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Abstract

In the last few years, there has been an increasing interest in developing systems for Automatic Lip-Reading (ALR).
Similarly to other computer vision applications, methods based on Deep Learning (DL) have become very popular
and have permitted to substantially push forward the achievable performance. In this survey, we review ALR research
during the last decade, highlighting the progression from approaches previous to DL (which we refer to as traditional)
toward end-to-end DL architectures. We provide a comprehensive list of the audio-visual databases available for lip-
reading, describing what tasks they can be used for, their popularity and their most important characteristics, such as
the number of speakers, vocabulary size, recording settings and total duration. In correspondence with the shift toward
DL, we show that there is a clear tendency toward large-scale datasets targeting realistic application settings and large
numbers of samples per class. On the other hand, we summarize, discuss and compare the different ALR systems
proposed in the last decade, separately considering traditional and DL approaches. We address a quantitative analysis
of the different systems by organizing them in terms of the task that they target (e.g. recognition of letters or digits and
words or sentences) and comparing their reported performance in the most commonly used datasets. As a result, we
find that DL architectures perform similarly to traditional ones for simpler tasks but report significant improvements
in more complex tasks, such as word or sentence recognition, with up to 40% improvement in word recognition rates.
Hence, we provide a detailed description of the available ALR systems based on end-to-end DL architectures and
identify a tendency to focus on the modeling of temporal context as the key to advance the field. Such modeling is
dominated by recurrent neural networks due to their ability to retain context at multiple scales (e.g. short- and long-
term information). In this sense, current efforts tend toward techniques that allow a more comprehensive modeling
and interpretability of the retained context.

Keywords: Automatic lip-reading, audio-visual corpora, visual speech decoding, deep learning systems, multi-view
lip-reading.

1. Introduction

Speech is the most used communication method be-
tween humans, and it is considered a multi-sensory pro-
cess that involves perception of both acoustic and vi-
sual cues. McGurk and McDonald demonstrated the5

influence of vision in speech perception in [1], where
it was experimentally shown that when observers were
presented with mismatched auditory and visual cues,
they perceived a different sound from those presented
in the stimulus, i.e. the syllable /ba/ was spoken over10

the lip movements of /ga/, and the perception was the
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intermediate syllable /da/. Since then, many authors
have demonstrated that the use of visual information in
speech recognition improves robustness [2, 3].

Despite audio signals are in general much more infor-15

mative than video signals, it has been demonstrated that
most people use lip-reading cues to understand speech.
However, these cues are often used unconsciously and
to different degrees depending on aspects such as the
hearing capability [4] or the acoustic conditions (e.g.20

the visual channel becomes more important in noisy en-
vironments) [5], [6], [7], [8]. Furthermore, the visual
channel is the only source of information for people
with hearing disabilities to understand the oral language
[9], [2], [10].25

In the literature, much of the research has focused on
Automatic Speech Recognition (ASR) systems, given
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that speech is primarily an acoustic form of communi-
cation. Nowadays, ASR systems are powerful systems
able to understand the spoken language with very high30

recognition rates when the acoustic signal is not cor-
rupted. However, when the acoustic signal is degraded,
the performance of ASR drops and there is the need to
rely also on the information provided by the visual chan-
nel. This has led to research in Audio-Visual Automatic35

Speech Recognition (AV-ASR) systems, which try to
balance the contribution of the audio and the visual in-
formation channels to develop systems that are robust to
audio artifacts and noise. AV-ASR systems have been
shown to significantly improve the recognition perfor-40

mances of audio-based systems under adverse acoustic
conditions [2, 11].

On the other hand, in the last decades there has been
an increased interest in decoding speech exclusively us-
ing visual cues, i.e. mimicking the human capability to45

perform lip-reading, leading to Automatic Lip-Reading
(ALR) systems [11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
Nonetheless, ALR systems are still behind in perfor-
mance compared to audio- or audio-visual systems.
This can be partially explained by the greater challenges50

associated to decoding speech through the visual chan-
nel, when compared to the audio channel.

One of the main challenges in ALR systems resides
on the visual ambiguities that arise at the word level due
to homophemes, i.e characters that are easily confused55

because they produce the same or very similar lip move-
ments (e.g. [p], [b] and [m]) [11, 21, 13]. Recall that the
main objective of speech recognition systems is to un-
derstand verbal communication, which is structured in
terms of sentences, words and characters, going from60

larger to smaller speech entities. More precisely, the
standard minimum unit in speech processing is not the
character, but the phoneme, defined as the minimum dis-
tinguishable sound that is able to change the meaning
of a word [22]. Similarly, when analyzing visual infor-65

mation many researchers use the viseme, which is de-
fined as the minimum distinguishable speech unit in the
video domain [23], although there is no consensus on
the precise definition of the different visemes nor their
number, or even their actual usefulness and existence70

[24, 23, 25, 26].
The fact that several phonemes produce lip move-

ments that are visually indistinguishable implies that
there is no direct or one-to-one correspondence between
phonemes and visemes. For example, the phones /p/75

and /b/ are visually indistinguishable because voicing
occurs at the glottis, which is not visible. On the other
hand, there are also phonemes whose visual appearance
can change (or even disappear) depending on the con-

text: this is the case of the velar consonants (e.g: /k/80

or /g/)) which change the tongue’s position in the palate
depending on the previous or following phoneme [27].
For these reasons, many authors have proposed different
phoneme-to-viseme mappings, with various definitions
and numbers of visemes [28, 29, 30, 31, 32, 33, 18]. In85

contrast, other authors dispute the existence of visemes
and defend that visual ambiguities can be completely
resolved using context from neighboring characters,
words or a language model [16, 34, 19, 25]. They ar-
gue that working through visemes to understand speech90

is an irrecoverable loss of information. In any case, it
is widely accepted that one of the most important chal-
lenges when designing ALR systems is how to make the
system robust to visual ambiguities.

Other challenges associated to lip-reading include95

head pose variations, illumination conditions, poor tem-
poral resolution (when compared to audio systems),
efficient encoding of spatio-temporal information and
speaker dependency [7, 35, 36]. Furthermore, human
lip-readers argue that facial expressions help to decode100

the spoken message by adding context to the sentence.
Thus, while most automatic systems focus only on the
mouth region, it might be helpful to consider the whole
face to decode visual speech [37].

Traditionally, ALR systems were based on the ex-105

traction of visual features and the classification and
modelling of the spoken sequences. Thus, tradi-
tional ALR systems mainly consist of image trans-
forms or appearance-based features combined with Hid-
den Markov Models (HMMs) that use short context in-110

formation to model the temporal dynamics of the se-
quences. Early ALR systems addressed simple recog-
nition tasks such as alphabet or digit recognition, but
progressively shifted to more complex and realistic set-
tings leading to several recent systems that target contin-115

uous lip-reading. To a large extent, these advances have
been possible thanks to the construction of powerful
systems based on Deep Learning (DL) architectures that
have quickly started to replace traditional systems and
to the availability of large-scale databases [19, 16]. In120

this way, technological advances in ALR systems have
made possible several novel applications such as dic-
tating messages to smartphones in noisy environments
[38, 39], using visual silent passwords [40, 41, 42],
discriminating between native and non-native speakers125

[43, 44, 45], transcribing and re-dubbing silent films
[16, 34], synthesizing voice for people with speech dis-
abilities based on their lip movements [46, 47, 48, 49],
developing augmented lip views to assist people with
hearing impairments [50] or resolving multi-talker si-130

multaneous speech [51, 52].
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Figure 1: Cumulative number of papers on ALR systems published
between 2007 and 2017.

Contribution

In this survey, we review the research on ALR sys-
tems between 2007 and 20171, highlighting the pro-
gression from approaches previous to DL (which we135

refer to as traditional) toward end-to-end DL architec-
tures. We provide a comprehensive list of the audio-
visual databases available for lip-reading, describing
what tasks they can be used for, their popularity and
their most important characteristics, such as number of140

speakers, vocabulary size, recording settings and total
duration. On the other hand, we summarize, discuss
and compare the different ALR systems proposed in the
last decade, separately considering traditional and DL
approaches. We address a quantitative analysis of the145

different systems by organizing them in terms of the
task that they target and comparing their reported per-
formance in the most commonly used datasets.

While there exists another literature review on ALR
in [13], it only covers papers up to 2013. The big growth150

of research in visual speech architectures during the last
few years (see Figure 1) has considerably expanded the
literature of the field, producing a shift of the state-of-
the-art toward systems based on DL architectures and
justifying the need for an up-to-date review as the one155

presented here.
The reminder of this survey is organized as follows:

in Section 2 we summarize the available corpora for
lip-reading and their main characteristics, grouped by
recognition task and viewing angle. In Section 3) we re-160

view the progression of ALR systems in the last decade
in terms of system’s architecture and performance, in-
cluding: i) a review of traditional architectures grouped
by task and dataset, and ii) a review of recent ALR sys-
tems based on DL architectures. Conclusions are pro-165

vided in Section 4.

1We also include the works published so far during 2018.

2. Audio-Visual databases

Reviewing the literature, the early databases designed
to develop ALR systems, starting from the nineties, fo-
cused on specific and simple recognition tasks with re-170

stricted vocabularies, such as alphabet or digit recog-
nition. These datasets have been widely analyzed be-
cause they allow to quickly train prototype systems
given that they tackle lip-reading from well controlled
settings with a pre-defined vocabulary and multiple rep-175

etitions. However, the typically low numbers of sub-
jects and limited amount of recorded data make it diffi-
cult to construct robust ALR models that generalize well
to more realistic application settings. Thus, subsequent
databases focused on increasing the amount of captured180

data and addressing more complex tasks, going toward
ALR systems targeting continuous speech.

Acquisition of large audio-visual databases is chal-
lenging due to the several factors that could be ad-
dressed (subjects, repetitions, illumination, head-pose,185

vocabulary, resolution, etc). Thus, some efforts were
made to create datasets providing moderately large
amounts of data focusing just on a few factors, while
giving up other aspects. For example, the GRID corpus
[53] contains a big number of utterances but very similar190

and constrained sentences and the RM-3000 database
[54] contains only one speaker but it has a huge vo-
cabulary. More recent efforts have led to large-scale
databases collected from TV broadcasts with the objec-
tive to provide a wide vocabulary under increasingly re-195

alistic settings (LRW [19], LRS [16], MV-LRS [25]).
The biggest dataset for continuous speech recognition,
named LRS, consists of more than 100,000 utterances
spoken by over a thousand different people. Thus, the
field is growing toward large databases with a lot of vari-200

ability to train robust ALR systems.
In the following subsections we compare the avail-

able databases for training ALR systems, classifying
them by task (e.g. letters, digits, words and sentences)
and by viewing angle. Despite audio-visual datasets205

have been dominated by frontal-view recordings, ALR
systems should deal with multi-view lip-reading to de-
code speech in realistic scenarios. Table 1 provides a
list of audio-visual databases for ALR with frontal-view
data, while Table 3 provides a similar list for datasets210

captured under multiple viewpoints. For each database
we summarize its key features, including: year of cre-
ation; Google scholar citations; language; number of
speakers; recognition task being considered; number of
classes; number of utterances; resolution and total dura-215

tion. In addition, representative snapshots from some of
these databases are shown in Figure 2.
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Figure 2: Example shots of audio-visual speech databases.

2.1. Alphabet and digit recognition
Early works in ALR focused on simple recognition

tasks such as alphabet or digit recognition. The avail-220

able databases differ in several aspects, such as number
of speakers, language, number of utterances and spatial
and temporal resolutions.

For alphabet recognition, AVLetters (1998) [55] is
one of the most used databases. In contains recordings225

from 10 speakers repeating each letter 3 times, at a res-
olution of 376×288 pixels and 25 fps. Later on, AVLet-
ters2 [56] and AVICAR [57] solved some weaknesses
of AVLetters, such as the low resolution or the limited
number of speakers. Specifically, AVLetters2 increased230

the number of utterances (from 3 to 7 repetitions per
speaker) and the resolution (1920×1080 pixels and 50
fps). Nonetheless, the number of speakers was reduced
to just 5. On the other hand, AVICAR is a large multi-
speaker database with high resolution. It contains 100235

speakers, although only 86 are available.
For digit recognition, XM2VTS [58] is one of the

biggest multi-speaker databases with 295 participants.
It was especially designed for personal identification.
Each subject was asked to pronounce two continuous240

digit strings and one phonetically balanced sentence.
Other databases such as VALID [65] or BANCA [60]
followed a similar structure to the XM2VTS database.
In particular, VALID was designed for comparing
speaker identification experiments under controlled and245

uncontrolled illumination and acoustic noise. This
database includes recordings from 106 speakers in five
scenarios. Similarly, the BANCA database was espe-
cially designed for identity verification under 3 different
scenarios (controlled, degraded and adverse). It consists250

of 208 subjects covering 4 different languages (English,
French, Italian and Spanish). There are 12 sessions per
subject in which they were instructed to say a random
12 digit number, his/her name, their address and birth
date (∼30,000 utterances).255

However, the most popular database for training ALR
systems in digit recognition is CUAVE [64] despite it
contains considerably less speakers than XM2VTS and
VALID. CUAVE contains 36 speakers but it provides a
large number of utterances, organized in sessions of sin-260

gle and dual speakers. In single-speaker sessions, the
speaker pronounced 50 isolated digits while standing
naturally in front of the camera. After that, the speaker
was captured from both profile views while uttering 20
isolated digits, and then 60 connected digits facing the265

camera again. For dual-speaker sessions, two speakers
were recorded at the same time; while one speaker was
talking the other one would remain silent, but both were
captured by the camera. Speakers were asked to ut-
ter two repetitions of connected-digit sequences, alter-270

nating their turns. Subsequent datasets were presented
dealing with digit recognition such as AV@CAR [63]
for Spanish, AVOZES [62], AVICAR [57] and AusTalk
[80] for English, the AGH AV Corpus [78] for Polish
and the CENSREC-1-AV [70] for Japanese. They were275

recorded with moderate spatial and temporal resolutions
and at least 20 speakers. Other datasets such as IBMIH
[61] and IBMSR [66] were designed for digit recog-
nition with huge numbers of speakers and utterances,
but unfortunately they are not publicly available. In280

2015, the multi-view OuluVS2 database [82] was pre-
sented with high resolution, 52 subjects and near 1,600
utterances. More recently, in 2018 the multi-view AV
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Table 1: Audio-visual corpora, in chronological order

Name Year Cites Language Speakers Task Classes Utterances Resolution Duration
AVLetters [55] 1998 455 English 10 Alphabet 26 780 376×288, 25 fps 13 min
XM2VTS [58] 1999 1466 English 295 Digits 10 885 720×576, 25 fps 59 min

IBMViaVoice [30] 2000 295 English 290 Sentences 10,500 24,325 704×480, 30 fps 50 h
VIDTIMIT [59] 2002 45 English 43 Sentences 346 430 512×384, 25 fps 30 min

BANCA [60] 2003 507 Multiple 208 Digits 10 29,952 720×576, 25 fps ∼ 14 h
IBMIH [61] 2004 37 English 79 Digits 10 16,197 720×480, 30 fps N/A

AVOZES [62] 2004 55 English 20 Digits 10 200 720×480, 30 fps ∼ 2 hSentences 3 60

AV@CAR [63] 2004 26 Spanish 20
Alphabet 26 800

768×576, 25 fps
∼ 1 h

Digits 10 600 50 min
Sentences 250 6,000 ∼ 8 h

AVICAR [57] 2004 150 English 86
Alphabet 26

59,000 720×480, 30 fps ∼ 33 hDigits 13
Sentences 1317 †

CUAVE [64] 2004 248 English 36 Digits 10 7,000 720×480, 30 fps 14 min
AV-TIMIT [29] 2004 112 English 233 Sentences 510 4,660 720×480, 30 fps 4 h

VALID [65] 2005 33 English 106 Digits 10 1,590 576×720, 25 fps N/A
GRID [53] 2006 520 English 34 Phrases 51 34,000 720×576, 25 fps ∼ 28 h

IBMSR [66] 2008 15 English 38 Digits 10 1,661 368×240, 30 fps N/A
AVLetters2 [56] 2008 44 English 5 Alphabet 26 910 1920×1080, 50 fps 15 min

IV2 [67] 2008 13 French 300 Sentences 15 4,500 780×576, 25 fps ∼ 8 h
UWB-07-ICAV [68] 2008 9 Czech 50 Sentences 7,550 10,000 720×576, 50 fps 25 h

OuluVS [69] 2009 164 English 20 Phrases 10 1,000 720×576, 25 fps 16 min
CENSREC-1-AV [70] 2010 20 Japanese 42 Digits 10 3,234 720×480, 30 fps N/A

QuLips [71] 2010 11 English 2 Digits 10 3,600 720×576, 25 fps N/A

NDUTAVSC [72] 2010 11 German 66
Digits

6,907 6,907 640×480, 100 fps ∼ 11 hWords
Sentences

WAPUSK20 [73] 2010 12 English 20 Phrases 52 2,000 640×480, 32 fps 20 h
LILiR [74] 2010 49 English 12 Sentences 200 2,400 720×576, 25 fps N/A

BL [75] 2011 7 French 17 Sentences 238 4,046 640×480, 30 fps ∼ 6 h
UNMC-VIER [76] 2011 5 English 123 Sentences 12 2,460 708×640, 29 fps N/A

MOBIO [77] 2012 128 English 150 Sentences N/A N/A 640×480, 16 fps 61 h
AGH AV [78] 2012 5 Polish 20 Digits N/A N/A 1920×1080, 50 fps ∼ 3 h

MIRACL-VC [79] 2014 10 English 15 Words 10 1,500 640×480, 15 fps N/APhrases 10 1,500

AusTalk [80] 2014 6 English 1000
Digits 10 24,000

640×480 ∼ 3000 hWords 966 966,000
Sentences 59 59,000

MODALITY [81] 2015 2 English 35 Words 182 231 1920×1080, 100 fps N/A

OuluVS2 [82] 2015 17 English 53
Digits 10 1,590 1920×1080, 30 fps

∼ 1 h
Phrases ∼ 1 h

Sentences 530 530 13 min
RM-3000 [54] 2015 4 English 1 Sentences 1,000 † 3,000 360×640, 60 fps ∼ 4 h

IBM AV-ASR [83] 2015 47 English 262 Sentences 10,400 † N/A 704×480, 30 fps ∼ 40 h
TCD-TIMIT [84] 2015 20 English 62 Sentences 5,954 6,913 1920×1080, 30 fps ∼ 6 h

HAVRUS [85] 2016 3 Russian 20 Sentences 1,530 4,000 640×460, 200 fps N/A
LRW [19] 2016 30 English 1,000+ Words 500 400,000 256×256, 25 fps ∼ 111 h
LRS [16] 2017 29 English 1,000+ Sentences 17,428 † 118,116 160×160, 25 fps ∼ 33 h

VLRF [37] 2017 1 Spanish 24 Sentences 1,374 † 10,200 † 1280×720, 50 fps ∼ 3 h
MV-LRS [25] 2017 1 English 1,000+ Sentences 14,960 74,564 160×160, 25 fps ∼ 20 h

AV Digits [86] 2018 0 English 53 Digits 10 795 1280×780, 30 fps N/A39 Phrases 5,850
† Number of words
h: hours, min: minutes.
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Digit database [86] was presented also with high reso-
lution, 53 subjects and close to 800 utterances of digit285

sequences.

2.2. Word and sentence recognition
Datasets for digit and alphabet recognition have been

very popular because they allow dealing with ALR un-
der controlled settings with a constrained vocabulary290

and large numbers of instances per class. While this is
useful to analyze the effectiveness of algorithms at early
design stages, the resulting models tend to be of lim-
ited scope and difficult to extrapolate to more complex
tasks such as word or sentence recognition. However,295

the aim of ASR systems is to understand natural speech,
which is mainly structured is terms of sentences, which
has made it necessary the acquisition of databases con-
taining words, phrases and phonetically-balanced sen-
tences.300

One of the earliest audio-visual databases contain-
ing sentences is IBMViaVoiceT M [30], which consists
of 290 subjects uttering continuous speech read from a
script with a vocabulary size of approximately 10,500
words and 24,325 sentence utterances. Unfortunately,305

this corpus is not publicly available. Among the avail-
able corpora we find VIDTIMIT (2002) [59], designed
to target person verification. It consists of 43 sub-
jects reciting 10 sentences each, selected from a pool
of 346 different sentences. Similarly, AV-TIMIT [29]310

was published in 2004 for audio-visual speech recogni-
tion. It contains 233 speakers and 510 different sen-
tences. Other datasets already described in Section
2.1 for digit recognition also contain specific sessions
with sentences: AV@CAR provides 250 phonetically-315

balanced sentences, AVICAR sentences with more than
1,300 different words, and AVOZES three different sen-
tences designed to contain almost all phonemes and
visemes of Australian English.

Several other databases were published between 2008320

and 2014. Most of them were recorded in English [87],
[69], [76], [77], [79], [80] but we can also find two
databases recorded in French [67] and one recorded
in Czech [68]. Among the English-based corpora, the
OuluVS database [69] is one of the most used databases325

for evaluating ALR systems. It contains 20 speak-
ers uttering 10 short sentences of daily-use in English,
where each utterance was repeated by the same speaker
up to 5 times. The LILiR [74], MIRACL-VC [79],
UNMC-VIER [76] and Austalk [80] databases contain330

12, 15, 123 and 1000 speakers, respectively. How-
ever, MIRACL-VC and UNMC-VIER contain rather
few sentences (10 and 12), while LILiR and Austalk
contain 200 and 59 different sentences, respectively.

Yet within English corpora, we also find the MOBIO335

database [77]. Differently from those previously men-
tioned, the MOBIO database was designed for evaluat-
ing automatic face and speaker recognition on a mobile
phone. It contains videos from 150 speakers answer-
ing short and free-speech questions and reading prede-340

fined texts, always recorded with a mobile phone held
by themselves.

Audio-visual databases recorded in other languages
are much less frequent than those in English. For ex-
ample, in French language we find the IV2 [67] and BL345

[75] databases; the first one provides a large number of
speakers (300) uttering 15 sentences, while BL provides
just 17 speakers but 238 sentences each. Other exam-
ples include the UWB-07-ICAVR database [68], which
provides 10,000 utterances from 50 subjects in Czech,350

the NDUTAVSC database [72], with 66 German speak-
ers, the AV@CAR database [63], in Spanish (already
described above) and the VLRF database [37], also in
Spanish, providing 1,507 utterances from 24 speakers.
In Table 2 we show examples of sentences of some of355

these AV-databases.
More recently, other databases have been published.

Among them we find the single speaker RM-3000 cor-
pus [54] which contains a vocabulary of 1,000 differ-
ent words and 3,000 utterances. In contrast, we find360

several multi-speaker databases, namely OuluVS2 [82],
TCD-TIMIT [84], HAVRUS [85], IBM AV-ASR [83],
VLRF [37] and AV Digits [86], which contain 53, 62,
20, 262, 24 and 53 subjects, respectively. OuluVS2
contains recordings of speakers uttering phrases and365

sentences; each speaker repeated three times a set of
10 daily-use phrases (similar to OuluVS) and read 10
TIMIT sentences randomly chosen from a total of 530
sentences. On the other hand, the TCD-TIMIT dataset
contains more than 6,900 different sentences and nearly370

14,000 utterances while the HAVRUYS database [85],
in Russian, provides 4,000 utterances from 20 speak-
ers. The IBM AV-ASR database is a large corpus whose
sentences contain more than 10,000 words, but unfortu-
nately it is not publicly available. The VLRF database,375

in Spanish, contains 24 speakers repeating up to three
times sets of 25 sentences selected from a pool of 500
phonetically-balanced sentences (10,000+ word utter-
ances). Interestingly, this corpus includes participants
with different hearing capabilities: 15 were normal-380

hearing and 9 were hearing-impaired subjects, who also
performed lip-reading on the recorded videos. The tran-
scriptions of the human lip-reading are also provided,
allowing for a direct comparison between human and
ALR. Finally, the very recent AV Digits database con-385

tains videos of 39 speakers uttering 10 daily-use phrases
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Table 2: Sentence examples of audio-visual databases

Name Year Language Sentences or Phrases

AVICAR 2004 English
This was easy for us.
First add milk to the shredded cheese.
Tofu is made from processed soybeans.

GRID 2006 English
Bin blue at A 1 again.
Lay green by B 2 now.
Place red in C 3 please.

OuluVS 2009 English
Excuse me.
Nice to meet you.
How are you.

VIDTIMIT 2009 English
She had your dark suit in greasy wash water all year.
Don’t ask me to carry an oily rag like that.
The clumsy customer spilled some expensive perfume.

UNMC-VIER 2011 English
Joe took fathers green shoe bench out.
She had your dark suit in greasy wash water all year.
Mum strongly dislikes appetizers.

OuluVS2 2015 English
Military personnel are expected to obey government orders.
Agricultural products are unevenly distributed.
Chocolate and roses never fail as a romantic gift.

TCD-TIMIT 2015 English
She had your dark suit in greasy wash water all year.
The prospect of cutting back spending is an unpleasant one for any governor.
Don’t ask me to carry an oily rag like that.

VLRF 2017 Spanish
Eligieron una casa allı́ con las mismas condiciones.
Los gusanos son animales invertebrados sin extremidades.
A las ocho de la mañana ya estaba haciendo pasteles.

LRS 2017 English
When you’re cooking chips at home.
The traditional chip pan often stays on the shelf.
Through what they call a knife block.

(similar to OuluVS and OuluVS2). Each phrase is re-
peated five times in three different speech modes: nor-
mal, whispered and silent.

Another key element to consider is the widespread390

use of Deep Neural Networks (DNNs) in the last few
years, which has produced important advances in many
aspects of computer vision, including of course lip-
reading systems. While these networks have demon-
strated considerable improvements on classification per-395

formance, this is only possible if appropriate data are
available for training. In other words, DNNs are char-
acterized by the need for big amounts of training data.
Even though we have mentioned numerous audio-visual
databases suitable for ALR, most of them do not contain400

a sufficient number of samples or do not cover enough
vocabulary to train DNNs that generalize well. Thus,
early attempts of ALR systems based on DL faced a
shortage of data and, among the available corpora, those
with larger number of utterances per class became more405

popular. For example, the GRID corpus [53] was in-
troduced in 2006 but its use has considerably increased
in the last few years. This corpus contains data col-
lected from 34 speakers uttering 1,000 constrained sen-
tences, each fitting into a 3-second time window. Each410

speaker produced all combinations of ”color”, ”digit”
and ”letter” by following the fixed sentence structure

<command> + <color> + <preposition> + <digit> +

<letter> + <adverb> It contains 34,000 utterances of
very similar sentences with a vocabulary that covers415

51 words. There exist also other databases that fol-
low a similar sentence structure such as WAPUSK20
[73] or MODALITY [81]. These corpora provide rather
large number of instances per class, which is adequate
for training DNNs, but cannot generalize outside of the420

rather small set of words that they cover.

Therefore, new databases have been recently
recorded with the aim of providing both large numbers
of utterances and a wider vocabulary. Among these,
most relevant efforts include the LRW [19], LRS [16]425

and MV-LRS [25] databases. The Lip Reading Words
(LRW) and Lip Reading Sentences (LRS) databases are
based on recordings from BBC programs between 2010
and 2016. LRW contains sentences from more than
1,000 speakers and a vocabulary of 500 words that oc-430

cur at least 800 times each (∼400,000 utterances in to-
tal). LRS contains 17,428 different words combined in
118,116 utterances along with the corresponding face-
track. Finally, the MultiView-LRS (MV-LRS) database
was also recorded from BBC programs but, while LRW435

and LRS contain only frontal face shots, MV-LRS in-
cludes shots from any viewing angle between 0 and 90
degrees.
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2.3. Multiview databases
ALR systems have been usually based on visual440

speech understanding from frontal view recordings.
However, in a practical system it is not always possi-
ble to ensure that the input images will be exclusively
from frontal shots. For example, in the case of imaging
multiple speakers in a conversation with a single cam-445

era, we will need to work with images from different
angles for each speaker. Thus, practical ALR systems
should tackle multi-view lip-reading to be able to under-
stand speech in realistic application scenarios. Further-
more, studies with human lip-readers have found that450

perfectly frontal shots are not necessarily the best ones
to perform lip-reading. Indeed, angles slightly departing
from frontal-view have shown to be beneficial because
lip protrusion and rounding can be better observed [87].
Then, in this section we review datasets that provide455

speaker recordings from different viewpoints (Table 3).
There is a considerable variability in the recording se-

tups that have been used to capture multi-view databases
for audio-visual research. Some of them contain only
frontal and full-profile views, while others contain sev-460

eral slots between 0 and 90 degrees. On the other hand,
there are datasets which have been recorded by multiple
cameras simultaneously capturing the speaker at differ-
ent angles, while others have used a single camera to
record different views of the speaker sequentially, at dif-465

ferent time instants.
The AVICAR database, described in Section 2.1, was

recorded in a moving automobile using an array of four
cameras and eight microphones. The cameras were
placed on the dashboard of the car and recorded si-470

multaneously 4 near-frontal views of the driver. Other
databases contain recordings from frontal and profile
views such as the CUAVE, the CMU AVPFV [88] and
the IBMSR databases. CUAVE contains single-camera
recordings from people uttering sequences of digits in475

frontal views and in both profiles (further details in Sec-
tion 2.1). In contrast, the CMU AVPFV database [88]
consists of simultaneously-recorded profile and frontal
views. It contains data from 10 subjects, with each sub-
ject repeating 150 possible word 10 times. Similarly,480

the IBMSR database, consists of recordings of three
cameras simultaneously capturing frontal and two side
views from 38 subjects while uttering digits sequences,
but unfortunately it is not publicly available.

More recently, several databases have been presented485

with views between 0 and 90 degrees. For digit
recognition, we find the QuLips database [71] and the
LTS5 database [90]. QuLips contains recordings from
two cameras capturing each speaker while uttering se-
quences of digits in English (2 speakers in total). The490

first camera was always kept at the initial position while
the subject and the second camera were allowed to ro-
tate, so that different angles at 10◦ steps could be cap-
tured two at a time. In contrast, LTS5 consists of
recordings of 20 native French speakers uttering digit495

sequences. The recordings involve one frontal camera
plus one camera rotating to 30◦, 60◦ and 90◦ relative to
the speaker in order to obtain two simultaneous views of
each sequence. For each possible position of the second
camera, the speaker repeated three times the same digit500

sequence.
Several multi-view databases have been presented for

sentence recognition in English: LILiR [74], OuluVS2
[82], TCD-TIMIT [84], MV-LRS [25], AV Digits [86]
and HIT-AVDB-II [89]. Most of them have been505

recorded by multiple cameras, so that the different views
are synchronized. For instance, LILiR contains record-
ings of 5 cameras located at 0◦, 30◦, 45◦, 60◦ and 90◦

while OuluVS2 contains recordings from the same po-
sitions as LILiR but using 2 cameras with different res-510

olution for frontal views. Similarly, TCD-TIMIT and
HIT-AVDB-II contain recordings with two cameras, one
fixed at frontal view and the other one fixed at 30◦ for
TCD-TIMIT or rotating at 30◦, 60◦ and 90◦ for HIT-
AVDB-II. Interestingly, HIT-AVDB-II provides various515

types of utterances in English and Chinese. AV Digits
contains high resolution recordings with three cameras,
one fixed at frontal view, another one fixed at 45◦ and
the last one fixed at full-profile view. Finally, MV-LRS
is based on a selection from a wide range of BBC pro-520

grams where people engage in conversations with one
another, and are therefore more likely to be captured
from lateral views. Thus, it contains recordings of peo-
ple captured at variable views from 0 to 90 degrees; al-
though this dataset does not provide the viewing angle525

between the speaker and the camera.

3. Automatic lip-reading systems

In this section we review the research on ALR sys-
tems published between 2007 and 2017. Figure 1 pro-
vides a quick view of the growth of the field in this pe-530

riod of time, by showing the cumulative number of pa-
pers that were published per year. We can observe a
significant increase of the number of papers published
in the last few years that, as we shall see, coincides with
the growing development of DL architectures and the535

availability of large-scale databases.
Tables 4, 5 and 6 summarize the main characteris-

tics of the ALR systems considered in Figure 1. Specif-
ically, we show the publication year, number of cita-
tions, the proposed architecture (in terms of features and540
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Table 3: Multi-view audio-visual databases, in chronological order

Name Year Cites Language Task Speakers Classes Utterances View (◦)
CUAVE [64] 2004 248 English Digits 36 10 7,000 -90, 0, 90
AVICAR [57] 2004 150 English Sentences 100 1,317† 59,000 Variable (4 views)

CMU AVPFV [88] 2007 62 English Words 10 150 15,000 0, 90
IBMSR [66] 2008 15 English Digits 38 10 1,661 -90, 0, 90

HIT-AVDB-II [89] 2008 4 Multiple(2) Sentences 30 11 1,980 0, 30, 60, 90
QuLips [71] 2010 11 English Digits 2 10 3,600 0, 10, 20, ..., 90
LILiR [74] 2010 49 English Sentences 12 200 2,400 0, 30, 45, 60, 90
LTS5 [90] 2011 5 French Digits 20 10 180 0, 30, 60, 90

OuluVS2 [82] 2015 17 English Sentences 53 540 2,120 0, 30, 45, 60, 90
TCD-TIMIT [84] 2015 20 English Sentences 62 6,913 13,826 0, 30

MV-LRS [25] 2017 1 English Sentences 3,783 14,960 † 74,564 from 0 to 90

AV Digits [86] 2018 0 English Digits 53 10 795 0, 45, 90Phrases 39 5,850
† Number of words

Figure 3: The main processing blocks of an ALR system

classifiers), the database used, the recognition task that
was targeted and the accuracy that was reported. When-
ever possible, we provide the accuracy in terms of Word
Recognition Rates (WRR); otherwise we provide other
metrics indicative of ALR performance as provided in545

the corresponding publications (e.g. phoneme or viseme
accuracy and correctness).

An interesting aspect that emerges from the above ta-
bles is the shift of ALR systems toward architectures
based on DL, which is especially noticeable in 2016550

and 2017. Thus, we analyze in separate subsections
the approaches previous to DL (which we refer to as
traditional) and those that employ DL architectures. In
all cases we focus on the aspects specific to lip-reading
and skip other pre-processing stages more related to555

face analysis applications in general. Specifically, in
Figure 3 we show the schematic diagram of a typi-
cal ALR system, which consists of three main blocks:
1) Lips localization, 2) Extraction of visual features,
3) Classification into sequences. The first block, fo-560

cused on face detection and lips localization, will not
be covered in this survey; the interested reader is re-
ferred to works on face localization and landmarking
[91, 92, 93, 94, 95, 96, 97, 98, 99, 100]. The goal of
the feature-extraction block is to parametrize the visual565

information observable at a given time instant or win-
dow and the classification block aims to map the visual
features into speech units while incorporating temporal
constraints to ensure that the decoded message is coher-
ent. The latter provides robustness against noisy or im-570

perfect estimates from the visual cues and helps to dis-
ambiguate between visually similar speech units. The
rest of the section will focus on the last two blocks: fea-
ture extraction and classification.

We review traditional ALR systems in Section 3.1575

and DL systems in Section 3.2. In both cases, we ad-
dress a quantitative analysis of the different systems by
organizing them in terms of the task that they target (e.g.
recognition of letters or digits and words or sentences)
and comparing their reported performance in the most580

commonly used datasets. This is important for a fair
comparison, given that results are usually reported in
different databases, for different recognition tasks, with
a variable number of speakers, vocabularies, language
and so on. Furthermore, we discuss the most popular585

DNN architecture for ALR systems and compare sev-
eral variations that follow this baseline structure. In ad-
dition, we comment other DNNs used for lip-reading
that explore alternatives from the baseline architecture
and provide supplementary figures with block diagrams590

of the most representative end-to-end ALR systems up
to 2017.
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3.1. Traditional ALR systems

ALR systems start by detecting the face and extract-
ing the region that comprises the mouth and its sur-595

rounding area. Leaving aside these pre-processing step,
once the speakers lips are located, feature extraction
techniques are applied. However, for visual speech
recognition, there is no consensus on which is the best
feature extraction technique and there are discrepancies,600

for example, on whether there is more information in
the position of the lips or in their movement [101], [26],
[24]. Thus, many researchers have proposed ALR sys-
tems with different visual features based on image trans-
forms (e.g. DCT), motion (e.g. Optical flow), geometry605

(e.g. width and height of the mouth) or statistical mod-
els (e.g. AAM) [102, 103, 104, 21, 105, 106, 13, 107].
In contrast, most traditional ALR systems use HMMs
to classify the visual features into speech units be-
cause they help to disambiguate between visually sim-610

ilar speech units while they give linguistic consistency
to the output message.

3.1.1. Digit and letter recognition
There are 23 ALR architectures targeting digit or

alphabet recognition since 2007. Looking at Tables615

4, 5 and 6 we observe that most traditional sys-
tems use feature techniques based on image transforms
[108, 9, 66, 109, 110] or shape and appearance mod-
els [56, 111, 112, 7, 113]. In Figure 4 we show i) the
number of times that each feature technique has been620

integrated into ALR systems addressing digit or letter
recognition; ii) the same for each classification method.
On the left-side of the figure, we observe that the most
used visual features have been AAMs, DCT or combi-
nations of DCT with other transforms such as LDA or625

PCA. On the other hand, in the right-side of the figure,
a single HMM for each digit or letter is the most used
classification method, being also the most used in au-
dio speech recognition. Other methods such as Support
Vector Machines (SVM) or Regularized Discriminant630

Analysis (RDA) have less been frequently explored.
Given the variety of methods addressing digit or letter

recognition, it is interesting to compare them in terms of
performance. This can be directly done by comparing
the methods evaluated in the same databases. Thus, we635

will compare the methods evaluated in the most com-
monly used databases for digit or alphabet recognition,
which are CUAVE, XM2VTS or AVLetters2.

Architectures presented in [114, 112, 115, 109, 111,
116, 117] have been evaluated using the CUAVE640

database. These methods reported WRR between
53.12% and 83.00%. For the 5 architectures using

Figure 4: Digit and alphabet recognition. Left-side: number of times
that each feature technique has been used from 2007 to 2017; Right-
side: number of times that each classification method has been used
from 2007 to 2017.

HMMs as classification method, two of them used DCT
[114] and LDA [109] features, reporting 53.12% WRR
and 60.00% WRR, respectively. Similarly, the system645

presented by Estellers et al. [117] used DCT features
and obtained 60.40% WRR. In contrast, both architec-
tures presented by Papandreou et al. [112, 111] used
AMM models and reported 75.70% WRR and 83.00%
WRR, respectively. The latter is the best WRR reported650

in this database. Nevertheless, the ALR system pro-
posed by Pachoud et al. [115] based on probabilis-
tic sequence matching classification of macro-cuboids
using spatio-temporal SIFT descriptors and local dis-
placements (named MCM-ST features) reported a sim-655

ilar performance (80% WRR). Finally, there is an ALR
system presented in 2016 by Rekik et al. [116] that
used a combination of Histogram of Oriented Gradients
(HOG) and Motion Boundary Histograms (MBH) fea-
tures and SVM classifiers reporting a performance of660

70.10% WRR.
For the XM2VTS database, Seymour et al. [9] pre-

sented experiments comparing different image trans-
forms (DCT, PCA, LDA, and FDCT) combined with
HMMs and obtained WRR between 85.36% and665

87.89%. On the other hand, the ALR system presented
by Stewart et al. [39] presented a conventional system
based on DCT features and HMMs, reporting 70.00%
WRR. The best-performing architecture for XM2VTS
used DCT features and HMMs classifiers and reported670

87.89% WRR [9].
Finally, for alphabet recognition, AVLetters2 has

been one of the most used databases. Several tradi-
tional architectures have been proposed with WRR up
to 91,80% [56, 7, 118]. For the HMM-based systems,675

feature extraction techniques such as Sieve filters com-
bined with PCA [56] and AAM [56, 7] have been used.
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Figure 5: Cumulative number of ALR systems targeting digit or al-
phabet and word or sentence recognition from 2007 to 2017.

However, the best WRR was reported by the system pre-
sented by Pet et al. [118] that consists of an end-to-end
system based on Random Forest Manifold Alignment680

(RFMA), which obtained 91,80% WRR followed by the
75,24% WRR obtained by Hilder et al. [7].

Therefore, even though DCT has been the most im-
plemented feature in ALR systems tackling digit or al-
phabet recognition, AMM features in combination with685

HMMs have produced the highest reported WRR.

3.1.2. Word and sentence recognition
Digit and letter recognition have been very popular,

but the resulting models cannot be extrapolated to more
complex tasks such as word or sentence recognition and690

hence are of limited applicability. In Figure 5 we show
the number of ALR architectures targeting digit or al-
phabet and word or sentence recognition from 2007 to
2017. In the figure, we can observe a clear tendency
from early systems trying to solve easier recognition695

tasks in controlled vocabularies (e.g. digits) toward sys-
tems dealing with more complex tasks such as word or
sentence recognition. In this section we compare the 33
traditional systems presented in Tables 4, 5 and 6 that
target word or sentence lip-reading. Similarly to Section700

3.1.1, we firstly explain the architecture’s components
and then compare systems in terms of performance.

In Figures 6 and 7 we show, respectively, the num-
ber of times that each feature or classification technique
has been integrated into ALR systems targeting word or705

sentence recognition. In Figure 6 we observe that the
most used visual features are similar to those used in
digit or alphabet recognition, namely PCA, DCT, and
AAM. Notice that even though these features do not
have the highest usage frequencies by themselves, they710

appear multiple times combined with others. Compared
to digit or letter recognition there is a bigger pull of fea-
tures, e.g. Local Binary Patterns extracted from Three
Orthogonal Planes (LBP-TOP), Shape Difference Fea-

ture (SDF) or Spatio-Temporal Lip Feature (STLF). In715

terms of classifiers (Figure 7), we also observe a simi-
lar tendency to digit or letter recognition, where HMMs
are the most used classification method, although there
is also an increment of systems using alternative classi-
fiers, especially SVMs.720

Figure 6: Word and sentence recognition. Number of times that each
feature technique has been used from 2007 to 2017.

Figure 7: Word and sentence recognition. Number of times that each
classification method has been used from 2007 to 2017.

In terms of performance evaluation, the most used
databases for word or sentence recognition have been
GRID, OuluVS, OuluVS2 and RM-3000.

For the GRID corpus, Lan et al. [119] used a sub-
set of 15 speakers and centered their experiments in725

comparing different features such as DCT, Sieve, PCA
and AAM. They used one HMM per word for decod-
ing the message, 52 HMMs in total (51 words plus
silence). They obtained WRR between 40.00% and
65.00%, being AAM the most successful feature. In730

contrast, Kolossa et al. [120] proposed a similar model
composed of DCT features and one HMM per word and
reported 57.00% WRR in experiments using the full set
of speakers. More recently, Wand et al. [20] compared
PCA and HOG using SVM as classifier. They obtained735

WRR of 69.50% for PCA features and 71.20% for HOG
on speaker dependent experiments over a subset of 20
subjects. Speaker dependent experiments means that
training and testing data for the classifiers are always
taken from the same speaker and the results are aver-740

aged over all the speakers.
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For the OuluVS database, 9 different architectures
have been presented [69, 121, 122, 123, 124, 125, 116,
126, 118]. For the ALR systems evaluated in this
database, a varied set of features has been used, but745

most works used SVMs as classifiers. Rekik et al. [116]
used a combination of spatio-temporal HOG and MBH
features with SVMs and obtained WRR of 68.30%.
Sui et al. [126] presented a feature extraction tech-
nique named Cascade Hybrid Appearance Visual Fea-750

ture (CHAVF), which is based on LBP-TOP and DCT
features and combined them with SVMs, achieving
WRR of 68.90% for speaker dependent experiments. In
contrast, both Zhao et al. [69] and Zhou et al. [122]
used LBP-TOP features combined with SVMs and re-755

ported 62.40% and 81.30% WRR, respectively. This big
difference (∼20%) are because Zhou et al. [122] intro-
duced a process of curve matching that normalizes the
video signal by mapping the original video onto a curve
which is then re-sampled to produce video sequences760

with the same number of frames. In contrast, Ong et
al. [123], [124] proposed two systems based on binary
features combined with Temporal Gradient Descend
Boosting (TGD-Boosting) [123] or with Sequential Pat-
tern Boosting (SP-Boosting) classifiers [124], reporting765

65.60% and 86.20% WRR, respectively. Pei et al. [118]
presented an end-to-end system based on RFMA and re-
ported 89.70% WRR, which is the highest performance
achieved so far in this database. Other alternative sys-
tems were presented by Zhou et al. [121, 125]. The770

first one [121] uses graph embedding to capture video
dynamics and the second one [125] used latent vari-
able (LV) models to generate the representation of a
sequence of images. For leave-one-utterance-out cross
validation in [121] they obtained 90.60% WRR, while775

for leave-one-speaker-out cross-validation in [125] they
obtained 74.00% WRR.

For the OuluVS2 database, Wu et al. [127] presented
a feature extraction technique based on SDF and STLF
features and SVM classifiers to decode the spoken mes-780

sage, obtaining 55.00% WRR. In contrast, Lee et al.
[128] presented three different systems. HMM-based
systems were based on DCT-PCA and DCT-HiLDA fea-
tures and reported 63.00% and 74.00% WRR, respec-
tively, while the third system was based on LV models785

combined with raw pixel values as features and reported
73.00% WRR.

For the single-speaker RM-3000 dataset with 1000
different words, Thangthai et al. [129] and Howell et
al. [130] proposed similar ALR systems using AAM790

features and HMM classifiers. Thangthai et al. [129]
trained Context-Independent HMMs (CI-HMM) and
Context-Dependent HMMs (CD-HMM). Instead of di-

rectly constructing word models they defined phoneme
models. Then, they joined the corresponding phonemes795

of each word to form word models (model of mod-
els). The CI-HMM consisted of monophone mod-
els with 3 states per phoneme (45 phonemes in En-
glish), while the CD-HMM models distinguished be-
tween phonemes with different previous and posterior800

phonemes. They obtained 33.32% WRR for CI-HMMs
and 47.48% WRR for CD-HMMs. Similarly, Howell et
al. [130] presented an ALR system based on AAMs
and triphoneme word decoders, and reported a WRR
of 75.58%. As we can observe, for databases covering805

large vocabularies it seems useful to train phoneme or
triphoneme models instead of just training words, be-
cause this increases the number of samples per class
available for training.

For the LILiR database, Bowden et al. [107] pro-810

posed a system based on the combination of AAM
features and HMM classifiers and obtained 30.20%
WRR for one-speaker experiments. Lan et al. [131]
used Fisher phoneme-to-viseme mapping [23] and pro-
posed an ALR system that combines AMM+LDA815

features with HMMs trained on viseme classes, ob-
taining 14.08% WRR. Almajai et al. [18] also
used Fisher phoneme-to-viseme mapping and proposed
several CI-HMM and CD-HMM systems. Specifi-
cally, they proposed a CI-HMM based on monophone820

and monoviseme models using first- and second-order
derivative features and CD-HMMs based on triphone
and triviseme models with LDA, LDA+MLLT and
LDA+MLLT+SAT features. In their experiments, they
found that when phoneme models are used instead of825

viseme models, the WRR increases significantly, up
to 8%, reaching up to 43.00% WRR for the whole
database. Interestingly, the opposite result was reported
in [31] for the Spanish database AV@CAR, where a
phoneme-to-viseme mapping with an appropriate vo-830

cabulary length provided the highest WRR. Thus, there
is not a general consensus on whether using visemes is
advantageous or disadvantageous for ALR.

Summarizing the systems targeting word or sentence
recognition, we have seen that different architectures835

have been evaluated for each database, both in terms of
features and classifiers. In contrast to the case of digit
and letter recognition systems, the disparity of features
evaluated in each database makes it difficult to conclude
which might be the best performing ones. Something840

similar occurs in terms of classifiers: HMMs reported
the best performance for the GRID database, SVMs for
the OuluVS database and LV models for the OuluVS2
database. However, no system based on HMMs or LV
models was tested in the OuluVS dataset and, although845
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some HMM systems were used for OuluVS2, their fea-
tures did not match those from the best-performing sys-
tem. Thus, it is difficult to produce a fair comparison
beyond the frequency with which the different features
and classifiers have been used.850

3.2. DNN-based ALR systems

While there is an extensive literature dedicated to
hand-crafted methods (Section 3.1), there has been a
significant improvement in the performance of ALR
systems in the last years thanks to the advances in855

deep neural networks and the availability of large-scale
databases.

There is a strong parallelism in the way that DNNs
have been adopted by audio-based and video-based
speech recognition systems. Initially, hybrid ASR sys-860

tems combining traditional blocks with DNNs were pro-
posed. More precisely, neural networks were first con-
sidered as feature extractors, mainly in combination
with HMM-based classifiers. Afterwards, recurrent net-
works, e.g. Long-Short Term Memory (LSTM) net-865

works [166], were introduced as a suitable replacement
for HMMs. More recently, end-to-end DNNs have been
used to fully replace all building blocks of ASR systems
by neural networks, achieving considerably higher per-
formance than traditional systems [167, 168, 169].870

A similar progression is observed for video-based
systems. In Tables 4, 5 and 6 we see that hybrid ALR
systems, firstly proposed in 2011, consist of combina-
tions of traditional features or classifiers with neural net-
works [17, 15, 137, 139, 51]. In subsequent years, there875

has been a tendency toward ALR systems based purely
on DL, known as end-to-end DNN architectures.

In this section, the DNN-based systems presented in
Tables 4, 5 and 6 are analyzed. Similarly to Section
3.1, we firstly explain the architectures’ components880

and then compare the different systems in terms of per-
formance.

3.2.1. Configuration of DNN-architectures
ALR systems based on end-to-end DNNs follow a

similar pipeline to traditional ones (shown in Section885

3.1-Figure 3). Similarly to the previous section, we will
compare systems in terms of feature extraction and clas-
sification stages. Block diagrams of the most represen-
tative end-to-end ALR systems up to 2017 are provided
in Supplementary Materials.890

We start by showing in Figures 8 and 9 how fre-
quently the different types of DNNs have been inte-
grated into ALR systems as a feature or classification
technique. In Figure 8 we observe that Convolution

Neural Networks (CNN) have been the most used net-895

works to extract features, but other DNNs such as Feed-
forward networks or Deep Belief Networks (DBN) have
also been used. In terms of classifiers, in Figure 9 we
can see a predominance of LSTMs, although CNNs,
Feed-forward DNNs and DBNs have also been used.900

Looking at Tables 4, 5 and 6 we observe that there
are 24 end-to-end DL architectures, from which 11 con-
sist of combinations of CNNs and RNNs (LSTMs or
GRUs). Thus, this combination stands out as the most
used DL architecture for ALR and we will analyze it905

in more detail. In Figure 10 we show a CNN-LSTM
baseline system where a sequence of video frames are
processed by a convolutional network followed by a re-
current network. CNNs have been established as a pow-
erful model to extract visual features for image recog-910

nition and classification tasks [170, 171] and consist of
alternating convolutional layers and pooling layers. The
convolutional layers compute the inner product between
linear filter and the receptive field and then they are fol-
lowed by a non-linear activation function (e.g. sigmoid,915

tanh, ReLu). On the other hand, LSTMs are recurrent
neural networks (RNN) useful for modeling sequences
due to their cyclic connections that form a temporal
memory [172, 173]. LSTMs have been widely used be-
cause they solve the vanishing and exploding gradient920

problem [174] that appears in conventional RNNs. In
contrast to RNNs, LSTMs have a cell unit that is regu-
lated by 3 gates, known as input, output and forget gates,
which use additive and multiplicative connections to en-
sure constant error flow, thus retaining short- and long-925

context information.

Figure 8: DNN-based systems. Number of times that each feature
technique has been used from 2007 to 2018.

3.2.2. Architectures based on CNNs and LSTMs
Several authors have proposed CNN-LSTM networks

that follow the baseline in Figure 10. For instance,
Chung et al. [146] proposed a network that performs930

sentence-level classification. Notice that ”sentence level
classification” means that the system’s output is re-
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Table 4: ALR systems from 2007 to 2017 - Part I

Year Reference # cit Model Database Recognition task WRR (%)Features Classifier
2007 Fu et al. [132] 21 LDG HMM AVICAR Digits 37.87%
2007 Kumar et al. [88] 62 Mouth geometry HMM CMU AVPFV Words 32.39% †

2007 Lucey et al. [108] 27 DCT+LDA HMM IBMSR Digits 68.58%
2007 Marcheret et al. [133] 15 DCT+LDA+MLLT HMM IBMIH Digits 63.00%

2008 Cox et al. [56] 50 Sieve+PCA HMM AVLetters2 Alphabet 83.00%
AAM HMM AVLetters2 Alphabet 85.00%

2008 Lucey et al. [114] 14 DCT+LDA HMM CUAVE Digits 53.12%
2008 Lucey et al. [66] 15 DCT+PCA HMM IBMSR Digits 66.21%
2008 Pachoud et al. [115] 11 MCM-ST Prob. seq. matching CUAVE Digits 80.00%
2008 Papandreou et al. [112] 3 AAM HMM CUAVE Digits 75.70%

2008 Seymour et al. [9] 45

DCT HMM XM2VTS Digits 87.89%
PCA HMM XM2VTS Digits 86.57%

FDCT HMM XM2VTS Digits 85.36%
LDA HMM XM2VTS Digits 86.35%

2008 Shao et al. [134] 32 DCT HMM GRID Phrases 58.40%

2008 Wang et al. [113] 20 ASM RDA Own data Digits 88.32%
ASM HMM Own data Digits 91.27%

2009 Gurban et al. [109] 51 DCT+LDA HMM CUAVE Digits 60.00%
2009 Hilder et al. [7] 17 AAM HMM AVLetters2 Alphabet 75.24%
2009 Kolossa et al. [120] 28 DCT HMM GRID Phrases 57.00%

2009 Lan et al. [119] 45

Sieve HMM GRID Phrases 40.00%
DCT HMM GRID Phrases 40.00%

Eigenlips HMM GRID Phrases 52.00%
AAM HMM GRID Phrases 65.00%

2009 Papandreou et al. [111] 66 AAM HMM CUAVE Digits 83.00%

2009 Zhao et al. [69] 172 LBP-TOP SVM AVLetters Alphabet 62.80%
LBP-TOP SVM OuluVS Phrases 62.40%

2010 Pass et al. [71] 11 DCT HMM QuLips Digits 98.00%
2010 Saitoh et al. [135] 8 L2 between keypoints HMM Own data Words 68.93%
2010 Zhou et al. [121] 11 Graph embedding OuluVS Phrases 90.60%†

2011 Cappelletta et al. [24] 16 Optical flow HMM VIDTIMIT Sentences 57.00%*V
PCA HMM VIDTIMIT Sentences 60.10%*V

2011 Navarathna et al. [136] 4 DCT+PCA HMM AVICAR Digits 25.00%
2011 Ngiam et al. [137] 892 ST-PCA Autoencoder AVLetters Alphabet 64.40%
2011 Ong et al. [123] 14 Binary feature TGD-Boosting OuluVS Phrases 65.60%
2011 Ong et al. [124] 23 Binary feature SP-Boosting OuluVS Phrases 86.20%
2011 Zhou et al. [122] 64 LBP-TOP SVM OuluVS Phrases 81.30%
2012 Chiţu et al. [4] 7 Mouth geometry HMM NDUTAVSC Digits 84.24%
2012 Estellers et al. [117] 33 DCT HMM CUAVE Digits 60.40%
2012 Estellers et al. [138] 18 DCT+LDA HMM Own data Digits 71.00%
2012 Lan et al. [87] 19 AAM HMM LILiR Sentences 33.00% *V
2012 Lan et al. [131] 19 AAM+LDA HMM LILiR Sentences 14.08%
2013 Bowden et al. [107] 15 AAM HMM LILiR Sentences 30.20% †

2013 Huang et al. [110] 69 DCT+LDA HMM Own data Digits 35.20%
DCT+LDA DBN Own data Digits 35.70%

2013 Pei et al. [118] 50
RFMA AVLetters Alphabet 69.60%
RFMA AVLetters2 Alphabet 91.80%
RFMA OuluVS Phrases 89.70%

2014 Bear et al. [28] 12 AAM HMM AVLetters Alphabet 35.00% *C †

2014 Noda et al. [139] 23 CNN MS-HMM ATR Words 37.00%
2014 Stewart et al. [39] 27 DCT MS-HMM XM2VTS Digits 70.00%
2014 Zhou et al. [125] 27 Latent variables Cross correlation OuluVS Phrases 74.00%
2015 Bear et al. [140] 6 AAM HMM AVLetters2 Alphabet 38.00% *C †

2015 Bear et al. [141] 5 AAM HMM LILiR Sentences 61.80% *C †

2015 Biswas et al. [142] 5 AAM HMM AVICAR Sentences 28.23%
* V: Viseme accuracy, P: Phoneme accuracy, C: Correctness.
† Speaker dependent.
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Table 5: ALR systems from 2007 to 2017 - Part II

Year Reference # cit Model Database Recognition task WRR (%)Features Classifier
2015 Moon et al. [143] 9 DBN AVLetters Alphabet 55.30%
2015 Mroueh et al. [83] 39 Scattering coeffs+LDA Feed-Forward IBM AV-ASR Sentences 30.64%*P
2015 Ninomiya et al. [144] 13 DBN MS-HMM CENSREC-1-AV Digits 39.30%
2015 Noda et al. [51] 72 CNN MS-HMM ATR Words 22.50%
2015 Sui et al. [15] 12 DBM+DCT+LDA HMM AusTalk Digits 69.10%

2015 Thangthai et al. [129] 11

AAM CI-HMM RM-3000 Sentences 33.32%
AAM CD-HMM RM-3000 Sentences 47.48%
AAM Feed-Forward RM-3000 Sentences 77.49%

HiLDA Feed-Forward RM-3000 Sentences 84.67%

2016 Almajai et al. [18] 10

LDA HMM LILiR Sentences 23.00%
LDA+MLLT HMM LILiR Sentences 25.00%

LDA+MLLT+SAT HMM LILiR Sentences 43.00%
LDA+MLLT+SAT Feed-Forward LILiR Phrases 53.00%

2016 Assael et al. [34] 19 3D-CNN Bi-GRU GRID Phrases 93.40%
2016 Bear et al. [145] 13 AAM HMM-bigram net LILiR Sentences 23.00%*C

2016 Chung et al. [146] 14 VGG-M LSTM OuluVS2 Phrases 31.90%
SyncNet LSTM OuluVS2 Phrases 94.10%

2016 Chung et al. [19] 30
CNN LRW Words 61.10%
CNN OuluVS Phrases 91.40%
CNN OuluVS2 Phrases 93.20%

2016 Howell et al. [130] 4 AAM CD-HMM RM-3000 Sentences 75.58%

2016 Hu et al. [147] 17 RTMRBM SVM AVLetters Alphabet 64.63%
RTMRBM SVM AVLetters2 Alphabet 31.21%

2016 Lee et al. [128] 5

DCT+PCA HMM OuluVS2 Phrases 63.00%
RAW PLVM OuluVS2 Phrases 73.00%

DCT+HiLDA HMM OuluVS2 Phrases 74.00%
CNN LSTM OuluVS2 Phrases 81.10%

2016 Petridis et al. [17] 18 DBNF+DCT LSTM AVLetters Alphabet 58.10%
DBNF+DCT LSTM OuluVS Phrases 81.80%

2016 Rekik et al. [116] 4

HOG+MBH SVM CUAVE Digits 70.10%
HOG+MBH K-NN MIRACL-VC Phrases 58.10%
HOG+MBH SVM OuluVS Phrases 68.30%
HOG+MBH HMM MIRACL-VC Phrases 69.60%
HOG+MBH SVM MIRACL-VC Phrases 79.20%

2016 Saitoh et al. [148] 5
CFI+NIN OuluVS2 Phrases 81.10%

CFI+AlexNet OuluVS2 Phrases 82.80%
CFI+GoogLeNet OuluVS2 Phrases 85.60%

2016 Takashima et al. [149] 4 CBN HMM ATR Words 51.00%

2016 Wand et al. [20] 35
Eigenlips SVM GRID Phrases 69.50% †

HOG SVM GRID Phrases 71.20% †
Feed-Forward LSTM GRID Phrases 79.50% †

2016 Wu et al. [127] 3 SDF+STLF SVM OuluVS2 Phrases 87.55%
2016 Zimmermann et al. [150] 4 PCANN+LSTM HMM OuluVS2 Phrases 73.00%

2017 Bear et al. [151] 1 AMM HMM AVLetters2 Alphabet 36.53% *C †

AMM HMM LILiR Sentences 41.53% *C †

2017 Chung et al. [25] 1 CNN LSTM+Attention OuluVS2 Phrases 91.10%
CNN LSTM+Attention MV-LRS Sentences 43.60%

2017 Chung et al. [16] 39
CNN LSTM+Attention LRW Words 76.20%
CNN LSTM+Attention GRID Phrases 97.00%
CNN LSTM+Attention LRS Sentences 49.80%

2017 Fernandez et al. [37] 1 DCT+SIFT+LDA HMM VLRF Sentences 20.00%
2017 Fernandez et al. [31] 2 DCT+SIFT+LDA HMM AV@CAR Sentences 23.00%
2017 Petridis et al. [152] 8 Autoencoder LSTM OuluVS2 Phrases 84.50%
2017 Petridis et al. [153] 0 Autoencoder Bi-LSTM OuluVS2 Phrases 91.80%
2017 Petridis et al. [154] 0 Autoencoder Bi-LSTM OuluVS2 Phrases 94.70%

* V: Viseme accuracy, P: Phoneme accuracy, C: Correctness.
† Speaker dependent.
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Table 6: ALR systems from 2007 to 2017 - Part III

Year Reference # cit Model Database Recognition task WRR (%)Features Classifier

2017 Rahmani et al. [155] 0

ASM HMM CUAVE Digits 56.30% *P
DBNF HMM CUAVE Digits 63.40% *P
ASM DNN-HMM CUAVE Digits 58.90% *P

DBNF DNN-HMM CUAVE Digits 64.90% *P
2017 Stafylakis et al. [156] 4 3D-CNN+ResNet Bi-LSTM LRW Words 83.00%
2017 Sterpu et al. [157] 0 DCT HMM TCD-TIMIT Sentences 31.59% *V †

2017 Sui et al. [126] 1 CHAVF SVM OuluVS Phrases 68.90% †

CHAVF HMM AusTalk Digits 69.18%
2017 Thangthai et al.[158] 2 PCA+LDA+MLLT DNN-HMM TCD-TIMIT Sentences 43.61%
2017 Thangthai et al. [159] 0 Eigenlips DNN-HMM TCD-TIMIT Sentences 42.97%
2017 Wand et al. [160] 2 Feed-Forward LSTM GRID Phrases 42.40%

2018 Afouras et al. [161] 0 3D-CNN+ResNet
Bi-LSTM+LM

LRS Sentences
37.80%

Depthwise CNN 45.00%
Attention encoder+LM 50.00%

2018 Fung et al. [162] 0 3D-CNN Bi-LSTM OuluVS2 Phrases 87.60%
2018 Petridis et al. [163] 3 3D-CNN+ResNet Bi-GRU LRW Words 82.00% †

2018 Petridis et al. [86] 0 Autoencoder Bi-LSTM AV Digits Phrases 69.70%
Digits 68.00%

2018 Wand et al. [164] 0 Feed-Forward LSTM GRID Phrases 84.70%
2018 Xu et al. [165] 1 3D-CNN+highway Bi-GRU+Attention GRID Phrases 97.10%

* V: Viseme accuracy, P: Phoneme accuracy, C: Correctness.
† Speaker dependent.

Figure 9: DNN-based systems. Number of times that each classifica-
tion method has been used from 2007 to 2018.

stricted to a finite number of possible sentences, which
therefore act as the classes of a classification problem.
The architecture inputs gray-scale images into a convo-935

lutional network, named SyncNet, which consists of five
convolutional layers followed by two fully-connected
layers. For each frame, the output of the last CNN layer
is the input to a single-LSTM layer that accumulates
the contribution of each frame and returns the estimated940

class at the end of the sequence. The block diagram of
this architecture is provided in Suppl. Figure S1. Still
within the same work [146], Chung et al. compare the
proposed CNN with a pre-trained network, known as
VGG-M (Suppl. Figure S2). VGG-M consists of five945

convolutional layers followed by three fully-connected
layers pre-trained in the ImageNet database [170]. The
VGG-M output is the input to a single LSTM layer that

performs the classification at the end of the sequence,
similarly to SyncNet. As we will see in Section 3.2.4, in950

spite of having an additional fully connected layer, the
pre-trained VGG-M did not perform as good as Sync-
Net given that the training of the latter was much more
specific to the lip-reading task.

Lee et al. [128] proposed a DNN architecture that955

performs sentence-level classification (Suppl. Figure
S3). Their system inputs RGB normalized images that
are processed by a CNN with two convolutional layers
and one fully connected layer. They also define a tem-
poral model based on two LSTM layers that receive the960

CNN features and accumulate the contribution of each
frame until the end of the sequence, which is finally pro-
cessed by a fully connected layer that returns the classi-
fication of the whole sequence into a phrase.

Assael et al. [34] proposed LIPNET, an end-to-end965

DL-architecture that also performs sentence-level clas-
sification (Suppl. Figure S4). The model’s input is a
fixed-length sequence of RGB normalized images that
are processed by three spatio-temporal convolutional
layers. The output features of the CNN are fed to970

two Bidirectional Gated Recurrent Network (GRU) lay-
ers that are finally followed by a linear transformation
at each time-step and a softmax over the vocabulary
(which in this case is a character-based representation).
This end-to-end model is trained with a Connectionist975

Temporal Classification (CTC) [167] network that has a
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Figure 10: Baseline DL architecture for lip-reading, consisting of combinations of CNNs and LSTMs.

softmax output layer with as many units as the number
of labels in the vocabulary plus one unit for the blank
character ” ”. The CTC computes the probability of all
possible combinations of a string. For example, if the980

sequence length is fixed to 3, the CTC defines the prob-
ability of a string ”am” as p(aam) + p(amm) + p( am) +
p(a m) + p(am ). The model predicts frame labels and
finds the optimal alignment between the predictions and
the output sequence (which is a full-sentence within the985

possible pre-defined classes).

On the other hand, Stafylakis et al. [156] proposed a
system that performs word-level classification (Suppl.
Figure S5). In their model, the inputs are video se-
quences of gray-scale normalized images, with a fixed990

duration of 1 second. The proposed architecture is based
on a spatio-temporal convolutional layer followed by a
residual network (ResNet [175]). The residual network
consists of 34-layers (including convolutional, pooling
and fully-connected layers) that progressively reduce995

the spatial dimensionality with max pooling layers, un-
til the output becomes a single dimensional vector per
time step. Then, these vectors are used as input features
to two bidirectional LSTMs (Bi-LSTM) [173] (two in
each direction) which are concatenated at each time step1000

for classification. Differently from previous works, the
classification is not performed at the last time step of the
LSTM output, once all the sequence has been encoded
by the LSTM, but the softmax is applied at each time
step. Hence, the overall loss is defined as the aggregated1005

loss over all time steps.

Notice that these two last systems [34, 156] used Bi-
LSTMs or Bi-GRUs for their ability to produce outputs
conditioned on past and future contexts, as opposed to
the standard LSTMs that work only in one direction.1010

Other very recent works have also explored the use of
these bi-directional networks. On one hand, Petridis et

al. [163] proposed a model very similar to [156], where
the main difference between both lip-reading architec-
tures is that [163] used Bi-GRU networks with a bigger1015

number hidden units instead of the Bi-LSTMs networks
used in [156]. On the other hand, Fung et al. [162] used
Bi-LSTMs for sentence-level classification. Their net-
work consists of 8 spatiotemporal convolutional layers
followed by a maxout activation function without pool-1020

ing layer that is fed to the Bi-LSTM layer. The final
output is obtained with a softmax layer at the last time
step of the sequence.

Chung et al. proposed a system for AV-ASR [16] and
another one for ALR [25] (Suppl. Figures S6, S7 and1025

S8). For the AV-ASR system, they proposed an end-to-
end network based on four main modules, named Watch,
Listen, Attend and Spell, that learned to predict charac-
ters from spoken sentences. The Watch module receives
video input and consists of five 3D-convolutional layers1030

followed by one fully-connected layer and then three
LSTM layers stacked one behind the other to catch dif-
ferent levels of abstraction. A similar network is em-
ployed for Listen to process audio. The Spell mod-
ule consists of three LSTMs, two attention mechanisms1035

(for the audio and visual contexts provided by Watch
and Listen) and a multi-layer perceptron (MLP). Thus,
Spell LSTMs use: the previous character, the previous
LSTM state and the concatenation of the last time-step
of Watch and Listen LSTMs. Next, two context vec-1040

tors are computed in the Attend module, from audio
and visual contexts. These context vectors are com-
puted at each time-step by the attention mechanisms.
The attention mechanisms use the output produced by
the Watch or Listen LSTMs at each time step and the1045

current outputs of Spell LSTMs. Finally, the probabil-
ity distribution of the output character is generated by
the MLP with a softmax layer over the output. The
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authors emphasize that gray-scale image sequences are
processed in reverse time-order, as this was found to im-1050

prove results. They also explain that attention is cru-
cial for the system because without it the model for-
gets the input signal, and produces an output sequence
that does not correlate with the input beyond the first
word or two (which the model gets correct, as these are1055

the last words to be seen by the encoder). In addition,
unidirectional encoders for the Watch and Listen mod-
ules were compared with bidirectional encoders, but the
latter networks took significantly longer to train, while
providing no obvious performance improvement. For1060

the ALR system proposed in [25], where audio infor-
mation is not available, the same architecture was pro-
posed except that there were no audio attention nor Lis-
ten blocks.

As the last example of the CNN-LSTM architecture,1065

Xu et al. [165] presented a network named LCANet
that performs character-level classification. The video
encoder of LCANet has three components: 3D con-
volutions, a highway network, and Bi-GRU networks.
LCANet feeds 3 consecutive frames into a 3D convo-1070

lutional neural network to encode both visual and short
temporal information. Then, they stack two layers of
highway networks [176] on top of the 3D-CNN. The
highway network module has a pair of transform gate
and carries a gate that allows the deep neural network1075

to carry some input information directly to the out-
put. These networks have been enabled to encode much
richer semantic features. At the end of the video en-
coding, Bi-GRU networks are feed after the highway
networks to encode long-term temporal information.1080

To capture information explicitly from longer context,
LCANet feeds the encoded spatiotemporal features into
a cascaded attention-CTC decoder. Attention mecha-
nism debilitates the constraint of the conditional inde-
pendence assumption in CTC loss, but it improves the1085

modeling capability on the lipreading problem and can
give better predictions on visually similar visemes.

3.2.3. Other DL-architectures
Some authors have also proposed end-to-end archi-

tectures that do not follow the CNN-LSTM baseline1090

from Figure 10. For instance, Wand et al. proposed
three DNN architectures [20, 160, 164] that perform
word-level classification. The system proposed in [20]
(Suppl. Figures S9) consists of one feed-forward layer
followed by two LSTMs and a softmax layer to perform1095

classification within a set of pre-defined classes. Simi-
larly, the system proposed in [160] (Suppl. Figures S10)
consists of three feed-forward layers followed by one
LSTM layer and a softmax layer to perform classifica-

tion within the set of words. In order to mitigate the1100

discrepancy between known and unknown speakers, it
incorporates domain adversarial training, by means of
an intermediate layer driven to learn a domain-agnostic
representation of the input data. Specifically, at the sec-
ond feed-forward layer, a supplementary network con-1105

sisting of two feed-forward layers and a softmax layer
is integrated to perform speaker classification. The in-
corporation of the adversarial network is supposed to be
beneficial because by feeding its inverted gradient into
the main network, the system is prevented from learn-1110

ing speaker-dependent features. Finally, the system pro-
posed in [164] consists of three feed-forward layers fol-
lowed by one LSTM layer and a softmax layer that per-
forms word classification at the end of the sequence. In
this architecture all layers, including the LSTM, have1115

the same number of neurons.
Chung et al. [19] also proposed a DNN architecture

that performs word-level classification (Suppl. Figure
S11). The method pre-processes each input frame with
a first convolutional layer whose outputs are concate-1120

nated so that the whole sequence is sent to a second con-
volutional layer. The output of the second layer is fed
into the following layers, which have a similar structure
to VGG-M: three additional convolutional layers, three
fully connected layers and one softmax layer.1125

Saitoh et al. [148] proposed an end-to-end system
for sentence-level classification that instead of process-
ing the sequence frame by frame, constructs a macro
image by concatenating a subset of the whole video
sequence, which they call concatenated frame image1130

(CFI). They testes the CFI in combination with three
pre-trained CNNs: Networks in Networks (NIN) [177],
AlexNet [170] and GoogLeNet [171]. NIN is a novel
network that replaces the usual linear convolutional lay-
ers by MLP-Convolutional layers (mlpconv). Specifi-1135

cally, Saitoh et al. used four mlpconv followed by a spa-
tial max pooling layer. AlexNet consists of five convo-
lutional layers followed by three fully connected layers,
and GoogleLeNet is a twenty-two layer deep network
that uses a sparsely connected architecture (inception1140

modules) to avoid computational bottlenecks. Despite
the different architectures of the three networks, their
performance in the ALR tests reported by Saitoh et al.
[148] were fairly similar, with differences that did not
exceed 5% WRR between them.1145

Petridis et al. [152, 153, 154, 86] proposed four end-
to-end systems for sentence-level classification. Firstly
in [152] (Suppl. Figure S12), they proposed a system
based on two independent streams; the first one extracts
features directly from single-images, while the second1150

one extracts features from the difference between two
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consecutive frames. Both streams follow a bottleneck
architecture with three hidden layers and one linear
layer. At the end of the bottleneck architecture, the first
and second derivatives are computed and appended to1155

the bottleneck layer. The output of the bottleneck net-
work of each stream is fed into an LSTM layer. Fi-
nally, the LSTM outputs of both streams are concate-
nated and fed into a Bi-LSTM in order to fuse their in-
formation. The output layer is a softmax layer that per-1160

forms the classification using the last time step of the Bi-
LSTM output, once all the sequence has been encoded.
On the other hand, the system proposed by Petridis et
al. in [153] is a very similar network that also incor-
porates audio input. Specifically, the frame difference1165

data is replaced by audio features, so that one stream
per modality is used. They also replace the LSTM net-
works at the end of each stream by Bi-LSTMs. The
third system presented by Petridis et al. in [154] tackled
multi-view lip-reading for sentence-level classification.1170

It consists of three identical streams which extract fea-
tures from three images captured from different view
angles. The streams follow the same architecture from
[153] and their outputs are concatenated and fed into a
Bi-LSTM and a softmax layer that performs the clas-1175

sification similarly to the two architectures previously
described. Finally, the fourth system [86] was proposed
as a modification of [153]. The key difference is that the
new system used only a single stream (corresponding to
the video frames) instead of the use of two streams pro-1180

posed previously.
A transfer DL framework was presented by Moon et

al. [143] for alphabet recognition. The system uses au-
dio and visual information independently to learn ab-
stract representations of the data using a standard deep1185

belief network (DBN) with multiple Restricted Boltz-
mann machines (RBMs). This allows for semantic-level
transfer between the source and target modules. Both
DBNs, for audio and visual information are built with
the same number of intermediate layers, and then inter-1190

modal embeddings are learned for each layer. Then,
the learned mappings between the source and target are
used to fine-tune the network with the transferred data
and categorize each sequence into a letter.

More recently, Afouras et al. [161] proposed three1195

systems that perform character-level classification. The
visual front-end is common across the three systems and
consists of a 3D CNN on the input image sequence, with
a filter width of five frames, followed by a ResNet which
gradually decreases the spatial dimensions as depth in-1200

creases. In contrast, the temporal back-end that receives
the frame feature vectors and outputs a sentence char-
acter by character, is different for each system. The

first one consists of three stacked Bi-LSTMs trained
with CTC loss and decoding is performed with a beam1205

search that incorporates prior information from an ex-
ternal language model. The second system uses depth-
wise separable convolution layers, which consist of a
separate convolution along the time dimension for ev-
ery channel followed by a projection along the chan-1210

nel dimensions. The network contains 15 convolutional
layers that were trained with a CTC loss and decoding is
performed as described in the same way as the previous
system. Finally, the last system has an encoder-decoder
structure based on multi-head attention layers. It uses1215

a base model with 6 encoder and decoder layers and
8 attention heads. This system has been trained with
cross-entropy loss instead of CTC, hence it would be
expected to implicitly learn an internal language model.
Nevertheless, authors report that integrating an external1220

language model in the decoding process improved their
results.

3.2.4. Performance comparison
In this section we compare the performance of both

hydrid and end-to-end DNN-based architectures. We1225

compare the methods from Tables 4, 5 and 6 that have
been evaluated in the most common databases, being
them AVLetters, GRID, LRW and OuluVS2.

For alphabet recognition, we find four DNN-
based systems evaluated in the well known AVLetters1230

database [137, 143, 17, 147]. The first one was pre-
sented by Ngiam et al. [137] and consists of PCA fea-
tures followed by a deep autoencoder, obtaining a clas-
sification accuracy of 64.40% WRR. In contrast, Moon
et al. [143] proposed a method to obtain abstract rep-1235

resentations of the raw data using a standard DBN.
They fine-tune the video model with additional infor-
mation transferred from audio data, obtaining 55.30%
WRR. Petridis et al. [17] proposed to first train a deep
autoencoder to compress the high dimensional image1240

data into a low dimensional representation (named bot-
tleneck features). Next, DCT features are computed
to complement bottleneck ones and fed to an LSTM
network to model the temporal dynamics, obtaining
58.10% WRR. Finally, Hu et al. [147] proposed a1245

system based on multimodal RBMs (MRBMs), named
Recurrent Temporal Multimodal Restricted Boltzmann
Machines (RTMRBMs), which have the ability to ex-
tract semantic information from multisensory data and
learn a joint representation across audiovisual modal-1250

ities. They reported 64.63% WRR. Interestingly, these
results are below those obtained by some traditional sys-
tems, e.g the RFMA-based system presented in [118]
obtained 69.60% WRR. Thus, for letter recognition in
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datasets such as AVLetters, traditional systems still out-1255

perform DL-systems. The reason for this seems related
to the dataset size, which is not large enough to train
robust DL systems.

For word or sentence recognition, the most used
databases have been GRID, LRW and OuluVS2. For1260

the GRID corpus, we found six different architectures.
Wand et al. presented three models for this database:
the first one [20] consists of one Feed-forward layer
followed by two recurrent LSTM layers and reported
79.50% WRR, while the second and third systems1265

[160], [164] combine three Feed-forward layers with
an LSTM layer and reported 83.30% and 84.70% WRR
for speaker dependent experiments and 42.40% WRR
in [160] for experiments in which the test speakers
were unknown to the system. In contrast, Assael et al.1270

[34] proposed a spatio-temporal CNN in combination
with Bi-LSTMs and obtained a higher recognition rate
of 93.40% WRR. Chung et al. [16] obtained 97.00%
WRR with a system based on CNN and LSTM net-
works combined with attention mechanisms. Finally,1275

Xu et al. [165] outperformed previous methods with
a system that combines 3D-CNNs, highway networks,
Bi-GRUs and attention mechanisms, obtaining slightly
higher performance than [16] with 97.10% WRR. There
is a considerable improvement in performance with re-1280

spect to traditional systems, where the highest accuracy
was 57.00% WRR reported by [120].

For the LRW database, Chung et al. [19] presented
an end-to-end architecture based on CNNs, reporting
61.10% WRR. Stafylakis et al. [156] presented a system1285

based on 3D-CNN, residual networks and Bi-LSTMs
and reported more than 20% improvement (83.00%
WRR). Similarly, Petridis et al. [163] presented a sys-
tem based on 3D-CNN, residual networks and Bi-GRU
networks and reported 82.00% WRR. In yet another1290

contribution, Chung et al. [16] proposed a system based
on CNN and LSTM networks combined with attention
mechanisms and obtained the best results reported so
far, with 84.50% WRR.

For the OuluVS2 dataset, 13 architectures have been1295

presented. Saitoh et al. [148] and Chung et al. [19]
presented several end-to-end systems mainly based on
CNNs. The three systems proposed by Saitoh et al. re-
ported recognition rates between 81.10% and 86.50%
WRR, while Chung et al. reported 94.10% WRR. The1300

main difference between these two works is that the net-
works in [148] used CFIs as input while [19] used di-
rectly a single image. In addition, Saitoh et al. used
three well known pre-trained models based on CNNs:
NIN [177], AlexNet [170] and GoogLeNet [171], while1305

Chung et al. trained the network from scratch for the

specific task of lip-reading. Several architectures were
also proposed with LSTMs or Bi-LSTMs as classifiers.
For these systems, different models to extract features
were applied: CNNs in [128, 25], VGG-M and Sync-1310

Net in [146], autoencoders in [152, 153, 154], 3D-CNN
in [162] and PCA-NN in [150]. The latter one, in ad-
dition, used HMMs to model the temporal dynamics.
For these architectures, the reported recognition rates
were between 31.90% and 94.70% WRR. The lowest1315

recognition rate corresponds to the system using VGG-
M [146]. This comparatively low accuracy can be ex-
plained because VGG-M was pre-trained on ImageNet,
a large database for object recognition and classifica-
tion tasks, but not specific for lip-reading. In contrast,1320

Petridis et al. [154] presented a system based on en-
coded features that reported the highest performance of
94.70% WRR, nearly followed by Chung et al. [19]
with 94.10% WRR. Nevertheless, compared to tradi-
tional architectures, there is a significant improvement1325

of at least a 20% with respect to the highest performing
traditional system, achieving 74.00% WRR in [128].

From the above paragraphs we can see that DNNs
brought substantial accuracy improvements to ALR sys-
tems on databases such as GRID or OuluVS2, which1330

focus on word- or sentence- classification tasks. These
improvements have encouraged researchers to address
more realistic settings and propose systems that tar-
get continuous lip-reading. Such settings are consid-
erably more challenging than those found in word- or1335

sentence- classification tasks, because each sentence
has an unknown structure and can contain an arbi-
trary number of words whose time-boundaries are not
known beforehand. For these reasons, when target-
ing continuous lip-reading it is convenient to predict1340

smaller structures that approach the minimum distin-
guishable language units. Recent advances in end-to-
end DL architectures have indeed focused on ALR sys-
tems that try to predict phonemes [149, 51, 139, 83]
or characters [16, 25, 161, 165], instead of full words1345

or pre-defined sentences. For example, Mroueh et al.
[83] proposed Feed-forward DNNs to predict phonemes
using the IBM AV-ASR database, a large scale non-
public AV database. Other architectures using CNNs
and HMMs were presented by Noda et al. [51, 139]1350

and by Takashima et al. [149]. They tried to recog-
nize Japanese phonemes using the ATR Japanese cor-
pus [178] and obtained 22.50% WRR, 37.00% WRR
and 51.00% WRR, respectively. Another architecture
evaluated in the highly used GRID corpus has been1355

recently presented by Xu et al. [165] for character-
based classification. This very deep network combines
3D-CNNs, highway networks, Bi-GRUs and attention
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mechanisms and reported 97.10% WRR. In contrast,
Chung et al. [16, 25] presented an architecture based1360

on CNN and LSTM networks combined with attention
mechanisms. They evaluated their system in recently
recorded large-scale databases such as MV-LRS and
LRS, obtaining for character-based recognition 43.60%
WRR and 49.80% WRR, respectively for each dataset.1365

More recently, Afouras et al. [161] presented a compar-
ison of three architectures dealing with character-based
recognition evaluated on the LRS dataset. The archi-
tectures share the same visual features and only differ in
the sequence classification; they obtained 37.80% WRR1370

for the model using Bi-LSTMs, 45.00% WRR for the
one using depth-wise convolutional layers and 50.00%
WRR for the one using encoder-decoder with multi-
head attention layers.

Thus, most recent DNN-based architectures report1375

WRRs that, despite the different experimental settings,
nearly double the performance reported by traditional
systems, with WRRs of about 20% [31, 37, 131].
While this constitutes a great step forward in contin-
uous lip-reading, it is worth noting that these results1380

are still far from a system that can fully decode vi-
sual speech. Indeed, in real-world scenarios, the top-
performing ALR systems currently approach WRRs of
50%, which means that we cannot recognize about half
of the message. Thus, DNN-based systems and large-1385

scales databases have significantly advanced the field
but continuous ALR remains still an open problem.

4. Summary and Conclusions

In this survey, we review the progression of ALR sys-
tems from 2007 to 2017 which highlights the technol-1390

ogy shift from traditional architectures, typically con-
sisting of image features in combination with HMMs,
toward end-to-end DNN architectures, currently domi-
nated by CNN-features in combination with LSTMs.

In both the traditional and the DNN-based systems,1395

we can conceptually identify two major blocks specific
to ALR whose objectives are: i) to parametrize the vi-
sual information observable at a given time instant or
window, and ii) to map the visual features into speech
units while incorporating temporal context, i.e. con-1400

straints to ensure that the decoded message is coherent.
The latter provides robustness against noisy or imper-
fect estimates from the visual cues and helps to disam-
biguate between visually similar speech units.

Traditional ALR systems mainly consist of features1405

based on appearance or image transforms in combina-
tion with HMMs that model the temporal dynamics of

the spoken sequence using short term context informa-
tion. While HMMs can be considered the de-facto stan-
dard for modeling context, a variety of features have1410

been explored with the goal to find the best descriptor
for visual speech. As shown in Section 3.1, the most
widely used features in visual-speech systems have been
DCT and AAMs, but there is no agreement on which
feature would be optimal.1415

In the last years, we observe how DNN-based sys-
tems have quickly started to replace all the blocks from
traditional systems by end-to-end DNNs. In this sur-
vey, we discuss the most popular DNN architectures for
ALR systems and compare several variations that follow1420

the same baseline structure (i.e. combinations of CNNs
and LSTMs). In particular, variants on the feature side
include different types of data used to feed the CNNs
(e.g. RGB or gray-scale images, 3D or 2D structures),
and network specifications (e.g. number of convolu-1425

tional and fully-connected layers). In terms of classifi-
cation, ALR researchers have explored LSTM networks
that differ in how the output is decoded (e.g. step by
step or at the end of the sequence), the network’s direc-
tion (forward, backward or bidirectional), and the num-1430

ber of layers (which relates to the context scale that is
considered). In addition, we comment other DNNs used
for lip-reading that explore alternatives to the CNN-
LSTM baseline, such as Feed-Forward networks, DBN,
or CNNs.1435

Comparing traditional systems with DL architectures
we observe that the latter provide a significant improve-
ment in terms of performance. For instance, for the
GRID corpus, several DL architectures considerably
outperformed the best traditional system with up to a1440

40% improvement, e.g. Assael et al. [34], Chung et al.
[16] and Xu et al. [165] proposed end-to-end architec-
tures that achieved up to 97% WRR, compared to the
57% WRR obtained by Kolossa et al. [120]. Similarly,
in the OuluVS2 database, DNN-systems [148, 146] re-1445

ported more than 20% improvement with respect to
the best-performing traditional system, which achieved
74% WRR [128].

Nevertheless, the remarkable results of end-to-end
DL architectures addressing word or sentence recogni-1450

tion in databases such as GRID or OuluVS2, cannot be
directly extrapolated to more realistic settings that target
continuous lip-reading. In word or sentence recogni-
tion tasks, the output of the system is restricted to a pre-
defined number of possible classes, in contrast to con-1455

tinuous lip-reading where the target is natural speech. In
this way, continuous lip-reading systems must be able
to decode any word of the dictionary and process sen-
tences that contain an arbitrary number of words with
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unknown time-boundaries. Thus, recent attempts to1460

produce continuous lip-reading systems have focused
on elementary language structures such as characters or
phonemes. For instance, hydrid architectures for con-
tinuous speech recognition in Japanese [51, 139, 149]
have targeted phonemes achieving between 22% and1465

51% WRR, while Chung et al. [16] and Afouras et al.
[161] achieved near 50% WRR targeting characters for
a large-scale dataset in English.

Despite the recognition rates for continuous lip-
reading may appear modest in comparison to those1470

achieved by audio-based systems, the field has unde-
niably made a significant step forward. Interestingly,
an analogous effect can be observed when humans try
to decode speech: given sufficiently clean signals, most
people can effortlessly decode the audio channel, but1475

would struggle to perform lip-reading, since the ambi-
guity of the visual cues makes it necessary the use of
further context to decode the message. Thus, it is not
surprising that the main challenges in ALR systems re-
gard to the robustness to visual ambiguities through the1480

modeling of context information.

Most recent works suggest that the optimal modeling
of temporal sequences is still an open problem, which
is currently been tackled by means of recurrent neural
networks. Specifically, LSTMs have been widely used1485

for modelling sequences because of their ability to re-
tain both short- and long-term context information in
their cell structures, although it is not clear how to take
full advantage of such ability. For instance, several au-
thors have tried to model different scales of context by1490

adding multiple LSTM layers, aiming to introduce con-
straints related to bigger speech structures such as con-
nected phonemes, syllables, words or sentences. Other
authors have used bidirectional networks, (widely used
in audio speech recognition because of their ability to1495

model past and future context), which should be help-
ful for dealing with visual ambiguities that are related
to previous and posterior mouth positions (i.e. a similar
idea to that from triphoneme models). However, bidi-
rectional networks involve a higher computational cost1500

that unidirectional ones and require that the whole sig-
nal is available beforehand, not allowing for real-time
decoding. Finally, attention models have also been re-
cently explored because they help to highlight the most
relevant pieces of information from the large amount of1505

data potentially available. Thus, current efforts tend to-
ward techniques that allow a more comprehensive mod-
eling and interpretability of the retained context.
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