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%stract—Computaﬁonal facial models that capture properties of facial
es related to aging and kinship increasingly attract the attention of the
%search community, enabling the development of reliable methods for
e progression, age estimation, age-invariant facial characterization,

d kinship verification from visual data. In this paper, we review recent
Farvances in modeling of facial aging and kinship. In particular, we
provide an up-to date, complete list of available annotated datasets and
an in-depth analysis of geometric, hand-crafted, and learned facial rep-
esentations that are used for facial aging and kinship characterization.
ﬁoreover, evaluation protocols and metrics are reviewed and notable
perimental results for each surveyed task are analyzed. This survey
(ﬁjows us to identify challenges and discuss future research directions

(for the development of robust facial models in real-world conditions.
e

(Q\
(B INTRODUCTION

umans possess explicit, cue-based, and often culturally
termined systems for perceiving the facial appearance of
eir peers [250]. Facial appearance is a primary source of in-
rmation regarding the person’s identity, gender, ethnicity,
fective state, head pose, age and kinship relations. Hence,
e perception of facial attributes governs person percep-
n, interpersonal attraction, and consequently prosocial
=and social behaviour [5], [170].
.—_ Human face has been thoroughly studied from different,
SYut complementary, perspectives across several disciplines
?gch as neuroscience e.g., [70], psychology e.g., [23]], [157],
ciology e.g., [61]], anthropometry e.g, [66], medicine e.g.,
[51] and computer science. From a computational point of
view, in particular, advances in computational face mod-
eling enabled the development of reliable methods for
automatic detection of faces [249], recognition of identity
[259], [107], [2], gender [159], and ethnicity [72]; detection
of salient facial features [223], [58], estimation of head pose
[50] and analysis of facial expressions [190], [169], [251] from
visual data. Notably, recently proposed methods match or
even achieve better accuracy than humans in several tasks
e.g., [97]. This progress herald a surge of novel applica-
tions in communication, entertainment, cosmetology, and
biometrics, to name a few, while facilitating basic research
in social sciences and medicine e.g., [158]. A thorough list
of machine learning and computer vision methods solving
the aforementioned face modeling and analysis tasks can
be found in the comprehensive survey papers [249], [259],
[107], [159], [72], [223], [50], [190], [251].

Research towards the development of more detailed
computational facial models that capture properties of fa-
cial cues related to aging and kinship increasingly attracts
the attention of the community. Indeed, by capitalizing on
recent advances in machine learning, computer vision, and
the massive collections of facial data available, significant
progress has been made towards addressing the following
problems:

i Age Progression: that is, the process of transforming a
facial visual input, in order to model it across differ-
ent ages. The change of the age can be bidirectional,
so that the facial output can appear either younger
or older than the input.

ii Age Estimation: refers to the process of labelling a
facial signal with an age or age group. The input sig-
nal can be 2D, 3D or image sequences. The problems
that fall into this category can be divided further
into two subcategories, depending on the labels of
the training data: (a) real age or (b) apparent age
estimation, which refers to the age that is inferred
by humans based on the individual’s appearance.

iii ~Age-Invariant Facial Characterization: involves the
process of building a signal representation that is
invariant to the facial transformations and appear-
ance changes caused by aging.

iv  Kinship Verification: is defined as the process of de-
termining whether the individuals in a pair of facial
visual inputs are blood related.

Early models for facial age progression and estimation
date back to 1994-95 [118], [43], while the problem of face
recognition across ages was first investigated in 2000 [121].
More recently, since 2010, methods for kinship verification
have emerged [65]. Since then, the development of 1) ro-
bust and computationally efficient models (e.g., AAMs [40],
CLMs [42] etc) and descriptors (e.g., SIFT [144], HoGs [44],
LPPs [99], SURF [12], DAISY[215] etc) of facial appearance,
2) effective machine learning methods such as Boosting [71]
and Support Vector Machines [220] and 3) manually anno-
tated facial datasets e.g.,, MORPH2 (2006), FG-NET (2004),
FERET (1998), YGA (2008), Gallagher’s Images of Groups
(2009), Ni's Web-Collected Images (2009), have facilitated
the deployment of reliable computational models for facial
aging and kinship. Models, methods, and data for facial
aging modeling which have been published before 2010



are thoroughly surveyed in [179], [73], while an overview
of research efforts for facial kinship modeling is currently
missing.

This paper aims to provide an up-to-date literature sur-
vey of the work done 1) towards the development of facial
aging models, complementing previous studies in [73]], [179]
in several ways and 2) in the emerging topic of facial kinship
modeling. Concretely, the aims of this survey are organized
as follows:

e A complete catalogue of publicly available datasets
with manual annotations for facial age and kinship
modeling tasks is listed in Section (3} We put partic-
ular emphasis on data collected in naturalistic, real-
world (in the wild) conditions by providing reviews
for 9 recently collected datasets for age modeling and
all the available (i.e., 16) collections of facial images
for kinship verification.

e A comprehensive review of recent as well as seminal
methodologies for age progression, age estimation,
age-invariant facial characterization, and kinship
verification is provided in Sections 4-7. In particular,
we provide an in-depth analysis of both geometric,
hand-crafted and learned facial representations for
the aforementioned tasks and discuss the type of
information they encode as well as their advantages
and limitations. We further elaborate on methods
that rely on deep discriminative (e.g.,, CNNs [125])
and generative (e.g., GANs [85]) models and appear
to be highly effective. Moreover, we review evalu-
ation protocols and metrics, and analyze the most
notable experimental results for each surveyed task.

e The review of data, computational methods for facial
aging and kinship reveal useful practices as well as
challenges that are yet to be solved. These along with
drawn conclusions are discussed in Section 9.

To begin with, a number of modern applications of com-
putational models for facial aging and kinship are discussed
in the following section.

2 APPLICATIONS

In this section we present the most significant applications
of modeling facial aging as well as kinship in biometrics,
forensics, medicine, cosmetology, business and entertain-
ment.

Biometrics: The physical, physiological or behavioural
cues based on which a person is recognized, e.g., iris,
fingerprint, face are referred to as biometrics [108]. Age
and kinship comprise soft biometrics [109], [45], [164] as
they can be used to boost the effectiveness of recognition.
Besides improving face recognition accuracy there is a need
for robustness towards aging and kinship. Passport checks
demand age-invariance in case of large age gap between
the passport image and the person in question. Similarly,
kinship invariance can potentially boost automatic face
recognition, in particular towards distinguishing between
kin that look alike.

Forensics: Forensics include a set of scientific techniques
that are used for crime detection. Among these techniques,
forensics art demonstrates the challenging task of producing
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a lifelike image of a person. In some cases, forensics experts
face the need to change the age of a face. Such cases include
updating archive images of wanted criminals as well as
images of lost children. Additionally, cases such as matching
orphaned or lost children and finding the kin of a victim, to
name a few, demand the verification of kin relationship of
two people. To that end, automatic genealogical research can
significantly aid the work of law enforcement agencies.
Medicine and Cosmetology: Being able to model aging and
kinship and simulating the transformations on the face is
vital for modern medicine and cosmetology. Medical home
systems that are used to monitor elderly people can aid
medical diagnosis by detecting premature aging. On the
other hand, automatic rejuvenation of the face can serve
as a guide for cosmetic surgery. Particularly in the case of
children, the parents’ craniofacial aging patterns can be used
to predict the child’s head growth, so that injury-related
cosmetic surgery can have optimal long-term results.
Commercial use: The ever-growing usage of social media
and availability of personal photos have led to the rapid
integration of facial analysis by businesses. Automatically
estimating the customers” age can help with efficient cus-
tomer profiling and age-oriented decision making, e.g., age-
oriented advertisements. Likewise, targeted ads can be more
effective when taking kinship into considerations, as peo-
ple’s preferences can be affected by their relatives.
Entertainment: Visual effects that age or rejuvenate the
actors are already being used in the film making industry.
These effects are not limited to movies but are also widely
applied to photo editing. The imminent integration of such
tools into popular design software will make for more
realistic retouche of photos. Make-up artists that specialize
in transforming the face can leverage the construction of
person, age and kin specific morphable models. Guided by
those models, the artists will transform the face of the actor
for roles that demand sibling-like similarity between actors.

3 DATASETS

The availability of labelled datasets is the cornerstone of
the development of facial models for aging and kinship.
In this section, we review recently released datasets which
contain annotations for age progression, age estimation, age-
invariant facial characterization, and kinship verification.
Particular emphasis is put on data capturing naturalistic,
real-world conditions, often referred to as in the wild [105].
A complete catalogue of the available datasets for facial
aging modeling is listed in Table [1] while Table [2] contains
the available facial data for kinship verification.

3.1 Datasets with age labels

The vast majority of the available datasets for facial aging
modeling contain still images and apart from the FACES,
IRIP, LHI, and YGA face datasets, they are not balanced with
regards to the gender and age of the subjects, as shown in
Table |1} Also, while containing an abundance of different
annotated faces, many of these datasets do not contain
a considerable number of images of the same person at
different ages, which is essential for training methods for
age progression and age-invariant facial characterization.



TABLE 1: Datasets with age labels

Databases #data #subjects  age-range precision  Inthe Wild  Year  modality
AgeDB [156] 16,458 568 1-101 exact age  yes 2017  images
IMDB-WIKI [185] 523,051 20,284 0-100 exact age yes 2016  images
AFAD [162] 164432 N/A 14-40+ exact age  yes 2016  images
IRIP [245] 2,100 N/A 1-70 exact age yes 2016  images
OUI-Adience [57] 26,580 2,284 0-60+ age group  yes 2014 images
CACD [32] 163,446 2,000 N/A exact age yes 2014  images
UvA-Nemo [49] 1,247 400 8-76 exact age no 2014  videos
VADANA [204] 2,298 43 0-78 age group  yes 2011  images
LHI Face Dataset [1] 8,000 8,000 9-89 exactage  no 2010 images
HOIP [69] 306,600 300 15-64 age group  no 2010  images
FACES [55] 1026 171 19-80 exactage  no 2010 images
Web Image Db [160] 219,892 N/A 1-80 exactage  yes 2009  images
Images of Groups [77] 28,231 28,231 0-66+ age group  yes 2009 images
YGA [88] 8,000 1,600 0-93 exactage  yes 2008  images
Iranian Face [10] 3,600 616 2-85 exact age  yes 2007  images
Brown Sisters [163] 16 4 15-62 exact age yes 2007  images
Scherbaum’s Db [192] 438 438 8-18 or adult  both no 2007 3D
MORPH 2 [181] 55.134 13.618 16-77 exact age no 2006  images
WIT-BD [217] 26,222 5,500 3-85 age group  yes 2006  images
Al&R [76] 34 17 22-66 exact age no 2006  images
FRGC [173] 50,000 568 18-70 exact age  partially 2005 images, 3D
Lifespan Database [154] 576 576 18-93 age group  yes 2004 images
FG-NET [119],[122] 1.002 82 0-69 exact age yes 2004 images
PIE [200] 41,638 68 N/A exact age no 2002  images
FERET [174] 14,126 1,199 N/A exact age  partially 1998  images
Caucasian Face Db [24] 147 147 20-62 exactage  no 1995  images
TABLE 2: Datasets with kinship labels
Databases #data  #kin pairs  #relationships Inthe Wild same photo  Year modality
KFVW [242] 836 418 4 yes N/A 2017  videos
WVU Kinship Db [115] 904 113 7 yes N/A 2017  images
Families In the Wild [184] 11,193 418,060 11 yes partially 2016  images
TSKinface [176] 787 1,015x2 4 yes yes 2015 images
Sibling-Face [96] N/A 720 3 yes no 2014 images
Group-Face [96] 106 395 7 yes yes 2014  images
HOQfaces [221] 184 92 3 no no 2014 images
LQfaces [221] 196 98 3 yes no 2014  images
KinFaceW-I [149] 1,066 533 4 yes partially 2014 images
KinFaceW-II [149] 2,000 1,000 4 yes yes 2014  images
Family 101 [64] 14,816 206 4 yes no 2013  images
IMTD-Kinship [114] 544 272 7 yes N/A 2012  images
VADANA [204] 2,298 69 7 yes yes 2012  images
UvA-Nemo [49] 515 95 7 no no 2012 videos
UBKinface [236], [194] 600 400 4 yes no 2011  images
CornellKin [65] 300 150 4 yes partially 2010  images

For all aging modeling tasks, the most widely used
benchmarks, and their respective aging databases, are FG-
NET and MORPH (alboum 2). The Face and Gesture recog-
nition Network database (FG-NET) contains 1,002 images of
82 subjects, which are mostly Caucasians. The age of the
subjects ranges from newborns to 69 years old, while the
gap between the age of the same person in different images
ranges from 0 to 54 years. This dataset was collected from
personal photo albums and contains coordinates of facial
landmarks for each image. The MORPH dataset was re-
leased in 2006 and its second album contains 55,134 images
of 13,618 people. The subjects are mostly African while there
are 4 images of each person on average.

3.1.1 Data suitable for age estimation

The databases used for the task of age estimation vary
greatly in terms of sample size, number of subjects, and
age-range, as indicated in Table [I} Nevertheless, the recent
success of deep learning-based models in computer vision

has created a need for larger datasets with age annotations.
Towards this end, the IMDB-WIKI, AFAD and OUI-Adience
datasets have been collected.

OUl-Adience [57]: The OUI-Adience dataset contains
26,580 facial images from the albums in the website
Flickr.com. These photos were made publicly available
through the Creative Commons license. The photos were
collected from approximately 200 albums, while the Viola-
Jones [222] detector was used to detect the faces. The age-
range of the dataset is 0-60+, although the ages above 48
years old are less represented.

UvA-NEMO [49]: The UvA-NEMO dataset consists of
1,240 videos of 400 people smiling. The smiles are both
posed and spontaneous and were captured under controlled
conditions. The age of the faces varies from 8 to 76 years.

AFAD [162]: The Asian Face Age Dataset (AFAD) was
introduced by Niu et al. and contains 164,432 face images.
These images were collected from the RenRen Social Net-



work which is widely used by Asian students. Therefore,
most subjects are Asian and under 30 years old. The date of
birth of every subject was provided by the respective user
account.

IMDB-WIKI [185]: The largest age-annotated dataset is
the IMDB-WIKI dataset. The dataset consist of 523,051 facial
images that were crawled from the Wikipedia and IMDB
websites. All metadata were also collected from the above
mentioned web-sites. The average age of the dataset is about
32 years old.

The age annotations to all the datasets in Table [1| refer
to real age, and therefore cannot be used for the task
of apparent age estimation. In order to address the lack
of such datasets Escalera et al. [59] built the Chalearn-
AgeGuess dataset, which is the first dataset with apparent
age annotations. This dataset contains 4,691 images and was
used for the Chalearn competition. The annotations were
acquired using the AgeGuess online voting platform. Using
the same platform, as well as Mechanical Turk workers, the
APPA-REAL [3] dataset was introduced by Agustsson et al.
This dataset contains 7,591 faces with real and apparent age
annotations in more than 7,000 images. The age range is
between 0 and 95 years.

3.1.2 Datasets for Age Progression and Age-Invariant Fa-
cial Characterization

The tasks of age progression and age-invariant facial char-
acterization require data containing the same person at
different ages. Therefore, the collection of such databases is
a challenging procedure. Besides the FG-NET and MORPH
datasets, the recently created AgeDB, VADANA and CACD
datasets are also widely used for age progression and age-
invariant facial characterization tasks. A brief overview of
these datasets is presented below.

AgeDB [156]: AgeDB contains 16,488 images of 568 sub-
jects, manually collected from Google Images. Avoiding to
collect the images in a semi-automatic manner ensures that
the labels are not noisy. Each subject in the dataset has
29 photos on average, while the average age-range of the
subjects is 50.3 years.

VADANA [204]: The VADANA dataset contains 2,293
images from only 43 subjects (26 males and 17 females) that
are mostly South-Asian. It contains 3-300 images per subject
with wide variation in pose, illumination and occlusions,
while the maximum age gap between two images of the
same subject is 37 years. The annotations of this dataset
include amongst other attributes, kinship and occlusions
(e.g., facial hair and glasses).

CACD [32]: The Cross-Age Celebrity Dataset (CACD)
was published in 2014 and contains 163,496 images from
2,000 celebrities. It was collected from Google Images using
information from IMDB. The dataset contains more than 80
images per subject on average, but the maximum age gap
between these images is 10 years. This is due to the fact that
the collected images were captured between 2004 and 2013.
The subjects are mostly Caucasian.

Table [1| reveals that age modeling has been primarily
studied by employing datasets captured in the wild. The
first major benchmark in the wild is FG-NET and traces
back to 2004. Ever since, the majority of publicly available
datasets are captured under unconstrained conditions, albeit
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having a small number of images. Images from the FG-
NET or Morph2 datasets exhibit limited pose and image
quality variation. These issues deteriorate the real-world
performance of age modeling systems, especially when
dealing with extreme poses or small and blurry images. The
recent advances in face detection technology [153]], [254] has
resulted in much larger automatically collected datasets e.g.,
IMDB-WIKI, CACD, OUI-Adience. These datasets contain a
greater number of images and exhibit greater variation with
regards to pose, expression and image quality. The reported
baseline performance for the OUI-Adience is much lower
(i.e., classification accuracy of 45.6%) than older datasets,
which is characteristic of the challenging nature of the
benchmark.

3.2 Datasets with kinship labels

Kinship verification from faces is a relatively new task,
aiming to verify whether the individuals in a pair of facial
visual inputs are blood related. There are eleven different
kinds of blood relations: (i) Father- Daughter, (ii) Mother-
Daughter, (iii) Father- Son, (iv) Mother- Son, (v) Sister- Sister,
(vi) Sister- Brother, (vii) Brother- Brother. (viii) Grandfather-
Grandson, (ix) Grandmother- Grandson, (x) Grandfather-
Granddaughter and (xi) Grandmother- Granddaughter. A
catalogue of dataset with kinship annotations is tabulated in
Table 2} The vast majority of the available data is annotated
in terms of only 4 kin relations.

CornellKin [65]]: The first widely used dataset with kin-
ship annotation is the CornellKin Database. The dataset
consists of 300 images and 150 kin pairs, gathered through
online searches.

UB KinFace [236], [194]: In 2011, Shao et al. published
the UB KinFace Ver 2.0 dataset, which was an extension to
UB KinFace Ver 1.0. The UB KinFace consists of 600 web-
collected images and 400 kin pairs, half of which are Asian.
Every kin pair is represented by an image of the child, an
image of the parent at a young age and an image of the
parent at an older age.

IITD Kinship Database [114]: The IIITD Kinship Database
was released in 2012 and contains 544 images of 272 kin
pairs in unconstrained environment. The dataset also in-
cludes 272 non-kin pairs. The faces are mainly Indian and
American, while other ethinicities include Asian and Afro-
American. The dataset contains 7 kin relations.

Family 101 [64]: The Family 101 dataset was published
in 2013 and consists of 14,816 images of 607 people, col-
lected from Amazon Turk workers. It is also the first one
to indicate the structure of the families. In particular, the
dataset contains whole family trees, each containing 1 to 7
nuclear families. There are 206 families, each having 3 to
9 family members. The subjects depicted in the data are
mostly Caucasian.

KinFaceW I & II [149]: The most widely used kinship-
annotated datasets are the KinFaceW I & II albums that
were intoduced by Lu et al. in 2012. The KinFaceW I album
contains 1,066 images and 533 kin pairs, while the KinFaceW
IT contains 2,000 images of 1,000 pairs. All the images are
collected from the web, while the difference between the
two albums is that KinFaceW II contains kin-related faces
cropped from the same image.



HQ & LQ Faces [221]]: In order to investigate the ability
to generalize from high-quality images captured under con-
trolled condition to low-quality images gathered from the
Internet, Vieira et al. introduced the HQfaces and LQfaces
datasets. The HQfaces dataset contains frontal images of
92 sibling pairs captured by a professional photographer
in neutral expression. The LQfaces dataset consists of 98
sibling pairs collected from the Internet with varying resolu-
tion. The subjects in the two datasets are mainly Caucasian.

Sibling-Face & Group-Face [196]: In 2014, motivated by the
lack of large number of sibling pairs, Guo et al. introduced
the Sibling-Face dataset. The images were collected from
sites like Flickr, while the annotations were obtained from
the tags and descriptions of the images. Along with this
dataset, the Group-Face dataset was also introduced, con-
taining images of groups of kin-related people.

TSKinface [176]: Qin et al. introduced the TSKinface
dataset, which consists of 787 images and 1015 family
groups. These groups contain the father, the mother and
child or children. The are 274 photos of Father-Mother-
Daughter families, 285 Father-Mother-Son families and 228
Father-Mother-Daughter-Son families. The majority of the
subjects included in this dataset are Asian.

Families in the Wild [183]: One of the most recent efforts
in kinship annotated datasets is the Families in the Wild
(FiW) dataset, containing 11,193 images. The FiW dataset
is the largest kinship annotated dataset to date, contain-
ing 30,725 face-images of 10,676 individuals. The dataset
includes 11,193 family photos, while it is the first to have
2,060 annotated pairs of grandparents and grandchildren.

WVU Kinship Database [115]: The WVU Kinship Database
was introduced in 2017 by Kohli et al. and contains 113 kin-
related pairs. The dataset allows for intra-class variation, as
it contains 4 images per person. The dataset is not balanced
and consists of: 22 Brother-Brother pairs, 9 Brother- Sister
pairs, 12 Sister -Sister pairs, 12 Father- Daughter pairs, 34
Father- Son pairs, 12 Mother- Daughter pairs and 8 Mother-
Son pairs.

Kinship Face Videos in the Wild Dataset [242]]: The Kinship
Face Videos in the Wild (KFVW) dataset contains 418 face
videos from TV shows. Each video is 100-500 frames long
and presents great variation in pose, occlusions and ex-
pressions. The baseline experiments on the dataset achieved
poor performance and thus, the authors note the challenges
of advancing video-based kisnhip verification with this
dataset.

Similar to age related tasks, the problem of kinship mod-
eling has been attacked using mainly in the wild datasets.
The nature of the labels makes the task of gathering and
annotating such datasets very laborious. As a result most of
the datasets in Table [2| contain a small number of images,
which is not ideal for modeling large variations. What is
more, these images, more often than not, originate from the
same photo. Cropping the data from the same image can
significantly bias the task of classification, by adding factors
like the environment, lighting, chrominance and the image
quality [143]. Therefore, datasets that contain such images
are considered biased and can not be used for the task of
kinship verification. This is evident when comparing the
state-of-the-art performance between classic benchmarks
like KinFaceW-II (i.e., classification accuracy 96.2%) and
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more recent ones like FIW (i.e., classification accuracy 71%).

It is worth mentioning that, VADANA and UvA-NEMO
Smile Databases contain both kinship and age annotation.
In particular, for the Smile Dataset, the kinship annotations
were obtained based on the names of the subjects.

In the following sections, both seminal and recent meth-
ods for age progression, age estimation, age-invariant fa-
cial characterization, and kinship verification are reviewed.
Particular emphasis is put on the facial representations
employed. That is, for each of the aforementioned tasks,
the presented methods are grouped according to the type
of information captured by the employed facial representa-
tions. Broadly, geometric, hand-crafted, and learned facial
representations are considered. Discussion on correspond-
ing classification and regression methods is also provided.
Furthermore, for each task evaluation protocols and metrics
are reviewed, and the most notable experimental results are
analyzed.

4 AGE ESTIMATION

A significant volume of research has been done in age
estimation from facial visual data. Since the labels of the
various age-annotated datasets are either discrete ages or
correspond to age-groups, the problem can be naturally
cast as a multiclass classification problem, where the classes
represent discrete ages or age-groups. However, neighbour-
ing labels (ages, or age groups) might share important
information which is neglected by classification methods.
This is addressed by regression methods which appear
to perform better. Nevertheless, appearance changes more
rapidly during youth and slower in adults. To alleviate
this, non-stationary kernels can be employed; yet learning
with kernels is prone to overfitting. A different approach
to deal with this challenge is to adopt ranking methods
e.g., [28],[29], that learn an individual classifier for each
age class. In the following subsections several methods for
age estimation are reviewed. As already mentioned, they
are organized according to the type of facial representation
employed.

4.1 Geometric facial representation-based methods

The tasks of automatic age estimation from facial images
introduced in 1994 by Kwon and Lobo [118]. Inspired by
anthropometric studies [5] that describe the growth of the
human head from infancy to adulthood, six facial distance
ratios are used to discriminate between infants and adults.
The adult faces are further classified into young adults and
older adults by using snakelets (i.e., deformable curves)
[110], which capture wrinkles on certain regions.

The use of such anthropometric models, that represent
the shape of the human head, introduces a number of
challenges for age estimation. For instance, geometric de-
scriptors are sensitive to pose variations and can therefore
be applied only to frontal images. Several methods deal
with this challenge by normalizing the faces via Procrustes
analysis [112]. Invariant to small changes in camera location
and head pose geometric facial representation has been
proposed in [230] and [212] by employing the properties of
Grassmann manifold [56]. Age estimation is obtained via



Support Vector Machine (SVM)-based regression in [230]
and Relevance Vector Machine (RVM) [214] in [212].
Experimental results on the FG-NET dataset in [230]
indicate that even though geometric information is sufficient
for age estimation in young ages, texture information is
needed for accurate age estimation in adults. To alleviate
this, fusion of geometric and texture information (repre-
sented by Gabor phase patterns (HGPP)) is applied [252].

4.2 Appearance-based methods

Appearance models allow to capture texture information of
the face along with its shape. A wide variety of appearance
models have been proposed in the literature. Below, we
present those that have been extensively used in the context
of age estimation.

Active Appearance Models: Active Appearance Model
(AAM) is a generative facial model introduced in [40] by
Cootes et al. AAMs employ Principal Component Analysis
(PCA) to learn a linear model for shape and appearance
from images and a set of landmarks. This representation
was first used for age estimation in [123]]. In order to capture
95 per cent of the data variation, 50 parameters of AAM
are used and age estimation is formulated as a regression
problem in the parameter space. Besides age estimation, the
effectiveness of the model in simulating the aging process is
evaluated on age progression as well as age-invariant face
recognition.

Most of the datasets in Table [1| are imbalanced; that is,
the labels of the data are sparse and not evenly distributed.
To overcome this problem, the age labels are encoded in
a cumulative manner in [37] using Cumulative attribute
(CA) vectors. If the face is older than the ith age, the ith
element of its CA vector is 1 and 0 otherwise. In this way,
data points with similar labels have a similar cumulative
attribute vector. The CA is obtained from the parameters
of AAM and Support Vector Regression (SVR) is performed
in the CA space. The experiments on FG-NET indicate that
shape features play a vital role in age estimation of young
faces, while texture features become increasingly discrimi-
native after the age of 20.

In order to make use of the ordinal information of the
age labels, Chang et al. [28], [29] introduced a ranking
approach for the task of age estimation in 2010 using AAMs.
A ranking model gradually splits the feature space as a
binary classification problem is solved for each age label
k. The splits are produced by conducting a query ’is this
face older than age k?’. The final estimation is then produced
by a ranking rule based on the outputs of the classifiers.
Nevertheless, learning a large number of classifiers can be
computationally intensive. More recent ranking approaches
introduce AAM-based methodologies to reduce the compu-
tational cost, e.g., [138], [137]. In particular, a Partial Least
Squared-based Ranker, which learns all classifiers jointly, is
introduced in [138]. Also, a more time-efficient algorithm is
proposed in [137]. A Linear Canonical Correlation Analysis-
based Ranker is employed and competitive results are ob-
tained with a lower number of parameters. The smaller
complexity and model size make such approaches ideal for
real-time applications.

In the above papers the effectiveness of the texture and
shape parameters of AAM as a facial representation for the
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task of age estimation have been demonstrated. However,
AAM uses PCA and can therefore only account for linear
modes of variation, which introduces a set of challenges
when generalizing to unseen data. In order to capture non-
linear variations such as expressions and poses, Duong et
al. [54] introduced the Deep Appearance Model (DAM).
This generative model is based on Deep Boltzman Machines
[189], a hierarchical method that can capture variations in
shape and texture that could be higher than second order.
Experiments in the FG-NET dataset indicate the ability of
DAM to outperform AAM, while being more robust to
additive noise. Nonetheless, having more parameters, this
method is more resource intensive in comparison to tradi-
tional AAM. Deep hierarchical representations are analyzed
further in subsection

Local Binary Pattern: The Local Binary Patterns His-
togram (LBP) [165] is an effective texture descriptor which
has been widely employed for texture classification and
face recognition [4]. LBPs are binary codes computed in the
neighbourhood of pixels and their histogram is obtained for
different image-patches. Some variations of the descriptor
[229] compare the values of three (Three Patch-LBP) or
four (Four Patch-LBP) patches to produce a code for each
pixel. Yang et al. [247] employed this facial representation
to classify faces into three age-classes. In particular, LBP
Histograms are extracted from a large set of possible face
patches and AdaBoost [191] is applied next to choose the
most discriminative ones. Several different regression meth-
ods are applied to the extracted representations, exhibiting
promising results. In [57], fusion of LBP and FP-LBP [229] is
exploited for age group and gender classification via SVM
classifier.

Wavelet-based Features: Wavelet-based features have been
widely used in facial analysis, due to their ability to robustly
capture texture information. Among the most widely used
type of wavelet in age estimation is the Haar wavelet [151],
yielding features that are robust to appearance variation.
Haar-like features are employed for the task of age esti-
mation in [260]. Age estimation is posed as a regression
problem with a regularized L, loss function using boosting.

Gabor wavelet has also been widely applied in texture
analysis [132]. Importantly, this wavelet has a biological
significance, since their kernels are similar to the receptive
field of the mammalian cortical simple cells. The magnitude
of the coefficients, which is obtained by convolving facial
images with Gabor wavelets across different scales and
orientations, is used as facial representation in [78]. Age-
group classification is performed using Fuzzy LDA. Exper-
iments on a private dataset indicate improved performance
compared to that obtained by employing LBPs.

To capture curvature information, like wrinkles, ex-
tended curvature Gabor (ECG) filters are used in [113].
After feature selection, Random Forest (RF) Regression is
used for age estimation. Another interesting wavelet based
representation is the scattering transform (ST) [150]. ST is
calculated by cascading wavelet modulus operators along
different paths in a deep convolution network. A number of
recent works use Gabor wavelets with ST for age estimation.
A ranking approach using ST representations is introduced
in [27]. The experiments reveal that AAMs performs better
than ST in FG-NET dataset, while the opposite stands for



the MORPH2 dataset. This is attributed to the fact that, FG-
NET has significantly more images per person and fewer
people than MORPH2, capturing long-term person-specific
age information. Hence, the AAM can efficiently model
the intra-person variance, while the ST appears to model
person-invariant age information better.

Biologically Inspired Features: Besides the biologically rel-
evant Gabor wavelets, the Biologically Inspired Features
(BIF) [91] have also been proposed as suitable facial repre-
sentation for age estimation. Inspired by the HMAX model
[182]], the BIF pipeline consists of simple (S1) and complex
(C1) layers imitating the classical Hubel and Wiesel model
[106] for the primary virtual cortex. Gabor filters are used
for S1 units, while the C1 units pool over the S1 units
with a non-linear maximum operator ' MAX’ and normalizes
with a standard deviation operator "STD”. It is argued that
the ”"STD” operator reveals local variations capturing vital
aging information, like wrinkles and eyelid bags. Exper-
iment are conducted on the FG-NET and YGA datasets
using SVM classification and SVR regression. Experimental
results indicate that classification accuracy drops on small
imbalanced datasets like the FG-NET.

A variety of different regression methods have been
proposed using the BIF descriptor. In particular, a non-linear
extension of Partial Least Squares (PLS) [79] is introduced
in [90]. Kernel PLS (KPLS) regression is used on BIF feature
space for simultaneous dimensionality reduction and func-
tion learning. Another BIF-based method, particularly an
age estimator that is robust to pose variation, is introduced
in [205]. The multi-view property of this method is obtained
by using video information in a semi-supervised manner.
That is, a regression problem is solved with a regulariza-
tion factor that enforces output consistency throughout an
unlabelled video sequence.

A fusion of classifiers and regressors is used in [97],
where an automatic demographic estimator is introduced.
A hierarchical fusion of SVM classifiers and SVR regression
is used for age estimation. That is, a face is passed through
a series of binary classifiers, indicating different age groups
in a coarse-to-fine manner, before going through an SVR
regressor. A comparative study between the automated sys-
tem and human workers is also presented in [97], revealing
the inability of the humans to perform accurate real age
estimation, as well as the challenges of crowd-sourcing such
efforts.

A set of regression methods that take into account the
correlation between age classes is proposed in [81], [80].
Based on the fact that aging is a slow and smooth process,
the information extracted from a face does not only describe
the exact age of the subject, but also the neighbouring ages.
Therefore, based on that assumption the model assigns a
label distribution to the data p(y|x), instead of the exact label.
For that purpose two label distribution learning algorithms,
namely IIS-LLD [81] and CPNN [81], are proposed and
tested in FG-NET and MORPH2 datasets, using AAMs and
BIFs respectively.

4.3 Subspace learning-based methods

The aforementioned facial representations are extracted
from each and every image individually. Nevertheless, the
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images of the same person at different ages are correlated
and form a pattern to be recognized. To investigate this
concept, the AGing pattErn Subspace (AGES) method is
introduced in [82]. In order to represent the transforma-
tions caused by aging, aging patterns are employed. These
patterns are obtained as sequences of face images sorted
in time order. Each individual in the training set has a
different aging pattern, which is obtained from the training
images and by solving a missing value problem for the miss-
ing ages. By applying PCA on the resulting aging pattern
vectors, the so-called Aging Pattern Subspace is obtained.
Each point on this subspace represents an aging pattern.
During testing, an unseen face is projected on the aging
pattern subspace and an aging pattern is selected based on
the reconstruction error. That is, the input face is projected
on all the possible positions in each aging pattern and
the generated face is compared to the input. The selected
position on the selected aging pattern is then returned as
the estimated age. Instead of pixel intensities, the method
uses low-level face representation extracted from a different
model, in particular the AAM.

One of the shortcoming of the AGES method is that it
requires a large number of images of the same person at
different ages to obtain the aging patterns. In practice, most
datasets are very sparse, containing only a few images per
person that do not span a large range of ages. To overcome
this challenge, Fu et al. [74] uses face images from all the
people in the training set to obtain the aging pattern. In
that way, the common underlying aging pattern of the data
is captured. By representing each age label with multiple
images, a discriminative manifold [193] is obtained in a su-
pervised manner. During testing, the input face is embedded
on this low dimensional subspace and a regression problem
is solved. Several methods are applied to visualize the
geometry of the manifold, e.g., Locality Preserving Projec-
tions (LPP) [99], Orthogonal Locality Preserving Projections
(OLPP) [25] and Conformal Embedding Analysis (CEA)
[75], with the results indicating a distinct pattern. This is
contrary to results produced by unsupervised methods, e.g.,
PCA, that do not take into account the age information. Dif-
ferent regression methods have been applied on the aging
manifold. Particularly, simple regression methods, i.e. linear,
quadratic and cubic, are used in [74]. A more sophisticated
method is proposed in [88], where Locally Adjusted Robust
Regression (LARR) is introduced.

The aging manifold on the aforementioned methods
spans the image space. That is, pixel intensities are used
as local descriptors. This can deteriorate the discriminative
ability of the model, since the image space represents all
variations and is not particularly age-sensitive. In order to
incorporate the texture information in the aging manifold,
LBP are used as low-level representations in [63] where the
age is obtained using regression methods, e.g., a Neural Net-
works (NN) and Quadratic Funtion (QF). Similarly, aging
manifold can be obtained from different descriptors, e.g.,
Gabor [127] and BIF [126]. Particularly, an aging manifold
that preserves the ordinal information as well as the geo-
metric structure of the data is obtained in [127], [126]. The
resulting subspace is well-suited for ranking methods and
therefore the OHRank is employed for age estimation.

Most manifold learning algorithms assume that the fea-



ture space is locally Euclidean and therefore use a Euclidean
metric to determine neighbourhoods. In the aging manifod,
this is not always the case, due to the non-linear nature
of aging. Therefore, a distance metric adjustment to LPP is
introduced in [30]. The new metric is learned using Label-
sensitive Relevant Component Analysis (RCA) [9]. Ordinal
information is also incorporated in the aging manifold and
k-Nearest Neighbours (kNN) and SVR are used for age
estimation on the embedded subspace. Similarly, a subspace
with ordinal information is captured in [39]. Pairwise age
ranking is utilized to obtain a subspace that minimizes the
distance between images of the same label, under a set of
ranking constraints.

4.4 Deep learning-based methods

Among the different sources of facial variation, the non-
linear transformations, such as deformations due to expres-
sions, pose and age, are the most challenging to model. To
model such non-linear variations, some of the aforemen-
tioned methods extract simpler features at different levels in
a hierarchical manner. Since deep architectures build non-
linearities on top of each other, they can learn non-linear
transformations more efficiently than simple models and
perform better in most tasks, albeit being more vulnerable to
overfitting. A classical deep architecture is the feed-forward
Artificial Neural Network (ANN). This model uses pixel
intensities (PI) or low-level descriptors as inputs and builds
a subspace in a supervised manner using backpropagation.
A variation of ANN, namely the Compositional Pattern
Producing Network (CPPN) [206], is used in [62] for the
task of age estimation. Contrary to typical ANNSs, the four-
layer ANN proposed in [62] has different transfer functions
for each neuron.

Similar to the ANNSs, Convolutional Neural Networks
(CNN) [125] are used to extract high-level features, or per-
form regression or classification as an end-to-end model.
Instead of using handcrafted features, a CNN applies filters
on the raw images in a hierarchical supervised manner.
Convolution and subsampling are applied iteratively to
create each layer’s feature map. The filters are then opti-
mized using backpropagation, while the architectures used
can vary greatly. Deep CNNs have outperformed classical
methods in most tasks, including age estimation. Yang et al.
[246] is the first to use a 5-layer CNN for age estimation. The
model has multiple outputs for gender, age and race, while
the age estimation performance is worse than that obtained
by BIE. In order to improve the performance, Yi et al.
[248] adopts methodologies from traditional facial analysis
and used a fully connected ensemble of 23 CNNs. Each
CNN is applied on different face patches and the method
succeeds in improving the state-of-the-art performance on
the MORPH 2 dataset.

Recently, the large availability of data and computational
power have boosted the popularity of deeper and more
complex architectures (e.g., ResNet [98], DenseNet [104]).
A hybrid deep multi-task CNN is employed in [240] to
predict age, race and gender. This architecture incorporates
the gender and race predictions by training a different age
estimator for each group. Another deep CNN architecture
that leverages weakly labelled data is proposed in [103]. The
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proposed model performs age estimation with assistance
of age difference information (AEAD). The age difference
information is obtained from image pairs of the same subject
with known age gap.

Deep ranking methods have found great success in age
estimation. A deep ordinal regressor is trained on the very
large AFAD dataset in [162]. This ranking approach uses
multiple output CNNs (MO-CNN) and outperforms the
classical ranking algorithms on the MORPH?2 dataset. Simi-
larly, a Ranking-CNN approach, that utilizes multiple deep
binary classifiers, is proposed in [38]. This method employs
an ensemble of CNNs that are fused with aggregation. The
inconsistency of the binary outputs is proven not to affect
the overall performance as the output error is bounded by
the maximum error of the binary classifiers [38]. Therefore,
as long as the maximum error is decreased, the inconsistent
labels of the classifiers do not matter.

A different age ranker for separate age-groups is
adopted in [134] to learn a series of aging patterns. A
deep CNN architecture is employed to minimize the dis-
tance of faces within the same age-group, while maximizing
the distance between faces from different groups. The age
prediction is then acquired using the OHRank algorithm
for each age-group. To effectively maximize the distance
between age groups, label-sensitive deep metric learning
(LSDML) is introduced [136]. This method optimizes the
procedure by jointly learning a discriminative metric and
mining hard negative pairs. In order to mitigate the effect
of sparse and imbalanced datasets, the method is extended
to multisource LSDML that maximizes the cross population
correlation between different datasets.

A large number of deep methods are applied to apparent
age estimation, mainly hosted by the Chalearn Looking
at People (LAP) challenge [59], [60]. In particular, a deep
network consisting of 10 convolutional layers, 5 pooling
layer and 1 fully connected layer [36] is used in [180]. For the
aging function, a test image is classified into 3 age groups
and a 3-layer ANN regresses the apparent age. Each of the
regressors is trained on a different dataset.

The highest positions in the LAP challenge are popu-
lated by variation of popular deep learning architectures.
Such variations include ensembles of multiple networks and
fusion of different models. The most widely adopted ones
are the VGG-16 [202] and GoogLeNet [210] Deep CNN, due
to their success in the Imagenet object recognition challenge
[186]. Modified versions of the original VGG-16 model are
used for apparent age estimation in [185], [117], [7] and
[218]. These models are trained and finetuned on several
different datasets to achieve significant generalization, while
a variety of classification and regression techniques are
employed on the deep representations. Particularly, an SVM
based classifier is used in [218] and improves the results
of the regression method used in [185]. Lastly, a fusion of
GoogLeNet-based classifier and regressor is used in [141]
and hierarchical SVM age grouping followed by SVR and
RF regression on the deep features is employed in [262].

4.5 Other representations

Besides the above facial representation, several other ap-
proaches have been proposed. Such methodologies either



utilize multiple descriptors, e.g., [11], [33], [67]; that is,
multiple features are fused to capture more discriminative
information, or introduce novel extensions to these repre-
sentations, e.g., [148], [224]. In particular, the Neighborhood
Centroid Difference Vector (NCDV) from the LBP descriptor
is used in [148] and the Cost-Sensitive Local Binary Features
(CS-LBFL) are introduced. A multi-feature learning exten-
sion is also proposed and the final prediction is obtained
using the OHRank algorithm.

Most descriptors in this section take into account age-
sensitive information, e.g., wrinkles, smoothness, bags un-
der eyes, facial hair, etc. Since different age groups share
the same attributes, such information is not always accurate
and can lead to misclassifications. Nevertheless the presence
of these attributes is different between the age groups. In
[224], a Learning Using Privileged Information (LUPI) [219]
approach is proposed, so that such inaccuracies are used
to boost the model’s generalization ability. That is, for each
attribute, the age groups are ordered based on the presence
of the specific attribute. The problem is solved using relative
attribute SVM+ (raSVM+).

In order to obtain a discriminative mapping of the
feature space, a number of the above methods have in-
troduced hierarchical features. The notion of hierarchical
representations is not limited to deep learning methods, but
is generally used in representations that accumulate infor-
mation in multiple layers. A simple and efficient method to
extract hierarchical features for age estimation is presented
in [116]. The method, namely MidFea, consists of k-means,
convolution, max-pooling, vector quantization and random
projection operations. The MidLevel features are then used
as input to a Neuron Selectivity layer (NS) [15] to obtain the
final representation.

All of the above representations originate from 2-
Dimensional images; that is, they are either extracted from
pixel intensities or facial landmarks. Nevertheless, other
modalities, e.g., 3D [234], video [48], context [77], contain
age information and a number of methodologies are pro-
posed to capture it. In particular, Gallagher et al. [77] assign
contextual features that capture local pairwise information
and the global position of the person. A Gaussian Maximum
Likelihood (GML) classifier is used to classify the faces into 7
age groups. Interestingly, the contextual features achieve an
accuracy of more than double random chance, while gender
is correctly estimated two-thirds of the time.

An interesting combination of different modalitites is
that of appearance with facial dynamics. This is investigated
in [48], where temporal face dynamics are extracted from
smile and disgust videos. The videos that are used in-
clude posed and spontaneous expression and were recorded
under controlled conditions. The experiments in [48] re-
veal that dynamic features are not as discriminative as
appearance features for age estimation. Towards that end,
several appearance estimators are used, i.e. dynamic, in-
tensity based encoded features (IEF), gradient-based en-
coded features (GEF), BIF and LBP, while feature selection
is performed using the Min-Redundancy Max-Relevance
(mRMR) algorithm. The combination of the appearance and
dynamic features achieves the best results, indicating that
dynamics can help significantly towards age estimation.
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4.6 Evaluation protocols, metrics, and results for age
estimation

Protocols: A number of different evaluation protocols have
been used to evaluate Age Estimation models. Classical
methods like k-fold cross-validation (c-v) and 80-20 split
have been used in this context as well. Contrary to c-v, when
applying an 80-20 split, a predefined 80% of the data is used
for training and 20% is used for testing, without reshuffling
the data. Besides these widely adopted protocols, specific
protocols have been proposed for specific datasets.

One of the most widely used protocols is the Leave-
One-Person-Out (LOPO) protocol, proposed for the FGNET
dataset. According to this protocol, experimental evaluation
is performed using images of previously unseen individ-
uals. Therefore, training is done using all subjects in the
database apart from the subject whose age we are estimat-
ing.

Other dataset-specific protocols include the Images of
Groups (Groups) protocol and the Chalearn apparent age
dataset protocol (chalearn). The data split for the Groups
is a random selection of 3,500 training images and 1,050
testing images. The age group classification accuracy (acc.)
is calculated both for exact match (AEM) as well as for
allowing error of one category (AEO). On the other hand,
the Chalearn dataset is split into 2,476 images for training,
1,136 images for validation and 1087 images for testing.

Metrics: The large number of methods in age estimation
has exposed the need for a common evaluation protocol.
The most widely adopted measures are the Mean Absolute
Error (MAE) and the Cumulative Score (CS). The MAE is
defined as the average of the distance between the predicted
age labels and the ground truth,

N
MAE =" |j —yl|/N. 1)
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On the other hand, CS(j) is the percentage of the samples,
where the predicted age of model did not deviate from the
ground truth more than j years,

CS(j) = Nu<; /N x 100%. @)

Lastly, specifically for the apparent age estimation models
[59], the adopted measure is the error calculated as follows:
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Results: Table[3|includes the methods that have reported
the highest scores for each dataset in this subsection, using
comparable and widely used protocols. A chronological
overview of the most important methods and result on Age
Estimation is tabulated in Table

4.7 Discussion on age estimation

There is a number of factors affecting the accuracy of age
estimation algorithms. The choice of facial representation
plays a vital role in this, with the advantages of each ap-
proach having been described above. Besides that, the types
of variation within each dataset determines the success of
the facial representation and the algorithm. Such variations
include image quality, race, gender and facial expressions.



TABLE 3: Best reported results on Age Estimation for each
dataset
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graphics, anthropometry and computer vision. Although
earlier methods used face models introduced in computer

graphics, recent work has gradually transitioned to com-
puter vision. One of the seminal works is by Burt et al.

Dataset method  metric protocol score
FG-NET [135] MAE LOPO 3.74
MORPH2 [135] MAE 80-20 2.89
Groups [127] AEM/AEO acc.  groups 48.5% , 88%
Adience [135] acc. 5-fold c-v

AFAD [162] MAE,CS(<10)  80-20

Chalearn 171 error chalearn 0.2411
UvA-NEMO  [48] MAE 10-fold c-v  4.33

[43], which simulates the aging process by employing both
colour and shape information. In this approach, the synthe-

60.2% +5.3 sized image is produced by adding the difference between
3.34, ~ 95%the average faces (i.e. the prototypes) of each age group to

the test image. Other early works include anthropometric
growth [177], [178], modeling of wrinkles [232], [233], [231],

An experimental study of age estimation under changes in
image quality was conducted in [6]. Image quality affects
texture information that captures aging cues, like wrinkles.
Therefore, the results confirmed the deterioration of the
accuracy with declining image quality.

People of different gender do not follow the same aging
patterns. A similar assumptions can be made for people
of different race, eg. Caucasian and Asian. Several popular
datasets, including MORPH2, contain faces from people of
different gender and race. Such non linear variations affect
the accuracy of the facial representations. The studies in [[89]
, [95] and [14] indicate this problem and propose transfer
learning and domain adaptation solutions to deal with it.
A similar problem arises when performing age estimation
across different expressions. The quantitative study in [94]
indicates the significant influence of facial expressions on
age estimation, while a cross-expression age estimation
framework is proposed.

In total, different datasets have different modes of vari-
ation, since they were collected under different circum-
stances. That is, image quality, illumination, race, gender
and age among the data can vary significantly. Similar to
the above, using the tools of transfer learning, Su et al.
represented different datasets as different domains and a
cross-database age estimation framework is proposed in
[207].

4.8 Challenges in the wild

Most of the methods presented in this subsection are evalu-
ated on in the wild datasets. Nevertheless, as mentioned in
section [3] these datasets pose different levels of challenges.
Table 3|indicates that datasets like Adience and Groups are
indeed more challenging, having great variation regarding
face size, image quality, make-up and occlusions. Particu-
larly, the median face from the Groups dataset has 18.5
pixels between the eye centers, while the Adience dataset
demonstrates extreme variation in image quality (Figure [I).
On the other hand, FG-NET and MORPH2 contain family
photos and mugshots respectively. While the image qual-
ity in the first one varies greatly, neither of them contain
extreme poses. It is therefore expected, that the state-of-the-
art results for these benchmarks are better compared to the
Adience and Groups benchmarks. Lastly, the best score is
achieved with the MORPH2 dataset, which can be justified
by the fact that the faces in the mugshots are frontal.

5 AGE PROGRESSION

Face synthesis of an individual at different age groups is a
task that has been studied for several years across computer

[213], aging functions [122] and caricaturing 3D face models
[168], [167]. Notably, not all of the aforementioned earlier
methods produce photorealistic results. More recently pro-
posed methodologies in age synthesis are presented in the
following paragraphs.

5.1 Subspace Learning based Methods

The tools provided by subspace and factor analysis have
been used to model the transformations caused by aging.
A prototype based approach that compensates for illumi-
nation variation in the prototypes is introduced in [111]. In
this Illumination Invariant Age Progression (IAAP) method,
the prototype for each age cluster is obtained as a rank-4
approximation using Singular Value Decomposition (SVD)
and are relighted according to the input face. Then the
input face is rendered to a different age by applying the
difference in flow and texture between the source and target
prototypes. The results are evaluated in a large scale user
study on Mechanical Turk, the result of which indicates the
inability of the workers to recognize a face across large age
differences.

In prototype-based approaches (e.g., [43], [111]), the tex-
ture transformation is modelled as the difference between
the prototypes of the source and target age groups. That
is, the texture changes are the same for different inputs,
as long as the source and target age is the same. Instead
of a specific prototype, a dictionary of aging patterns for
each age group is learned in [198]. To capture the different
factors of variation, an input face is decomposed into an
aging and a personalized layer. The changes in the aging
layer are modelled using the dictionaries of the target and
the source age groups. A more general approach that is
robust to different kinds of variation, namely Robust Age
Progression (RAP), is introduced in [187]. Each image of
a specified gender is expressed as a superposition of the
age component and the common component. The common
component captures facial variations such as identity, shape,
pose, occlusions, illumination and expressions, while the
age information is captured by the age component. Thus,
by computing an orthonormal bases of the age and common
components via SVD, an image can be progressed to another
age group as a linear combinations of these bases at the kth
age group.

In a similar manner, Hidden Factor Analysis (HFA) is
used in [245] to decompose the facial input. Thus, the face is
decomposed into a linear combination of the mean face and
the identity, age and noise factors. The age component at a
different age is then sparsely represented by a dictionary of
age components of the same age group. The shape is pro-
gressed by applying the difference between the mean shapes



Year Paper Representation Method Dataset(Score) Metric

1994 [T18] ratios,wrinkles hand crafted rule private(100%) accuracy

2002 [123] AAM regression private(1.88) MAE

2005 [260] Haar regression, boosting FG-NET(5.81) MAE

2007 [247] LBP Rule-based, Adaboost FERET(7.88%) error rate
PIE(12.5%) error rate

2007 [82] AAM LDA, AGES FG-NET(6.22) MAE
MORPH(8.07) MAE

2008 PI CEA, multilinear regression YGA-fem(8) MAE
YGA-male(7.8) MAE

2008 [88] AAM OLPP, LAR FG-NET(5.07) MAE
YGA-mal(5.30) MAE
YGA-fem(5.25) MAE

2009 | contextual GML Groups(32.9%, 64.4%) AEM, AEO

2009 [78] Gabor Fuzzy LDA private(91%) accuracy

2009 BIF PCA,SVM/SVR FG-NET(4.77) MAE
MORPH-fem(3.47) MAE
MORPH-mal(3.91) MAE

2010 AAM Threshold ranker FG-NET(4.67, ~ 68%) MAE,CS(5)
MORPH(6.49, sim50%) MAE,CS(5)

2010 AAM Multi-task warped GP FG-NET(4.14) MAE
MORPH(4.07) MAE

2011 [29] AAM OHRank FG-NET(4.48, 74.7%) MAE,CS(5)
MORPH (5.88, 56.5%) MAE,CS(5)

2011 [90] BIF Kernel PLS MORPH(4.18) MAE

2011 BIF multiview regression Custom(6.94 £0.07) MAE

2011 BIF RMIR FG-NET(8.37) MAE
MORPH(6.06) MAE

2011 [62] AAM CPPN, kNN FG-NET(4.67) MAE

2011 PI 5-layer CPNN FG-NET(4.88) MAE

2012 geometric, HGPP SVM, PLS FG-NET(6.76) MAE

2012 geometric HGPP RVM FG-NET(6.2) MAE

2012 [127] Gabor, contextual PLO, OHRank FG-NET(4.82) MAE
Groups(48.5%, 88%) AEM, AEO

2013 [811 AAM, BIF MFA, CPNN/IIS-LLD FG-NET(4.76) MAE
MORPH(4.87 +0.31) MAE

2013 B7] AAM CA, SVR FG-NET(4.67, 74.5%) MAE,CS(5)
MORPH(5.88, 57.9%) MAE,CS(5)

2013 [30] AAM LPP, IsRCA, kNN, SVR FG-NET(4.38) MAE

2013 AAM ranking SVR FG-NET(4.56) MAE
MORPH1(5.41) MAE
MORPH2-Cau(4.42) MAE

2014 157 LBP, FPLBP Dropout-SVM Adience(45.1% +2.6) accuracy
Groups(66.6% £0.7) accuracy

2014 PI CNN MORPH(3.64) MAE

2015 PI MidFea-NS, SVM FG-NET(4.73) MAE

2015 [48] dynamic, IEF, GEF, mRMR, SVM, SVR UvA-NEMO(4.33 +4.06) MAE

BIF, LBP

2015 [271 ST CSOHRank FG-NET(4.70, sim75%) MAE,CS(5)
MORPH(3.82, sim78%) MAE,CS(5)

2015 B4 PI, landmarks DBM FG-NET(5.28) MAE

2015 BIF PLO, OHRank FG-NET(1.306) MAE
Groups(0.864) MAE
FACES-best(5.16) MAE

2015 [97] BIF Adaboost, SVM,SVR FG-NET(3.8 £4.2) MAE
MORPH(3.5 £3.0) MAE
PCSO(4.1 £+3.3) MAE

2016 DSIFT, LUPI raSVM+, OHRank FG-NET(4.07) MAE
MORPH(5.0540.11) MAE

2016 PI MOCNN MORPH(3.27) MAE
AFAD(3.34) MAE

2016 PI DEX Chalearn(3.221, 0.2649) MAE, error

2016 [Z] PI ensemble DEX Chalearn(0.2411) error

2017 B8] PI Ranking-CNN MORPH(2.96, ~ 85%) MAE,CS(5)

2017 PI M-LSDML MORPH(2.89) MAE
Adience(60.2+5.3) accuracy
FG-NET(3.74) MAE
FACES(3.11 - 5.01) MAE
Chalearn(0.315) error

2017 [T03] ©PI AEAD MORPH(2.78) MAE
FG-NET(2.8) MAE

TABLE 4: Overview of Age Estimation methods



FG-NET

Adience

Fig. 1: Samples from Adience and FG-NET datasets

of the target and source age clusters. In order to disentangle
the common and individual components, a robust extension
to Joint and Individual Variation Explained [142] is used in
[188]. Thus, by modifying these components, an input face
can be reconstructed at a different age group. The method
is evaluated on the FG-NET and AgeDB datasets, while
experiments are conducted on facial expression synthesis
as well.

To deal with the different modes of variation, instead of
a matrix, a tensor is used to represent the data in [227]. The
different modalities of the data, namely the pixels intensi-
ties, identities and ages of the face images, are included
along the the dimensions of the tensor. This means that
along each axis of the 3-dimensional structure, the variation
of only one modality changes. Based on the fact that low
frequency image components preserve the face identity,
super-resolution in tensor space is used to map the texture
of a downsampled input image to a different age.

5.2 Sequence modeling

Since the effects of aging are temporally correlated, i.e. the
transformation is smooth and continuous, it is intuitive to
model it as a sequence across the different age groups. In
order to describe the evolution of the facial representation
through the age groups, different sequence modeling meth-

ods have been proposed, including Markov Process [209],
[208] and Recurrent Neural Networks (RNN) [225]. In par-
ticular, the transformation of different facial parts is mod-
elled separately in [208]. Instead of using AAM, a region
based AAM model (RB-AAM) is adopted. The relationships
between the different sub-regions are modelled based on
the physical structure of the face. To approximate the short-
term aging of each sub-region, an aging function approach
is used. The aging model over a long period is formulated as
a Markov Process by concatenating the short period aging
functions under smoothness and consistency constraints. On
the other hand, Wang et al. [225] use RNN [87] to model age
progression between neighbouring age groups. The faces of
the neighbouring groups are normalized jointly. An RNN is
adopted to perform aging of a face in the shared eigenface
space [216] of two neighbouring age groups. The output of
the RNN is reconstructed, projected on the shared eigenface
space of the next group and used as input for the next RNN.

5.3 3-Dimensional Representations

The aforementioned methods come with certain limitations
since they are based on 2-dimensional representations. Con-
trary, 3D facial representations capture both shape and tex-
ture information and can potentially obtain pose invariance.
A 3-dimensional model is used to build an age progression



system for children faces [197]. Different facial components,
such as mouth, eyes, nose and face shape, are extracted and
progressed individually. The basic assumption is that if two
children look similar at a young age, they will continue to
look similar when they grow older. Therefore, each compo-
nent is compared to a database of facial components and is
progressed according to the corresponding aging pattern.
The selected components are then merged to synthesize
the progressed image. The experimental results on selected
images of the Jackson family indicate the possibility of
synthesizing age progressed faces of children given the faces
of their relatives.

A different approach that incorporates the whole face in
a 3D aging model is proposed in [171]. The aging model
is approximated as a weighted average of all the texture
and shape aging patterns in the training set. The model
is evaluated using a commercial face recognition system
as described in Section 6. Similarly, texture and shape are
modelled separately in [152]. The face shape of each age
group is modelled using age specific 3D Point Distribution
Model (3DPDM) [41], while the texture is modelled using
recursive PCA.

5.4 Deep learning-based representations

Synthesizing a photorealistic face image with arbitrary
modes of variation is a challenging task. Deep learning
methods are able to incorporate knowledge from multi-
ple datasets and are therefore suited to deal with this
complicated problem. In particular, Generative Adversarial
Networks (GANSs)[85] have proven capable of producing
realistic images and have been successfully applied to face
synthesis, e.g., [139], [258]. The original model consists of
two networks, a Generator and a Discriminator, that are
trained simultaneously. The Generator tries to model the
data distribution and synthesizes images which the Discrim-
inator classifies as ‘real” or 'fake’, that is whether they come
from the actual data distribution. The image generation
is conditioned on random input noise z, which follows a
predefined distribution. The optimization procedure can be
considered as a minmax game between the two models,
as the parameters of each network are optimized alterna-
tively. In some variations of the model, particularly in the
Conditional GAN (CGAN) [155], the generated images are
conditioned on a specific input, rather than random noise.

A Conditional Adversarial Autoencoder (CAAE) for age
progression is introduced in [257]. Instead of randomly
sampling z, it is obtained from an autoencoder, so that incor-
porates the personality of the face. The model includes two
discriminators, one to enforce p(z) to be uniform; that is, to
force z to evenly populate the latent space, and one to force
the generator to produce realistic images. The generation
of the image is conditioned on both the personality of the
input, as well as the desired age group. The method is evalu-
ated based on survey results, that indicate the ground truth.
A conditional GAN (Age-cGAN) is also employed in [§] to
perform face aging. The model obtains the embeddings of
the input and ouput of the GAN from a face recognition
neural network. In order to preserve the identity of the
input face, the Euclidean distance between the embeddings
is minimized.
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5.5 Evaluation protocols, metrics, and results for age
progression

Protocols: There is a wide variety of different protocols
in the literature regarding the evaluation of age progres-
sion models, since not all methods focus on the same age
groups, e.g., some focus on children faces, while others
focus on adult faces. That being said, all the methods in
this subsection use the FG-NET dataset to test their methods
qualitatively or quantitatively.

Metrics: The evaluation of age progression methods is
nontrivial, since the task itself is ill-posed and the actual
aging process is highly uncertain. A comparative study of
different age progression evaluation techniques is presented
in [120], while a framework for evaluation is described in
[124]. A short description of the most common evaluation
methods is presented as follows:

a. Human-based evaluation: Directly comparing the syn-
thesized images with the ground truth is not an effective
measure of accuracy, as the images were taken under dif-
ferent sources of variation. A way to evaluate the results of
age progression algorithms is by conducting a study with
human users. The results can then be evaluated based on
the users’ answers to questions comparing the synthesized
image and the ground truth at the target age.

b. Age estimation accuracy: Age progression models are
also evaluated based on their ability to generate faces with
characteristics of the target age group. The accuracy of the
synthesis can be measured in an automated manner, using
an age estimator and the corresponding metrics as described
in Section 4.

c. Preservation of face identity: An age progression method
is evaluated based on whether the synthesized images
can still be recognized as images of the same person. To
determine that, face recognition and verification systems
have been widely used. In the context of age progression
evaluation, common metrics include classification accuracy
(rank n), the ROC curve and the area under it (AUC) as well
as Equal Error Rate (EER). A more detailed description of
Age-Invariant Face Recognition (AIFR) and Cross-Age Face
Verification (CAFV) methods and the corresponding metrics
is included in Section 6.

Results: While the methods in this subsection have
been evaluated on different datasets, we will only use the
common results on FG-NET for comparison. Based on their
quantitative results on FG-NET, the most significant results
are presented in Table 5. The results for preservation of
identity are reported before (score-b) age progression as well
as after (score-a) wherever available.

TABLE 5: Best reported results on Age Progression based on
preservation of identity on FG-NET

method  test metric score-b  score-a
[198] CAFV  EER 14.89%  8.53%

[187] CAFV  acc, AUC N/A 0.709, 0.806
[227] AIFR accuracy 0.55 0.7

[225] CAFV  EER ~15% ~10%

Results on other databases are scarce. Preservation of
identity results on AgeDB, Morph, CACD and Browns are
tabulated in Table[6] The results on AgeDB are reported for



age difference of 10 years. A chronological overview of the
methods in this subsection is tabulated in Table [

TABLE 6: Best reported results on Age Progression based on
preservation of identity on other datasets, score-B and score-
A correspond to face verification score before and after age
progression

dataset meth.  test metric score-B score-A
AgeDB [188] CAFV  acc, AUC 0.591,0.624  0.621,0.654
MORPH [171] CAFV  acc.(r=5) 68% 73%

CACD [187] CAFV  acc,AUC N/A 0.735, 0.798
BROWNS  [171] CAFV  acc.(r=5) 45% 60%

5.6 Discussion on age progression methods

Since age progression is a challenging task, age clusters are
labelled with whole age-groups and not exact ages. This
formulation also helps with the highly incomplete datasets
that are available. This issue is more dominant in faces of
children, where images are very hard to collect and old
family photos are often of bad quality.

5.7 Challenges in the wild

The number of widely adopted benchmarks for age pro-
gression is limited to 5 datasets, all of which are captured
in the wild. The use of the CAFV protocol does not allow
for quantitative comparison between the different datasets,
since different face verification algorithms are used. There-
fore, a comparison can only take place using qualitative
standards that are hard to evaluate. The challenging nature
of the task has led research to focus mainly on datasets with
small variation in pose and image quality. The qualitative
differences between the results is largely attributed to the
methods and so, conclusions can not be drawn regarding
the ‘wildness’ of the datasets for the task of age progression.

6 AGE-INVARIANT FACIAL CHARACTERIZATION

Age-invariant facial characterization involves two basic
tasks: age-invariant face recognition and cross-age face ver-
ification. The goal of the methods for age-invariant face
recognition is to build a model that is able to recognize the
identity of a face across different ages from a database of
faces. On the other hand, cross-age face verification aims
to determine whether two age-separated images are from
the same person. These tasks can be approached either
with generative or discriminative methods. In generative
approaches, an input face is transformed to the target age
before performing face recognition, according to the meth-
ods described in the section[5} On the other hand, in discrim-
inative approaches [130], [16], age-invariant representations
are extracted and a classification problem is solved. The
generative methods are described in the previous section,
while the most recent discriminative methods are presented
in the following.

6.1

The methods in this subsection focus on obtaining features
that are invariant to the aging process of the face. The local
descriptors that are widely adopted in face recognition, e.g.,
LBPs, have been used in an age-invariant context as well. An
experimental evaluation of local descriptors in age-invariant
face recognition is presented in [13]. Nevertheless, these
classical descriptors cannot be used as stand-alone facial
representations, as they do not always capture the age-
invariant information. Therefore, the following methods fo-
cus on introducing new facial representations that are robust
to age changes. The face representation used in [131] is a
hierarchical combination of Gradient Orientations (GO) [34]
of each color channel of the image at different scales, called
Gradient Orientation Pyramid (GOP). The hierarchical in-
formation captured by this descriptor is classified using
SVM and improves the verification results on adults. On
the other hand, higher order information does not improve
the accuracy significantly for age changes in teenagers.
Using high dimensional LBPs, an age-invariant represen-
tation for cross-age face verification is described in [31], [32].
After extracting the descriptors, a reference representation
of every person is obtained at each age. The features are then
encoded into this reference space and max pooling is used to
normalize the representations of the same person at different
ages. The resulting features are age-invariant, since they
have a high response at the reference person at any year.
The face pairs are then classified according to their cosine
similarity. Lastly, a novel encoder that makes use of binary
patterns, similarly to LBPs, is introduced in [84]. Unlike
other encoders, this descriptor converts binary patterns to
evenly distributed codes. The final representation is ob-
tained by maximizing the entropy of the descriptor. Identity
matching is performed by decomposing the representation
using Identity Factor Analysis (IFA) and classifying the
cosine similarity of the inputs. A similar feature extractor,
called Local Pattern Selection (LPS), is used at multiple
scales in [128]. The multiple scaling and dense sampling
of the method result in a high-dimensional representation,
which is refined using bagging [21]] multiple classifiers.

Age-invariant descriptors

6.2 Age-invariant subspace learning-based methods

Similar to the previous tasks, instead of focusing on age-
invariant local descriptors, an age-invariant subspace can be
learned from simple representations. To build this subspace,
several subspace analysis methods have been employed. In
particular, Multi-Feature Discriminant Analysis (MFDA) is
employed in [129]. The subspace is obtained from Scale
Invariant Feature Transform (SIFT) [144] and Multi-Scale
LBPs features. The classification problem is solved in the
subspace using bagging. The LBP feature space is also em-
ployed in [20] to obtain a subspace that captures geometric
features of the data, such as shape. Nonlinear Topological
Component Analysis (NTCA) is introduced to obtain the
low-dimensional age-invariant subspace.

Another subspace learning method that has been used in
other age modeling tasks, e.g., age progression [245], is the
HFA. Hidden Factor Analysis decomposes facial features
into a linear combination of the age component, the identity
component and the noise term. Contrary to age progression,



Year Paper Repr. Method Dataset(score-B - score-A) Test Metric

1995  [43] 2D prototype based private N/A N/A

1999 [167] 3D PCA private N/A N/A

2001  [213] 2D wavelet, prototype based private N/A N/A

2006 [177] 2D craniofacial growth Custom(28% - 37%) Recogntion  acc.(rank=1)

2008  [178] 2D craniofacial, wrinkle analysis Custom(38% - 51%) Recogntion  acc.(rank=>5)

2010  [209] 2D And-Or Graph, Markov Chain ~ LHI N/A N/A
MORPH N/A N/A

2010  [171] 3D weighted average FG-NET(42% - 55%) Verification  acc.(rank=>5)
MORPH(68% - 73%) Verification  acc.(rank=>5)
BROWNS(45% - 60%) Verification  acc.(rank=>5)

2011  [197], [196] 3D metric learning FG-NET N/A N/A
Jackson Family N/A N/A

2012 [227] 2D tensor space analysis FG-NET(55% - 70%) Recogntion ~ Accuracy

2012 [208] 2D RB-AAM, Markov Chain Custom N/A N/A

2014  [111] 2D TIAAP FG-NET N/A N/A

2015  [198] 2D dictonary learning FG-NET(14.89% - 8.53%) Verification =~ EER

2016  [245] 2D HFA FG-NET(~ 52% — ~ 54%) Recognition  acc.(rank=1)

2016  [187] 2D RAP FG-NET(N/A - 0.709) Verification =~ Accuracy
FG-NET(N/A-0,806) Verification =~ AUC
CACD(N/A - 0.735) Verification ~ Accuracy
CACD(N/A-0,798) Verification =~ AUC

2016  [225] 2D RFA FG-NET(~ 15% - ~ 9%) Verification ~ EER

2017  [257] 2D CAAE Custom N/A N/A

2017 [188] 2D RJIVE AgeDB(0.591- 0.621) Verification ~ Accuracy
AgeDB(0.624-0,654) Verification =~ AUC

2017 [8] 2D Age-cGAN IMDB-WIKI-cleaned( - 82.9%)  Recognition  accuracy

TABLE 7: Overview of Age Progression Methods, score-B and score-A correspond to face verification score before and after

age progression

for the task of face recognition, the identity component
is taken into account. The feature space is obtained from
Histograms of Oriented Gradients (HOGs) [44]. The final
output is obtained based on the cosine similarity of the
identity components.

Lastly, a different method that coordinates cross-age face
verification and cross-face age verification is introduced
in [52]. Motivated by the fact that, the first task needs
age-invariant features while the latter needs age-sensitive
features, the method coordinates the two in a multi-task
learning manner. To achieve this, both tasks share the same
feature pool and feature interaction is encouraged via an
orthogonal regularization. That is, the final features are
selected so that the age-sensitive ones are avoided.

6.3 Deep learning-based methods

Deep Learning models have not found wide use for age-
invariant facial characterization, possibly due to the lack
of large aging datasets. Nevertheless, a latent factor guided
convolutional network is presented in [228]. The fully con-
nected layer of the CNN is designed using Latent Identity
Analysis, separating the identity components from the rest
of the convolutional features. The experiments performed
indicate that simply finetuning a deep CNN on an aging
dataset improves the accuracy significantly. This reveals
that a baseline CNN needs further processing in order to
efficiently learn age-invariant features.

6.4 Evaluation protocols, metrics, and results for age-
invariant facial characterization

Protocols: The most widely used datasets in this subsec-
tion are the FG-NET, MORPH and CACD datasets, while
the protocols involve some of the aforementioned ones
like k-fold cross-validation and LOPO. Particularly for the
MORPH Album 2 dataset, a common protocol includes
splitting the dataset into a training and a test subset, each
containing images from 10,000 subjects (10k-10k). Lastly, it
should be noted that since the CACD dataset consists of
some noisy labels as well as duplicates, a verification subset
called CACD-VS is introduced in [32] and used for testing.

Metrics : Different methods have been used to evaluate
age-invariant facial recognition and cross-age face verifica-
tion. Some methods [52], [131]] use Equal Error Rate (EER)
to evaluate the performance of the verification. This metric
describes the rate at which both accept and reject errors
agree. Nevertheless, the most popular evaluation metric is
verification accuracy or recognition accuracy. In most cases,
rank-1 or rank-n accuracy is used, where the rank indicates
the number of gallery images that have to be inspected in
order to achieve this performance.

Results: The most accurate method among the ones
included in this subsection is the deep learning model
in [228], which outperforms the rest in all datasets. The
results are tabulated as follows, along with the second-best
performance in each dataset. A chronological overview of
the methods in this subsection is tabulated in Table[0l



TABLE 8: Best reported results on age-invariant facial char-
acterization

dataset method  metric protocol score
FG-NET [228] rank-1acc. LOPO 88.1%
FG-NET [84] rank-1acc. LOPO 76.2%
MORPH [228] rank-1acc.  10k-10k 97.51%
MORPH [128] rank-1 acc.  10k-10k 94.87%
CACD-VS  [228] rank-1acc. 10-fold c-v = 98.5%
CACD-VS [32] rank-1acc. 10-fold c-v = 87.6%

6.5 Discussion on age-invariant characterization meth-
ods

Similar to classical Face Verification and Recognition meth-
ods, pose, illumination, occlusions and expressions are sig-
nificant variation inducing factors. Therefore, the afore-
mentioned methods should be able to obtain invariant
representations, not only to aging, but also these kind of
variation. The issue of inadequate aging datasets, that was
mentioned in the previous subsection, stands for this task
as well. This is important, especially for images of children,
where experiments [131] have shown that verification is
much harder compared to adults. Lastly, face recognition
and verification depend prominently on the age difference
between the probe image and the gallery image [92], where
the accuracy of the algorithm usually decreases with larger

age gaps.

6.6 Challenges in the wild

Similar to age progression, age-invariant facial characteri-
zation methods have been evaluated only on three in the
wild datasets. Since all three benchmarks follow similar
protocols, they can be compared based on the the state-
of-the-art results. The results on Table [§] validate the non-
challenging nature of the MORPH2 benchmark, particularly
in comparison to the pose and image quality variation in
FG-NET.

7 KINSHIP VERIFICATION

Kinship Verification has recently gained interest as a task
in machine learning and computer vision community. The
task refers to bi-subject verification; that is, classifying a pair
of input images as kin or non-kin. A smaller number of
methods have explored tri-subject kinship verification [176],
which compares a couple (Mother and Father) against a
child, or whole family classification [64], as well as kinship
recognition [96]. The seminal work on kinship verification
is by Fang et al. [65]. The first kinship annotated dataset is
introduced and facial parts (FP), such as mouth hair and
nose, are extracted using a pictorial structure model [68].
That is, the facial structures are represented as parts in a
deformable configuration. The representation also included
color information, facial distances (FD) and gradient his-
tograms (GH). The difference between the feature vectors
of the query couple are classified using methods like k-NN
and SVM. The experiments performed in the paper indicate
that the most discriminant feature was the color of the eyes.
Moreover, the highest accuracy was achieved for Father-Son
image-pairs, while the algorithm outperformed the human
workers. Such results suggest that kinship verification of
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other people is a difficult task for humans. Similar to the
above, this section is organized based on the facial repre-
sentation used for the task.

7.1 Invariant descriptors to genetic variations

Intuitively, people perceive kinship based on local facial
attributes. These attributes often correspond to facial parts,
like nose, eyes and mouth, the heredity of which indicates
kin-related people. Different descriptors have been applied
to capture facial part information for kinship verification.
The eyes, nose and mouth are explored in [93], where the
DAISY [215] descriptor is used to represent each part. A
similarity score is then computed for each part of the two
faces to determine the familial traits. Similarly, 12 facial
parts are explored in [64] using the dense SIFT (dSIFT)
descriptor. In this approach, each part is reconstructed from
a dictionary of facial parts. The dictionary contains facial
parts from the family of the query face, as well as non-
related faces. In order to determine the family of a test face,
sparsity is enforced on the reconstruction coefficients, based
on the assumption that the query face only inherits features
from its relatives. The final family prediction is obtained
based on the three most dominant facial attributes.

A set of overlapping facial patches is used for feature
extraction in [237]. The face is segmented in 5 layers from
coarse to fine; that is, the first layer contains the whole face
and the other layers contain increasingly smaller parts. Bi-
nary attributes that indicate the presence or absence of a trait
(e.g., mustache), as well as relative attributes (e.g., bigger
nose) are taken into consideration. The LIFT algorithm [255]
is employed to extract the binary attributes, while a ranking
function is learned for the relative ones. Finally, the output
is obtained from an SVM classifier.

Instead of modeling different facial parts, several meth-
ods employ texture descriptors that are widely adopted
in face verification. In particular, Local Phase Quantization
(LPQ) [166], Three and Four-Patch LBPs and Weber Local
Descriptors (WLD) [35] are employed to represent the face
in [19]. The fusion of multiple features results in improved
classification accuracy. Feature selection is employed to ob-
tain the final representation and the classification problem
is solved using SVM. Similarly, the Weber-normalized [35]
faces are obtained in [114] to alleviate the illumination vari-
ation in the data. The features are detected around salient
points, that are extracted using Difference of Gaussian. A
similarity vector is then computed around each pair of
salient points by employing the Self-Similarity Descriptor
(SSD) [195]. The distance measure is then classified by an
SVM classifier.

On the other hand, in order to perform tri-subject kin-
ship verification, each image is partitioned into overlapping
patches and SIFT features are extracted in [176]. Feature
selection is then performed and Symmetric Bilinear Model
(SBM) is used to learn the similarity between the parents
and the child, by learning the pairwise similarities first.
The verification function is modelled as the linear com-
bination of the two similarities. Calculating the tri-subject
similarity in two steps can induce noise to the model, since
the tri-person inheritance is not considered. Based on that,
Zhang et al. [253] introduced a model to compute tri-subject



Year Paper Representation Method Dataset(score) Metric

2007  [130] GOP SVM Private 1(5.1%) EER
Private 11(10.8%) EER

2008  [16] SIFT Feature Drift FG-NET(N/A) ROC

2010  [131] GOpP SVM FG-NET(> 18)(24.1%) EER
FG-NET(8-18)(30.5%)  EER
FG-NET(< 8)(38.6%) EER
Private 1(5.1%) EER
Private 11(10.8%) EER

2011  [129] SIFT, MLBP MFDA FG-NET(47.5%) acc.(rank=1)
MORPH(83.9%) acc.(rank=1)

2013 [83] HOG PCA,LDA,IFA  FG-NET(69%) acc.(rank=1)
MORPH(91.14%) acc.(rank=1)

2014 [31], [32] CARC PCA,LDA,SVM  MORPH(92.8%) acc.(rank=1)
CACD(87.6%) acc.(rank=1)

2015  [84] MEFD, MLBP, SIFT  PCA, LDA, IFA  FG-NET(76.2%) acc.(rank=1)
MORPH(94.59%) acc.(rank=1)

2015  [20] LBP NTCA FG-NET(48.96%) acc.(rank=1)
MORPH(83.8%) acc.(rank=1)

2015  [52] SIFT, LBP, GOP, BIF AGCD FG-NET(19.4%) EER
MORPH(5.5%) EER

2016  [128] LPS LFDA, HFA MORPH(94.87%) acc.(rank=1)

2016  [228] PI LF-CNN FG-NET(88.1%) acc.(rank=1)
MORPH(97.51%) acc.(rank=1)
CACD(98.5%) acc.(rank=1)

TABLE 9: Overview of age-invariant facial characterization methods

dissimilarity. An over-complete set of features from High
Dimensional LBP Histograms (HDLBPH) is employed as
facial representation. The experimental results indicate the
effectiveness of modeling tri-subject kinship jointly instead
of using two bi-subject models.

7.2 Subspace learning-based methods

The methods in this subsection focus on learning a kinship-
invariant subspace by making use of tools like factor anal-
ysis and transfer learning. The aforementioned descriptors
can be used as local descriptors to build the subspace. In
particular, LBP, LPQ and SIFT descriptors are used in [53].
Based on the hypothesis that, symmetry information can
capture non kinship variations like pose and illumination,
the symmetry feature is employed as the kinship unrelated
part of an image. The kinship unrelated part is then sub-
tracted from the original image and a classifier performs
verification. The experimental results indicate that LPQ
perform better than the other descriptors on the KinFaceW-
II dataset, while LBP perform better on the KinFaceW-I
dataset.

Midlevel features are employed in [244], where LBP
and SIFT descriptors are used as low-level image repre-
sentations. The final subspace is obtained using Prototype
Discriminative Feature Learning (PDFL). For this method,
two datasets are used, one with labelled kinship and one
without. To obtain the subspace, the objective function
minimizes the difference between kin-related samples and
maximizes the difference between neighbouring non-kin
samples. An SVM classifier is used for verification, while
the experimental results indicate improved performance
compared to the state-of-the-art. Nevertheless, the model
fails to outperform the human observer for some kinds of
kinship.

Based on the assumption that parents resemble their
children more closely when they are younger compared to
when they are older, transfer subspace tools are used in
[238] and [194] to determine kinship in photos. In particular,
the divergence between the distributions of children and
old parents is minimized, using the young parents as an
intermediate set. Gabor features and distance ratios from the
anthropometic model [177] are used as descriptors and the
resulting subspace maximizes the child-young parent and
child-old parent similarities. Experiments on context-aware
kinship verification are performed and are presented in the
subsection [Z.71

7.3 Metric learning-based methods

Metric Learning methods [239] aim at learning a distance
metric that gets similar samples closer than dissimilar ones.
A number of methods have successfully used the tools of
metric learning to perform kinship verification using differ-
ent facial features. In particular, Ensemble Metric Learning
with sample and feature selection is employed in [203] to
create a mapping that reduces the distance between images
of related people. The local representations include Spatial
histogram of SIFT (SH-SIFT), as well as a vector containing
intensity, Pyramid Histogram of Gradients (PHOG) [17]
and Gabor wavelet at four scales and six orientations. The
final decision is obtained using SVR. The experiments re-
veal the implications of age difference and gender on the
performance of the kinship verification model, which are
discussed in the next subsection.

In order to learn a metric that not only projects kin-
related faces close but also pulls unrelated ones out of their
neighbourhood, Neighbourhood Repulsed Metric Learning
(NRML) is introduced in [149]. Further to that, Multiview
NRML is proposed to obtain metrics for multiple feature



representations and to deal with multiview data. Four dif-
ferent descriptors are used, namely LBP, SIFT, TPLBP and
LE [26]. The last one outperforms the other descriptors in
the experiments, due to the fact that it is directly learned
from the data. The method is extended to handle peri-
oculal images in [172]. The block-based NRML (BNRML)
uses the histograms from the block pairs to learn multiple
distance metrics. The method uses LTP [211] features and
outperforms the original NRML method on the KinFaceW
benchmarks.

Multiple distance metrics for different sets of features
are learned in [243] and Discriminative Multi-Metric Learn-
ing (DMML) is introduced. Three different descriptors are
employed, namely LBP, SIFT and Spatial Pyramid LEarning
(SPLE) [261] and the method learns a metric for each of
them simultaneously. This method [243] performs better for
multiple feature metric learning, as well as single metric
learning, while the SPLE appears to be the best descriptor
for the task. In both methods, kinship is decided using an
SVM classifier.

Multiple feature representations are also employed in
[102] and [101]. Instead of learning a distance metric with
concatenated feature vectors, Large Margin Multi-Metric
Learning (LM3L) [102]], [101] is introduced and multiple
distance metrics are learned jointly. In that way, more dis-
criminative and complementary information is exploited, as
the correlation of the different representations is maximized.
Furthermore, to better exploit the local manifold structure of
images, Local Large Margin Multi-Metric Learning (L?M?3L)
[101] is introduced to incorporate Local Metric Learning
with LM®L.

Learning a Mahalanobis distance metric is equivalent to
finding a linear transformation that projects the samples to a
subspace, where the Euclidean distance of the similar sam-
ples is smaller than the dissimilar ones. Similarly, a linear
transformation that minimizes the correlation, instead of the
euclidean distance, is learned in [241]]. In order to learn a set
of non-linear transformations, Discriminative Deep Metric
Learning (DDML) is introduced in [146]. This method uses
neural networks to project the faces to a discriminative
subspace and is also extended to Descriminative Deep Multi
Metric Learning (DDMML) for multiple features. The ex-
perimental results show that deep architectures that employ
multiple features perform better for the tasks of face and
kinship verification. Subsection features more on deep
hierarchical representations for kinship verification.

7.4 Deep learning-based representations

Similar to the aforementioned tasks in this survey, Deep
Learning methodologies have shown some of the most
promising results for kinship verification. The widely used
architectures, e.g., VGG16, have been used for this task [183]
to exploit large datasets like the Families In the Wild dataset.
More sophisticated deep learning methods introduced for
kinship verification are described as follows.

A deep autoencoder is used in [46] to encode the re-
lationship between the faces in two images. Instead of
encoding each image separately, a relational model that uses
two images as input is introduced. The gated autoencoder
model outperforms most metric learning techniques, as it
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learns the features and the metrics jointly. The output is a
statistic about relatedness and resemblance, which is used
to perform kinship verification. The experimental results in-
dicate the genetic inheritance of facial features in the Family
101 dataset. In particular, sons appear to resemble more their
fathers, while the opposite stands for the daughters.

One of the latest works in kinship verification is the
filtered contractive Deep Belief Network (fcDBN) proposed
in [115]. A DBN is a deep learning method that consists
of multiple stacked Restricted Boltzman Machines (RBM)
[100]. The deep representations are obtained by applying
filters to capture the inherent structure of the images. In
order to train the fcDBN model a large number of images
from multiple datasets are used, a strategy that had not
been previously employed for this task before. Kinship
verification is performed by a 3-layer Neural Network and
the method succeeds in outperforming the state-of-the-art
methods in multiple datasets.

7.5 Other representations

Additionally to the above, other approaches have been
introduced for the task of Kinship verification. Inheritable
genetic transformation is modelled in [140] and [175]. In
particular, Fisher Vector [201] in Opponent Colour Space are
used in [175] as local representations. The inheritable infor-
mation is captured by learning a common transformation on
the representations of child and parent. On the other hand,
the SIFT flow algorithm [133] is employed in [175] and the
inheritable transformation is similarly learned so that the
kin-related representations are as close as possible.

Instead of only applying texture descriptors, Geometric
information is also incorporated in [226]. Facial landmarks
are used and the representation is obtained using the meth-
ods of the Grassmann manifold. In addition, appearance
features are extracted by using LBP on a Gaussian im-
age pyramid and are fused with the geometric features.
A Gaussian Mixture Model (GMM) is used for similarity
feature extraction from the appearance features. Verification
is achieved using an SVM and the experiments indicate
that even though geometric information is not effective on
its own for kinship verification, it significantly boosts the
performance when fused with appearance information.

Among other modalities, contextual and dynamic fea-
tures have been studied for kinship verification. In par-
ticular, kinship verification in a photo using prior context
knowledge is studied in [238]. The contextual information
included captures gender relation, age difference, relative
distance and kinship score. The experiments show that
contextual information is useful for kinship verification.
Lastly, dynamic features from smiles are employed studied
in [47]. The dynamic features and are used along with
Completed LBP from Three Orthogonal Patterns (CLBP-
TOP). The experimental results indicate that smile dynamics
are not sufficiently discriminative when used individually,
but like geometric features, they can increase the accuracy
of kinship verification in combination with spatio-temporal
features. Interestingly, the performance of the model is
higher for spontaneous smiles rather than posed ones.



7.6 Evaluation protocols, metrics, and results for kin-
ship verification

Protocols: The most widely adopted Evaluation Protocol
for Kinship Verification is k-fold cross-validation, partic-
ularly 5-fold cross-validation (5-fold c-v). This protocol is
used for most of the datasets in this subsection. Specifically
for the Vadana dataset, a different protocol is proposed.
The dataset is split into 6 subsets, 3 including parent-child
(VADANA-PC) and 3 including sibling (VADANA-S). For
each relationship, two subsets included only adult faces and
one both adult and child faces. Lastly, the aforementioned
leave-one-out protocol protocol is used for UvA-NEMO
dataset.

Metrics: The common evaluation metric for the task of
kinship verification is the classification accuracy (acc.). The
results are usually obtained for every subset, indicating a
different kinship relation, as well as on the whole dataset.
In cases where the accuracy is obtained on more than one
set, instead of the average, we include the best and the
worst scores reported. Aforementioned metrics, like EER,
are also applied to kinship verification. The metric used in
the VADANA protocol is the accuracy at EER (AEER).

Results: The best reported results for each dataset, along
with the evaluation protocols are tabulated in Table |10} The
methods in this subsection are presented in chronological
order in Table [

TABLE 10: Best reported results on Kinship Verification (the
results in [96] are for Kinship Recognition)

dataset method metric  protocol score
TSKinFace [253] acc. 5-fold c-v 89.8%
CornellKin [115] acc. 5-fold c-v 89.5%
FIW [183] acc. 5-fold c-v 71% +2.3
WVU Kilnship ~ [115] acc. 5-fold c-v 90.8%
VADANA [84] AEER  vadana 60.43-80.18%
KinFaceW-1I [115] acc. 5-fold c-v 96.1%
KinFaceW-II [115] acc. 5-fold c-v 96.2%
Family 101 [226] acc. 5-fold c-v 92.03%
UvA-NEMO [47] acc. leave-one-out  67.11%
Sibling-Face [96] acc. N/A 52.48%
Group-Face [96] acc. N/A 69.25%
UBKinFace [115] acc. 5-fold c-v 91.8%
MTD-Kinship  [114] acc. 5-fold c-v 75.2%

7.7 Discussion on kinship verification

The performance of kinship verification models can be
affected by a number of factors. Some of the factors that
can deteriorate the performance include pose, image quality
[18], lighting conditions [176], as well as gender and age
difference between kin [203]. Experiments are conducted in
the cited studies to define the effect of each factor.

In order to determine the effectiveness of the machine
in kinship verification, a study on kinship verification by
humans is performed in [149]. The results indicate that
humans perform slightly worse than machines, while con-
textual information such as hair, colour and background
can improve their accuracy. Moreover, a study of the sev-
eral factors affecting human accuracy at verifying kin [115]
indicates that women outperform men, while older people
can distinguish kin better. The kin relationships containing
females appear also to be detected more accurately, which
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may be attributed occlusions like beard or mustache. The
study also explains how much kin-related information is
captured in different face patches.

7.8 Challenges in the wild

With the oldest benchmark dating back to 2010, kinship
verification is a field in its infancy. As mentioned in Section
the majority of methods in this subsection is evaluated on
in the wild data. Nevertheless, Table|10|indicates significant
differences between the state-of-the-art performance on each
dataset (e.g., 96.2% on KinFaceW II and 71% on FIW). These
differences can be interpreted by the bias in experimental
set ups inflicted by gathering images from the same photo
[143]. Additionally, the laborious nature of gathering these
images has resulted in small datasets that do not contain
extreme variation with regards to pose, occlusions or image
quality. On the other hand, the much larger FIW dataset
demonstrates larger variation in pose, image quality as well
as age of the subjects. The problem of kinship verification
in the wild has been tackled in two competitions [147],[145].
The second is based on the KinFaceW datasets while a new
dataset was collected for the first one. The difference in the
results indicates that the KinFaceW datasets are indeed less
challenging.

8 AGING AND KINSHIP

The fact that both aging and kinship are genetically encoded
[22] indicates an inherent synergy between the two. This
synergy is used in [199] to perform kinship guided age
progression. The parent face serves as a prior to predict
the aging of the child. The kinship information is incor-
porated by morphing the age-progressed face to the one
of the parent. On the other hand, old and young parent
face images are used in [235]. The correlation between the
aging of the parent face and their children is leveraged by a
transfer learning model from the young parent-child to the
old parent-child domain.

Besides the possible synergy between them, aging and
kinship modeling face similar issues when it comes to
dealing with faces in the wild. Variations like illumina-
tion, pose, expression and image quality deteriorate the
accuracy of such systems. The methods in the previous
sections apply classical face analysis descriptors, e.g., LBP,
SIFT, HOG, as well as state-of-the-art deep CNN to attack
these problems. Furthermore, aging and kinship modeling
share a number of protocols. In particular, cross-age face
verification and kinship verification systems aim to learn a
similarity metric and similar methods can be applied. This
approach is adopted in [149], where the task of cross-age
face verification is tackled as "self-kinship verification” using
metric learning.

9 CONCLUSIONS

Motivated by the increasing interest and plethora of real
world applications, the state-of-the-art methods in age and
kinship modeling have been surveyed. The main challenges
and results of the methods are described for each task
individually. The results tabulated in Tables 4, 7, 9 and
11 indicate the superiority of deep learning methods in
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Year Paper Representation Method Dataset(score) Metric
2010  [65] FP, FD, Colour, GH kNN, SVM CornellKin(70.67%) acc.
2011 [194] Gabor CMC,TSL, kNN UBKinFace(56.5%) acc.
2012 [93] DAISY Bayes decision private(75%) acc.
2012 [237] binary, relative attributes SVM UBKinFace(82.5%) acc.
2012 [114] DoG salient points SSD, SVM IITD(75.2%) acc.
2012 [238] Gabor CMC, TSL, kNN UBKinFace(56.5%) acc.
2012 [203] PHOG, Gabor, SH-SIFT Meric Learning, SVR VADANA-PC(80.18%) AEER
VADANA-5(75.64%) AEER
2013 [64] dSIFT Sparse Group Lasso Family101(32%) acc.
2013 [47] dynamic, CLBP-TOP mRMR, SVM UvA-NEMO(67.11%) acc.
2014  [149] LBP, SIFT, TPLBP and LE MNRLM, SVM KinFaceW-1(69.9%) acc.
KinFaceW-11(76.5%) acc.
2014  [243] LBP, SIFT, SPLE DMML, SVM KinFaceW-1(69.5-75.5%)  acc.
KinFaceW-11(76.5-79.5%)  acc.
CornellKin(70.5-77.5%) acc.
UBKinFace(70-74.5%) acc.
2014  [102] LE, LBP, TPLBF, SIFT LMMML KinFaceW-I1(78.7%) acc.
2014  [46] PI gated autoencoder KinFaceW-1(74.5%) acc.
KinFaceW-I1(82.5%) acc.
2014  [226] LBP, Grassman Manifold GMM, geodesic distance, SVM Family101(92.03%) acc.
2014  [96] LBP,BIF, relative age logistic regression, graph classifier =~ Custom(52.48%) acc.
GroupFace(69.25%) acc.
2015 [19] LPQ, TPLBP, FPLBP, WLD mRMR, SFFS, SVM KinFaceW-1(86.3%) acc.
KinFaceW-I1(83.1%) acc.
2015 [176] SIFT RSBM TSKinFace(85.4%) acc.
2015 [53] LPQ PCA, feature substraction KinFaceW-1(70.9%) acc.
KinFaceW-11(77.1%) acc.
2015 [244] LBP, SIFT PDFL, SVM KinFaceW-1(70.1%) acc.
KinFaceW-11(77%) acc.
CornellKin(71.9%) acc.
UBKinFace(67.3%) acc.
2016  [253] HDLBP dissimilarity vector, mRMR TSKinFace(89.7%) acc.
2017  [101] LE, LBP, TPLBP, SIFT LLMMML KinFaceW-I1(80%) acc.
2017  [146] LBP,DSIFT, HOG, LPQ DDMML KinFaceW-1(83.5%) acc.
KinFaceW-11(84.3%) acc.
TSKinFace(82.5-88.5%) acc.
2017  [241] LE NRCML KinFaceW-1(66.3%) acc.
KinFaceW-I1(78.8%) acc.
2017  [172] LTP BNRML KinFaceW-1(78.7%) acc.
KinFaceW-I1(80.55%) acc.
2017  [184] PI VGG FIW(71%42.3) acc.
2017  [115] PI fcDBN,3-1 NN KinFaceW-1(96.1%) acc.
KinFaceW-11(96.2%) acc.
CornellKin(89.5%) acc.
UBKinFace(91.8%) acc.
WVU(90.8%) acc.

TABLE 11: Overview of Kinship Verification Methods

modeling the non-linear transformations of aging and kin-
ship. Specifically, the discriminative power of deep learning
representations, in addition to the availability of in the wild
image datasets, have produced results that surpass human
abilities in the tasks of age estimation, age-invariant facial
characterization and kinship verification. On the other hand,
the application of deep generative models (e.g., GANs) for
the task of age progression has produced photorealistic age-
progressed images with impressive high-frequency details.

Nevertheless, deep learning (DL) methods demonstrate
a number of limitations that hinder the effective use of
such methods for modeling complex transformations like
aging and kinship. To approximate such functions DL meth-
ods use hierarchical models that need sufficiently dense
sampling from the data distribution, that is, they are data
hungry. The resulting models are highly non-linear and
complex, creating systems that are not mathematically trans-

parent, while being difficult to train with no guarantee of
convergence. This deems DL methods unsuitable for critical
tasks due to their lack of interpretability and sensitivity to
adversarial examples [86].

To further advance the fields of aging and kinship
modeling, the community should focus on diversifying the
modalities of the data, since the vast majority of research
focuses on 2-Dimensional data. Although some papers in-
dicate the possibility of using dynamic representation for
these tasks (e.g., [47], [48]), the lack of labelled videos
captured in the wild delays progress in this problem. Lastly,
the lack of large in the wild datasets with multiple annota-
tions, i.e. both age and kinship, does not allow for research
on the correlation between age and kinship. Since both
kinship and aging transformations are genetically encoded,
the inheritance of aging patterns can be investigated. Such
datasets will also reveal the possibility of incorporating age



or kinship as soft-biometrics to boost the accuracy of face
recognition systems (e.g., in [115]) as well as investigate the
synergies between the two.
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