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Abstract

Image super-resolution aims to generate high-resolution image based on the
given low-resolution image and to recover the details of image. The common
approaches include reconstruction-based methods and interpolation-based
methods. However, these existing methods show difficulty in processing the
regions of image with complicated texture. To tackle such problems, frac-
tal geometry is applied on image super-resolution, which demonstrates its
advantages when describing the complicated details in image. The common
fractal-based method regards the whole image as a single fractal set. That
is, it does not distinguish the complexity difference of texture across all re-
gions of image regardless of smooth regions or texture rich regions. Due to
such strong presumption, it causes artificial errors while recovering smooth
area and texture blurring at the regions with rich texture. In this paper, the
proposed method produces rational fractal interpolation model with various
setting at different regions to adapt to the local texture complexity. In order
to facilitate such mechanism, the proposed method is able to segment the
image region according to its complexity which is determined by its local
fractal dimension. Thus, the image super-resolution process is cast to an
optimization problem where local fractal dimension in each region is further
optimized until the optimization convergence is reached. During the opti-
mization (i.e. super-resolution), the overall image complexity (determined
by local fractal dimension) is maintained. Compared with state-of-the-art
method, the proposed method shows promising performance according to
qualitative evaluation and quantitative evaluation.
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scaling factor, fractal dimension
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1. Introduction

Image super-resolution (SR) mainly aims to obtain a high-quality im-
age with higher resolution from low-resolution image. The essential of this
technique is to estimate unknown pixels via the known information of the
low-resolution image. Image super-resolution technique has been used in
various fields, such as military, medical, remote sensing satellite, television,
etc.

The approaches of super-resolution can be roughly grouped into four cate-
gories: interpolation based methods, reconstruction-based methods, learning-
based methods, and fractal-based methods. Interpolation-based methods re-
fer to recover a continuous signal by estimating image data from a set of dis-
crete image data samples. Reconstruction-based methods model degradation
of images through point diffusion function. Thus, the degraded image can be
represented as L = BH+N , where H is the unknown high-resolution image,
B represents blurring kernel, andN is the added noise. Learning-based meth-
ods were developed to capture complex relationship between high-resolution
image and low-resolution image on image patches. Please note that fractal-
based methods normally can be included in the category of interpolation
based methods i.e. fractal interpolation. To highlight the uniqueness of
fractal-based methods and their advantages, this paper reviews such typical
super-resolution methods using fractal theory separately.

The simplest type of interpolation-based methods is classic interpolation
functions under images ‘smoothness’ assumption, such as bilinear [1], bicu-
bic [2] and spline function[3]. Besides these classic methods, many other
interpolation methods were presented, such as the edge-guided interpolation
method [4] and ICBI [5]. They are very simple and fast. However, they
usually generate blurring edge and artificial texture details.

Due to strong discontinuities contained in images, the smoothness as-
sumption of interpolation based method leads to blurring edges and texture
disorder. The reconstruction-based method solves this problem through prior
knowledge (gradient prior [6], edge prior [7, 8], similarity prior [9] and texture
prior [10]). These approaches are quite effective in keeping edge structure
and suppress some artifacts. However, for the larger up-sampling factors,
the prior will be invalid, and the quality of the reconstructed image drops
dramatically.
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Learning-based methods can be further categorized into two types: example-
based methods, self-example-based methods. Example-based super-resolution
methods learn mapping function from low-resolution patches to its corre-
sponding high-resolution patches with external training datasets. Represen-
tative methods include k-nearest neighbor (k-NN) learning [11], manifold
learning [12], sparse coding [13] and regression-based [14, 15] methods. Self-
example-based super-resolution algorithms [16, 17, 18], which only need the
information of image itself, are based on the observation that image often
has certain numbers of structures that they repeat in/ across scales at other
positions. Although the learning-based method has ‘photo-realistic’ result,
they have the following disadvantages: (1) Longer processing time. (2) Lack
of flexibility: It cannot magnify image (i.e. super-resolution) with arbitrary
scale. For the different scaling factors, the model needs to be trained sepa-
rately. (3)Unexpected artifacts in complicated texture region.

In order to tackle problems on the artifacts in rich texture regions exposed
in all methods presented above, the fractal theory is introduced into the re-
search on image super-resolution, and it provides an easier way to describe the
complex natural surface. In fractal geometry, the image can be reproduced
with fractal function. The image intensity of a natural object can be regarded
as a kind of fractal [19]. Based on the previous research, we categorized the
fractal-based super-resolution method into three categories: Iterated Frac-
tal System (IFS), Fractal Brownian Function, fractal theory combined with
another method. AE Jacquin [20] proposed image compression via fractal
theory without human interactive. This kind of method is based on the
assumption that image redundancy can be exploited through self-transform
ability on a block basis. The IFS based method [21, 22] includes two main
steps: First, the image is divided into non-overlapping range blocks. For each
range block, the image is searched for a domain block that is very similar
to range block. This kind of method has limitations that it requires image
must be a ’strictly’ fractal image. It means that every single part is a copy
of the whole image. Actually, natural image present self-similarity on the
whole but not in such a strict way. For the Fractal Brownian Function based
method, authors [23, 24] investigated the potential of fractal interpolation.
In order to improve the efficiency of the fractal coding method, Wee and
Shin [25] proposed a novel fractal super-resolution algorithm where contrast
scaling factor and block determined the fractal affine transform jointly. This
method has lower computation complexity, but, it lacks flexibility and adapt-
ability. Later, the fractal technique is combined with another method, Xu et
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al. [26] established a fractal model for an image that employed the gradient
as a fractal measure for the point set of an image. By using the assump-
tion of scale invariance of local fractal dimension and length, the problem
of image super-resolution and enhancement can be solved jointly. Then, Yu
et al. [27] presented a super-resolution algorithm that combines fractal with
the example-based method. The above mentioned fractal-based methods p-
reserve vivid texture details than other non-fractal based methods. One of
the disadvantages is that the local fractal feature (e.g. fractal scaling factors
and fractal dimension) and underlying characteristic coherence of the image
are not well jointly considered. Some unexpected artifacts still occurred s-
ince they ignore the importance of the vertical scaling factor that reflects
self-similarity.

In this paper, we develop a novel rational fractal model based on rational
spline function [28]. Based on such model, we propose a new adaptive ratio-
nal fractal super-resolution (ARFSR) algorithm which applies local fractal
feature rather than uniform fractal features across the whole image [25]. We
split the whole image into patches and classify those patches into different
categories according to its complexity. For every class, the different fractal
interpolation function (with different setting) is chosen adaptively. In the
‘smooth’ area, the rational fractal function deduces to rational function. In
the edge and rich texture area, we exploit the relationship between verti-
cal scaling factors and local fractal dimension to maintain texture details.
The complexity of image keeps invariance by adjusting vertical scaling fac-
tors (actually, the complexity is decreased). With the help of optimizing
vertical scaling factor, rational fractal function is utilized to maintain the
self-similarity characteristic. The proposed method provides much flexibility
in upsampling scaling factor. Our method can magnify image with contin-
uous integer ratio while learning-based must be re-trained for every scaling
factor. At the same time, it preserves texture details efficiently.

To obtain ‘photo-realistic’ high-resolution image with vivid texture detail-
s and sharp edges, we construct an adaptive rational fractal super-resolution
method that exploits the relationship between local fractal dimension and
vertical scaling factor. The proposed super-resolution method has the fol-
lowing unique characteristics: 1) To address the problems mentioned above
in the previous fractal-based method, we treat the whole image as a multi-
fractal set. According to the texture complexity of local region, the rational
fractal interpolation model (with different setting) is chosen adaptively; 2)
We cast super-resolution process as an optimization process during which the
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overall image complexity (determined by local fractal dimension) is main-
tained. We assume that the complexity of upscaled image is invariance (in
fact, the complexity of image decreased for the loss of high-frequency in-
formation). The optimization technique is applied via the vertical scaling
factor.

The remainder of this paper is organized as follows: Section 2 describes
the related work. In section 3, we present the AFSR algorithm which focuses
on the determination of vertical scaling factor. Experiments and discussions
are given to evaluate the effectiveness of the algorithm in section 4. Finally,
section 5 concludes this paper.

2. Related work

2.1. Rational Fractal Interpolation for SR

Previously, earlier methods use interpolation function based on ’smooth-
ness‘ assumption [29] which converts the digital image as a continuous smooth
surface. However, those methods show limitations in blurred edges and ar-
tificial texture details. The fractal theory is introduced into the research on
image super-resolution, and it provides an easier way to describe the com-
plex natural surface. In fractal geometry, the image can be reproduced with
fractal function. The image intensity of a natural object can be regarded as
a kind of fractal [19].

Barnsley first proposed the fractal interpolation by using a certain It-
erated Function Systems (IFS) [30]. The method was extended to enable
interpolation on 2D and 3D space [31, 32]. Let image I as the plane re-
gion, (x, y) ∈ I = [x1, xN ; y1, yM ], z is the intensity value of pixel (x, y)
(xi, yj) ∈ Ii,j = (xi, xi+1; yj, yj+1), z

i,j is the intensity value of pixel (xi, yj),
(x, y) and (xN , yM) are coordinates of up-left pixel and bottom-right pixel of
the original image. Let ϕi(x) be contractive homeomorphisms [30]: I → Ii:

ϕi(x1) = xi, ϕ(xN) = xi+1,

|ϕi(c1)− ϕi(c2)| ≤ µ|c1 − c2|, ∀c1, c2 ∈ I,

where 0 ≤ µ < 1.
Let Ij(y) be contractive homeomorphisms: I → Ij:

φj(y1) = yj, φj(yM) = yj+1,

|φj(d1)− φj(d2)| ≤ λ|d1 − d2|, ∀d1, d2 ∈ I,
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where 0 ≤ λ < 1. The most recent and representative fractal interpolation
function generated by IFS has the following equation [28]:


ϕi(x) = aix+ bi,
φj(y) = cjy + dj,
Fi,j(x, y, z) = si,jz + Pi,j(ϕi(x), φj(y))− si,jBi,j(x, y).

(1)

where

ai =
xi+1 − xi

xN − x1

, bi =
xNxj − x1xi+1

xN − x1

,

cj =
yj+1 − yj
yM − y1

, dj =
yMyj − y1yj+1

yM − y1
.

where si,j called vertical scaling factors, Pi,j(ϕi(x), φj(y)) is a polynomial
function which represents rotating or translating, and Bi,j(x, y) is a pertur-
bation function which act as regulation term to further modify how single
part similar to global one.
Remark The interpolation model is identified uniquely by the values of
scaling factor si,j. If vertical scaling factor si,j = 0, then the rational fractal
function deduces to the bivariate rational interpolation function. If scaling
factor si,j ̸= 0, then it is a rational fractal function. Details see in reference
[28].

For the sake of problem re-formulation, we rewrite the equation (1) for
the super-resolution problem as following:



ϕ(xi) =
xi+1 − xi

xN − x1

∗ xi +
xNxi − x1xi+1

xN − x1

= xi,

φ(yj) =
yj+1 − yj
yM − y1

∗ yj +
yMyj − y1yj+1

yM − y1
= yj,

Ii,j(x
i, yj) = si,jz + ω0,0(θ, αi,j) ∗ ω0,0(η, βi,j) ∗ (zi,j − si,jz1,1)

+ ω0,1(θ, αi,j) ∗ ω0,0(η, βi,j) ∗ (zi+1,j − si,jzN,1)

+ ω0,0(θ, αi,j) ∗ ω0,1(η, βi,j) ∗ (zi,j+1 − si,jz1,M)

+ ω0,1(θ, αi,j) ∗ ω0,1(η, βi,j) ∗ (zi+1,j+1 − si,jzN,M)

+R(x, y)

(2)

where (x, y) is the coordinate of a pixel in the original image, z = I(x, y)
is the pixel value of the original image. (xi, yj) is the coordinate of pixel
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in corresponding high-resolution image, zi,j = Ii,j(x
i, yj) is the pixel value

of corresponding high-resolution image. ω0,0 and ω0,1 are base function, and
R(x, y) is remainder term, details see in [28].

2.2. Local fractal dimension

The definition of ’fractal’ was first proposed by Benoit Mandelbrot be-
cause the complex geometry of objects cannot be described by an integral
dimension. Fractal geometry can be used to characterize irregular shape or
other complex objects that traditional geometry is unable to do. The fractal
dimension is the key point to quantify how irregular an object is.

The fractal dimension (FD) measures the complexity of image texture
which corresponds to the human perception of image roughness. Several def-
initions of fractal dimensions have been proposed in recent years, such as
Hausdorff-Besicovitch dimension [33]. The most widely used fractal dimen-
sion method is the box-counting method [34]. A fractal set A can be divided
into number of subset is determined by scale ε, the scale ε and fractal set A
must generally follow the power law:

D = lim
ε→0

logN(A, ε)

log(1/ε)
(3)

In this equation, D is the fractal dimension. N(A, ε) is the number of
subsets.

The fractal dimension has a strong correlation with the vertical scaling
factor [35]. As for fractal spline interpolation, the fractal dimension and
vertical scaling factor have the following equation:

D = 1 +
log

∑N
i=1 si

logN
; (4)

where si is the vertical scaling factor, andN is the number of interpolation
interval.

In this paper, fractal dimension will be carefully investigated on each
image region because every region where demonstrates different complexity.
We believe that it should be a local fractal dimension rather than a global
uniform global fractal dimension. In the proposed method, the image region
will be classified into different categories according to its complexity (reflected
by the local fractal dimension). According to the local region characteristics,
different interpolation functions are utilized.
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3. Proposed Method

In this section, we will discuss how to use rational fractal function to
get a high-resolution (HR) image from the low-resolution (LR) image. First,
we split the whole image into overlapping patches with a size of 3 × 3. For
every single patch, the local fractal dimension is calculated. Second, we
segment these patches into different categories adaptively by analyzing the
distribution of local fractal dimension. Third, the rational fractal interpola-
tion function is determined through fractal analysis on each region. Finally,
the optimization process is conducted under the assumption that the fractal
dimension is invariance in the process of upsampling. Especially, unlike the
previous method that one patch has only one vertical scaling factor, every
adjacent pixels’ vertical scaling factor is determined. The diagram of the
proposed method is shown in Fig.1.

Figure 1: Illustration of super-resolution process
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3.1. Image Region Segmentation

In fractal geometry, fractal dimension is a ratio measuring the complexity
of image pattern (strictly speaking, a fractal pattern). Here, we segmented
patches according to its local fractal dimension. As for the image which
contains smooth area and texture area, the fractal dimension in each area is
different. Texture area is more complicated than smooth area and usually
presents self-similar characteristic. Usually, the local fractal dimension in
the texture area is higher than in smooth area. The previous fractal-based
method usually treats the whole image as a single fractal set while it usually
generates a large error. It is because smooth areas in the image do not
present self-similarity in the image. The first step of the proposed method is
to divide the whole image into patches of 3 ∗ 3. For every single patch, the
local fractal dimension is calculated by ’box-counting’ method. By analyzing
the distribution of the local fractal dimension, the Otsu’s method [36] is
applied for selecting suitable threshold which is used for patch classification.
Then, these patches are categorized into two classes: fractal self-similarity
patch (texture area) and non-fractal self-similarity patch (smooth area). The
result of segmentation is shown in Fig.2.

As shown in Fig.2, the whole image is divided into different area effec-
tively. We regard the area with small local fractal dimension as smooth area
and the area with larger local fractal dimension as texture area.

(a) lena (b) butterfly (c) baby

(d) lena (e) butterfly (f) baby

Figure 2: Image regions classified into texture area and smooth area
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3.2. Single Image Super-Resolution

According to the result of patch segmentation based on the distribution
of local fractal dimension, the different interpolation function is chosen on
the basis patches’ feature.

In the ‘smooth’ area, we choose si,j = 0, αi,j = 10, βi,j = 1, then the FIF
coincides with the bivariate rational interpolation function [29]:

Pi,j(ϕi(x), φj(y)) =
∑1

s=0

∑1
r=0[ar,s(θ, η)zi+r,j+s

+br,s(θ, η)hidi+r,j+s

+cr,s(θ, η)ljdi+r,j+s],

(5)

In the texture area, we use the rational fractal interpolation as shown in
formula (2). The shape parameters are set as: αi,j = 10, βi,j = 1. As for the
vertical scaling factor, the initial value is (LFD−2). From the equation (2),
we can see that the vertical scaling factors have great influence on the final
result. So, it is important to select suitable vertical scaling factor for image
super-resolution.

3.3. Optimization

Apparently, it is meaningless to choose the value of vertical scaling fac-
tor in random. In the fractal geometry, the vertical scaling factors reflect
how the local area similar to the global area. However, the existing fractal-
based super-resolution methods rarely discuss how the vertical scaling factors
should be determined to achieve better super-resolution performance. In [25],
Wee and Shin proposed a novel fractal super-resolution algorithm by using
a fixed vertical scaling factor in the whole image. In our previous work [37],
we proposed a vertical scaling factor calculation method by exploiting the
relationship of global fractal dimension and local fractal dimension. This
method calculates the vertical scaling factors for each patch. Actually, every
two adjacent pixels should have different scaling factors. The more suitable
value of si,j, the more accurate of fractal functions we get. In this work, we
propose calculating the vertical scaling factor based on the relation between
local fractal dimension and vertical scaling factor. Such relationship provides
more fine-grained information for calculating the vertical scaling factor for
every two adjacent pixels.

To assist local vertical scaling factor calculation on the fine-grained level,
intuitively, it is better to use patches which have uniform local fractal fea-
ture. Thus, it may calculate a stable and unique local vertical scaling factor.
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According to equation (4), we extend it to 2-D surface interpolation. The
equation (4) can be rewritten as follows:

D = 2 +
log

∑M
i=1

∑M
j=1 si,j

logM
; (6)

where D is the fractal dimension, si,j is the vertical scaling factor, and
M is the size of input patch minus one.

Based on the assumption that the complexity of the image does not
change in the process of super-resolution, so the fractal dimension is fixed.
We optimize the vertical scaling factor by using the thought of Particle Swar-
m Optimization (PSO)[38]. After the initialization of vertical scaling factor,
there are only 2 ∗ 2 variables to estimate for patches with the size of 3 ∗ 3.
By minimizing the difference between the HR patch and input LR patch, we
have:

min|LFDHR − LFDLR|; (7)

According to Eq.(6), Eq.(7) can be rewritten as the following:

min| log
∑M

i=1

∑M
j=1 si,j

logM
+ 2− LFDLR|; (8)

si,j updated the value with the following equation:

st+1
i,j = sti,j + δ ∗ (LFDt − LFDt−1) ∗

[
1 1
1 1

]
(9)

where δ is inertia weight. Detail of the method is shown in the scheme of
Algorithm 1.

4. Experiments

To demonstrate the effectiveness of the proposed method, the quality and
quantity comparison is conducted on different up-sampling factors. During
the evaluation, we use two benchmark datasets Set 5 and Set 14. They are
often used as the benchmark in other works [39, 40, 41] since it contains some
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Algorithm 1 Optimization
1. Given the patch local fractal dimension LFDLR and initial value
of vertical scaling factor S.

2. Get the high-resolution patch via rational fractal interpolation function.
3. Calculate local fractal dimension of high-resolution patch LFDHR.
4. If the |LFDHR − LFDLR| < ε.

This is the final result
else
Update vertical scaling factor by S + δ ∗ (LFDt

HR − LFDt−1
HR).

Go to 2.
5.Get final result.

challenging images for the current existed methods. We directly downsam-
pled the original image as the low-resolution input image. We compare the
proposed ARFSR method with five state-of-the-art methods: reconstruct-
based (Tai’s [8]), Learning-based (ANR [42], SelfexSR [18], SRCNN [43]),
fractal-based (Xu’s [26]). Since human eyes are more sensitive intensity than
color, we convert the image from RGB color space to YCbCr color space.
Like other state-of-the-art methods, the luminance channel is up-sampling
by the SR methods. Another channel is upscaled by bicubic. Quantitative
evaluations of the SR results are assessed by the Peak Signal-to-Noise Ra-
tio (PSNR), the Structural Similarity (SSIM) index and Feature Similarity
(FSIM) Index. Upscaling factors 2, 3 and 4 are considered in this paper.

4.1. Analysis of the Algorithm

As for this algorithm, the fundamental of this method is lie in two aspects:
patch classification and invariance of fractal dimension between correspond-
ing LR patch and HR patch. Firstly, we split the whole image into patches,
then the local fractal dimension is calculated for every single patch. By
analyzing the local fractal dimension, image patches are classified into two
different categories. Then, a different fractal function is applied according
to image features. To maintain vivid texture details and edge structure, we
assume the fractal is invariance in the upsampling process. Finally, vertical
scaling factors are calculated under this assumption. Especially, in this pa-
per, every two adjacent pixels’ scaling factors are calculated. Unlike other
methods only have one vertical scaling factors in one patch. The proposed
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Table 1: Comparison of different methods on runtime (s) (Set14)

Image Tai’s ANR SelfExSR SRCNN Xu’s Proposed
Baboon 0.98 8.98 8.3 177.34 4.9 209.32
Barbara 1.76 15.38 13.99 457.19 8.1 361.83
Bridge 1.03 9.91 8.15 151.87 5.22 231.66

Coastguard 0.40 3.77 1.89 99.44 2.16 231.66
Comic 0.35 3.38 1.96 73.30 1.97 82.22
Face 0.30 2.86 1.50 58.27 1.21 72.7

Flowers 0.73 6.7 5.32 162.99 3.69 170.54
Foreman 0.39 3.74 1.88 86.54 2.07 96.34
Lenna 1.03 9.69 8.01 247.77 4.82 243.06
Man 1.02 9.68 8.08 246.26 5.21 232.85

Monarch 1.54 14.48 13.25 398.53 7.69 368.11
Pepper 0.13 9.65 8.03 229.47 5.23 235.34
Ppt3 1.38 12.79 11.94 387.6 6.55 302.38
Zebra 0.90 8.46 6.98 193.62 4.61 202.87

Average 0.92 8.53 7.09 212.11 4.53 207.07

vertical scaling factors calculation method can adaptive local features well.
To obtain vertical scaling factors, optimize technique is applied. In this case,
we will compare the running time of the proposed method with five state-of-
art methods. The results are presented in the following table. As shown in
table 1, the runtime of the proposed method is slightly higher than the oth-
ers. The proposed method is an interpolation-based method, and it should
have a lower running time. This situation lies in the following two reasons:
the calculation of the fractal dimension and the optimizing vertical scaling
factor. The calculation of the fractal dimension is very time-consuming. S-
ince the local fractal calculated for every single image patch, this is the one
reason for the longer processing time. The other one is optimizing vertical
scaling factors, and we estimate the vertical scaling factors for every two ad-
jacent pixels. However, the runtime of the proposed method is similar to the
reconstruction-based method and self-example based method. Our method
shows a promising result, especially for larger upscale factor.

As for the upscale factor, the proposed method could enlarge images
with a continuous integer ratio. In essence, the proposed method is an
interpolation-based method. It can add an arbitrary number of points in two
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adjacent pixels. Besides, the specified vertical scaling factors could maintain
fine texture details under larger upscale factor.

4.2. Comparison with State-of-Art Methods

We compare our method with Tai’s [8], ANR [42], SelfexSR [18], SRC-
NN [43] and Xu’s [26] on all the image in Set5 and Set14. As for quality
assessment, we conduct experiments on various natural images with texture
and edge. In order to demonstrate effectiveness of the proposed method, we
upscale image with different scales (×2,×3,×4). The Peak Signal to Noise
Ratio (PSNR), Structural SIMilarity Index (SSIM) and Feature SIMilarity
Index (FSIM ) are utilized to evaluate the result in different aspects. As
shown in table 2, 3 and 4, our method achieves the best PSNR, SSIM and
FSIM measures for the test images. Compared with fractal-based method,
the proposed method improves PSNR from 3.7 db to 3.8 db on average.

(a) Original (b) TAI (c) ANR (d) SelfExSR

(e) SRCNN (f) Xu (g) Proposed

Figure 3: Comparison of results (×2) on Wall image.

We perform tests on natural images to show the improvements of the
proposed method over the visual effects. As shown in Fig.3, we test Wall for
texture preserving and artificial effects. The proposed algorithm exhibits vi-
sually appealing appearance compared to the comparison method. As shown
in Fig.3, in the result of SelfExSR, SRCNN, and ANR, the texture is distor-
tion, and artifacts appeared along the edges. The images upscaled by TAI
exhibit blurred artifacts. The texture details are not preserved efficiently in
the Tai. The fractal-based method also suffers from texture distortion due to
failed in capturing suitable vertical scaling factor. Xu’s method also uses the
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Table 2: Comparison of different methods on PSNRs,SSIMs, FSIMs (Set5)
Methods Criterion Scale Baby Bird Butterfly Head Woman Average

PSNR 30.736 28.172 22.445 28.377 27.495 25.450
Tai’s SSIM ×2 0.937 0.885 0.820 0.729 0.875 0.850

FSIM 0.954 0.909 0.821 0.885 0.898 0.893
PSNR 31.917 31.069 23.452 30.493 26.823 22.875

ANR SSIM ×2 0.951 0.870 0.852 0.754 0.896 0.876
FSIM 0.971 0.938 0.833 0.885 0.909 0.907
PSNR 30.564 29.565 21.836 30.081 25.429 27.495

SelfExSR SSIM ×2 0.926 0.977 0.714 0.723 0.822 0.811
FSIM 0.962 0.932 0.721 0.878 0.650 0.865
PSNR 31.376 30.433 22.459 29.783 24.749 27.995

SRCNN SSIM ×2 0.945 0.922 0.828 0.732 0.949 0.862
FSIM 0.971 0.926 0.826 0.874 0.901 0.900
PSNR 34.261 34.614 26.225 29.573 30.301 30.995

Xu’s SSIM ×2 0.981 0.950 0.927 0.829 0.947 0.912
FSIM 0.988 0.975 0.906 0.921 0.954 0.949
PSNR 37.896 37.510 29.942 33.647 35.032 34.805

Proposed SSIM ×2 0.984 0.986 0.907 0.837 0.949 0.929
FSIM 0.987 0.971 0.906 0.925 0.954 0.946
PSNR 27.488 24.941 19.015 27.234 23.724 24.480

Tai’s SSIM ×3 0.858 0.774 0.682 0.682 0.771 0.753
FSIM 0.910 0.849 0.740 0.852 0.834 0.837
PSNR 27.735 26.084 19.237 27.682 22.488 24.645

ANR SSIM ×3 0.867 0.812 0.651 0.651 0.778 0.759
FSIM 0.919 0.865 0.711 0.843 0.839 0.835
PSNR 26.890 25.147 18.054 27.568 21.406 23.813

SelfExSR SSIM ×3 0.833 0.729 0.637 0.637 0.680 0.686
FSIM 0.904 0.824 0.630 0.835 0.785 0.795
PSNR 27.221 25.304 18.499 26.884 21.591 23.899

SRCNN SSIM ×3 0.958 0.795 0.621 0.621 0.762 0.740
FSIM 0.917 0.856 0.708 0.826 0.827 0.826
PSNR - - - - - -

Xu’s SSIM ×3 - - - - - -
FSIM - - - - - -
PSNR 37.262 30.918 24.628 30.643 28.601 29.510

Proposed SSIM ×3 0.923 0.871 0.749 0.741 0.835 0.824
FSIM 0.946 0.890 0.771 0.866 0.862 0.867
PSNR 25.339 22.861 17.301 25.552 21.405 22.437

Tai’s SSIM ×4 0.784 0.683 0.583 0.632 0.691 0.674
FSIM 0.870 0.806 0.685 0.817 0.789 0.793
PSNR 25.375 23.590 17.240 26.169 20.253 22.525

ANR SSIM ×4 0.790 0.712 0.579 0.603 0.687 0.674
FSIM 0.879 0.820 0.645 0.827 0.795 0.739
PSNR 24.511 22.590 16.013 25.615 18.996 21.545

SelfExSR SSIM ×4 0.747 0.625 0.443 0.583 0.573 0.594
FSIM 0.854 0.781 0.578 0.806 0.730 0.749
PSNR 24.798 22.944 16.391 25.569 19.366 21.813

SRCNN SSIM ×4 0.783 0.697 0.555 0.589 0.674 0.659
FSIM 0.876 0.811 0.646 0.816 0.780 0.785
PSNR 28.290 26.415 19.078 26.524 22.975 24.650

Xu’s SSIM ×4 0.905 0.874 0.742 0.712 0.823 0.811
FSIM 0.940 0.897 0.769 0.856 0.863 0.865
PSNR 30.488 29.830 29.432 24.020 28.259 28.406

Proposed SSIM ×4 0.888 0.851 0.724 0.724 0.816 0.807
FSIM 0.925 0.872 0.846 0.754 0.846 0.849
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(a) Origin (b) TAI (c) ANR (d) SelfExSR

(e) SRCNN (f) XU (g) Proposed

Figure 4: Comparison of results (×3) on Baby image

invariance of fractal dimension between LR image and HR image. However,
Xu’s method maintains the whole image fractal dimension invariant while
our method keeps every local patch fractal dimension unchanged. Therefore,
the proposed method is more localized than Xu’s. Further, Xu’s method uses
ICBI algorithm upsampling LR image firstly and then use optimizing tech-
nique latterly. The first step’s result has huge influence on the final result,
and it also limits the upscaled factor. While, the proposed method shows
the promising result in texture preserving.

And also, edge structure and detail preservation are tested in Fig.4 and
Fig.5. As shown red rectangle in Figure.4 and Figure.5, the images generat-
ed by the proposed method in Fig.4 (g) and Fig.5 (g) show an outstanding
improvement over the other magnified images. The image obtained by Tai’s
method present smoothed edges. In the SRCNN, SelfExSR and ANR magni-
fied images, artifacts appear, and the texture twisted heavily. In our method,
the magnified images have smooth edges and little noisy artifacts. Based on
the above experiment results, our method could reduce ringing, blocking and
blurring effectively, and have better results in image details.

16



Table 3: Comparison of different methods on PSNRs,SSIMs, FSIMs (Set14-1)

Methods Criterion Scale Baboon Barbara Bridge Coastguard Comic Face Flowers Foreman
PSNR 22.027 24.769 24.159 24.963 21.721 27.487 24.957 26.247

Tai’s SSIM ×2 0.724 0.833 0.806 0.563 0.635 0.739 0.752 0.878
FSIM 0.886 0.920 0.906 0.756 0.756 0.866 0.814 0.890
PSNR 20.948 23.410 23.726 25.054 21.935 30.454 26.066 29.842

ANR SSIM ×2 0.752 0.850 0.835 0.681 0.759 0.754 0.817 0.910
FSIM 0.893 0.925 0.924 0.828 0.829 0.885 0.869 0.924
PSNR 17.916 20.568 18.471 21.267 17.342 27.309 21.048 25.231

SelfExSR SSIM ×2 0.486 0.668 0.567 0.417 0.441 0.624 0.558 0.688
FSIM 0.765 0.810 0.796 0.742 0.680 0.835 0.725 0.840
PSNR 20.070 22.612 18.572 24.216 20.914 29.743 25.151 28.884

SRCNN SSIM ×2 0.717 0.839 0.528 0.656 0.729 0.732 0.796 0.900
FSIM 0.890 0.924 0.792 0.818 0.817 0.874 0.859 0.915
PSNR 20.199 23.435 18.772 26.810 23.448 29.551 27.742 29.168

Xu’s SSIM ×2 0.821 0.888 0.549 0.794 0.843 0.828 0.896 0.945
FSIM 0.897 0.946 0.802 0.900 0.901 0.921 0.925 0.951
PSNR 25.845 30.095 25.513 32.336 28.416 33.226 31.817 33.687

Proposed SSIM ×2 0.857 0.916 0.921 0.816 0.854 0.847 0.895 0.947
FSIM 0.922 0.962 0.956 0.892 0.902 0.927 0.926 0.952
PSNR 20.119 22.687 20.652 22.635 18.897 26.990 22.400 25.209

Tai’s SSIM ×3 0.585 0.732 0.670 0.477 0.536 0.678 0.656 0.799
FSIM 0.825 0.849 0.844 0.748 0.732 0.856 0.783 0.852
PSNR 19.019 21.356 21.096 22.354 18.513 27.677 22.216 26.288

ANR SSIM ×3 0.540 0.707 0.653 0.472 0.539 0.651 0.652 0.819
FSIM 0.795 0.834 0.836 0.763 0.733 0.845 0.780 0.861
PSNR 17.916 20.568 18.471 21.267 17.342 27.309 21.048 25.231

SelfExSR SSIM ×3 0.486 0.668 0.567 0.417 0.441 0.624 0.558 0.688
FSIM 0.765 0.810 0.796 0.742 0.680 0.835 0.725 0.840
PSNR 18.264 20.621 15.664 21.638 17.618 26.917 21.368 25.251

SRCNN SSIM ×3 0.511 0.689 0.316 0.446 0.504 0.623 0.623 0.803
FSIM 0.784 0.827 0.720 0.748 0.717 0.829 0.765 0.845
PSNR - - - - - - - -

Xu’s SSIM ×3 - - - - - - - -
FSIM - - - - - - - -
PSNR 23.899 26.510 21.802 27.560 23.946 31.190 27.260 29.764

Proposed SSIM ×3 0.658 0.790 0.752 0.567 0.631 0.745 0.737 0.859
FSIM 0.844 0.888 0.882 0.770 0.773 0.869 0.815 0.876
PSNR 20.476 22.544 21.577 22.490 18.644 25.674 21.715 23.974

Tai’s SSIM ×4 0.487 0.677 0.560 0.427 0.394 0.649 0.578 0.780
FSIM 0.784 0.813 0.789 0.596 0.628 0.785 0.707 0.818
PSNR 18.892 21.363 21.139 22.153 18.491 28.361 22.601 26.337

ANR SSIM ×4 0.519 0.704 0.649 0.457 0.529 0.675 0.659 0.811
FSIM 0.778 0.827 0.821 0.755 0.733 0.859 0.788 0.856
PSNR 17.916 20.568 18.471 21.267 17.342 27.309 21.048 25.231

SelfExSR SSIM ×4 0.486 0.668 0.567 0.417 0.441 0.624 0.558 0.688
FSIM 0.765 0.810 0.796 0.742 0.680 0.835 0.725 0.840
PSNR 18.264 20.621 15.664 21.638 17.618 26.917 21.368 25.251

SRCNN SSIM ×4 0.511 0.689 0.316 0.446 0.504 0.623 0.623 0.803
FSIM 0.784 0.827 0.720 0.748 0.717 0.829 0.765 0.845
PSNR 17.097 20.211 15.068 20.825 17.437 26.541 21.494 24.434

Xu’s SSIM ×4 0.553 0.737 0.356 0.474 0.546 0.710 0.675 0.841
FSIM 0.785 0.840 0.735 0.725 0.744 0.856 0.803 0.864
PSNR 23.549 26.587 21.802 26.922 23.591 29.292 26.528 28.808

Proposed SSIM ×4 0.591 0.774 0.752 0.525 0.587 0.726 0.710 0.841
FSIM 0.829 0.885 0.882 0.729 0.749 0.843 0.792 0.868
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Table 4: Comparison of different methods on PSNRs,SSIMs, FSIMs (Set14-2)

Methods Criterion Scale Lenna Man Monarch Pepper Ppt3 Zebra Average
PSNR 28.628 24.912 27.435 28.183 21.186 24.151 25.059

Tai’s SSIM ×2 0.919 0.845 0.951 0.934 0.902 0.851 0.809
FSIM 0.948 0.920 0.947 0.951 0.875 0.890 0.877
PSNR 29.540 25.078 28.615 30.240 23.018 25.360 25.949

ANR SSIM ×2 0.909 0.866 0.959 0.922 0.943 0.908 0.847
FSIM 0.954 0.932 0.965 0.959 0.927 0.927 0.910
PSNR 28.613 23.710 27.047 28.237 22.151 24.153 24.500

SelfExSR SSIM ×2 0.898 0.823 0.940 0.909 0.917 0.865 0.797
FSIM 0.947 0.919 0.947 0.947 0.910 0.918 0.887
PSNR 28.837 25.100 27.701 29.543 22.082 24.326 24.839

SRCNN SSIM ×2 0.898 0.845 0.953 0.913 0.932 0.895 0.809
FSIM 0.954 0.929 0.964 0.957 0.925 0.924 0.896
PSNR 30.908 26.272 31.524 29.321 26.045 28.834 26.573

Xu’s SSIM ×2 0.957 0.926 0.986 0.951 0.967 0.967 0.880
FSIM 0.974 0.953 0.985 0.968 0.965 0.974 0.933
PSNR 36.469 31.722 35.649 33.448 29.942 33.252 31.531

Proposed SSIM ×2 0.968 0.940 0.987 0.965 0.977 0.967 0.918
FSIM 0.981 0.964 0.986 0.977 0.964 0.975 0.949
PSNR 24.892 22.667 24.502 25.587 18.679 20.472 22.682

Tai’s SSIM ×3 0.830 0.726 0.899 0.854 0.806 0.713 0.711
FSIM 0.882 0.850 0.886 0.886 0.788 0.825 0.828
PSNR 25.219 22.148 24.243 26.471 19.157 20.747 22.636

ANR SSIM ×3 0.814 0.721 0.897 0.849 0.834 0.743 0.706
FSIM 0.892 0.849 0.903 0.900 0.826 0.831 0.832
PSNR 24.750 20.582 23.094 24.558 18.223 19.599 24.425

SelfExSR SSIM ×3 0.694 0.508 0.862 0.826 0.785 0.679 0.628
FSIM 0.833 0.754 0.866 0.879 0.786 0.811 0.794
PSNR 24.892 21.296 23.547 25.736 18.248 19.757 21.486

SRCNN SSIM ×3 0.798 0.697 0.888 0.835 0.818 0.720 0.662
FSIM 0.888 0.843 0.902 0.895 0.820 0.823 0.814
PSNR - - - - - - -

Xu’s SSIM ×3 - - - - - - -
FSIM - - - - - - -
PSNR 32.292 27.717 29.774 31.345 24.893 36.333 27.464

Proposed SSIM ×3 0.896 0.815 0.935 0.915 0.888 0.979 0.734
FSIM 0.932 0.897 0.934 0.931 0.876 0.980 0.808
PSNR 24.961 22.188 23.446 24.415 18.076 19.818 22.143

Tai’s SSIM ×4 0.787 0.647 0.841 0.833 0.729 0.576 0.641
FSIM 0.861 0.808 0.852 0.864 0.708 0.734 0.768
PSNR 26.787 22.625 24.796 27.492 19.909 21.769 23.051

ANR SSIM ×4 0.832 0.729 0.902 0.856 0.844 0.639 0.700
FSIM 0.902 0.850 0.897 0.902 0.817 0.797 0.827
PSNR 22.673 19.417 21.146 22.309 16.562 17.104 19.612

SelfExSR SSIM ×4 0.693 0.531 0.784 0.737 0.665 0.516 0.544
FSIM 0.822 0.752 0.806 0.817 0.709 0.733 0.745
PSNR 22.937 19.949 21.489 23.551 16.542 17.271 19.805

SRCNN SSIM ×4 0.725 0.595 0.823 0.774 0.723 0.446 0.566
FSIM 0.845 0.791 0.850 0.850 0.751 0.696 0.766
PSNR 25.856 21.766 24.456 25.034 19.577 20.890 21.478

Xu’s SSIM ×4 0.867 0.768 0.925 0.883 0.851 0.782 0.712
FSIM 0.918 0.868 0.918 0.908 0.855 0.877 0.835
PSNR 31.256 27.629 29.165 29.254 24.659 26.387 26.814

Proposed SSIM ×4 0.886 0.797 0.925 0.910 0.871 0.795 0.764
FSIM 0.931 0.889 0.929 0.922 0.855 0.873 0.855
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(a) Original (b) TAI (c) ANR (d) SelfExSR

(e) SRCNN (f) Xu (g) Proposed

Figure 5: Comparison of results (×4) on Head image

5. Conclusions

This work is a contribution to image super-resolution based on fractal
interpolation. At first, we reformulate fractal iterated function for image
super-resolution problem. The constructed fractal iterated function has d-
ifferent forms of expression with varied values of scaling factor and shape
parameters, which coincides with the diversity of image features, and it can
describe complex geometric structure of image accurately. In an image large
smooth area and texture area contained, we split the image into local re-
gions which have uniform local fractal feature to select suitable interpolation
function. In the texture, we select fractal iterated function which contain-
s vertical scaling factors. In order to get ‘photo-realistic’ texture details,
vertical scaling factors calculation method is proposed. This method under
the assumption the local fractal dimension keeps invariance in the process
of upsampling. Experimental results on test images demonstrate that the
proposed method achieved very competitive performance not only subjective
but objective.
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