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Abstract

Aggregating different image features for image retrieval has recently shown its effectiveness. While highly effective,
though, the question of how to uplift the impact of the best features for a specific query image persists as an open
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computer vision problem. In this paper, we propose a computationally efficient approach to fuse several hand-crafted
and deep features, based on the probabilistic distribution of a given membership score of a constrained cluster in
an unsupervised manner. First, we introduce an incremental nearest neighbor (NN) selection method, whereby we
dynamically select k-NN to the query. We then build several graphs from the obtained NN sets and employ constrained
dominant sets (CDS) on each graph G to assign edge weights which consider the intrinsic manifold structure of the
graph, and detect false matches to the query. Finally, we elaborate the computation of feature positive-impact weight
(PIW) based on the dispersive degree of the characteristics vector. To this end, we exploit the entropy of a cluster
membership-score distribution. In addition, the final NN set bypasses a heuristic voting scheme. Experiments on several
retrieval benchmark datasets show that our method can improve the state-of-the-art result.

Image retrieval, multi-feature fusion, diffusion process.

1. Introduction

s.CV]

& The goal of semantic image search, or content-based
image retrieval (CBIR), is to search for a query image
| from a given image dataset. This is done by computing
image similarities based on low-level image features, such
as color, texture, shape and spatial relationship of images.
@) Variation of images in illumination, rotation, and orien-
L) tation has remained a major challenge for CBIR. Scale-
O invariant feature transform (SIFT) [I] based local feature
)
00

/5v

y such as Bag of words (BOW) [2], [3], [], has served as a
backbone for most image retrieval processes. Nonetheless,
due to the inefficiency of using only a local feature to de-

=1 scribe the content of an image, local-global feature fusion

S has recently been introduced.

= Multi-feature based CBIR attacks the CBIR problem

>< by introducing an approach which utilizes multiple low-
level visual features of an image. Intuitively, if the to-be-
fused feature works well by itself, it is expected that its
aggregation with other features will improve the accuracy
of the retrieval. Nevertheless, it is quite hard to learn in
advance the effectiveness of the to-be-fused features for a
specific query image. Different methods have recently been
proposed to tackle this problem [5], [6], [7]. Zhang et al.
[6] developed a graph-based query specific fusion method,
whereby local and global rank lists are merged with equal
weight by conducting a link analysis on a fused graph.
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Zheng et al. [7] proposed a score level fusion model called
Query Adaptive Late Fusion (QALF) [7], in which, by ap-
proximating a score curve tail with a reference collected on
irrelevant data, they able to estimate the effectiveness of a
feature as negatively related to the area under the normal-
ized curve. Yang et al. [5] used a mixture Markov model
to combine given graphs into one. Unlike [6] where graphs
are equally weighted, [5] proposed a method to compute a
weight which quantifies the usefulness of the given graph
based on a naive Bayesian formulation, which depends only
on the statistics of image similarity scores.

However, existing multi-feature fusion methods have
different drawbacks. For instance, [7], [6], [§], [9] heav-
ily rely on a pre-calculated and offline stored data, which
turns out to be computationally expensive when new im-
ages are constantly added to the dataset. On the other
hand, Ensemble Diffusion (ED)[10] requires O(n?) to per-
form a similarity diffusion. In addition to that, its feature-
weight computation approach is not a query specific.

Inspired by [7], in this work we present a novel and
simple CBIR method based on a recently introduced con-
strained cluster notion. Our approach presents two main
advantages. Firstly, compared to the state of the art meth-
ods, it can robustly quantify the effectiveness of features
for a specific query, without any supervision. Secondly, by
diffusing the pairwise similarity between the nearest neigh-
bors, our model can easily avoid the inclusion of false pos-
itive matches in the final shortlist. Towards this end, we
first dynamically collect the nearest neighbors to the query,
therefore, for each feature, we will have a different number
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Figure 1: Overview of the proposed image retrieval framework. Based on the given features, Fy, Fa,...Fy,, we first incrementally collect the

NN's to the query @, denoted as NN1, NNa,...NNy. Next, for each NN we build the corresponding graph G/, G5, ..

.G/, and then, we apply

CDS on each graph to learn the PIW of each feature, PIW;, PIWs5,...PIW,, in the subsequent plot, the blue and red curves depict the
ranked score of NN’s before and after the application of CDS, respectively. Following, the final candidates, which come from each feature,
pass through a voting scheme. Finally, using the obtained votes and PIW’s we compute the final similarity, Fs;m (Q, D), between the query

and the dataset images by equ. m

of NNs. Subsequently, we set up the problem as finding
a cluster from the obtained NNs, which is constrained to
contain the given query image. To this end, we employ a
graph-theoretic method called constrained dominant sets
[I1]. Here is our assumption: if the nearest neighbor to
the query image is a false match, after the application
of CDS its membership score to the resulting constrained
cluster should be less than the fixed threshold (, which
leads us to detect and exclude the outliers. Furthermore,
we introduce the application of entropy to quantify the
effectiveness of the given features based on the obtained
membership score. In contrast to [7], our method does
not need any reference or external information to learn a
query specific feature-weight. Fig. [I] shows the pipline of
the proposed method.

In particular, we make the following contributions. 1)
Compared to the previous work [6], [7], we propose a sim-
ple but efficient entropy-based feature effectiveness weight-
ing system; in addition to that, we demonstrate an ef-
fective way of outlier or false nearest neighbor detection
method. 2) Most importantly, our proposed model is a
generic approach, which can be adapted to distinct com-
puter vision problems, such as object detection and person
re-identification. 3) We show that our unsupervised graph
fusion model easily alleviates the asymmetry neighborhood
problem.

This paper is structured as follows. In section 2 we
briefly survey literature relevant to our problem, followed
by technical details of the proposed approach in Sec. 3.

And, in Sec. 4 we show the performance of our framework
on different benchmark datasets.

2. Related Work

CBIR has become a well-established research topic in
the computer vision community. The introduction of SIF'T
feature plays a vital role in the application of BOW model
on the image retrieval problem. Particularly, its robust-
ness in dealing with the variation of images in scale, trans-
lation, and rotation provide a significant improvement in
the accuracy of similar image search. Sivic et al. [2]
first proposed BOW-based image retrieval method by us-
ing SIF'T, in that, local features of an image are quantized
to visual words. Since then, CBIR has made a remark-
able progress by incorporating k-reciprocal neighbor [12],
query expansion [13], [12], [14], large visual codebook [I5],
[16], diffusion process [5] [I7] and spacial verification [15].
Furthermore, several methods, which consider a compact
representation of an image to decrease the memory require-
ment and boost the search efficiency have been proposed.
Jegou et al. [I8] developed a Vector of Locally Aggre-
gated Descriptor(VLAD), whereby the residuals belonging
to each of the codewords are accumulated.

While SIFT-based local features have considerably im-
proved the result of image search, it does not leverage the
discriminative information encoded in the global feature
of an image, for instance, the color feature yields a bet-
ter representation for smooth images. This motivates the



introduction of multiple feature fusion for image retrieval.
In [6], a graph-based query specific fusion model has been
proposed, in which multiple graphs are combined and re-
ranked by conducting a link analysis on a fused graph.
Following, [5] developed a re-ranking algorithm by fusing
multi-feature information, whereby they apply a locally
constrained diffusion process (LCDP) on the localized NNs
to obtain a consistent similarity score.

Although the aggregation of handcrafted local and global
features has shown promising results, the advent of a sem-
inal work by A.Krizhevsky et al. [I9] in 2012 changed the
focus of the computer vision community. Since then, con-
volutional neural network (CNN) feature has been used
as a main holistic cue in different computer vision prob-
lems, including CBIR. Despite its significant improvement
on the result of image retrieval, CNN feature still can not
endow the demanded accuracy on different benchmark re-
trieval datasets, especially without the use of fine-tuning.
Thus, aggregating graphs which are built from a hand-
engineered and CNN-based image features has shown im-
provement in the accuracy of the retrieval [2], [18], [20],
211, [22], [23].

In addition to that, Yang et al. [5] applied a diffusion
process to understand the intrinsic manifold structure of
the fused graph. Despite a significant improvement on the
result, employing the diffusion process on the final (fused)
graph restricts the use of the information which is encoded
in the pairwise similarity of the individual graph. Instead,
our proposed framework applies CDS on each graph which
is built from the corresponding feature. Thus, we are able
to propagate the pairwise similarity score throughout the
graph. Thereby, we exploit the underutilized pairwise sim-
ilarity information of each feature and alleviate the nega-
tive impact of the inherent asymmetry of a neighborhood.

3. Proposed Method

3.1. Incremental NN Selection

In this subsection, we show an incremental nearest
neighbor collection method to the given query image. We
start with an intuitive clustering concept that similar nodes
with common features should have an approximate score
distribution, while outliers, or nodes which do not be-
long to a similar semantic class, have different score val-
ues. Accordingly, we propose a technique to search for
the transition point where our algorithm starts including
the outlier nodes. To this end, we examine how distinc-
tive two subsequent nodes are in a ranked list of neigh-
bors. Thus, we define a criterion called neighbors proxim-
ity coefficient(N PC'), which is defined as the ratio of two
consecutive NNs in the given ranked list. Therefore, im-
ages are added only if the specified criterion is met, which
is designed in such a way that only images that are very
likely to be similar to the query image are added. Thereby,
we are able to decrease the number of false matches to the
query in the k-nearest neighbors set.

Given an initial ranked list R. And then, we define
top-k nearest neighbors (kNN) to query @ as

g Sim(q,nit1)
ENN(q, k) = Addn; if () >NPC 1)
0 otherwize

where |kNN(q, k)| = k, and |.| represents the cardinal-
ity of a set.

kNN (q, k) = {nq,na,... where kNN (q,k) C R

(2)

nk},

8.2. Graph Construction

Different features, F' = Fy, Fs...F,,, are extracted from
images in the dataset D and the query image @), where each
feature encodes discriminative information of the given im-
age in different aspects. We then compute the distance
between the given images based on a distance metric func-
tion d'(1;,1I;), where I; and I; denote the given feature
vector extracted from image ¢ and j respectively. Fol-
lowing, we compute symmetric affinity matrices A}, Aj, .

Al from each distance matrix D; using a similarity
function S(D;). We then apply minimax normalization on
V! —min(Vy)
maz(Vy)—min(Vy)?
V4 is a column vector taken from matrix A}, which com-
prises the pairwise similarity score between a given im-
age V! and images in the dataset V7, which is denoted
as V. Next, we build undirected edge-weighted graphs
with no self-loops G1,Gs...G,, from the affinity matrices
Ay, As, .. A, tespectively. Each graph G,, is defined as
Gn = (V,, Ep,wy), where V,, = 1,...,n is vertex set, E,, C
Vi x V,, is the edge set, and w, : E — IR} is the (pos-
itive) weight function. Vertices in G correspond to the
given images, edges represent neighborhood relationships,
and edge-weights reflect similarity between pairs of linked

vertices.

each similarity matrix as: A; = where

3.8. PIW Using Entropy of CDS

Since the nearest neighbor selection method heavily re-
lies on the initial pairwise similarity, it is possible that the
NN set easily includes false matches to the given query.
This usually happens due to the lack of technics which
consider the underlying structure of the data manifold,
especially the inherent asymmetry of a neighborhood is
a major shortcoming of such systems. For instance, al-
though Sim(n;,q) = Sim(q,n;), the nearest neighbor re-
lationship between query @ and image n; may not be
symmetric, which implies that m; € kNN (g, k) but m; ¢
kNN (n;, k). As demonstrated in the past retrieval works,
the k-reciprocal neighbors [12] and similarity diffusion pro-
cess [24] have been vastly taken as the optimal options to
tackle this issue. However, the existing methods are not
computationally efficient. In this work, we remedy the ex-
isting limitations using an unsupervised constrained clus-
tering algorithm whereby we exploit the pairwise similarity



to find a cohesive cluster which incorporates the specified
query.

3.8.1. Constrained Clustering for Coherent Neighbor Se-
lection

Towards collecting true matches to the query image, we
employ an unsupervised clustering algorithm on the top of
the previous steps. Our hypothesis to tackle the asymme-
try problem between the given query and its nearest neigh-
bors is that images which are semantically similar to each
other tend to be clustered in some feature space. As can
be seen in the synthetic example (See Fig. |2), retrieved
image i4 and ig are outliers or false positives to the query
image Q. We can confirm this by observing the common
neighbors of ) with i4 and ig. But due to the lack of con-
textual information, the system considers them as a true
match (neighbor) to the query. In our proposed model, to
attack this issue, we represent the set of kNN as a graph
G’ accordingly to subsection m Then, we treat outliers
finding problem as an unsupervised clustering problem.
We first convert graph G’ into a symmetric affinity matrix
A, where the diagonal corresponding to each node is set
to 0, and the ij — th entry denotes the edge-weight w;;
of the graph so that A;; = Aj;. Accordingly, given graph
G’ and query @, we cast detecting outliers from a given
NN set as finding the most compact and coherent cluster
from graph G’, which is constrained to contain the query
image . To this end, we adopt constrained dominant sets
[110, [25], which is a generalization of a well known graph-
theoretic notion of a cluster. We are given a symmetric
affinity matrix A and parameter p > 0, and then we de-
fine the following parametrized quadratic program

maximize  f5(X) = X'(A -~ ulo) X
fH(X) = X' AX (3)
subject to X € A

where a prime denotes transposition and

: ZXi:L and X; >0foralli=1...n

i=1

A:{XGR"

A is the standard simplex of R™. f‘Q represents n X n
diagonal matrix whose diagonal elements are set to zero in
correspondence to the query @ and to 1 otherwise. And
A is defined as,

A A [LFQ —u .
—p
where the dots denote the ij th entry of matrix A. Note
that matrix A is scaled properly to avoid negative values.
Let Q@ C V, with Q # 0 and let g > Anaa(Av\g),
where A\jqz(Av ) is the largest eigenvalue of the principal
submatrix of A indexed by the element of V\gq. If X is a

}

local maximizer of ff(X) in A, then 6(X)NQ # 0, where,
0(X)=1i€eV:X,;>0. We refer the reader to [11] for the
proof.

The above result provides us with a simple technique to
determine a constrained dominant set which contains the
query vertex @. Indeed, if ) is the vertex corresponding
the query image, by setting

1> MAv\q) (4)
we are guaranted that all local solutions of eq will have
a support that necessarily contains the query element. The
established correspondence between dominant set (coher-
ent cluster) and local extrema of a quadratic form over
the standard simplex allow us to find a dominant set using
straightforward continuous optimization techniques known
as replicator dynamics, a class of dynamical systems aris-
ing in evolutionary game theory [21]. The obtained solu-
tion provides a principled measure of a cluster cohesive-
ness as well as a measure of vertex participation. Hence,
we show that by fixing an appropriate threshold ¢ on the
membership score of vertices, to extract the coherent clus-
ter, we could easily be able to detect the outlier nodes from
the k-nearest neighbors set. For each X, (? is dynamically
computed as

¢ = A(1 — maz(X") +min(X"))/L (5)

where maz(X) and min(X) denote the maximum and
minimum membership score of X?, respectively. A is a
scaling parameter and L stands for length of X*. Moreover,
we show an effective technique to quantify the usefulness
of the given features based on the dispersive degree of the
obtained characteristics vector X.

8.8.2. PIW Using Entropy of Constrained Cluster.

Entropy has been successfully utilized in a variety of
computer vision applications, including object detection
[26], image retrieval [27] and visual tracking [28]. In this
paper, we exploit the entropy of a membership-score of
nodes in the constrained dominant set to quantify the use-
fulness of the given features. To this end, we borrowed
the concept of entropy in the sense of information the-
ory (Shannon entropy). We claim that the discriminative
power of a given feature is inversely proportional to the
entropy of the score distribution, where the score distri-
bution is a stochastic vector. Let us say we are given
a random variable C' with possible values ¢y, cg, ...c,, ac-
cording to statistical point of view the information of the
event (C = ¢;) is inversely proportional to its likelihood,
which is denoted by I(C;) and defined as

1) = log (5) = ~log(vler). (6)

Thus, as stated by [29], the entropy of C is the expected
value of I, which is given as

N
H@b—ZHmmww. (7)



For each characteristic vector X%, X**t!.. X* where X* =
{X},, X};+1... X%}, we compute the entropy H (exp(X")). Each
X" corresponds to the membership score of nodes in the
CDS, which is obtained from the given feature F*. Assume
that the top NNs obtained from feature x are irrelevant to
the query Q, thus the resulting CDS will only contain the
constraint element Q. Based on our previous claim, since
the entropy of a singleton set is 0, we can infer that the
feature is highly discriminative. Although this conclusion
is right, assigning a large weight to feature with irrelevant
NN will have a negative impact on the final similarity. To
avoid such unintended impact, we consider the extreme
case where the entropy is 0. Following, we introduce a
new term C,, which is obtained from the cardinality of a

. ; K
given cluster, K., as Ca' = ST As a result, we for-

KL
mulate the PIW computation from the additive inverse of
the entropy ¢ =1 — H(X"), and C?, as

v
i

where ' = &' + C¢,
feature.

PIW? =

Thus,»  PIW' =1 (8)

i=1

and ¢ represents the corresponding

3.4. Naive Voting Scheme and Similarity Fusion

In this section, we introduce a simple yet effective vot-
ing scheme, which is based on the member nodes of k-
nearest neighbor sets and the constrained dominant sets,
let NNi, NN>...NN, and CDS;,CDS,...CDS, represent the
NN and CDS sets respectively, which are obtained from

1,Gh...G,. Let us say £ = 2(z—1) — 1, and then we build
¢ different combinations of NN sets, 1, p2...0¢. Each ¢
represents an intersection between z — 1 unique combina-
tions of NN sets. We then form a super-set @ which con-
tains the union of ¢ sets, with including repeated nodes.
Assume that NNs = {NNi, NN2, NN3},& = 3, thus each
@ set contains the intersection of two NN sets as ¢1 =
{NN1 mNNQ},(,DQ = {NNl ﬂNNg} and p3 = {NNQ ﬂNN:;}.
Hence the resulting w is defined as w = (p1 © w2 © p3),
where (.8.) is an operator which returns the union of given
sets, including repeated nodes. We have also collected the
union of C'DS sets as w = (CDS1©CDS,6CDS3). Follow-
ing, we compute k as (k = @1 N2 N ...p¢). Thereby we
find super-sets w,w and k. Next, we design three differ-
ent counters, which are formulated to increment when the
NN node appears in the corresponding super-sets. Based
on the value obtained from each counter, we finally com-
pute the vote scores for each NN node to the query as
v = v1/n,v2 = v2/0 and vs = v3/i, where 1,0 and ¢ are
parameters which are fixed empirically. Note that the out-
lier detecting capability of our framework is encoded in the
voting process. Thus, if a NN node n; is contained in more
than one cluster, its probability to be given a large weight
is higher. This is due to the number of votes it gets from
each cluster.

8.4.1. Final Similarity.

After obtaining the aforementioned terms, we compute
the final similarity as follows: say we are given n features,
Q@ is the query image and D denotes image dataset, then
the initial similarity of D to @, with respect to feature
F;,v = 1...n, ,is given as S() Let PIW() 1= 1..n, en-
code the weight of feature F for query Q, and then the
final similarity score, Fyn,(@,p), between @ and D is given
as

i (@)
N, = [Ts5)" o)

s

Feim(q,p) = ANs + (1 — (10)

Z v
where ¥ = 3, is the total number of voter sets. And
A € [0,1] defines the penalty factor which penalizes the
similarity fusion, when A = 1 only F} is considered, other-
wise, if A =0, only v is considered.

4. Experiments

In this section, we present the details about the fea-
tures, datasets and evaluation methodology we used along
with rigorous experimental analysis.

4.1. Datasets and Metrics

To provide a thorough evaluation and comparison, we
evaluate our approach on INRIA Holiday, Ukbench, Ox-
ford5k and Paris6k datasets.

Ukbench Dataset [30]. Contains 10,200 images which
are categorized into 2,550 groups, each group consists of
three similar images to the query which undergo severe
illumination and pose variations. Every image in this
dataset is used as a query image in turn while the remain-
ing images are considered as dataset images, in “leave-
one-out” fashion. As customary, we used the N-S score to
evaluate the performance of our method, which is based
on the average recall of the top 4 ranked images.

INRIA Holiday Dataset [31]. Comprises 1491 per-
sonal holiday pictures including 500 query images, where
most of the queries have one or two relevant images. Mean
average precision (MAP) is used as a performance evalua-
tion metric.

Oxford5k Dataset [15]. It is one of the most popular
retrieval datasets, which contains 5062 images, collected
from flicker-images by searching for landmark buildings
in the Oxford campus. 55 queries corresponding to 11
buildings are used.

Paris6k Dataset [32]. Consists of 6392 images of
Paris landmark buildings with 55 query images that are
manually annotated.
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Figure 2: (a) Initial score distribution of the top k nearest neighbors to the query Q, green and red points denote the false-negative and
false-posetive NNs. (b) Graph G’, built from the initial pairwise similarity of the k-nearest neighbor set. And the blue box contains the CDS
nodes which are obtained by running CDS on graph G’. (c) The resulting constrained dominant set membership-score distribution.

4.2. Image Features

Object Level Deep Feature Pooling (OLDFP)[33].
OLDFP is a compact image representation, whereby im-
ages are represented as a vector of pooled CNN features
describing the underlying objects. Principal Component
Analysis (PCA) has been employed to reduce the dimen-
sionality of the compact representation. We consider the
top 512-dimensional vector in the case of the Holiday dataset
while considering the top 1024-dimensional vector to de-
scribe images in the Ukbench dataset. As suggested in
[33], we have applied power normalization (with exponent
0.5), and 12 normalization on the PCA projected image
descriptor.

BOW. Following [34], [7], we adopt Hamming Em-
bedding [31]. SIFT descriptor and Hessian-Affine detector
are used in feature extraction, and we used 128-bit vector
binary signatures of SIFT. The Hamming threshold and
weighting parameters are set to 30 and 16 respectively,
and three visual words are provided for each key-point.
Flickr60k data [31] is used to train a codebook of size 20k.
We also adopt root sift as in [35], average IDF as defined
in [36] and the burstiness weighting [37].

NetVLAD [38]. NetVLAD is an end-to-end trainable
CNN architecture that incorporates the generalized VLAD
layer.

HSYV Color Histogram. Like [5], [7], for each image,
we extract 1000-dimensional HSV color histograms where
the number of bins for H, S, V are 20, 10, 5 respectively.

4.3. Ezxperiment on Holiday and Ukbench Datasets

As it can be seen in Fig[3|a), the noticeable similarity
between the query image and the irrelevant images, in the
Holiday dataset, makes the retrieval process challenging.
For instance, (See Figa)), at a glance all images seem
similar to the query image while the relevant are only the
first two ranked images. Moreover, we can observe that

the proposed scheme is invariant to image illumination
and rotation change. Table [2| shows that our method sig-
nificantly improves the MAP of the baseline method [33]
on Holiday dataset by 7.3 % while improving the state-of-
the-art method by 1.1 %. Likewise, it can be seen that our
method considerably improves the N-S score of the base-
line method [33] on the Ukbench dataset by 0.15 while
improving the state-of-the-art method by 0.03.
Furthermore, to show how effective the proposed feature-

weighting system is, we have experimented by fusing the
given features with and without PTW. Naive fusion (NF)
denotes our approach with a constant PIW for all fea-
tures used, thus the final similarity Fs defined as Fs; =

%(H’;(SQQ)). In Fig@ we have demonstrated the re-
markable impact of the proposed PIW. As can be observed,
our scheme effectively uplifts the impact of a discrimina-
tive feature while downgrading the inferior one. Note that
in the PIW computation we have normalized the minimum
entropy (See eq, thus its values range between 0 and 1.
Accordingly, one implies that the feature is highly discrim-
inative, while zero shows that the feature is indiscriminate.

In order to demonstrate that our scheme is robust in
handling outliers, we have conducted an experiment by
fixing the number of NNs (disabling the incrimental NNs
selection) to different numbers. As is evident from Fig@
the performance of our method is consistent regardless of
the number of kN N. As elaborated in subsection[3.3.1] the
robustness of our method to the number of k comes from
the proposed outlier detection method. Since the proposed
outliers detector is formulated in a way that allows us to
handle the outliers, we are easily able to alleviate the false
matches which are incorporated in the nearest neighbors
set. This results in finding a nearly constant number of
nearest neighbors regardless of the choice of k.
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Figure 4: Feature positive-impact weights (PIW’s) learned by our algorithm. Top-left, top-right, bottom-left, and bottom-right: on Holiday,
Ukbench, Oxford5k and Paris6k datasets, respectively.



Table 1: The performance of baseline features on Holidays, Ukbench, Oxford5k and Paris6k datasets.

Datasets | Metrics | NetVLAD [38] | BOW | OLDFP | HSV | R

resl24] | Gres[24] | Rugy 23] | Gugyl24] |

Holidays MAP 84 80 87 65 - -

Ukbench | N-S score 3.75 3.58 3.79 3.19 - - -

Oxford5k MAP 69 - - - 95.8 87.7 93 -
Paris6k MAP - - - - 96.8 94.1 96.4 95.6
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Figure 5: The cardinality of constrained dominant sets for the given features.

4.4. Experiment on Ozford5k and Paris6k Datasets

In the same fashion as the previous analysis, we have
conducted extensive experiments on the widely used Ox-
ford5k and Paris6k datasets. Unlike the Holiday and Uk-
bench datasets, we adapt affinity matrices which are ob-
tained through a diffusion process on a regional Resnet
and VGG representation [24], and they are denoted as
R,es and R,g4 respectively, as well as affinity matrices
Gres and Ggg which are also obtained through a diffu-
sion process on a global Resnet and VGG representation,
respectively. Table [2] shows that the proposed method
slightly improves the state-of-the-art result. Even if the
performance gain is not significant, our scheme marginally
achieves better MAP over the state-of-the-art methods.
Furthermore, as shown in Fig[4] the proposed model learns
the PIW of the given features effectively. Therefore, a
smaller average weight is assigned to G4 and NetVLAD
feature comparing to R,cs and Rygq.

4.5. Robustness of Proposed PIW

As can be seen in Fig[4], for all datasets, our algorithm
has efficiently learned the appropriate weights to the corre-
sponding features. Fig. [4]shows how our algorithm assigns
PIW in a query adaptive manner. In Holiday and Ukbench
datasets, the average weight given to HSV feature is much
smaller than all the other features used. Conversely, a
large PIW is assigned to OLDFP and NetVLAD features.
Nevertheless, it is evident that in some cases a large value
of PIW is assigned to HSV and BOW features as well,
which is appreciated considering its effectiveness on dis-
criminating good and bad features in a query adaptive
manner.

4.6. Impact of Parameters

To evaluate the robustness of our method we have per-
formed different experiments by changing one parameter
at a time. Thereby, we have observed that setting A to a
large value results in assigning insignificant PIW to indis-
criminate features. The reason is that after the applica-
tion of CDS, the cluster membership-score of the dissimilar



Table 2: Comparison among various retrieval methods with our method on benchmark datasets, where QALF is implemented with

the same baseline similarities used in our experiments.

| Datasets | Metrics | Baselines [ QALF[7] | [5] | NF [ ED[39] | [40] | [41] | [42] | [43] [ Ouus |

Ukbench | N-S score | 3.79[33] 3.84 3.86 | 3.86 3.93 - - - 3.76 | 3.94
Holiday MAP 87[33] 88 88 91 93 90 83 89 7 94
Oxford5k MAP 95.8[24] - 76.2 | 94.4 - 89.1 | 79.7 | 81.4 | 67.6 | 96.2
Paris6k MAP 96.8[24] - 83.3 - - 91.2 | 83.8 | 88.9 - 97.4
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Figure 6: Comparison with state-of-the-art fusion methods with respect to varying k. Naive Fusion (NF), Reranking by Multi-feature Fusion

(RMFD) [5], and QALF [1].

images to the query will become smaller. Thus, since the
threshold fixed to choose the true neighbors is tighter, the
resulting constrained dominant set will be forced to yield
a singleton cluster. As a result, we obtained a very small
PIW due to the cardinality of the constrained-cluster. In
addition to that, we observe that the MAP start to decline
when A is set to a very large value (See. Fig[7] right).

4.7. Impact of Cluster Cardinality

On the Ukbench dataset, as can be observed in Fig.
the average cardinality of the constrained clusters which
is obtained from HSV and BOW feature is 3 and 1.7, re-
spectively. In contrast, for NetVLAD and OLDFP, the
average cluster cardinality is 3.4 and 3.5, respectively .
Similarly, in the case of the Holiday dataset, the cluster
cardinality obtained from HSV feature is one while for
BOW, NetVLAD and OLDFP is 4.5, 5 and 5.6, respec-
tively. Thus, from this, we can draw our conclusion that
the cardinality of a constrained dominant set, in a certain
condition, has a direct relationship with the effectiveness
of the given feature.

4.8. Computational Time

In Fig. [7| we depict the query time taken to search for
each query image, red and blue lines represent our method
and QALF, respectively. The vertical axis denotes the
CPU time taken in seconds, and the horizontal axis shows
the query images. As can be seen from the plot, the pro-
posed framework is faster than the fastest state-of-the-art
feature-fusion method [7]. As for time complexity, in our
experiment we used a replicator dynamics to solve problem

, hence, for a graph with N nodes, the time complexity
per step is O(IN?), and the algorithm usually takes a few
steps to converge, while that of [10] is O(NN?3). However, we
note that by using the Infection-immunization algorithm
[44] we can achieve even faster convergence as its per-step
complexity would be linear in the number of nodes.

5. Conclusion

In this paper, we addressed a multi-feature fusion prob-
lem in CBIR. We developed a novel and computationally
efficient CBIR method based on a constrained-clustering
concept. In particular, we showed an efficient way of esti-
mating a positive impact weight of features in a query-
specific manner. Thus it can be readily used for fea-
ture combination. Furthermore, the proposed scheme is
fully unsupervised, and can easily be able to detect false-
positive NNs to the query, through the diffused similarity
of the NNs. To demonstrate the validity of our method, we
performed extensive experiments on benchmark datasets.
Besides the improvements achieved on the state-of-the-art
results, our method shows its effectiveness in quantifying
the discriminative power of given features. Moreover, its
effectiveness on feature-weighting can also be exploited
in other computer vision problems, such as person re-
identification, object detection, and image segmentation.
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