using maximum number of considered on-screen
fixation markers, 140.

3Using three different training sets, containing 33,
23, and 18 samples.

8Frontal low-resolution face images with interocular
distance of 50 pixels.

4Training on synthesised data set. 9Person-dependent; User-tablet distance varied be-
tween 30 to 50 cm.

5Synthesised data set comprising expected head and
eye poses only.

10Person-independent; User-tablet distance varied
between 30 to 50 cm.

Challenge A: Gaze Estimation from Low-Resolution Eye Images.
Challenge B: Gaze Estimation from Sparse, Synthesised or Person-Independent Training Samples.
Challenge C: Reduced or Implicit Calibration.
Challenge D: Head Pose Invariant Gaze Estimation.
Challenge E: Eye-Gaze Tracking on Mobile Platforms.
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Table 2: Description of the data sets that have been used in testing the reviewed state-of-
the-art methods of Table 1.

# Data set Description
◦ Self-collected Data set Test data collected by the authors themselves. The conditions un-

der which different self-collected data sets are generated tend to be
diverse, and these data sets usually feature variations in the char-
acteristics of the participants and their backdrops, the illumination
conditions, and the eye and head movements, as well as the imaging
hardware by which the images are captured. Information regarding
the conditions under which these data sets have been collected is
not always provided by the authors.

(i) Multi-view Gaze Data set This data set contains a total of 64,000 images, captured via eight
synchronised cameras while each of the 50 subjects in the data set
gazed at 160 visual targets displayed on a monitor screen. The im-
ages have been captured at SXGA resolution at a camera-to-subject
distance of 60 cm, while the head pose was stabilised by a chin rest.
The gaze directions spanned approximately ± 25◦ horizontally and
± 15◦ vertically. The data set also includes the 3-dimensional po-
sitions of the visual targets and the monitor plane, together with
the intrinsic and extrinsic camera parameters.

(ii) MPIIGaze Data set This data set contains 213,659 images collected from 15 participants
during natural everyday laptop use. No constraints have been im-
posed on the environment and illumination conditions under which
the images have been captured.

(iii) Columbia Gaze Data set This data set contains 5,880 images of 56 people, captured at a
resolution of 5,184×3,456 pixels. Each subject features five head
poses and 21 gaze directions per head pose, in front of a uniform
background under controlled illumination conditions. The subjects
are ethnically diverse and 21 of them wear glasses.

(iv) UUlm HPG Data set This data set contains 2,220 colour images of 20 subjects, captured
at a resolution of up to 1600×1200 pixels. The participants per-
form various combinations of horizontal and vertical head poses and
gaze directions, in front of a uniform background under controlled
illumination conditions.

(v) EYEDIAP Data set This data set is composed of colour and depth images captured at
a VGA resolution of 640×480 pixels and a frame rate of 30fps, to-
gether with images recorded at a full HD resolution of 1920×1080
pixels and a frame rate of 25fps. The data has been recorded from
16 participants, positioned in front of a uniform background under
controlled illumination conditions. For three of these participants,
two separate recording sessions were held on different days, and
under different illumination and distance to the camera. The par-
ticipants were instructed to maintain a stationary head pose while
fixating at a moving visual target, or perform head movements while
fixating at the same visual target.

(vi) Rice TabletGaze Data set The video sequences in this data set were captured by the front-
facing camera on a Samsung Galaxy Tab S, at a resolution of
1280×720 pixels. Each of 51 participants recorded 16 video se-
quences while standing, sitting, slouching or lying, without being
restricted on how they held the tablet, for a total of 816 videos.
The group of participants was ethnically diverse and 26 of them
wore prescription glasses. The videos were captured in a naturally
lit office environment.
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Table 3: Performance measures of the same method under different tracking conditions.
Challenge error refers to the gaze estimation error under stationary, natural/slight or free
head movement for the challenge under consideration, while Challenge error refers to the
gaze estimation error achieved in absence of the challenge being addressed.

Challenge Ref
Challenge error (◦) Challenge error (◦)

Stationary Natural/slight Free Stationary Natural/slight Free
A [98]1 (0.54 ± 0.24,

0.42 ± 0.20)
A [97]2 (1.46, 0.71)
B [87] 0.59 ± 0.38 2.37 ± 1.42

to 0.97 ± 0.57
B [110] 10.90 16.80 7.60 12.90
C [123] 2.57 ± 0.38 12.77 ± 5.71 2.37 ± 1.25
C [128] 1.30 0.80

1With head movement compensation.
2Without head movement compensation.

Challenge A: Gaze Estimation from Low-Resolution Eye Images.
Challenge B: Gaze Estimation from Sparse, Synthesised or Person-
Independent Training Samples.
Challenge C: Reduced or Implicit Calibration.
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