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Abstract

Fully convolutional networks (FCN) have achieved great suc-
cess in human parsing in recent years. In conventional human
parsing tasks, pixel-level labeling is required for guiding the
training, which usually involves enormous human labeling ef-
forts. To ease the labeling efforts, we propose a novel weakly
supervised human parsing method which only requires sim-
ple object keypoint annotations for learning. We develop an
iterative learning method to generate pseudo part segmenta-
tion masks from keypoint labels. With these pseudo masks,
we train a FCN network to output pixel-level human pars-
ing predictions. Furthermore, we develop a correlation net-
work to perform joint prediction of part and object segmenta-
tion masks and improve the segmentation performance. The
experiment results show that our weakly supervised method
is able to achieve very competitive human parsing results.
Despite our method only uses simple keypoint annotations
for learning, we are able to achieve comparable performance
with fully supervised methods which use the expensive pixel-
level annotations.

Introduction
Semantic image segmentation is a fundamental task for im-
age understanding. Human parsing, also known as human
part segmentation, can be considered as a part-level im-
age segmentation task. Human parsing aims to segment one
person into different parts, which is a pixel labeling task
and plays an important role in human analysis. Part seg-
mentation or human parsing has recently attracted increas-
ing attention in the research community (Lin et al. 2017;
Chen et al. 2014; Liang et al. 2015; Wang et al. 2015;
Xia et al. 2016). Human parsing stimulates various high-
level vision understanding applications such as action recog-
nition, human behavior analysis and video surveillance.

Conventional part segmentation methods require pixel-
level annotations for training which usually involve exces-
sive human labeling efforts.

To avoid this huge burden of pixel-level annotations, in
this research we propose to use simple object keypoint an-
notation as supervision for learning human parsing models.
Compared to pixel-wise part annotations, object keypoint
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annotations are much easier to obtain which significantly re-
duces human labeling efforts. Fig. 1 illustrates the idea of
our keypoint based weakly supervised human parsing frame-
work and how it is different from conventional fully super-
vised methods.

Object keypoint annotations can be obtained from human
labelling, e.g., keypoint annotations in human pose datasets
(Xia et al. 2017; Lin et al. 2014), or from pre-trained hu-
man pose estimation models, e.g, Mask RCNN (He et al.
2017) and AlphaPose (Fang et al. 2017; Xiu et al. 2018).
We demonstrate our proposed method is able to incorporate
with human labeled keypoint annotations as well as the less
accurate keypoint predictions generated by pre-trained hu-
man keypoint detection models to achieve pixel-level human
part and object segmentation. In addition, considering there
is a strong correlation between the whole object segmenta-
tion and the part segmentation. We develop a joint learning
method to model such correlations and simultaneously out-
put object and part segmentation masks. Particularly, we in-
troduce a correlation block to model interaction between the
part prediction and the object prediction, and it helps to im-
prove the final part segmentation result.

Our main contributions are summarized as follows:

• We propose a weakly supervised method to ease the hu-
man labeling efforts for human parsing. We are able to
achieve good pixel-level human part and object segmenta-
tion results using only simple object keypoint annotations
as supervision for learning. The object keypoints can be
obtained from human manual labeling or pre-trained ob-
ject keypoint detectors. Our method significantly reduces
human labeling efforts and achieves very competitive per-
formance for human parsing.

• We propose an iterative learning method to generate accu-
rate pseudo masks for parts and objects from object key-
point annotations. With such high-quality pseudo masks,
we train a segmentation network to jointly predict pixel-
level part and object segmentation masks.

• Due to the strong correlation between parts and objects,
joint prediction is expected to benefit the segmentation
performance. We propose a correlation network to simul-
taneously output part and object segmentation masks, and
achieve improved results for part segmentation.
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Figure 1: Comparison between fully supervised methods and our weakly supervised method. The left box (blue) describes
traditional fully supervised human parsing, which requires expensive pixel-level annotations for training. The right box (green)
illustrates our weakly supervised human parsing method which only requires simple object keypoint annotations for training.
We are able to achieve comparable performance with fully supervised methods.

Related work
Our method is related to the research themes including
weakly supervised segmentation, human part segmentation
and pose estimation.

Weakly supervised segmentation

In the recent years, the development of deep convolutional
neural networks (CNN) with advanced network structures
such as VGG (Simonyan and Zisserman 2014a) and ResNet
(He et al. 2016) have been widely used in many areas such
as object detection and segmentation. The work in (Long,
Shelhamer, and Darrell 2015) proposes fully convolutional
neural networks (FCN) based on VGG network for seman-
tic segmentation with end-to-end learning. The approach in
(Chen et al. 2016a) introduces Atrous/dilated convolution
and employs fully connected CRFs to improve the FCN
method.

Conventional fully supervised segmentation requires
pixel-wise mask annotations for training and it requires
enormous human labeling effort which is usually exces-
sively expensive. To ease the labeling efforts, a number of
weakly supervised methods (Pathak et al. 2014; Vernaza and
Chandraker 2017; Lin et al. 2016; Bearman et al. 2016; Dai,
He, and Sun 2015; Papandreou et al. 2015; Shen et al. 2017;
Zhang et al. 2018) have been proposed to employ weak su-
pervision for learning segmentation models. For example,
the methods in (Pathak et al. 2014; Papandreou et al. 2015;
Shen et al. 2017) use image level labels for learning seg-
mentation models; the work in (Bearman et al. 2016) use
image level and point level information for model training.
The work in (Dai, He, and Sun 2015) and (Lin et al. 2016)
use box annotation and scribble annotation, respectively, as
supervision for learning segmentation models.

Different from these existing studies, we focus on human
part segmentation. We propose to use object keypoint anno-
tation as supervision which is more challenging than using
scribble or box-level supervision for learning segmentation
models.

Human part segmentation
The work in (Chen et al. 2014) extends object segmenta-
tion to object part-level segmentation. It releases a PASCAL
PART dataset which contains pixel-level part annotations.
The work in (Wang et al. 2015) first attempts part segmenta-
tion on animals.

It uses fully-connected CRFs as post-processing to en-
hance the consistency between parts and objects.

The approach in (Chen et al. 2016b) proposes an attention
model to fuse multi-scale prediction for part segmentation.
The work in (Xia et al. 2016) uses the “auto-zoom” to build
a hierarchical model to adapt the scales for objects and parts.

The method in (Li et al. 2017) extends single human pars-
ing to multiple human parsing and demonstrates in real-
world applications. The method in (Tsogkas et al. 2015)
employs high-level information to improve part segmenta-
tion. The approach in (Lin et al. 2017) proposes a multi-path
refinement network to achieve high resolution and accurate
part segmentation.

Different from these fully supervised works, we focus on
weakly supervised human parsing which only use human
keypoint annotations rather than pixel level annotations.

Pose estimation
The work in (Cao et al. 2017) proposes Part Affinity Fields
for human pose estimation. Then multi-stage pose estima-
tion methods (Fang et al. 2017; He et al. 2017) use object
detection and segmentation information to guide pose esti-
mation prediction. The method in (Xia et al. 2017) jointly
performs the multi-person pose estimation and the semantic
part segmentation in a single image to enhance the perfor-
mance of both segmentation and pose estimation.

In this work, we use human pose estimation method to
generate pseudo human keypoint to refine or generate our
human part segmentation.

Approach
Fig. 2 gives an overview of the proposed method. It con-
sists of three parts: the human keypoint annotation part in



Figure 2: An overview of our weakly supervised method. The right part (purple) shows the object keypoint annotations which
can be obtained from human labeling or pre-trained keypoint detectors such as MaskRCNN or AlphaPose. The middle part
(green) illustrates our pseudo mask generation for parts and objects from keypoint annotations. The left part (blue) describes
our FCN based segmentation network with two output branches for a joint object and part learning. This segmentation network
uses pseudo masks described in the middle part for training. In the test stage, only the trained segmentation network (left part)
is applied for the part segmentation prediction.

Figure 3: Illustration of the pseudo mask generation from
keypoint annotations. Firstly, we generate super-pixels (Ui-
jlings et al. 2013) of the input image (first bottom column).
Secondly, we estimate background regions based on the lo-
cation of keypoints (second bottom column). We treat the
pixels which are 50 pixels far away the human keypoints
as the background. Thirdly, we connect the object keypoints
to generate the skeleton (third bottom column). Finally, we
construct a graph-cut model to generate the pseudo masks of
parts.

the right, the pseudo mask generation in the middle, and the
FCN based segmentation network in the left. In particular,
we generate pseudo object and part masks from object key-
point annotations. Then the resulting pseudo masks are em-
ployed for training our FCN based joint segmentation net-
works for part and object mask prediction. In the follow-
ing, we focus on elaborating our three specially designed
processes, i.e. generating pseudo marks from keypoints, it-
eratively refining pseudo marks and correlation network for
joint prediction.

Generating pseudo masks from keypoints
At the first step, we build a graphical model to generate
pseudo masks of objects and parts from keypoint annota-
tions. We generate super-pixels for our training images and
construct a graph over the super-pixels. This problem can be
formulated as an energy minimization problem. The energy

function is written as:

E =
∑
i

ϕi(yi) +
∑
i,j

ϕij(yi, yj), (1)

where ϕi(yi) is the unary term indicating the labeling con-
fidence for one super-pixel, and ϕij(yi, yj) is the pairwise
term indicating the pairwise labeling confidence for a pair
of neighboring super-pixels. Here y ∈ {1...K} denotes the
part label which takes a value from one of the K labels.

We construct the unary term based on object keypoint an-
notations. As shown in Fig. 3, we connect object keypoints
to generate a skeleton, and all pieces of the skeleton are as-
signed object part labels based on the types of object key-
points. A super-pixel overlapped with the skeleton will be
assigned a part label, denoted by L, according to the over-
lapped skeleton pieces. If there are two skeletons across one
super-pixel, the superpixel will be given the label of the
skeleton with more overlapped pixels. We consider all part
regions as confident foreground regions. We formulate the
unary term cost function as:

ϕi(yi) =


−log( 1

|K| ) ifXi ∩ S = ∅;

0 ifXi ∩ S 6= ∅, yi = Li;

a large value ifXi ∩ S 6= ∅, yi 6= Li,

(2)

where Xi indicates a super-pixel and S indicates the skele-
ton. Here Xi ∩ S = ∅ indicates a super-pixel Xi does
not overlap with any pieces of the skeleton S, and likewise,
Xi ∩ S 6= ∅ indicates a super-pixel Xi overlaps with some
pieces of the skeleton S. In the first case, i.e. the super-pixel
does not overlap with the skeleton, the costs of all part cate-
gories are set to the same, withK indicating the total number
of part categories.

Recall we assign a part label, denoted by Li, to the super-
pixel i based on the overlapped piece of the skeleton. In the
cases when the super-pixel overlaps with the skeleton, if yi
equals to the assigned label Li, we set the cost to 0; other-
wise, we set a high cost value, e.g., 107 in our implementa-
tion.



Figure 4: Illustration of our correlation network for joint learning of parts and objects. Our network contains two branches for
part and object prediction. We introduce a correlation block to model the interaction between parts and objects, and thus to
improve the final part segmentation.

Figure 5: Illustration of our iteration refinement process for
pseudo mask generation. We perform graph cut prediction
and FCN training iteratively to improve pseudo masks. In
the first iteration, we build a graph-cut model based on ob-
ject keypoints to generate pseudo masks, and then we train
FCN based segmentation network using the pseudo masks.
In the next iteration, we jointly consider the keypoint an-
notations and the segmentation score map, generated by the
trained FCN based model from the last iteration, to construct
a new graph-cut model to construct better pseudo masks. We
repeat a few iterations to output the final segmentation.

We build the pairwise term to model the local smooth-
ness information. Following the work in (Boykov and Kol-
mogorov 2004), we construct the pairwise term for a pair of
neighboring super-pixels based on color, position and tex-
ture information, denoted by subscript C, P and T , respec-
tively. The pairwise term can be written as:

ϕij(yi, yj) =ωC exp(−‖ hC(xi)− hC(xj) ‖
2

2σ2
C

)

+ ωP exp(−‖ hP (xi)− hP (xj) ‖
2

2σ2
P

)

+ ωT exp(−‖ hT (xi)− hT (xj) ‖
2

2σ2
T

),

(3)

where hC hP and hT are the histogram features for the color,
position and texture respectively, ωC , ωP and ωT are the
trade-off parameters of different terms. Here σC , σP and
σT are the bandwidth parameters. We use the multi-label
graph cut to minimize the energy function (Boykov and Kol-
mogorov 2004).

Iterative refinement of pseudo masks
As shown in Fig. 5, with the resulting pseudo part segmenta-
tion masks, we train an FCN based part segmentation model.
We use DeepLab (Chen et al. 2016b) segmentation method
as our based model with VGG (Simonyan and Zisserman
2014b) as our base network. The trained FCN model is ap-
plied to generate the final part segmentation.

We obtain part score maps from the trained FCN model.
The part score maps can be incorporated into the unary term
in Equation 1 to further improve the pseudo mask genera-
tion. In particular, the energy function Equation in 1 can be
updated as:

E =
∑
i

ϕS
i (yi) +

∑
i

ϕN
i (yi) +

∑
i,j

ϕij(yi, yj), (4)

where ϕS
i is same as the unary term from Equation 1, which

is constructed based on the skeleton information, ϕN
i (yi)

is based on the FCN part score map, and ϕij(yi, yj) is the
same as the pairwise term in Equation 1 to model the local
smoothness of neighboring super-pixels.

We generate refined pseudo masks by minimizing the
above energy function using graph cut again, and train a new
FCN model using the refined pseudo masks. The whole pro-
cess is illustrated in Fig. 5. In the first iteration, we only use
object keypoints to generate pseudo masks and then train the
FCN. From the second iteration, we use object keypoints to-
gether with FCN part prediction score map from the last it-
eration to generate new pseudo masks. We repeat these steps
for a few iterations. The FCN model in the last iteration is
the final model for producing part segmentation prediction.



Table 1: Information of object keypoint annotations in two datasets
head torso arm leg object

Human keypoint in PASCAL Forehead
Neck

Neck
Shoulder / Hip

Shoulder
Elbow / Wrist

Hip
Knee / Ankle All Joint Point

Human keypoint in COCO Nose
Eye / Ear

Neck
Shoulder / Hip

Shoulder
Elbow / Wrist

Hip
Knee / Ankle All Joint Point

Table 2: Our human part definition in PASCAL VOC Per-
sion Part dataset.

head torso arm leg object
hair / head
ear / eye
eyebrow
mouth
neck / nose

torso
lower arm
upper arm
hand

lower leg
upper leg
foot

all parts

Correlation network for joint prediction
There is a strong correlation between part and object seg-
mentation. It is expected joint part and object segmentation
can benefit each other. In our FCN model, we propose a cor-
relation block to formulate the interaction between parts and
objects. Usually, it is easier to segment out an object cor-
rectly than segmenting a part. Thus, we propose to use ob-
ject information to guide part prediction. Fig. 4 shows the
framework of the joint inference.

In this module, we generate foreground and background
probability for all spatial locations from the object score
map. Then we perform element-wise multiplication between
the probability map of objects and the part score map to gen-
erate a refined part score map. In the training step, we add
a dense classification loss to this refined part score map for
training. The loss function can be formulated as:

Lpart =

n∑
i=1

(−log(P (ZP
i | X)⊗ P (ZO

i | X))), (5)

where ZP
i is the part prediction from the network and ZO

i is
the object prediction. The symbol ⊗ indicates element-wise
multiplication. Here ZP

i with K + 1 dimensions contains
the output ofK parts and the background category. ZO

i con-
tains the foreground probability and the background proba-
bility where we repeat the foreground probability K times
to match the dimension of ZP

i .

Experiments
We use the PASCAL VOC Person Part dataset to evaluate
our weakly supervised method.

We merge some fine level parts in Person Part dataset to
match with our defined part categories based on the keypoint
annotations. We focus on four types of human parts: head,
torso, arm, and leg. The detailed merge strategy can be found
in Table 2.

We use object keypoints for learning our weakly su-
pervised method. Object keypoints can be obtained from
PASCAL VOC Human Pose dataset (Xia et al. 2017), or

Table 3: Result comparison (IoU scores) between a fully
supervised method with pixel-level annotations and our
weakly supervised method with object keypoint annotations.

Part Objecthead torso arm leg bg mean
Weakly Supervised
(ours only Graph Cut) 48.82 33.41 34.11 32.21 83.81 46.47 52.72

Weakly Supervised
(ours VGG) 55.85 35.65 27.97 25.34 87.73 46.50 58.26

Weakly Supervised
(ours ResNet) 55.79 40.59 32.63 37.98 87.40 50.86 59.82

Fully Supervised
(upper bound) 66.47 47.82 39.93 34.24 92.79 56.25 70.29

from pre-trained object keypoints detector such as Mask
RCNN (He et al. 2017) and AlphaPose (Fang et al. 2017;
Xiu et al. 2018). If not specifically mentioned, we use the
keypoint annotations from the PASCAL VOC Human Pose
dataset for training.

Implementation details
In the pseudo mask generation step, we generate the initial
confident foreground and background regions from keypoint
annotations for constructing the unary item in the graph cut
model. For the initial foreground regions, we employ the la-
beling strategy in Table 1 to generate part labels from the
keypoint annotations and keypoint connections. For the ini-
tial background regions, we set the regions which are at least
50 pixels away from the nearest keypoint as background re-
gions. The graph-cut optimization step is sensitive to the
granularity of the super-pixel. We set the minimum compo-
nent size as 60.

We trained FCN based segmentation networks using the
generated pseudo masks. Our FCN model is based on the
DeepLab method (Chen et al. 2016b), and we use VGG-16
(Simonyan and Zisserman 2014a) as our backbone network.
We set equal weights for the object loss, the part loss and
the refined part loss. We set the batch size to 12 and run
8000 training iterations. We set the learning rate to 0.001
and reduce the learning rate after every 1000 iteration by a
factor of 0.5. The momentum is set to 0.9 and the weigh
decay is set to 0.0005.

Comparison with fully supervised learning
We compare the performance of our weakly supervised
learning method with the conventional fully supervised
method. As shown in Fig. 1, fully supervised part segmen-
tation methods require expensive pixel-level annotations,
while our weakly supervised method only uses object key-
point annotations. The results are shown in Table 3. Our
weakly supervised method is able to achieve a comparable



Table 4: Results for using keypoint annotations in the test time. Training column indicates the type of keypoint annotations
used for training. Testing column indicates the type of keypoint annotations used in the test time. The segmentation results are
improved for incorporating keypoints in the test time using graph cut.

Part ObjectTraining Testing head torso arm leg bg mean
Human Pose dataset Human Pose dataset 58.72 39.89 35.16 33.87 87.86 51.10 60.84
Human Pose dataset Mask RCNN 56.42 37.87 34.21 30.47 87.80 49.36 58.90
Human Pose dataset AlphaPose 56.41 38.88 34.03 32.24 87.63 49.84 58.66
Mask RCNN Mask RCNN 47.79 38.09 33.96 30.24 87.23 47.46 56.78
AlphaPose AlphaPose 47.25 37.94 33.87 30.37 87.12 47.31 56.09

Table 5: Ablation study of our iterative refinement for
pseudo mask generation. The part segmentation results
shown below are generated by the FCN based segmentation
network trained on the generated pseudo masks. Results are
IoU scores.

Iter. Part Objecthead torso arm leg bg mean
1 50.95 32.71 26.33 23.53 86.44 43.99 53.00
2 54.35 35.58 27.95 25.71 87.24 46.17 56.70
3 55.19 35.72 28.02 25.58 87.46 46.39 57.38
4 55.70 35.67 27.88 25.62 87.54 46.48 57.68
5 55.85 35.65 27.97 25.34 87.73 46.50 58.26

Table 6: Ablation study of our correlation network for joint
learning of objects and parts on PASCAL Human Part
dataset. “Part loss only” means the part prediction only uses
the part segmentation branch. Results are IoU scores.

head torso arm leg bg mean
Part loss only 49.47 32.19 25.36 22.78 86.08 43.18
Joint learning 50.95 32.71 26.33 23.53 86.44 43.99

result with a fully supervised method, with about 10 % per-
formance drop. Note that the fully supervised method uses
the VGG network, same as our VGG based model. Some
prediction examples are shown in Fig. 6.

Ablation studies
Iterative refinement. Table 5 shows the IoU scores with dif-
ferent numbers of iterations for the pseudo mask refinement.
We can see that our iterative refinement approach effectively
improves the segmentation. More iterations remarkably im-
prove the final part segmentation performance and it con-
verges after 3 iterations.

Object-part joint learning. We develop a correlation net-
work for a joint part and object learning. Table 6 shows
the results with and without our correlation block, which
demonstrates that our correlation block successfully im-
proves the IoU scores for part segmentation.

Using keypoint detectors for learning. We evaluate us-
ing different types of keypoint detectors to generate object
keypoints for our weakly supervised method including the
well-known Mask RCNN based keypoint detection method
(He et al. 2017) and AlphaPose method (Fang et al. 2017;
Xiu et al. 2018). We report the part segmentation results in
terms of IoU in Table 7. It shows that our method is able

Table 7: Results of using different types of keypoint annota-
tions for learning. Results are IoU scores on PASCAL Hu-
man Part dataset.

Part ObjectAnnotation head torso arm leg bg mean
Pose dataset 55.19 35.72 28.02 25.58 87.46 46.39 57.38
Mask RCNN 44.91 34.72 26.49 24.04 86.75 43.38 53.88
AlphaPose 43.87 34.30 27.20 24.83 86.54 43.35 53.51

to incorporate less accurate keypoint annotations generated
by keypoint detectors for learning, while still able to achieve
very competitive part segmentation results.

Using keypoints in test time. We are able to incorpo-
rate the keypoints in the test time to further improve our
part segmentation results. We use Graph Cut optimization
to jointly consider FCN segmentation results and object

keypoints to improve the segmentation results, same as that
done in training for the pseudo mark refinement. The re-
sults are shown in Table 4. We choose the well known Mask
RCNN (He et al. 2017) and AlphaPose (Fang et al. 2017;
Xiu et al. 2018) as our keypoint detectors. The results show
that using the keypoints in the test time is able to signifi-
cantly improve the part segmentation performance.

Conclusions
We have proposed a novel weakly supervised human pars-
ing method which only uses object keypoint annotation for
learning. Our method significantly reduces human labeling
efforts for pixel-level human parsing tasks. Particularly, we
have developed an iterative learning approach to generate
accurate pseudo masks of parts, and we have also developed
a correlation network for joint learning of parts and objects,
which improves the part segmentation. Our comprehensive
ablation study and performance evaluation have justified the
effectiveness and usefulness of the proposed method for hu-
man parsing.



Figure 6: Some examples of our weakly supervised human parsing on PASCAL Human Part dataset. The first five rows show
good cases and the last two rows show failure cases.
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