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Abstract

Deep learning-based methods have pushed the limits of the state-of-the-art in face analysis. However, despite their success, these
models have raised concerns regarding their bias towards certain demographics. This bias is inflicted both by limited diversity across
demographics in the training set, as well as the design of the algorithms. In this work, we investigate the demographic bias of deep
learning models in face recognition, age estimation, gender recognition and kinship verification. To this end, we introduce the most
comprehensive, large-scale dataset of facial images and videos to date. It consists of 40K still images and 44K sequences (14.5M
video frames in total) captured in unconstrained, real-world conditions from 1, 045 subjects. The data are manually annotated in
terms of identity, exact age, gender and kinship. The performance of state-of-the-art models is scrutinized and demographic bias
is exposed by conducting a series of experiments. Lastly, a method to debias network embeddings is introduced and tested on the
proposed benchmarks.
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1. Introduction

Computational models of human face relying on deep neu-
ral networks have significantly advanced the state-of-the-art in
face analysis [1], [2] and photorealistic face generation [3, 4],
among many other computer vision tasks [5, 6]. These ad-
vances would not have been made possible without the con-
tinuous efforts of the research community in collecting and an-
notating diverse datasets of human faces. At the same time,
models of higher expressivity and learning capacity have been
developed in order to handle transformations that are present
in these datasets. In this spirit, early facial datasets that were
captured in controlled environments (e.g., [7]) are now being
replaced by extensive datasets of faces captured ”in-the-wild”
(e.g., [8, 9]), while simple linear models (e.g., [10]) are being
replaced by deep learning algorithms (see [1] for a survey of
such methods).

Despite these efforts, capturing the complex variability in fa-
cial data is an almost intractable task, given a limited amount
of resources. Hence, any finite set of facial data describes only
certain aspects of facial diversity, resulting in dataset bias with
regards to an underrepresented instance of the real world [11].
On the other hand, designing and training a model that is in-
variant to all possible face variability factors is also rather in-
tractable. Consequently, any face analysis model suffers from
algorithmic bias, i.e., it cannot generalize on sources of vari-
ation that are not explicitly modeled and are underrepresented
in the training set. As of late, algorithmic discrimination has
become an issue, with commercial systems reportedly demon-
strating bias with regards to gender and skin color [12]. In turn,
and as AI became indispensable in everyday’s decision making,
research on the risks and mitigation of bias in AI has attracted

both commercial and academic interest.
Dataset bias comes in many forms and can be categorized

based on the aspect of the visual world that is absent from the
data distribution. A usual source of bias in early datasets is
the lack of diversity in capturing conditions, e.g., environment,
recording device and head pose. For example, PIE [7] con-
tains faces in controlled poses that were captured in lab envi-
ronment. Another main source of bias lies in the demographics
of the recorded people, in other words, the different semantic
categories (e.g., gender, age group and skin color). For in-
stance, one third of the images in LFW [8] contain faces of
people who are over 60 years old, while CELEB-A[13] con-
tains mainly faces with lighter skin. Furthermore, the collection
of large-scale datasets (e.g., [14, 15]) usually involves down-
loading images from the web using semi-automatic pipelines,
a procedure that can also introduce unwanted bias. In partic-
ular, scraping websites such as Flickr and Google for images
can lead to datasets that inherit the bias of the source (e.g., the
search engine) as well as the cultural bias [16, 17, 18] of the
data collector (e.g., the input query) [19]. The bias can also be
specific to the task for which the dataset is collected. For in-
stance, cropping face pairs from the same image can affect the
task of kinship verification significantly by adding factors like
the environment, chrominance and image quality [20, 21].

Overall, dataset bias is a critical subject in computer vision
that has been studied thoroughly [11, 22] due to its impact on
the performance of trained models. However, algorithmic bias
does not originate solely from the demographic disparities in
the training set. Immaculate modeling of the complex variabil-
ity and transformations of the human face is still intractable.
Therefore, the assumptions made by the model, i.e., its induc-
tive bias, will not always hold. For example, methods that rely
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on least squares error minimization fail to account for sparse
gross errors in the training data. Hence, such models are not
able to handle transformations like eye-glasses and occlusions,
that occur naturally on facial images in-the-wild.

In this work, we investigate demographic bias in deep face
analysis. To this end, we introduce KANFace dataset (Kinship,
Age, geNder): the largest manually annotated image and video
dataset. The diversity of the faces in the dataset is quantitatively
evaluated and demonstrated in baseline experiments. We focus
on age and gender bias and perform experiments on face recog-
nition, age estimation, gender recognition and kinship verifi-
cation. By leveraging the abundance of annotations, the per-
formance of the baseline models is diagnosed and the biased
behavior of the state-of-the-art baselines is exposed. Lastly, in
order to alleviate the demographic disparities in model perfor-
mance, we introduce a method to debias the pretrained network
embeddings. To summarize:

• We present the KANFace dataset- the most comprehen-
sive, manually collected dataset of facial images and
videos consisting of 41, 036 images and 14.5M video
frames, captured in unconstrained real-world conditions
from 1, 045 subjects. Specifically, for each subject, our
dataset includes 39 images and 13, 870 frames on aver-
age, captured across different ages (from 0 to 100 years).
The dataset is annotated with regards to identity, age, gen-
der and kinship. The age annotations make the proposed
dataset the first aging video dataset captured in-the-wild,
as it contains video sequences of each subject at multiple
time instances. Moreover, more than half of the subjects
in the dataset are related to each other. With 566,198 kin
pairs, this is not only one of the largest datasets with kin-
ship annotations but also the first large-scale dataset to al-
low for video-based kinship verification and recognition
in-the-wild. A comparison to other publicly available face
datasets is given in Table 1. The characteristics of the
dataset and the collection process are described in detail
in Section 2.

• We quantitatively assess the diversity of faces in the pro-
posed dataset in terms of age, gender, craniofacial ratios,
facial region contrast and skin-color tone by adopting the
scheme proposed in [23]. In addition, we quantify the im-
pact of facial diversity with baseline experiments in Sec-
tion 3.2. The results highlight the challenges posed by our
dataset compared to other standard benchmarks.

• The bias of deep learning systems across sensitive demo-
graphics, namely across ages and gender as well as per-
ceived skin-color tone is investigated in Section 4. In
particular, using our benchmark, we evaluate the bias of
different deep architectures trained on different datasets.
Lightweight models are also considered due to their wide
adoption in the industry. Moreover, we study the general-
ization ability of deep age and gender recognition methods
by conducting comprehensive cross-dataset experiments.
This is the first study of its kind, the results of which shed

light on the impact of training data and choice of architec-
ture on the performance of a model.

• Lastly, we investigate the mitigation of unwanted bias in
pretrained network embeddings in Section 5. In particular,
we study whether certain demographic attributes can be
disentangled from the representation without constraining
its discriminative ability. To this end, we propose a frame-
work that decomposes each feature into the sum of a task-
specific term and the unwanted bias terms. The method
is used to debias the embeddings obtained from the base-
line models for face recognition, age estimation and gen-
der recognition. The experimental results uncover the re-
dundancy of deep embeddings, reveal the correlation be-
tween identity, age and gender, and indicate in which cases
theses attributes can be disentangled.

2. The proposed dataset

To ensure the absence of noisy labels, KANFace dataset was
manually collected and annotated. This is a particularly labo-
rious process for such a large-scale dataset. In this section, we
introduce the collection and annotation strategy.

Creating the list of subjects: Since our main goal is the
collection of a rich video dataset, we focus on public figures,
e.g., actors, musicians and politicians, who have an abundance
of available videos online from various periods of their lives.
Our search is constrained by gender balance and the existence
of family connection between the subjects. By capitalizing on
the available metadata on the Wikipedia and IMDb websites, we
deliver a list of 1, 045 (586 male and 459 female) identities and
544 kin related subject pairs. The age distribution of the dataset
is presented on Figure 1.

Figure 1: The age distribution of the dataset

Manual collection of the videos: We only focus on
YouTube videos, the ”capture date” of which was either an-
notated by the video uploader or could be acquired from the
IMDb or Wikipedia page of the celebrity. The age of the sub-
ject is calculated by subtracting their date of birth from the
capture date and is therefore accurate to the year. The final
video dataset consists of 13 videos per subject on average, all
of which were captured at different ages. The context of these
videos varies greatly and includes interviews, movies, sport
events and speeches, to name but a few.

2



Dataset #Images # Sequences # Frames # Identities age-range #kin pairs Labels
FG-NET [24],[25] 1,002 - - 82 0-69 - ID, EA
MORPH 2 [26] 55,134 - - 13,618 16-77 - ID, EA, G
LFW [8] 13,233 - - 5,749 - - ID
CornellKin [27] 300 - - - - 150 K
YTF [28] - 3,425 62,095 1,595 - - ID
UBKinface [29], [30] 600 - - - - 400 K
UvA-NEMO [31] - 1240 N/A 400 8-76 101 ID, EA, K
OUI-Adience [32] 26,580 - - 2,284 0-60+ - ID, AG, G
CACD [33] 163,446 - - 2,000 N/A - ID, EA
CASIA-Webface [34] 494,414 - - 10,575 - - ID
KinFaceW-I [35] 1,066 - - - - 533 K
KinFaceW-II [35] 2,000 - - - - 1,000 K
VGGFace [36] 2.6M - - 2,622 - - ID
UMDFaces [37],[38] 367,888 22,075 3.7M 8,277/3,107 - - ID, G
IMDB-WIKI [15] 523,051 - - 20,284 0-100 - ID, EA, G
MS-Celeb-1M [39] 10M - - 100,000 - - ID
FIW [40], [41] 30,725 - - 10,676 - 656,954 ID, G, K
MegaFace [9] 4.7M - - 690,572 - - ID
IJB-B [42] 21,798 7,011 55,026 1,845 - - ID
VGGFace2 [14] 3.31M - - 9,131 - - ID,AG, G
KANFace 41,036 44,224 14.5M 1,045 0-100 566,198 ID, EA, G, K

Table 1: Comparison of image and video datasets for facial modeling. ID:identity, EA: exact age, AG:age group, G:gender, K:kinship

Final sequence extraction: Only the frames that contain
the subject of interest (SOI) were manually located, annotated
and kept.

Face detection and subject recognition: The proposed
dataset contains bounding box annotations for each video
frame, which were obtained as follows : 1) A face detector [43]
was employed in order to detect all the faces in each frame. 2)
A maximum of 20 frames were then uniformly sampled from
each sequence. These frames were selected to act as anchor
frames. 3) A gallery dataset, consisting of 10 images per sub-
ject, is collected for each subject from Google Images. 4) The
SOI in each anchor frame was recognized by comparing the
deep embeddings [44] of the faces in the frame with the gallery
dataset. 5) The selected face in each anchor frame was manu-
ally verified or corrected.

Bounding box selection: The manually verified face boxes
of the anchor frames were used to select the face bounding
boxes of the intermediate frames. In particular, we base our
strategy on the assumption that the position of the face bound-
ing box does not change significantly between consecutive
frames. To quantify the movement of the face box, we utilized
the intersection over union (IOU) metric. Concretely, starting
with the face box of an anchor frame, the IOU with every de-
tected face on the next and previous frames was calculated. The
bounding boxes with the highest score were selected and the
process continued bidirectionally.

Manual refinement and selection of images: In the final
stage of the pipeline the selected face bounding boxes in all
frames of the dataset are manually verified. At the same time,
a small number of images per sequence were selected to form

the static version of the dataset. These images were manually
selected, in order to avoid frames with motion blurriness. The
selected images display large variation with regards to pose,
expression, illumination, occlusions and image quality. Sample
images and sequences from our dataset are depicted in Figures
2 and 3.

Figure 2: Images from the proposed dataset depicting the same person at 35
different ages.

Considerations regarding the data collection: The nature
of the proposed dataset posed several challenges with regards
to its collection. In particular, as an aging dataset, KANFace
contains videos of people at multiple ages, that typically span
decades. At the same time, we wanted a large portion of the
subjects to be related. The above reasons rendered a human
study impossible. Therefore, we decided to use publicly avail-
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Figure 3: Sample sequences of the same person at 3 different ages at a 5 frame interval.

able YouTube videos of celebrities for our research.

3. Diversity of the dataset

3.1. Diversity metrics

In order to quantify the diversity of the faces in our dataset,
we follow the scheme introduced in [23]. In particular, we eval-
uate the diversity with regards to the labels of the data (e.g., age,
gender and perceived skin color) and capturing conditions (e.g.
pose, image quality and illumination). Concretely, we measure
statistics for: age, gender, pose, inter-ocular distance, resolu-
tion, craniofacial ratios (i.e., CF0-CF9), facial region contrast
(i.e., FC0-FC8), skin-color tone and illumination (as measured
by individual typology angle).

The diversity of the dataset is quantified using the Simpson
and Shannon diversity indices, which are borrowed from bio-
diversity studies [45]. Simpson D and Shannon H measure the
diversity of the dataset, while Simpson E and Shannon E quan-
tify the evenness of the distribution. The diversity and evenness
indeces are calculated as follows:

S hannon : H = −
S∑
1

pi ln(pi), E =
H

ln(S )

S impson : D =
1∑S
1 p2

i

, E =
D
S

where pi is the probability of class i and S is the number of
classes. The mean, standard deviation, Simpson D (SiD) and
E (SiE) and Shannon H (ShH) and E (ShE) for the attributes
of the dataset are tabulated in Table 2. The diversity statistics
are similar to [23], particularly with regards to resolution, cran-
iofacial ratios and facial contrast. Furthermore, the proposed
dataset is significantly more diverse with regards to age labels,
which were, contrary to [23], manually annotated.

3.2. Baseline experiments

To further assess the diversity of the faces in KANFace, we
investigate its impact on model performance. We evaluate a
baseline model against different benchmarks for face analysis

Att. SiD SiE ShH ShE Mean (Std)
Age 59.58 0.59 4.221 0.915 43.13(16.98)

Gender 1.999 0.999 0.999 0.999 0.51(0.5)
Pose 2.42 0.303 1.107 0.533 1.013(1.25)
IOD 5.55 0.694 1.851 0.89 55.2(32.57)
Res. 3.921 0.56 1.584 0.814 128(72.13)
CF0 5.8 0.967 1.775 0.99 0.875(0.065)
CF1 5.8 0.967 1.775 0.99 0.5276(0.062)
CF2 5.867 0.978 1.78 0.994 0.442(0.019)
CF3 5.895 0.982 1.783 0.995 0.63(0.058)
CF4 5.889 0.981 1.782 0.995 0.64(0.062)
CF5 5.75 0.958 1.77 0.988 0.461(0.06)
CF6 5.51 0.918 1.747 0.975 0.467(0.058)
CF7 5.86 0.978 1.78 0.994 0.541(0.054)
CF8 5.693 0.949 1.765 0.985 0.399(0.16)
CF9 5.812 0.969 1.775 0.99 0.378(0.037)
FC0 5.893 0.929 1.782 0.995 0.772(0.071)
FC1 5.572 0.929 1.757 0.981 0.722(0.051)
FC2 5.592 0.932 1.758 0.981 0.723(0.051)
FC3 5.854 0.976 1.779 0.993 0.3(0.107)
FC4 5.588 0.93 1.755 0.98 0.203(0.074)
FC5 5.6686 0.945 1.763 0.984 0.215(0.074)
FC6 5.919 0.985 1.785 0.996 0.72(0.083)
FC7 5.837 0.973 1.778 0.992 0.675(0.075)
FC8 5.835 0.972 1.778 0.992 0.675(0.075)
ITA 3.239 0.54 1.365 0.762 32.72(9.39)

Table 2: Diversity analysis of the dataset. IOD: inter-ocular distance, res: res-
olution, CF0: facial index, CF1: mandibular index, CF2: intercanthal index,
CF3: left orbital width index, - CF4: right orbital width index, CF5: left eye
fissure index, CF6: right eye fissure index, CF7: nasal index, CF8: vermil-
ion height index, CF9: mouth-face width index, FC0/FC1/FC2: eyes region
contrast, FC3/FC4/FC5: lips region contrast, FC6/FC7/FC8: eyebrows region
contrast and ITA: individual typology angle. For an analysis of these indeces,
the reader is referred to [23].

tasks, namely face recognition, age estimation, gender recogni-
tion and kinship verification. A diverse dataset is bound to be
more challenging due the presence of multiple modes of vari-
ation. Hence, we expect a significant performance drop on the
KANFace image and video benchmarks.
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Due to their efficacy in numerous computer vision tasks (e.g.
object detection [46] and recognition [47]), we choose a deep
CNN to obtain the facial representation for our baseline model.
In particular, we design our network based on the VGG-16 [48]
architecture. For each of the studied tasks, the model is trained
on a different dataset and fine-tuned on KANFace. Similarly,
to extract a temporal representation from the video sequences,
we utilize Recurrent Neural Network (RNN) on the CNN em-
bedding of each frame. For the experiments on videos, the CNN
features are obtained from the output of the first fully connected
layer and are fed to a gated feedback recurrent neural network
(GRU) [49]. The final video representation is obtained from the
512-dimensional hidden state of the last frame of the sequence.

3.2.1. Baseline experiments on face recognition
Our face recognition model is trained on the extensive VG-

GFace dataset. The resulting 4,096-dimensional face descrip-
tor is efficiently discriminative and achieves competitive perfor-
mance on standard face recognition benchmarks (e.g. 98.95%
on LFW). In the case of videos, the GRU is trained on the
proposed video dataset in a many-to-one configuration, as de-
scribed in the previous section. The static and temporal embed-
dings are classified through a softmax classification layer with
1,045 neurons.

Evaluation protocol and baseline results: The proposed
dataset contains 39 images and 42 sequences on average per
person. The number of data per subject raises the issue of lim-
ited intraclass variability between different images or sequences
of a person at the same age. In such cases, the data may orig-
inate from the same video and have similar attributes (e.g. en-
vironment, image quality, chrominance). In order to deal with
the related bias, each combination of identity and age is only
included in either the training or test set. Consequently, our
baseline experiments follow the paradigm of age-invariant face
recognition. We perform 5-fold cross-validation and report the
mean classification accuracy and standard deviation in Table 3.
The results are compared to those obtained for the LFW, YTF,
FG-NET and CACD datasets. In the absence of a face recogni-
tion benchmark for these aging datasets, a random 80-20 split
protocol is used for evaluation.

Model Dataset Accuracy
VGGFace LFW [8] 98.95%
VGGFace YTF [28] 97.3%
VGGFace FG-NET [24] 84.9%
VGGFace CACD [33] 84.32%
VGGFace KANFace static 75.81% ±0.6

VGGFace+GRU KANFace video 80.87% ±0.68

Table 3: Baseline experimental results for face recognition. The second column
contain the datasets that were used to fine-tune and evaluate the models.

3.2.2. Baseline experiments on age estimation
To model the facial transformations caused by aging, we

need a network trained on an extensive and diverse dataset.
Our face age representation is trained on IMDb-Wiki [15],

the largest still image dataset with exact age labels. The im-
age and video embeddings are extracted in a similar manner
to those in the face recognition experiment. To obtain the
age prediction, the embeddings are passed through a softmax
layer with 101 neurons. Each output neuron is interpreted as
the probability p(age) of each age label, i.e., 0 to 100 years
old, and the final prediction is calculated as the expected age:
o =
∑100

j=0 p(age = j) ∗ j.
Evaluation protocol and baseline results: Since our aim is

to build a person-invariant age estimation system, open-set eval-
uation protocol is applied. That is, the subjects within the train-
ing set are excluded from the test set. In particular, the subject
list is split into 5 folds, each consisting of 209 people. We per-
form 5-fold cross-validation on the corresponding images and
videos, each time testing on a different set of identities. The
method is evaluated based on the Mean Absolute Error (MAE),
which is the standard metric for exact age estimation and is cal-
culated as: MAE =

∑N
j=1 |ȳ−y|/N. The mean MAE and standard

deviation of our baseline experiments are reported in Table 4.
The results are compared to standard publicly available age es-
timation benchmarks.

Model Dataset MAE
DEX-age FG-NET 3.09
DEX-age MORPH2 [26] 2.68
DEX-age CACD 4.785
DEX-age KANFace static 7.66 ±0.08

DEX-age+GRU KANFace video 6.91 ±0.44

Table 4: Experimental results for age estimation. The second column contain
the datasets that were used to fine-tune and evaluate the models.

3.2.3. Baseline experiments on gender recognition

To train the face representation for gender recognition, we
utilize the gender annotations of the IMDb-Wiki dataset. Sim-
ilarly to the above, the face and video descriptors are of 4,096
and 512 dimensions respectively. The descriptors are classified
by a softmax classification layer with 2 output neurons.

Evaluation protocol and baseline results: We apply a
person-invariant protocol and evaluate the model by conduct-
ing 5-fold cross-validation. The mean classification accuracy
and standard deviation are reported in Table 5. Since we study
gender classification under aging transformations, the baseline
model is also tested on MORPH 2, which has gender labels,
using a random 80-20 split protocol.

Model Dataset Accuracy
DEX-gen MORPH2 96.7%
DEX-gen KANFace static 93.04% ±0.72

DEX-gen+GRU KANFace video 96.12% ±1.22

Table 5: Experimental results for gender recognition. The second column con-
tain the datasets that were used to fine-tune and evaluate the models.
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3.2.4. Baseline experiments on kinship verification
For the task of kinship verification, we utilize a face repre-

sentation trained on the VGGFace dataset and fine-tuned on
the FIW dataset [50] using the triplet loss. The representation
is further fine-tuned on CornellKin [27], KinFaceW-I [35] and
KinFaceW-II [35], and the results are presented on Table 6. For
the experiments on videos, the VGGFace embedding is used
as the face descriptor and the GRU is trained on the KANFace
video dataset.

Evaluation protocol and baseline results: The proposed
protocol focuses on the seven basic family relationships,
i.e., Brother-Brother (B-B), Sister-Brother (S-B), Sister-Sister
(S-S), Mother-Daughter (M-D), Mother-Son (M-S), Father-
Daughter (F-D) and Father-Son (F-S). Open set evaluation is
adopted, that is, 80% of the subject pairs are used for training
and 20% for testing, with no subject overlap between the two
sets. The negative pairs are generated randomly so that they
are of the same gender as the corresponding positive pairs. The
accuracy per relationship as well as the average accuracy of the
baseline model is reported on Table 6.

3.3. Discussion

In Section 3.1 we evaluated the diversity of the faces in the
proposed KANFace dataset. In order to study how the diver-
sity translates to model performance, the results of the baseline
method are compared on different in-the-wild datasets in Sec-
tions 3.2.1-3.2.4. Overall, the results on Tables 3-6 indicate that
the large variation in age, illumination, occlusions and pose has
resulted in a performance drop for all tasks. A major factor for
this performance gap is the age distribution of our dataset. Con-
trary to other datasets (e.g., [36]), the proposed dataset contains
a significant number of faces under 18 and over 60. The large
age variation proved to be challenging even when we trained
the model on an aging dataset ([15]).

Furthermore, we notice a significant difference in the perfor-
mance on the kinship verification task (3.2.4). Besides the di-
verse nature of the proposed KANFace dataset, our benchmark
presents a set of challenges that are not present in most previous
works. Firstly, the proposed dataset is one of the largest kinship
verification datasets, including 566,198 kin pairs (as opposed
to 150 in CornellKin and 1000 in KinfaceW II). The large scale
of the data comes with facial variations that are not present in
smaller datasets. Secondly, the problem we investigate intro-
duces an age-invariant aspect to the task of kinship verification.
For instance, we have test pairs where the parent is depicted
at a much younger age than the child. Lastly, the faces in our
dataset are not cropped from the same image/video. This is vi-
tal for kinship analysis, as not doing so can induce bias to the
task.

4. Bias analysis

The experiments in the previous section indicate that the cho-
sen baseline method performs poorly on the proposed KAN-
Face dataset. Nevertheless, this fact alone is neither adequately

informative nor transparent. In this work we take a different di-
rection and attempt to diagnose the reason behind the poor per-
formance of the model. We investigate the demographic bias of
the model with regards to age and gender, using 5 age classes:
(i) 0-18, (ii) 19-30, (iii) 31-45, (iv) 46-60 and (v) 61+. Ad-
ditionally, we investigate the impact of illumination and skin-
color tone (as measured by the ITA).

4.1. Bias in face recognition

We investigate the performance of the chosen baseline face
recognition model (see Section 3.2.1) and report the accuracy
per age group and gender in Figure 4. The results on the KAN-
Face static images reveal that the performance is better on fe-
male faces (77.3% accuracy for females and 75.1% for males).
The experiment on videos does not indicate such a bias, as the
accuracy is similar for males and females (79.5% accuracy for
females and 80.4% for males). Further to that, it is clear from
Figure 4 that the model displays a bias towards the underrep-
resented age classes, e.g., 0-18 years old, where we notice a
significant drop in performance.

Figure 4: Analysis of performance of the chosen baseline model (see Section
3.2.1) for face recognition on images and videos.

In order to study how different models cope with the afore-
mentioned biases, we experiment with different architectures.
Besides the baseline model described in Section 3.2.1, we eval-
uate several deep models, including lightweight ones. In par-
ticular, we train LightCNN-9 [51] and ResNet-50 [14] on the
KANFace image dataset and LSTM [52] on the KANFace
video dataset. ResNet-50 is pretrained on VGGFace2 [14] and
fine-tuned on the proposed KANFace dataset, while LightCNN-
9 is trained from scratch on KANFace. The results in Table 7
highlight the superior performance of ResNet-50. This is ex-
pected as this model is trained on [14] which is larger and more
diverse compared to [36]. For the experiments on the video
dataset, we train LSTM on KANFace in similar manner to GRU
for comparison. We notice that GRU performs better in terms
of average accuracy. However, the more complex LSTM model
is less biased as indicated by its performance on faces under 18
and over 60.
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Model Dataset B-B S-S S-B M-S M-D F-S F-D Mean
VGG-FIW CornellKin [27] - - - - - - - 79.9%
VGG-FIW KinFaceW-I [35] - - - 77.57% 79.96% 78.49% 79.16% 78.8%
VGG-FIW KinFaceW-II [35] - - - 78.2% 79.4% 76.6% 73.8% 77%
VGG-FIW KANFace static 67.91% 66.69% 61.68% 59.57% 70.47% 68.08% 64.04% 65.49%

VGGFace+GRU KANFace video 72.84% 63.3% 59.88% 80.1% 52.95% 63.38% 56.29% 64.11%

Table 6: Experimental results for kinship verification. The second column shows the datasets that were used to fine-tune and evaluate the models.

Model F: 0-18 F: 19-30 F: 31-45 F: 46-60 F: 61+ M: 0-18 M: 19-30 M: 31-45 M: 46-60 M: 61+ Acc
LightCNN-9[51] 0.215 0.394 0.522 0.58 0.67 0.19 0.263 0.505 0.593 0.594 0.5055

VGG-16[36] 0.395 0.632 0.837 0.852 0.883 0.448 0.568 0.775 0.813 0.794 0.7618
ResNet-50[14] 0.556 0.688 0.835 0.856 0.935 0.469 0.662 0.833 0.842 0.825 0.8008
VGG-16-GRU 0.52 0.781 0.815 0.812 0.811 0.376 0.695 0.82 0.866 0.789 0.8006

VGG-16-LSTM 0.568 0.718 0.797 0.784 0.832 0.471 0.671 0.82 0.857 0.791 0.791

Table 7: Experimental results for face recognition on images and videos. F: Female, M: Male. The models are trained/fine-tuned and evaluated on KANFace.

4.2. Bias in age estimation

A similar analysis is conducted for the chosen baseline age
estimation model described in Section 3.2.2. The results in Fig-
ure 5 reveal that the model is biased towards the tails of the
age distribution. In particular, MAE increases significantly for
faces under 18 and over 60. This is due to the age distribution
of the training set (i.e., [15]) as well as the proposed dataset
(Figure 1).

Figure 5: Analysis of performance of the chosen baseline model (see Section
3.2.2) for age estimation on images and videos.

Since the proposed age estimation protocol is person invari-
ant, we are able to evaluate bias not only across models but
also across datasets. We perform cross-dataset experiments on
FG-NET, MORPH 2 and KANFace. Along with the baseline
model, we study the lightweight SSR-NET [53] architecture.
With orders of magnitude less parameters than VGG-16, this
lightweight model is compact and cannot perform on par with
our baseline. Nevertheless, the comparison offers insights re-
garding the effect of model complexity on bias. We compare
LSTM and GRU on the video dataset similarly to the previous
Section.

Overall, compared to training on FG-NET or MORPH 2,
the models that are trained on KANFace perform better across

datasets (Figure 7). Moreover, using a more complex model
that is pretrained on a rich datasets such as [15] yields better and
more fair results, especially when tested on a different dataset.
We analyze the performance of all trained models as shown in
Table 8. The results highlight the effect of the diversity of the
training set, concretely: 1) Since more than 68% of FG-NET
consists of faces between 0 and 18 years old, the models that
are trained on FG-NET perform significantly better on that pop-
ulation. 2) The models that are trained on MORPH 2 and the
KANFace dataset perform better on faces between 19 and 45
years old. Indicatively, more than 75% of the faces in MORPH
2 belong to this age group. 3) Only the models that are trained
on KANFace are able to perform adequately on faces over 45
years old, as they represent more than 40% of the faces in the
dataset. The experimental results on the video dataset indicate
that the GRU and LSTM perform similarly, with the latter per-
forming marginally better on average.

4.3. Bias in gender recognition

The results in Table 5 indicate that the gender recognition
task does not pose a significant challenge to our baseline mod-
els. Nevertheless, by analyzing the performance of the models
(Figure 6) we are able to uncover biased behavior towards male
faces under 18 years old. The results agree with studies that
support that gender recognition of male faces is facilitated by
masculinity [54], which is largely correlated to attributes that
appear in later stages of facial development.
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Model- training set F: 0-18 F: 19-30 F: 31-45 F: 46-60 F: 61+ M: 0-18 M: 19-30 M: 31-45 M: 46-60 M: 61+ MAE
SSRNET-FGNET 6.2 11.52 21.69 33.06 47.68 5.04 10.37 19.98 27.99 38.76 24.08
SSRNET-MORPH 25.46 16.5 10.21 10.41 25.34 30.0 19.28 9.95 7.63 21.52 14.27
SSRNET-KANFace 22.12 11.15 7.06 11.21 20.29 24.83 12.88 8.08 8.34 12.63 11.04

VGG16-FGNET 4.22 7.96 14.72 22.48 23.3 6.26 8.46 13.92 18.38 19.1 15.17
VGG16-MORPH 15.59 7.49 5.73 10.51 19.92 19.34 7.72 5.19 8.31 16.62 9.47
VGG16-KANFace 13.09 7.13 5.96 9.13 11.39 14.15 7.84 5.38 7.0 8.87 7.65

VGG16-GRU 11.43 7.42 6.36 7.38 11.14 14.22 6.61 5.12 5.41 6.46 6.76
VGG16-LSTM 11.64 7.56 5.79 8.98 10.8 13.58 6.78 4.58 5.72 6.55 6.75

Table 8: Bias analysis of the age estimation models. F: Female, M: Male. The models were evaluated on KANFace.

Figure 6: Analysis of performance of baseline models for gender recognition
on images and videos.

Similarly to Section 4.2, cross-dataset experiments are con-
ducted on KANFace and MORPH 2 and presented in Table 9
and Figure 7. The models that are trained on MORPH 2 demon-
strate a significant performance drop when tested on a different
dataset. Indicatively, for the SSR-NET the performance drops
from 87.4% to 77.7% and for the baseline VGG-16 from 96.8%
to 90.4%. When trained on the proposed KANFace dataset,
the performance remains similar across datasets (86.32% to
87.67% for SSR-NET and 93.5% to 93% for VGG-16). Lastly,
all models displayed the aforementioned age bias towards male
faces. However, the much smaller SSR-NET is the least biased,
when trained on KANFace.

4.4. Bias in kinship verification

As discussed in Section 3.3, the proposed kinship verifica-
tion benchmark presents the novel challenge in terms of large
variation in the age difference of the input faces. Motivated by
this, we study the performance of the baseline models described
in Section 3.2.4 for three ranges of age difference, namely 0-10
years, 11-20 years and 21-30 years. Besides the baseline mod-
els, we conduct experiments with ResNet-50 and LightCNN-9
on images, as well as with LSTM on the video dataset. The
results are presented in Figure 8. Following common prac-
tices (e.g. [40]), the image-based kinship verification models
were pretrained on face recognition. Hence, the resulting mod-
els should encode the age-invariant features that are vital for
face recognition. Indeed, the results on Figure 8 do not indicate
significant change in performance with varying age difference.

The performance of the temporal models varies more with age
difference, with the LSTM performing marginally better on av-
erage.

4.5. Bias with regards to individual typology angle
To study the effect of perceived skin-color tone on the per-

formance of the trained models, we perform an analysis with
regards to perceived skin color. We focus on five individual
typology angle classes, namely: -30-10 (brown), 11-28 (tan),
29-41 (intermediate), 24-55 (light) and over 55 (very light).
The results for the tasks of face recognition, age estimation and
gender recognition are presented in Figure 9. In general, the
models perform better on intermediate faces, with the perfor-
mance dropping as the faces get lighter or darker. Pretraining
the model on a large and diverse dataset also seems to help with
generalization across perceived skin-color tone, as the mod-
els that are trained on [48], [14] and [15] (i.e., VGG16 and
ResNet50) perform better across ITA classes and are in general
more less biased.

5. Mitigation of representation bias

In the previous section, we presented a series of experimental
results that reveal the existence of bias in a series of face anlysis
tasks. We recognize the demographic imbalance of the training
set as the source of bias in the learned representation, which in
turn results in biased classification. In order to debias the deep
representation, we propose to decompose a network embedding
z ∈ Rd1 as follows:

z = zp +

N∑
i=0

zi, (1)

where zp is the representation that is discriminative for the pri-
mary classification task (e.g., face recognition) and zi are the
representations for the sensitive attributes (e.g., age and gen-
der). It is clear that we want the representations for the sensi-
tive attributes to be independent of the primary representation,
i.e., zp ⊥⊥ zi for every sensitive attribute i = 1, . . . ,N. In order
to obtain the debiased representation while imposing the inde-
pendence of the components, we further assume the following
decomposition:

z = A B z +
N∑

i=0

Di Ti B z, (2)

s.t. AT Di = 0, n = 0, 1, . . . ,N
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Model- training set F: 0-18 F: 19-30 F: 31-45 F: 46-60 F: 61+ M: 0-18 M: 19-30 M: 31-45 M: 46-60 M: 61+ Acc.
SSRNET-MORPH 0.705 0.731 0.764 0.766 0.734 0.54 0.776 0.816 0.827 0.84 0.777
SSRNET-KANFace 0.684 0.765 0.83 0.866 0.861 0.693 0.877 0.935 0.924 0.905 0.8632
VGG16-MORPH 0.816 0.878 0.903 0.917 0.918 0.56 0.897 0.952 0.949 0.869 0.904
VGG16-KANFace 0.923 0.961 0.981 0.961 0.964 0.527 0.843 0.927 0.951 0.923 0.935

VGG16-GRU 0.905 0.924 0.954 0.955 0.921 0.797 0.975 0.986 0.981 0.976 0.959
VGG16-LSTM 0.942 0.944 0.969 0.974 0.939 0.632 0.951 0.975 0.961 0.961 0.959

Table 9: Bias analysis of the gender recognition models. F: Female, M: Male. The models were evaluated on KANFace.

where A ∈ Rd1×d2 , B ∈ Rd2×d1 ,Ti ∈ Rd3×d2 ,Di ∈ Rd1×d2 and
solve the following optimization problem:

min
V

max
U
Lcls + λdecLdecom + λorLor −

N∑
i=0

λiL
i
entr. (3)

The parameter sets V and U are defined as V = {A, B,Di,Wp}

and U = {Ti,Wi}. To solve 3, we formulate the optimization
problem using adversarial learning and solve the following sub-
problems:

min
V
L

p
cls + λdecLdecom +Lor −

N∑
i=0

λiL
i
entr (4)

and

min
U

N∑
i=0

Li
cls (5)

where Lp
cls and Li

cls are the softmax classification losses with
parameters Wp and Wi and Li

entr is the entropy of the classifier
for the i − th sensitive attribute. Lastly, the decomposition and

orthogonality losses are defined as:

Ldecom =
1
2
‖z − A B z −

N∑
i=0

Di Ti B z‖2F (6)

Lor =

N∑
i=0

λi
or

1
2
‖AT Di‖

2
F (7)

.
We apply the proposed method on the embeddings of our

baseline VGG-16 and GRU classification models (i.e., face
recognition, age estimation and gender recognition) on images
and videos. Our goal is to investigate when unwanted demo-
graphic information can be disentangled from the represen-
tation without losing discriminative power. The sensitive at-
tributes for each task are chosen based on the bias analysis of
the previous section. Similar to the baseline experiments, the
models were fine-tuned and evaluated on the proposed KAN-
Face dataset.

The proposed debiasing method leverages adversarial learn-
ing to impose the independence between the representations of
the primary task and the sensitive attributes. Similar approaches
have been proposed in the domain adaptation literature (e.g.,
[55, 56, 57]) in order to minimize the domain shift. Contrary
to such methods, our framework is used on pretrained embed-

Figure 7: Bias analysis of the cross-dataset age estimation and gender recognition experiments. The different colors denote the different training sets.
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Figure 8: Bias analysis of the kinship verification models with regards to age difference. The models were trained/fine-tuned on and evaluated on KANFace. BB:
Brother-Brother, SS: Sister-Sister, SB: Siblings, MS: Mother-Son, MD: Mother-Daughter, FS: Father-Son, FD: Father-Daughter

dings and extracts representations for both the primary task and
the sensitive attributes.

5.1. Debiased representation for face recognition

The face recognition baselines were biased with regards to
age and gender (Figure 4). Therefore, we apply the proposed
method to debias the image and video embeddings, setting age
and gender as sensitives attributes. The results in Figure 11
show that the obtained representations perform better for the
underrepresented classes of under 18 and over 60 years old.
Furthermore, the new classifier is less biased across genders.
Compared to the video features, the image features benefited
the most from the proposed debiasing method. This is due to
the dimensionality of the image features (image features are
4,096-dimensional, while video features are 512-dimensional)
and indicate that high dimensional deep features run the risk of
encoding bias-inducing information.

Furthermore, we investigate whether age and gender infor-
mation can be disentangled from face recognition features us-
ing the proposed method. To this end, we use t-SNE [58] to
analyze the baseline and debiased representations. The results
on Figure 10 highlight the ability of the proposed method to dis-
entangle age related information, especially for faces under 18
years old. However, the same cannot be said for gender, as both
the baseline and debiased representations clearly encode gender
information. This result is consistent with psychology studies
that suggest that the gender of a face is highly correlated with
the perceived identity [59]. Hence, the proposed decomposition
could not disentangle gender information from the representa-
tion without decreasing face recognition accuracy.

5.2. Debiased representation for age estimation

The bias analysis of the image and video age estimation mod-
els (Figure 5) indicate the existence of gender bias, as both the

(a) Face recognition (b) Age estimation (c) Gender recognition

Figure 9: Bias analysis of the results with regards to ITA. The model were evaluated on KANFace. Face recognition models (a) were trained/fine-tuned on KANFace.
Age estimation (b) and gender recognition (c) models were trained/fine-tuned the specified dataset.
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Figure 10: t-SNE of the baseline and debiased face recognition embeddings.
The figures on the left column represent the underrepresented age classes. The
faces under 18 (in blue) are significantly less clustered. The figures on the right
represent the gender classes.

image and video baseline models perform better on male faces.
Furthermore, the difference in MAE between male and female
faces increases with the age of the face. Psychological stud-
ies suggest that this bias is due to the correlation of perceived
age with perceived attractiveness [60]. In these studies, women
exhibit larger variability in their efforts to look younger, hence
inducing bias in age estimation. Since the suggested dataset
consists of celebrity faces, such bias is dominant, with the exis-
tence of make-up or plastic surgeries inducing noise to age pre-
diction. Therefore, as indicated by the results on Figure 11b,
our method is not able to mitigate gender bias adequately.

5.3. Debiased representation for gender recognition

The analysis in Section 4.3 revealed that the gender recogni-
tion baseline models are biased towards male faces under 18
years old. In order to mitigate age bias, we apply the pro-
posed method on the image and video embeddings. The results
on Figure 11c show that the debiased representations perform
better on male faces under 18 years old, especially on images.
The lower dimensional video representation did not display the
aforementioned bias to the same extent, and therefore did not
benefit as much from the debiasing.

6. Conclusion

Deep neural networks have been successfully used to ad-
vance the state-of-the-art in image and video-based face analy-
sis by capitalizing on the existence of a large corpus of available
facial datasets. However, the lack of diversity in such datasets
resulted in biased models. In this work we introduce KANFace
dataset, the largest manually annotated image and video dataset
for face analysis in-the-wild. Being thoroughly annotated with
regards to age, gender and kinship, the proposed dataset allows
for the study of novel tasks such as video-based age estimation
and kinship verification.

Making use of the rich annotations, we investigate the bias in
state-of-the-art deep learning models on a variety of image and
video-based face analysis tasks, namely face recognition, age
estimation, gender recognition and kinship verification. To the
best of our knowledge, this is the first work to put the bias of all
these tasks under scrutiny.

Our extensive experimental evaluation revealed biased be-
haviour towards certain demographics and provided insights of
why this is happening. In particular, both face recognition and
age estimation models were biased towards faces under 18 and
over 60 years old. The age estimation models were also biased
towards female faces, especially older ones, due to the presence
of nuisance factors that appear on celebrity faces, e.g., make-up
and plastic surgery. On the other hand, gender recognition mod-
els displayed age bias towards young male faces, possibly due
to the lack of features that are developed on adult male faces.
Lastly, the experiments on kinship verification indicate that, de-
spite the inherent challenges of age-invariant kinship modeling,
pretraining the models for face recognition yields age-invariant
kinship representations.

We introduce a method to debias the network embeddings.
We apply the proposed method to investigate in which cases de-
mographic information can be disentangled from the deep rep-
resentation. The results indicated that the age bias that exists in
face recognition and gender recognition can be mitigated. On
the other hand, gender bias cannot be mitigated as it a discrimi-
native attribute for face recognition. Similarly, we observe that
the proposed method cannot eradicate gender bias from the age
estimation embeddings. The proposed bias analysis protocol
can be applied to diagnose the performance of any face analysis
model. Thus, both KANFace dataset and the bias analysis pro-
tocol presented in this work constitute tools towards unbiased
face analysis models from still images and videos in-the-wild.
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